Index theory for disordered insulators and semimetals

Hermann Schulz-Baldes, Tom Stoiber Erlangen

May 2021

Plan of the talk

- Review of role of disorder in quantum Hall effect (QHE)
- Review of signatures of Anderson localization
- Disorder in topological insulators
- Weak invariants and delocalization of surface states
- Bulk-boundary correspondence in chiral semimetals
- Analytical tool: Besov spaces for ℝⁿ-action on semifinite W*'s and non-commutative Peller criteria for associated Hankel operators

References

[BES] J. Bellissard, A. van Elst, H. Schulz-Baldes, *The Non-Commutative Geometry of the Quantum Hall Effect*, J. Math. Phys. **35**, 5373-5451 (1994).

[PS] E. Prodan, H. Schulz-Baldes,Bulk and Boundary Invariants for Complex Topological Insulators:From K-Theory to Physics,(Springer International, Cham, 2016).

[PS2] E. Prodan, H. Schulz-Baldes, Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators, Rev. Math. Phys. **28**, 1650024 (2016).

[SS] H. Schulz-Baldes, Tom Stoiber, Harmonic analysis in operator algebras and its applications to index theory,

180 pages, submitted 2020.

Integer quantum Hall effect

effectively 2*d* electron gas in strong magnetic field *B* at T = 0

Hall conductance = bulk Hall conductivity = edge Hall conductivity

$$\sigma_H = \frac{I}{V} = \frac{j_{\text{bulk}}}{E} = \frac{j_{\text{edge}}}{\delta\mu} \in \frac{\Theta^2}{h} \mathbb{Z} \quad (\text{or } \mathbb{Q})$$

Modeling disorder in dimension d

Description within one-particle framework by random Hamiltonians

$$H_{\omega} = H_B + \lambda V_{dis}$$
 on $\ell^2(\mathbb{Z}^d, \mathbb{C}^L)$ or $L^2(\mathbb{R}^d, \mathbb{C}^L)$

with coupling constant λ and disordered potential

$$V_{\rm dis} = \sum_{n \in \mathbb{Z}^d} v_n W_n$$

where $\omega = (v_n)_{n \in \mathbb{Z}^d}$ i.i.d. from [-1, 1] and W_n some (matrix) bump Disorder configs (Ω, \mathbb{Z}^d) *C**-dyn. system with invariant ergodic \mathbb{P} Basic quantity for random $(H_{\omega})_{\omega \in \Omega}$: integrated density of states (IDOS)

$$\mathcal{N}(E) = \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \# \{ \text{eigenvalues of } H_{\omega}|_{\Lambda} \leq E \}$$
 \mathbb{P} -a.s.

and DOS (if it exists)

$$\rho(\boldsymbol{E}) = \frac{d\mathcal{N}}{d\boldsymbol{E}}(\boldsymbol{E})$$

Importance of disorder for QHE & topo. insulators d = 2 and $H_B = H_L = \frac{1}{2}(P + eA)^2$ Landau operator, λ large, DOS like: P(E)

In interval Δ between Landau bands: Anderson localization

3/2

• \mathbb{P} -a.s. the spectrum of H_{ω} in Δ is dense pure-point (DOS smooth)

5/2

- eigenfunctions exponentially localized in space \mathbb{Z}^d
- Fractional moments of resolvent are bounded (next slide)
- Decaying eigenfunction correllators (later)

1/2

Fact: these eigenstates do not carry currents and lead to plateaux Adding disorder: stability of topological phases with closed bulk gap

Proofs of Anderson localization $d \ge 2$

First method (Fröhlich, Spencer 1983, ...): multiscale analysis Second method (Aizenman, Molcanov 1993, ...): fractional moments

Definition (Mobility gap regime MGR)

H has mobility gap in interval Δ , if for some $s \in (0, 1)$ there are A_s and $\beta_s > 0$ such that

$$\int_{\Omega} \left\| \langle 0 | \frac{1}{H_{\omega} - z} | x \rangle \right\|^{s} \mathbb{P}(d\omega) \ \leqslant \ A_{s} \, e^{-\beta_{s} |x|}$$

holds uniformly for all $x \in \mathbb{Z}^d$ and $z \in \mathbb{C} \setminus \mathbb{R}$ with $\Re e(z) \in \Delta$

Two regimes can be attained (actually with short proofs):

- $\Delta=\mathbb{R}$ and strong disorder (perturbation theory in kinetic term)
- small λ and Δ at band edges of periodic op. (perturbation in λ)

Open: between Landau bands & topological insulators & pseudogaps

Fermi projection in non-commut. Sobolev space Suppose mobility gap given: What can one say?

C*-alg. of observables twisted crossed product $\mathcal{A} = M_L(C(\Omega) \rtimes_B \mathbb{Z}^d)$ represented as covariant operator families $A = (A_\omega)_{\omega \in \Omega}$ on $\ell^2(\mathbb{Z}^d, \mathbb{C}^L)$ Supports unbounded derivations $\partial_1, \ldots, \partial_d$ given by $\partial_j A_\omega = i[X_j, A_\omega]$ *n*-times differentiable elements form $C^n(\mathcal{A})$

 \mathbb{P} provides (finite) tracial state $\mathcal{T}(A_{\omega}) = \int_{\Omega} \mathbb{P}(d\omega) \operatorname{Tr}_{L} \langle 0 | A_{\omega} | 0 \rangle$

W*-algebra of observables $\mathcal{M} = L^{\infty}(\Omega, \mathbb{P}) \rtimes_{B} \mathbb{Z}^{d}$ with semifinite \mathcal{T}

 $L^{p}(\mathcal{M})$ closure of \mathcal{M} w.r.t. $\|\mathbf{A}\|_{p} = \mathcal{T}(|\mathbf{A}|^{p})^{\frac{1}{p}}$

Sobolev space $W_p^n(\mathcal{M})$ closure of $C^n(\mathcal{A})$ w.r.t. $\|A\|_{W_p^n} = \sum_{0 \le |j| \le n} \|\partial^j A\|_p$

Proposition ([BES], [PS], [SS])

H has mobility gap in Δ and $E_F \in \Delta$

Fermi projection $P_F = \chi(H \leq E_F) \in \mathcal{M}$ lies in $W_p^n(\mathcal{M})$ for all $n, p \ge 1$

(Weak) topological invariants: preparations

Derivations $\partial = (\partial_1, \dots, \partial_d)$ lead to action $k \in \mathbb{T}^d \mapsto \theta_k = e^{k \cdot \partial}$ on \mathcal{M} On magnetic translation u^x by $x \in \mathbb{Z}^d$, one has $\theta_k(u^x) = e^{ik \cdot x}u^x$ $n \leq d$ and orthonormal system $\xi = (\xi_1, \dots, \xi_n)$ in \mathbb{R}^d give action on \mathcal{M}

$$t \in \mathbb{R}^n \mapsto \alpha_t = \theta_{t \cdot \xi} \qquad t \cdot \xi = \sum_{j=1}^n t_j \xi_j \in \mathbb{R}^d$$

Associated derivations $\nabla = (\nabla_1, \dots, \nabla_n)$

Definition ((Weak) Chern cocyles)

For $A_0, \ldots, A_n \in W_n^1(\mathcal{M}, \alpha) \cap \mathcal{M}$

$$\operatorname{Ch}_{\mathcal{T},\alpha}(A_0,\ldots,A_n) = c_n \sum_{\rho \in S_n} (-1)^{\rho} \mathcal{T}(A_0 \nabla_{\rho(1)} A_1 \ldots \nabla_{\rho(n)} A_n)$$

with normalization constants $c_n = \begin{cases} \frac{1}{k} \\ \frac{j}{(2)} \end{cases}$

$$\frac{(\pi i)^k}{k!}, \qquad \text{for } n = 2k$$
$$\frac{(\pi i)^k}{(k+1)!!}, \qquad \text{for } n = 2k$$

(Weak) topological invariants

Not restricted to C^* -pairings, but sufficiently smooth elements of \mathcal{M}

Definition (Even and odd Chern numbers)

Let $P_F \in W_n^1(\mathcal{M}, \alpha) \cap \mathcal{M}$ (e.g. mobility gap regime). For *n* even,

$$\operatorname{Ch}_{\mathcal{T},\alpha}(\mathcal{P}_{\mathcal{F}}) = \operatorname{Ch}_{\mathcal{T},\alpha}(\mathcal{P}_{\mathcal{F}},\ldots,\mathcal{P}_{\mathcal{F}})$$

If *H* has chiral symmetry and *n* odd,

$$\operatorname{Ch}_{\mathcal{T},\alpha}(U_F) = \operatorname{Ch}_{\mathcal{T},\alpha}(U_F^* - 1, U_F, U_F^*, \dots, U_F) \quad , \quad \mathcal{P}_F = \begin{pmatrix} 0 & U_F^* \\ U_F & 0 \end{pmatrix}$$

As usual: constant on norm-continuous paths in $W_n^1(\mathcal{M}, \alpha) \cap \mathcal{M}$ **Example:** For n = 1 (dual) translation $t \mapsto e^{t\nabla_{\xi}}$ in direction $\xi \in \mathbb{R}^d$ If ξ irrational, connected to half-spaces $\xi \cdot X > 0$ with "irrational" edges For chiral system $\operatorname{Ch}_{\mathcal{T},\xi}(U_F) = i \mathcal{T}(U_F^*\nabla_{\xi}U_F)$ weak winding number

Constructions for index theorem (C* in [PS]):

Crossed product $\mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n}$ with semifinite trace $\widehat{\mathcal{T}}_{\alpha}$ (via Hilbert alg.) *W**-crossed product defined in regular representation on $L^{2}(\mathbb{R}^{n}, \mathcal{H})$

$$\mathcal{N} = L^{\infty}(\mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n}, \widehat{\mathcal{T}}_{\alpha}) = \mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n} \subset \mathcal{B}(L^{2}(\mathbb{R}^{n}, \mathcal{H}))$$

Contains bd. Borel functions of $D = (D_1, ..., D_n) = i\partial_t$ on $L^2(\mathbb{R}^n, \mathcal{H})$ Furthermore: L^p -spaces $L^p(\mathcal{N}, \hat{\mathcal{T}}_{\alpha})$ for $p \ge 1$

Irrep of complex Clifford algebra generated by $\Gamma_1, \ldots, \Gamma_n \in M_{2N}$ with

$$\{\Gamma_i,\Gamma_j\} = 0 \qquad , \qquad \Gamma_j^2 = \mathbf{1}$$

Introduce Dirac operator affiliated with $M_{2N}(\mathcal{N})$ and Hardy projection

$$\mathbf{D} = \sum_{j=1}^{n} \Gamma_{j} \otimes D_{j} \qquad \Pi = \chi(\mathbf{D} > \mathbf{0}) \in M_{2N}(\mathcal{N})$$

Case n = 1, $\alpha \cong \xi$: $\mathcal{M} \rtimes_{\xi} \mathbb{R}$ edge alg., $\widehat{\mathcal{T}}_{\xi}$ boundary trace per unit vol. $\Pi = \Pi_{\xi} = \chi(\xi \cdot X > 0) \text{ in physical representation}$ Theorem (Besov index theorem, with Tom Stoiber [SS]) $(\mathcal{M}, \mathcal{T})$ semifinite von Neumann with \mathbb{R}^n -action α leaving \mathcal{T} invariant Generators of α on \mathcal{M} denoted by $\nabla_1, \ldots, \nabla_n$ Let n be odd and unitary $U_F \in \mathcal{M} \cap W_n^1(\mathcal{M}, \alpha) \cap W_{n+\epsilon}^1(\mathcal{M}, \alpha)$, then

$$\mathrm{Ch}_{\mathcal{T},\alpha}(U_{\mathcal{F}}) = \widehat{\mathcal{T}}_{\alpha}\operatorname{-Ind}\left(\Pi U_{\mathcal{F}}\Pi + (\mathbf{1} - \Pi)\right) \in \mathbb{R}$$

where semifinite index of $\widehat{\mathcal{T}}\text{-}Breuer\text{-}Fredholm\ T\in M_{2N}(\mathcal{N})$ is

$$\widehat{\mathcal{T}}_{\alpha}$$
-Ind $(\mathcal{T}) = \widehat{\mathcal{T}}_{\alpha}(\operatorname{Ker}(\mathcal{T})) - \widehat{\mathcal{T}}_{\alpha}(\operatorname{Ker}(\mathcal{T}^*))$

Similar results for n even

Weaker hypothesis on symbol: $U_F \in \mathcal{M} \cap W_n^1 \cap B_{n+1,n+1}^{n/(n+1)}$ Besov space **Important:** no differentiability assumption (as Lesch, Wahl for n = 1) If U_F in C^* -algebra $\mathcal{A} \subset \mathcal{M}$, values in discrete set (see [PS2]) **Proof:** non-commutative Peller criteria for $[\Pi, U_F] \in L^p(\mathcal{N}, \mathcal{T}_{\alpha})$

Stability properties:

Stability for $\hat{\mathcal{T}}$ -compact perturbations and on norm continuous paths But: in MGR usually only strong continuity under parameter change

Proposition (with Tom Stoiber [SS])

Let $s \mapsto H_s \in \mathcal{M}$ strongly continuous path with E_F not eigenvalue and uniformly $\|P_{F,s}\|_{W^1_{n+\epsilon}} < C$ for some $\epsilon > 0$ Then $s \mapsto \operatorname{Ch}_{\mathcal{T},\alpha}(P_{F,s})$ continuous for even n Similarly, $s \mapsto \operatorname{Ch}_{\mathcal{T},\alpha}(U_{F,s})$ continuous for odd n and chiral H_s

Corollary (already in [BES,PS])

If n = d integer-valued strong invariants are constant

For QHE: explains plateaux for bulk invariants [BES]

Question: weak invariants useless?

Weak invariants prohibit localization of edge states

Set-up: $\xi \in \mathbb{R}^d$ perpendicular to boundary of codimension 1 $\hat{H} = \Pi H \Pi + K$ with $\Pi = \chi(X \cdot \xi > 0)$ and K boundary term \mathbb{R}^n -action α generated by (ξ_1, \dots, ξ_n) all $\perp \xi$, so $\alpha \times \xi$ action of \mathbb{R}^{n+1}

Theorem (Delocalization of surface states [SS], n = d - 1 [PS]) Suppose E_F in bulk gap Δ If bulk invariant $\operatorname{Ch}_{\mathcal{T},\alpha \times \xi}(P_F) \neq 0$, no Anderson localization of \widehat{H} in Δ Same holds if \widehat{H} chiral, $\operatorname{Ch}_{\mathcal{T},\alpha \times \xi}(U_F) \neq 0$ and $0 \in \Delta$

No Anderson localization means: no bounded eigenfunction correlator

$$\sup_{\boldsymbol{y}\in\mathbb{Z}^d} \sum_{\boldsymbol{x}\in\mathbb{Z}^d} (1+|\boldsymbol{x}-\boldsymbol{y}|)^k \int_0^R dr \int_\Omega \mathbb{P}(d\omega) \sup_{\boldsymbol{f}\in\mathcal{B}(\boldsymbol{I}),\,\|\boldsymbol{f}\|_\infty\leqslant 1} \|\langle \boldsymbol{x}|\boldsymbol{f}(\widehat{\boldsymbol{H}}_{\omega,\boldsymbol{f}})|\boldsymbol{y}\rangle\|_2$$

Proof: contains bulk-boundary correspondence for all ξ

Surface states for chiral system via index theorem

H chiral Hamiltonian and $\hat{H} = \Pi H \Pi$ with $\Pi = \chi(X \cdot \xi > 0)$ have polars

$$\operatorname{sgn}(H) = \begin{pmatrix} 0 & U_F \\ U_F^* & 0 \end{pmatrix}$$
, $\operatorname{sgn}(\widehat{H}) = \begin{pmatrix} 0 & \widehat{U}_F \\ \widehat{U}_F^* & 0 \end{pmatrix}$

R.h.s. of Besov index theorem for n = 1 contains $\prod U_F \prod$ and **not** \widehat{U}_F :

$$\mathrm{Ch}_{\mathcal{T},\xi}(U_{\mathsf{F}}) = \widehat{\mathcal{T}}\operatorname{-Ind}(\Pi U_{\mathsf{F}} \Pi)$$

Lemma

 $\hat{U}_F - \Pi U_F \Pi$ is $\hat{\mathcal{T}}$ -compact

Thus:

$$\operatorname{Ch}_{\mathcal{T},\xi}(U_F) \;=\; \widehat{\mathcal{T}}\operatorname{-Ind}(\widehat{U}_F) \;=\; \widehat{\mathcal{T}}(\sigma_3\operatorname{Ker}(\widehat{H})) \;=\; \widehat{\mathcal{T}}(\widehat{P}_+ - \widehat{P}_-)$$

where \hat{P}_{\pm} pos/neg chiral sector of flat band projection $\hat{P} = \chi(\hat{H} = 0)$

Flat band of edge states

Sobolev (or Besov) condition holds in MGR, but also for pseudogap:

Theorem ([SS] with Tom Stoiber, d = 1 Graf-Shapiro) H with chiral symmetry $\sigma_3 H \sigma_3 = -H$

Suppose that either there is pseudo-gap at 0, namely $\gamma > 1$ with

$$\mathcal{N}([-\epsilon,\epsilon]) = \mathcal{T}(\chi(|\mathcal{H}| \leq \epsilon)) \leq C_{\gamma} \epsilon^{\gamma}$$

or there is mobility gap in $(-\epsilon_0, \epsilon_0)$

Then, for Fermi unitary U_F and kernel projection $\hat{P} = \hat{P}_+ + \hat{P}_-$,

$$i \mathcal{T}(U_F^{-1} \nabla_{\xi} U_F) = \widehat{\mathcal{T}}(\widehat{P}_+) - \widehat{\mathcal{T}}(\widehat{P}_-)$$

Generically: all in one chiral sector, namely \hat{P}_+ or \hat{P}_- vanishes

Corollary

Periodic chiral Hamiltonians in d = 2 have edge states for irrat. edges

Moreover: stable w.r.t. boundary disorder Open: localization properties in pseudogap, fate of pseudogap Most prominent example: Graphene, for which

$$i \mathcal{T}(U_F^{-1} \nabla_{\xi} U_F) = i \mathcal{T}(U_F^{-1} \nabla_1 U_F) \xi_1 + i \mathcal{T}(U_F^{-1} \nabla_2 U_F) \xi_2 = \frac{1}{3} \xi_2$$

most edge states for zigzag $\xi_2 = 1$, none for armchair $\xi_2 = 0$ Value $\frac{1}{3}$ is **not** topological !

Pairing $\langle [\xi \cdot X], [U_F]_1 \rangle = i \mathcal{T}(U_F^{-1} \nabla_{\xi} U_F)$ over huge algebra $B_{2,2}^{1/2} \cap L^{\infty}$

Thus values **not** in discrete range of $[U]_1 \in K_1(\mathcal{A}) \mapsto \langle [\xi \cdot X], [U]_1 \rangle$

As chiral *H* changes continuously, so does $Ch_{\mathcal{T},\xi}(U_F) = i \mathcal{T}(U_F^{-1} \nabla_{\xi} U_F)$

Only BBC equality always holds and is hence topological

Model for graphene

On honeycomb lattice = decorated triangular lattice, so on $\ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^2$

$$H = \begin{pmatrix} 0 & S_1 + S_1^* S_2 + 1 \\ S_1^* + S_2^* S_1 + 1 & 0 \end{pmatrix}$$

where S_1, S_2 shifts on $\ell^2(\mathbb{Z}^2)$. Clearly chiral $\sigma_3 H \sigma_3 = -H$. Fourier:

Disordered insulators and semimetals

Edges

Zigzag boundary \cong replace S_1 by unilateral shift \hat{S}_1

Armchair boundary \cong replace S_2 by unilateral shift \widehat{S}_2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag

Stacked SSH as chiral 2d toy model

SSH in direction 1 with coupling in direction 2 and chiral randomness

$$H = \begin{pmatrix} 0 & S_1 - \mu \\ S_1^* - \mu & 0 \end{pmatrix} - \delta \begin{pmatrix} 0 & S_2 + S_2^* \\ S_2 + S_2^* & 0 \end{pmatrix} + \lambda \sum_{n \in \mathbb{Z}^2} v_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where v_n i.i.d. random variables with uniform distribution in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (2 or 4) Dirac points for periodic model if $k_1 = 0, \pi, 2\delta \cos(k_2) + \mu = \pm 1$

 $\lambda = 0.2, \, \mu = 1.3, \, \delta = 0.3 \text{ and volume } [-\rho, \rho]^2 \text{ with } \rho = 20$

Central DOS and one of the edge states

Zoom into the central DOS Same parameters as above

There are $28 = 2 \cdot 14$ (approximate) zero modes of *H*

Corresponding eigenstates only on two opposite edges (edges weakly coupled, edge states vanish on other edges!)

Edge state dens. = $\frac{14}{41} \approx i\mathcal{T}(U^{-1}\nabla_1 U) = \int \frac{dk_2}{2\pi} \chi(\mu + 2\delta \cos(k_2) < 1) \approx \frac{1}{3}$

Here first \approx is precisely the equality in the theorem (1 chiral sector)

Constructions for definition of Besov spaces:

Semifinite trace ${\mathcal T}$ gives von Neumann algebra ${\mathcal M}$

Non-commutative spaces $X = L^{p}(\mathcal{M}), p \ge 1$, Banach spaces

 $L^2(\mathcal{M})$ is GNS-Hilbert space of \mathcal{T}

 \mathbb{R}^{n} -action α on \mathcal{M} which leaves \mathcal{T} invariant

 \mathcal{T} -invariance $\implies \alpha$ extends isometrically to action β on $X = L^{p}(\mathcal{M})$ For $f \in L^{1}(\mathbb{R}^{n})$ and $x \in X$ define $\beta_{f}(x)$ as Riemann integral

$$\beta_f(\mathbf{x}) = \int_{\mathbb{R}^n} f(-t) \, \beta_t(\mathbf{x}) \, dt$$

Then for $f \in FA(\mathbb{R}^n) = \mathcal{F}L^1(\mathbb{R}^n)$ define Fourier multiplier $\hat{f} * \in \mathcal{B}(X)$ by

$$\widehat{f} * \mathbf{X} = \beta_{\mathcal{F}^{-1}f}(\mathbf{X})$$

 $\sigma(\mathbf{x}) = \text{Arveson spectrum} = \{\lambda \in \hat{\mathbb{R}}^n : f(\lambda) = 0 \text{ if } \hat{f} * \mathbf{x} = 0, \ f \in \mathcal{F}L^1\}$

Non-commutative Besov spaces:

X Banach space with isometric \mathbb{R}^n -action β on *X* (above $X = L^p(\mathcal{M})$) Given smooth $\varphi : \mathbb{R} \to [0, 1]$ supported by $[-2, -2^{-1}] \cup [2^{-1}, 2]$ and

$$\sum_{j\in\mathbb{Z}}arphi(\mathbf{2}^{-j}x) = 1$$

Littlewood-Payley dyadic decomposition $(W_j)_{j \in \mathbb{N}}$ by

$$W_j = \varphi(|2^{-j} \cdot |) \text{ for } j > 0 , \qquad W_0 = 1 - \sum_{j>0} W_j$$

Now:

$$B_{q}^{s}(X) = \left\{ x \in X : \|x\|_{B_{q}^{s}(X)} = \left(\sum_{j \ge 0} 2^{qsj} \|\widehat{W}_{j} * x\|_{X}^{q} \right)^{\frac{1}{q}} < \infty \right\}$$

Set

$$B^s_{p,q}(\mathcal{M}) = B^s_q(L^p(\mathcal{M}))$$

Properties of Besov spaces:

Proposition

Definition of $B_q^s(X)$ independent of choice of φ $(B_q^s(X), \|.\|_{B_q^s(X)})$ Banach space for $s \in \mathbb{R}$ and $q \in [1, \infty)$ An equivalent norm is given by

$$\|x\|_{\widetilde{B}^{s}_{q}(X)} = \|x\|_{X} + \left(\int_{[0,1]} t^{-sq} \omega_{X}^{N}(x,t)^{q} \frac{dt}{t}\right)^{\frac{1}{q}}$$

where

$$\omega_X^N(x,t) = \sup_{|r| \leq t} \|\Delta_r^N(x)\|_X \quad , \quad N \geq s$$

with finite difference operator $\Delta_t : X \to X$ given by

$$\Delta_t(\mathbf{x}) = \beta_t(\mathbf{x}) - \mathbf{x}$$

Corollary

 $\textit{For } B^{s}_{\rho,q}(\mathcal{M}) = B^{s}_{q}(L^{\rho}(\mathcal{M})) \textit{ and } s \in [0,1], \textit{ } B^{s}_{\rho,q}(\mathcal{M}) \cap \mathcal{M} \textit{ is a *-algebra}$

Peller criterion for Hankel operators:

Hardy projection $\Pi = \chi(\mathbf{D} > \mathbf{0})$ in $M_{2N}(\mathcal{N})$, but not $L^p(M_{2N}(\mathcal{N}), \operatorname{Tr} \otimes \widehat{\mathcal{T}})$ Now for "symbol" $A \in \mathcal{M}$, Toeplitz and Hankel operators in $M_{2N}(\mathcal{N})$ are

$$T_A = \Pi A \Pi \qquad , \qquad H_A = \Pi A (\mathbf{1} - \Pi)$$

Theorem

For all p > n and $A \in \mathcal{M} \cap B_{p,p}^{n/p}(\mathcal{M})$, one has $H_A \in L^p(M_{2N}(\mathcal{N}), \operatorname{Tr} \otimes \widehat{\mathcal{T}})$ For n = 1, also p = 1 is sufficient

Proof: explicit calculations for p = 1

*L*²-estimates for weighted Hankels with symbol $B_{2,2}^{p/2}$ for p > 2Involved estimates on weighted Hankels for $p = \infty$ Intricate application à *la Peller* of analytic interpolation (*e.g.* Lunardi)

Classical case is n = 1 and $\mathcal{M} = L^{\infty}(\mathbb{R})$ with $\alpha_t(f)(\mathbf{y}) = f(\mathbf{y} + t)$