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Plan of the talk

¢ Review of role of disorder in quantum Hall effect (QHE)
e Review of signatures of Anderson localization

e Disorder in topological insulators

e Weak invariants and delocalization of surface states

e Bulk-boundary correspondence in chiral semimetals

e Analytical tool: Besov spaces for R"-action on semifinite W*’s
and non-commutative Peller criteria for associated Hankel operators
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Integer quantum Hall effect
effectively 2d electron gas in strong magnetic field Bat T =0
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Hall conductance = bulk Hall conductivity = edge Hall conductivity
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Modeling disorder in dimension d
Description within one-particle framework by random Hamiltonians

H, = Hg + AV, on 2(z°,chyor L2(RY, CH)
with coupling constant A and disordered potential
Vs = Z Va Wh
nezd

where w = (Vp) yeze 1.1.d. from [—1,1] and W, some (matrix) bump

Disorder configs (Q,Z%) C*-dyn. system with invariant ergodic P

Basic quantity for random (H,,).cq: integrated density of states (IDOS)
1

= lim — i fH,a < E P-a.s.
N(E) |/\|\|Lnoo A #{eigenvalues o A < E} a.s
and DOS (if it exists)
£ - X
7=
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Importance of disorder for QHE & topo. insulators
d=2and Hg = H, = %(P + eA)? Landau operator, \ large, DOS like:
P(E)

2nE

hao.

172 3/2 512
In interval A between Landau bands: Anderson localization
e P-a.s. the spectrum of H,, in A is dense pure-point (DOS smooth)
« eigenfunctions exponentially localized in space Z¢
e Fractional moments of resolvent are bounded (next slide)
e Decaying eigenfunction correllators (later)

Fact: these eigenstates do not carry currents and lead to plateaux

Adding disorder: stability of topological phases with closed bulk gap



Proofs of Anderson localization d > 2

First method (Frdhlich, Spencer 1983, ...): multiscale analysis
Second method (Aizenman, Molcanov 1993, ...): fractional moments

Definition (Mobility gap regime MGR)

H has mobility gap in interval A, if for some s € (0, 1) there are
As and s > 0 such that

1 S _ B
| Kot 5ol riaw) < Aqemti

holds uniformly for all x € Z9 and z e C\R with Re(z) € A

Two regimes can be attained (actually with short proofs):

¢ A = R and strong disorder (perturbation theory in kinetic term)

e small A and A at band edges of periodic op. (perturbation in \)
Open: between Landau bands & topological insulators & pseudogaps
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Fermi projection in non-commut. Sobolev space
Suppose mobility gap given: What can one say?

C*-alg. of observables twisted crossed product A = M, (C(Q) x g Z9)
represented as covariant operator families A = (A, ).eq on £2(Z9,Ch)
Supports unbounded derivations 01, ..., d4 given by 0;A, = i[X;, A.]
n-times differentiable elements form C”(A)

PP provides (finite) tracial state 7 (A,,) = {, P(dw) Tr, (0]A,|0)
W*-algebra of observables M = LOO(Q, P) x g Z9 with semifinite 7~
LP(M) closure of M w.r.t. [Alp = T(JAP)?

Sobolev space Wy (M) closure of C"(A) w.r.t. [|Alws = X< )ji<n |6/ Alp
Proposition ([BES], [PS], [SS])

H has mobility gap in A and EF € A
Fermi projection Pr = x(H < Ef) € M lies in Wg(M) for all n, p > 1
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(Weak) topological invariants: preparations
Derivations 0 = (4, ..., 04) lead to action k € T? — 6, = e5% on M
On magnetic translation u* by x € Z9, one has 6, (uX) = e**u*

n < d and orthonormal system ¢ = (&4,...,&,) in RY give action on M

n
tERnHOétzat.g t'fzztjé.jERd
j=1
Associated derivations V = (V4,..., V)
Definition ((Weak) Chern cocyles)

For Ao, ..., Ane WI(M,a) n M

Ch7.a(Ao, -, An) = €0 D (=1)P T (AV,1)A1 - ..V pmyAn)

peSh
(2ri)k o
with normalization constants ¢, = —’1& i)k,
k11 forn=2k + 1

v

Disordered insulators and semimetals 9/25




(Weak) topological invariants

Not restricted to C*-pairings, but sufficiently smooth elements of M

Definition (Even and odd Chern numbers)

Let Pr e W}(M, a) n M (e.g. mobility gap regime). For n even,
Ch7 o(Pr) = Chro(PF,...,PF)

If H has chiral symmetry and n odd,

ChT,a(UF) = ChT,a(U;-E_17UF7 Ulﬂ-iw'wUF) ) PF = (L(j) LéF)
F

v

As usual: constant on norm-continuous paths in W!(M, a) n M
Example: For n = 1 (dual) translation t — e!Ve¢ in direction ¢ € RY
If £ irrational, connected to half-spaces & - X > 0 with "irrational” edges

For chiral system Chy¢(Ur) = i T(UEV¢Ur) weak winding number



Constructions for index theorem (C* in [PS]):

~

Crossed product M x, R with semifinite trace 7, (via Hilbert alg.)
W*-crossed product defined in regular representation on L?(R", H)
N = [P(MxaR",To) = M xaR" ¢ B(L2(R",H))
Contains bd. Borel functions of D = (Dy, ..., D,) = id; on L2(R", H)
Furthermore: LP-spaces LP(N, 7 for p > 1
Irrep of complex Clifford algebra generated by 'y, ...,y € Moy with
{rifp =0,  TI?2=1

Introduce Dirac operator affiliated with Moy (') and Hardy projection

n
D:ZFI®DI n=x(D>0)€M2N(N)
Jj=1

Casen=1,a=¢ M x¢Redge alg., 72« boundary trace per unit vol.
M=M= x(&- X > 0) in physical representation
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Theorem (Besov index theorem, with Tom Stoiber [SS])

(M, T) semifinite von Neumann with R"-action « leaving T invariant
Generators of « on M denoted by V1,...,Vp

Let n be odd and unitary Ug € M n W}(M,a) n W], (M, a), then

~

Chro(Ur) = Tl (I‘I UsN+(1-— |_|)) e R

where semifinite index of T -Breuer-Fredholm T e Mon(N) is

~

To-Ind(T) = To(Ker(T)) — To(Ker(T*))

Similar results for n even

v

n/(n+1)
n+1,n+1

Important: no differentiability assumption (as Lesch, Wahl for n = 1)

Weaker hypothesis on symbol: Ur e M n W} ~ B Besov space
If Ur in C*-algebra A — M, values in discrete set (see [PS2])
Proof: non-commutative Peller criteria for [, Ug] € LP(N, T4)
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Stability properties:

Stability for 7-compact perturbations and on norm continuous paths
But: in MGR usually only strong continuity under parameter change
Proposition (with Tom Stoiber [SS])

Let s — Hs € M strongly continuous path with Ex not eigenvalue
and uniformly | Pr | wi,, < C forsome e >0

Then s — Chr (PF s) continuous for even n
Similarly, s — Chr (Ur s) continuous for odd n and chiral Hs

Corollary (already in [BES,PS])
If n = d integer-valued strong invariants are constant

For QHE: explains plateaux for bulk invariants [BES]

Question: weak invariants useless?
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Weak invariants prohibit localization of edge states

Set-up: ¢ € RY perpendicular to boundary of codimension 1
H = NHM + K with N = x(X - ¢ > 0) and K boundary term
R"-action o generated by (¢1,...,&,) all L &, so a x ¢ action of R

Theorem (Delocalization of surface states [SS], n = d — 1 [PS])
Suppose Er in bulk gap A

If bulk invariant Chr . «¢(Pf) # 0, no Anderson localization of Hin A
Same holds if H chiral, Ch7 oxe(UF) #0and0e A

No Anderson localization means: no bounded eigenfunction correlator

R ~
sup 2 14 [x— y|)k f dr f Pdw) sup xR,
yezd 0 Q feB(l), | flo<1

Proof: contains bulk-boundary correspondence for all £
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Surface states for chiral system via index theorem
H chiral Hamiltonian and H = MHM with M = x(X - & > 0) have polars

0 Ur - 0 Ur
sgn(H) = ( . ) . sgn(H) = <A* )
Us 0 Us o

R.h.s. of Besov index theorem for n = 1 contains MUgIN and not UF:

Chr¢(Ur) = T-Ind(N Ug M)

Lemma
UF — NUEN is T -compact J

Thus:

Chy¢(Ur) = T-Ind(Ug) = T(ogKer(H)) = T(Py — P)

where I?’J_r pos/neg chiral sector of flat band projection P = X(ﬁl =0)
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Flat band of edge states

Sobolev (or Besov) condition holds in MGR, but also for pseudogap:

Theorem ([SS] with Tom Stoiber, d = 1 Graf-Shapiro)
H with chiral symmetry o3Hog = —H

Suppose that either there is pseudo-gap at 0, namely v > 1 with
N([-€¢€]) = T(x(|H <€) < Cy€

or there is mobility gap in (—e¢g, €o)

Then, for Fermi unitary Ur and kernel projection P = ,E’+ + P,

iT(UZ'VeUr) = T(Py) — T(P)

Generically: all in one chiral sector, namely P, or P_ vanishes
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Corollary
Periodic chiral Hamiltonians in d = 2 have edge states for irrat. edges J

Moreover: stable w.r.t. boundary disorder
Open: localization properties in pseudogap, fate of pseudogap
Most prominent example: Graphene, for which

i T(UF'VeUr) = iT(UF'V1Ug) & + iT(UF'VaUr) & = 2 &

1
3
most edge states for zigzag & = 1, none for armchair & = 0

Value } is not topological !
Pairing ([¢ - X], [Ur]1) = i T(Us'V¢Ur) over huge algebra B/ n L*
Thus values not in discrete range of [U]y € K1(A) — ([¢- X], [U]1)

As chiral H changes continuously, so does Chy¢(Ur) = iT(U;1 VeUr)
Only BBC equality always holds and is hence topological
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Model for graphene
On honeycomb lattice = decorated triangular lattice, so on (?(Z?) ® C2
H — 0 S+ S;k So + 1
ST+855 +1 0

where Sy, S, shifts on ¢2(Z?). Clearly chiral c3Hos = —H. Fourier:

H ~ ®dk 0 e + gltke=k) 4 4
>~ - e ki 4 g-ilke—ki) 4 { 0

Dirac points k;. = (%, 0) DOS vanishes at E = 0 (pseudogap)



Edges

Zigzag boundary =~ replace S; by unilateral shift §1
Armchair boundary = replace S; by unilateral shift S
Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag
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Stacked SSH as chiral 2d toy model

SSH in direction 1 with coupling in direction 2 and chiral randomness
H— 0 S1—M _s 0 Sg-l-Sz +)\2Vn 0 1
Sf—p 0 So+ S5 0 o 10

where vj i.i.d. random variables with uniform distribution in [—%, %]
(2 or 4) Dirac points for periodic model if ky = 0,7, 20 cos(kz) + p =

DOS Ham

+1

A=0.2, u=1.3,5 = 0.3 and volume [—p, p]? with p = 20
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Central DOS and one of the edge states

Zoom into the central DOS  Same parameters as above

Central DOS Ham
12} -

M I

-0.04 -0.02 0.00 0.02 0.04

There are 28 = 2 - 14 (approximate) zero modes of H
Corresponding eigenstates only on two opposite edges
(edges weakly coupled, edge states vanish on other edges!)
Edge state dens. = 1* ~ iT(U7'V1U) = { %2 x(u + 25 cos(kp) < 1) ~ §
Here first ~ is precisely the equality in the theorem (1 chiral sector)
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Constructions for definition of Besov spaces:

Semifinite trace 7 gives von Neumann algebra M
Non-commutative spaces X = L°(M), p > 1, Banach spaces
L?(M) is GNS-Hilbert space of T
R"-action a on M which leaves T invariant
T-invariance = « extends isometrically to action 5 on X = LP(M)
For f e L'(R") and x € X define f¢(x) as Riemann integral

Bi(x) = | H(=1) Bi(x) ot

Rn
Then for f € FA(R") = FL'(R") define Fourier muItipIier?* € B(X) by
fex = Bra(x)
o(x) = Arveson spectrum = {Ae R": f(\) =0 if f+x =0, fe FL'}



Non-commutative Besov spaces:
X Banach space with isometric R"-action 5 on X (above X = LP(M))
Given smooth ¢ : R — [0, 1] supported by [-2, —2-'] L [271,2] and
Dlp@x) =1
JEZ
Littlewood-Payley dyadic decomposition (W) ey by
Wy = p(27-]) forj>0, Wy =1-> W,
j>0
Now:

L~ 1
BS(X) = {XEX : HXHBg(X): (2 2‘73/HVV]-*XH;’(>" <oo}
j=0

Set
BS (M) = Bg(LP(M))
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Properties of Besov spaces:

Proposition

Definition of B§(X) independent of choice of ¢

(B5(X), I HB;(X)) Banach space for s R and g € [1, )
An equivalent norm is given by

1

at\?

X|zs v = IX|x + t759 WN(x, )9 =
IXlgg = Ixlx (jm Ko, t)

where

wi(x, 1) = |Sl‘lpt||A£V(X)||X , N=s
ri<

with finite difference operator A; : X — X given by
Ai(x) = Bi(x) —x

Corollary
For Bg ,(M) = B3(LP(M)) and s € [0,1], B (M) n M is a «-algebra |
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Peller criterion for Hankel operators:
Hardy projection N = x(D > 0) in Man(N), but not LP(Mon(N), Tr @ T)

Now for "symbol” A € M, Toeplitz and Hankel operators in Moy (N) are
T, = NMAN , Hy = TA(1-1)
Theorem

Forallp > nandAe M n BYF(M), one has Hy € LP(Mon(N), Tr @ T)
Forn =1, also p = 1 is sufficient

Proof: explicit calculations for p = 1

[2-estimates for weighted Hankels with symbol BS’Z for p > 2

Involved estimates on weighted Hankels for p = o

Intricate application a la Peller of analytic interpolation (e.g. Lunardi) [
Classical case is n = 1 and M = L*(R) with a4(f)(y) = f(y + 1)



