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Plan of the talk

‚ Review of role of disorder in quantum Hall effect (QHE)

‚ Review of signatures of Anderson localization

‚ Disorder in topological insulators

‚ Weak invariants and delocalization of surface states

‚ Bulk-boundary correspondence in chiral semimetals

‚ Analytical tool: Besov spaces for Rn-action on semifinite W˚’s
and non-commutative Peller criteria for associated Hankel operators
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Integer quantum Hall effect
effectively 2d electron gas in strong magnetic field B at T “ 0
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Modeling disorder in dimension d
Description within one-particle framework by random Hamiltonians

Hω “ HB ` λVdis on `2pZd ,CLq or L2pRd ,CLq

with coupling constant λ and disordered potential

Vdis “
ÿ

nPZd

vn Wn

where ω “ pvnqnPZd i.i.d. from r´1,1s and Wn some (matrix) bump

Disorder configs pΩ,Zdq C˚-dyn. system with invariant ergodic P

Basic quantity for random pHωqωPΩ: integrated density of states (IDOS)

N pEq “ lim
|Λ|Ñ8

1
|Λ|

#
 

eigenvalues of Hω|Λ ď E
(

P-a.s.

and DOS (if it exists)

ρpEq “
dN
dE

pEq
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Importance of disorder for QHE & topo. insulators
d “ 2 and HB “ HL “

1
2pP ` eAq2 Landau operator, λ large, DOS like:

ρ(

3/2

E)

2πE
h ω

C

1/2 5/2

In interval ∆ between Landau bands: Anderson localization

‚ P-a.s. the spectrum of Hω in ∆ is dense pure-point (DOS smooth)
‚ eigenfunctions exponentially localized in space Zd

‚ Fractional moments of resolvent are bounded (next slide)
‚ Decaying eigenfunction correllators (later)

Fact: these eigenstates do not carry currents and lead to plateaux
Adding disorder: stability of topological phases with closed bulk gap
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Proofs of Anderson localization d ě 2
First method (Fröhlich, Spencer 1983, ...): multiscale analysis
Second method (Aizenman, Molcanov 1993, ...): fractional moments

Definition (Mobility gap regime MGR)

H has mobility gap in interval ∆, if for some s P p0,1q there are
As and βs ą 0 such that

ż

Ω
}x0|

1
Hω ´ z

|xy
›

›

s Ppdωq ď As e´βs|x |

holds uniformly for all x P Zd and z P CzR with <epzq P ∆

Two regimes can be attained (actually with short proofs):
‚ ∆ “ R and strong disorder (perturbation theory in kinetic term)
‚ small λ and ∆ at band edges of periodic op. (perturbation in λ)

Open: between Landau bands & topological insulators & pseudogaps

Disordered insulators and semimetals 7 / 25



Fermi projection in non-commut. Sobolev space
Suppose mobility gap given: What can one say?

C˚-alg. of observables twisted crossed product A “ MLpCpΩq ¸B Zdq

represented as covariant operator families A “ pAωqωPΩ on `2pZd ,CLq

Supports unbounded derivations B1, . . . , Bd given by BjAω “ irXj ,Aωs

n-times differentiable elements form CnpAq

P provides (finite) tracial state T pAωq “
ş

Ω PpdωqTrL x0|Aω|0y

W˚-algebra of observables M “ L8pΩ,Pq ¸B Zd with semifinite T

LppMq closure of M w.r.t. }A}p “ T p|A|pq
1
p

Sobolev space W n
p pMq closure of CnpAq w.r.t. }A}W n

p
“

ř

0ď|j|ďn }B
jA}p

Proposition ([BES], [PS], [SS])
H has mobility gap in ∆ and EF P ∆

Fermi projection PF “ χpH ď EF q PM lies in W n
p pMq for all n, p ě 1
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(Weak) topological invariants: preparations
Derivations B “ pB1, . . . , Bdq lead to action k P Td ÞÑ θk “ ek ¨B on M
On magnetic translation ux by x P Zd , one has θk puxq “ eik ¨xux

n ď d and orthonormal system ξ “ pξ1, . . . , ξnq in Rd give action on M

t P Rn ÞÑ αt “ θt ¨ξ t ¨ ξ “
n
ÿ

j“1

tjξj P Rd

Associated derivations ∇ “ p∇1, . . . ,∇nq

Definition ((Weak) Chern cocyles)

For A0, . . . ,An P W 1
n pM, αq XM

ChT ,αpA0, . . . ,Anq “ cn
ÿ

ρPSn

p´1qρ T
`

A0∇ρp1qA1 . . .∇ρpnqAn
˘

with normalization constants cn “

#

p2πi qk
k! , for n “ 2k

i pπiqk
p2k`1q!! , for n “ 2k ` 1
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(Weak) topological invariants
Not restricted to C˚-pairings, but sufficiently smooth elements of M

Definition (Even and odd Chern numbers)

Let PF P W 1
n pM, αq XM (e.g. mobility gap regime). For n even,

ChT ,αpPF q “ ChT ,αpPF , . . . ,PF q

If H has chiral symmetry and n odd,

ChT ,αpUF q “ ChT ,αpU˚F ´ 1,UF ,U˚F , . . . ,UF q , PF “

˜

0 U˚F
UF 0

¸

As usual: constant on norm-continuous paths in W 1
n pM, αq XM

Example: For n “ 1 (dual) translation t ÞÑ et∇ξ in direction ξ P Rd

If ξ irrational, connected to half-spaces ξ ¨ X ą 0 with ”irrational” edges

For chiral system ChT ,ξpUF q “ i T pU˚F∇ξUF q weak winding number
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Constructions for index theorem (C˚ in [PS]):
Crossed product M¸α Rn with semifinite trace pTα (via Hilbert alg.)

W ˚-crossed product defined in regular representation on L2pRn,Hq

N “ L8pM¸α Rn, pTαq “ M¸α Rn Ă BpL2pRn,Hqq

Contains bd. Borel functions of D “ pD1, . . . ,Dnq “ iBt on L2pRn,Hq

Furthermore: Lp-spaces LppN , pTαq for p ě 1

Irrep of complex Clifford algebra generated by Γ1, . . . , Γn P M2N with

tΓi , Γju “ 0 , Γ2
j “ 1

Introduce Dirac operator affiliated with M2NpN q and Hardy projection

D “

n
ÿ

j“1

Γj b Dj Π “ χpD ą 0q P M2NpN q

Case n “ 1, α – ξ: M¸ξ R edge alg., pTξ boundary trace per unit vol.
Π “ Πξ “ χpξ ¨ X ą 0q in physical representation
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Theorem (Besov index theorem, with Tom Stoiber [SS])
pM, T q semifinite von Neumann with Rn-action α leaving T invariant

Generators of α on M denoted by ∇1, . . . ,∇n

Let n be odd and unitary UF PMXW 1
n pM, αq XW 1

n`εpM, αq, then

ChT ,αpUF q “ pTα-Ind
`

Π UF Π` p1´ Πq
˘

P R

where semifinite index of pT -Breuer-Fredholm T P M2NpN q is

pTα-IndpT q “ pTαpKerpT qq ´ pTαpKerpT ˚qq

Similar results for n even

Weaker hypothesis on symbol: UF PMXW 1
n X Bn{pn`1q

n`1,n`1 Besov space

Important: no differentiability assumption (as Lesch, Wahl for n “ 1)

If UF in C˚-algebra A ĂM, values in discrete set (see [PS2])

Proof: non-commutative Peller criteria for rΠ,UF s P LppN , Tαq
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Stability properties:
Stability for T̂ -compact perturbations and on norm continuous paths

But: in MGR usually only strong continuity under parameter change

Proposition (with Tom Stoiber [SS])

Let s ÞÑ Hs PM strongly continuous path with EF not eigenvalue
and uniformly }PF ,s}W 1

n`ε
ă C for some ε ą 0

Then s ÞÑ ChT ,αpPF ,sq continuous for even n
Similarly, s ÞÑ ChT ,αpUF ,sq continuous for odd n and chiral Hs

Corollary (already in [BES,PS])
If n “ d integer-valued strong invariants are constant

For QHE: explains plateaux for bulk invariants [BES]

Question: weak invariants useless?
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Weak invariants prohibit localization of edge states

Set-up: ξ P Rd perpendicular to boundary of codimension 1
pH “ ΠHΠ` K with Π “ χpX ¨ ξ ą 0q and K boundary term
Rn-action α generated by pξ1, . . . , ξnq all K ξ, so αˆ ξ action of Rn`1

Theorem (Delocalization of surface states [SS], n “ d ´ 1 [PS] )
Suppose EF in bulk gap ∆

If bulk invariant ChT ,αˆξpPF q ‰ 0, no Anderson localization of pH in ∆

Same holds if pH chiral, ChT ,αˆξpUF q ‰ 0 and 0 P ∆

No Anderson localization means: no bounded eigenfunction correlator

sup
yPZd

ÿ

xPZd

p1` |x ´ y |qk
ż R

0
dr

ż

Ω
Ppdωq sup

fPBpIq , }f }8ď1

›

›xx |f ppHω,r q|yy
›

›

2

Proof: contains bulk-boundary correspondence for all ξ
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Surface states for chiral system via index theorem
H chiral Hamiltonian and pH “ ΠHΠ with Π “ χpX ¨ ξ ą 0q have polars

sgnpHq “

˜

0 UF

U˚F 0

¸

, sgnppHq “

˜

0 pUF
pU˚F 0

¸

R.h.s. of Besov index theorem for n “ 1 contains ΠUF Π and not pUF :

ChT ,ξpUF q “ pT -Ind
`

Π UF Π
˘

Lemma
pUF ´ ΠUF Π is pT -compact

Thus:

ChT ,ξpUF q “ pT -Ind
`

pUF
˘

“ pT pσ3 KerppHqq “ pT ppP` ´ pP´q

where pP˘ pos/neg chiral sector of flat band projection pP “ χppH “ 0q
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Flat band of edge states

Sobolev (or Besov) condition holds in MGR, but also for pseudogap:

Theorem ([SS] with Tom Stoiber, d “ 1 Graf-Shapiro)
H with chiral symmetry σ3Hσ3 “ ´H

Suppose that either there is pseudo-gap at 0, namely γ ą 1 with

N pr´ε, εsq “ T
`

χp|H| ď εq
˘

ď Cγ ε
γ

or there is mobility gap in p´ε0, ε0q

Then, for Fermi unitary UF and kernel projection pP “ pP` ` pP´,

i T pU´1
F ∇ξUF q “ pT ppP`q ´ pT ppP´q

Generically: all in one chiral sector, namely pP` or pP´ vanishes
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Corollary
Periodic chiral Hamiltonians in d “ 2 have edge states for irrat. edges

Moreover: stable w.r.t. boundary disorder
Open: localization properties in pseudogap, fate of pseudogap
Most prominent example: Graphene, for which

i T pU´1
F ∇ξUF q “ i T pU´1

F ∇1UF q ξ1 ` i T pU´1
F ∇2UF q ξ2 “

1
3
ξ2

most edge states for zigzag ξ2 “ 1, none for armchair ξ2 “ 0

Value 1
3 is not topological !

Pairing xrξ ¨ X s, rUF s1y “ i T pU´1
F ∇ξUF q over huge algebra B1{2

2,2 X L8

Thus values not in discrete range of rUs1 P K1pAq ÞÑ xrξ ¨ X s, rUs1y

As chiral H changes continuously, so does ChT ,ξpUF q “ i T pU´1
F ∇ξUF q

Only BBC equality always holds and is hence topological
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Model for graphene
On honeycomb lattice “ decorated triangular lattice, so on `2pZ2q b C2

H “

˜

0 S1 ` S˚1 S2 ` 1
S˚1 ` S˚2 S1 ` 1 0

¸

where S1,S2 shifts on `2pZ2q. Clearly chiral σ3Hσ3 “ ´H. Fourier:

H –

ż ‘

T2
dk

˜

0 eik1 ` eipk2´k1q ` 1
e´ik1 ` e´ipk2´k1q ` 1 0

¸

Dirac points k˘ “ p
p3˘1qπ

3 ,0q DOS vanishes at E “ 0 (pseudogap)
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Edges

Zigzag boundary – replace S1 by unilateral shift pS1

Armchair boundary – replace S2 by unilateral shift pS2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag
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Stacked SSH as chiral 2d toy model
SSH in direction 1 with coupling in direction 2 and chiral randomness

H “

˜

0 S1 ´ µ

S˚1 ´ µ 0

¸

´ δ

˜

0 S2 ` S˚2
S2 ` S˚2 0

¸

` λ
ÿ

nPZ2

vn

˜

0 1
1 0

¸

where vn i.i.d. random variables with uniform distribution in r´1
2 ,

1
2 s

(2 or 4) Dirac points for periodic model if k1 “ 0, π, 2δ cospk2q ` µ “ ˘1

-3 -2 -1 0 1 2 3
0

10

20

30

40
DOS Ham

λ “ 0.2, µ “ 1.3, δ “ 0.3 and volume r´ρ, ρs2 with ρ “ 20
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Central DOS and one of the edge states
Zoom into the central DOS Same parameters as above

-0.04 -0.02 0.00 0.02 0.04
0
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Central DOS Ham

There are 28 “ 2 ¨ 14 (approximate) zero modes of H

Corresponding eigenstates only on two opposite edges

(edges weakly coupled, edge states vanish on other edges!)

Edge state dens. “ 14
41 « iT pU´1∇1Uq “

ş dk2
2π χpµ` 2δ cospk2q ă 1q « 1

3

Here first « is precisely the equality in the theorem (1 chiral sector)
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Constructions for definition of Besov spaces:

Semifinite trace T gives von Neumann algebra M

Non-commutative spaces X “ LppMq, p ě 1, Banach spaces

L2pMq is GNS-Hilbert space of T

Rn-action α on M which leaves T invariant

T -invariance ùñ α extends isometrically to action β on X “ LppMq

For f P L1pRnq and x P X define βf pxq as Riemann integral

βf pxq “
ż

Rn
f p´tqβtpxqdt

Then for f P FApRnq “ FL1pRnq define Fourier multiplier pf ˚ P BpX q by

pf ˚ x “ βF´1f pxq

σpxq “ Arveson spectrum “ tλ P R̂n : f pλq “ 0 if pf ˚ x “ 0, f P FL1u
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Non-commutative Besov spaces:
X Banach space with isometric Rn-action β on X (above X “ LppMq)

Given smooth ϕ : RÑ r0,1s supported by r´2,´2´1s Y r2´1,2s and
ÿ

jPZ
ϕp2´jxq “ 1

Littlewood-Payley dyadic decomposition pWjqjPN by

Wj “ ϕp|2´j ¨ |q for j ą 0 , W0 “ 1´
ÿ

ją0

Wj

Now:

Bs
qpX q “

!

x P X : }x}Bs
qpXq “

´

ÿ

jě0

2qsj ‖xWj ˚ x‖q
X

¯
1
q
ă 8

)

Set
Bs

p,qpMq “ Bs
qpL

ppMqq
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Properties of Besov spaces:
Proposition
Definition of Bs

qpX q independent of choice of ϕ
pBs

qpX q, } . }Bs
qpXqq Banach space for s P R and q P r1,8q

An equivalent norm is given by

}x}
rBs

qpXq
“ }x}X `

˜

ż

r0,1s
t´sq ωN

X px , tq
q dt

t

¸
1
q

where

ωN
X px , tq “ sup

|r |ďt
}∆N

r pxq}X , N ě s

with finite difference operator ∆t : X Ñ X given by

∆tpxq “ βtpxq ´ x

Corollary
For Bs

p,qpMq “ Bs
qpLppMqq and s P r0,1s, Bs

p,qpMq XM is a ˚-algebra
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Peller criterion for Hankel operators:
Hardy projection Π “ χpD ą 0q in M2NpN q, but not LppM2NpN q,Trb pT q

Now for ”symbol” A PM, Toeplitz and Hankel operators in M2NpN q are

TA “ Π A Π , HA “ Π A p1´ Πq

Theorem

For all p ą n and A PMX Bn{p
p,p pMq, one has HA P LppM2NpN q,Trb pT q

For n “ 1, also p “ 1 is sufficient

Proof: explicit calculations for p “ 1

L2-estimates for weighted Hankels with symbol Bp{2
2,2 for p ą 2

Involved estimates on weighted Hankels for p “ 8

Intricate application à la Peller of analytic interpolation (e.g. Lunardi) l

Classical case is n “ 1 and M “ L8pRq with αtpf qpyq “ f py ` tq
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