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Abstract: For a class of discrete quasi-periodic Schrödinger operators defined by covari-
ant representations of the rotation algebra, a lower bound on phase-averaged transport
in terms of the multifractal dimensions of the density of states is proven. This result
is established under a Diophantine condition on the incommensuration parameter. The
relevant class of operators is distinguished by invariance with respect to symmetry au-
tomorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu)
operator. As a by-product, a new solution of the frame problem associated with Weyl–
Heisenberg–Gabor lattices of coherent states is given.

1. Introduction

This work is devoted to proving a lower bound on the diffusion exponents of a class of
quasiperiodic Hamiltonians in terms of the multifractal dimensions of their density of
states (DOS). The class of models involved describes the motion of a charged particle
in a perfect two-dimensional crystal with 3-fold, 4-fold or 6-fold symmetry, submitted
to a uniform irrational magnetic field. Irrationality means that the magnetic flux through
each lattice cell is equal to an irrational numberθ in units of the flux quantum. As
shown by Harper [Har] in the specific case of a square lattice with nearest neighbor
hopping, the Landau gauge allows to reduce such models to a family of Hamiltonians
each describing the motion of a particle on a 1D chain with quasiperiodic potential.
The latter representation gives a strongly continuous familyH = (Hω)ω∈T of self-
adjoint bounded operators on the Hilbert space�2(Z) of the chain indexed by a phase
ω ∈ T = R/2πZ. This family satisfies the covariance relation̂THωT̂ −1 = Hω+2πθ
(hereT̂ represents the operator of translation by one site along the chain).

The phase-averaged diffusion exponentsβ(q), q > 0, ofH are defined by:∫
T
dω

∫ T
−T
dt

2T
〈φ|eıHωt |X̂|qe−ıHωt |φ〉 ∼

T ↑∞ T qβ(q),
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Random Dirac operator with time-reversal symmetry

Hamiltonian on L2(R)⊗ C2N

H = I ∂x + V I =

(
0 −1N

1N 0

)
with random 2N × 2N matrix potential with TRS

V = V ∗ = I ∗V I =
∑
n

Vnδn =⇒ I ∗HI = H

Hypothesis: distribution of i.i.d. Vn’s absolutely continuous

Theorem (with Sadel, 2010) Z2 dichotomy (in N mod 2):

N odd =⇒ almost surely pure a.c. spectrum of multiplicity 2

N even =⇒ no a.c. spectrum (Only pure point?)
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Physical interpretation

• for odd N no Anderson localization,

even though quasi-one-dimensional random model

• Exactly 1 double channels survives (left and right mover)

others ”dissolve”

• Why should one care about a.c. spectrum?

Guarneri bound in d = 1 implies ballistic transport

• Anderson localization for even number of channels N

• Is this of physical relevance for anything?

Effective model for edge states in spin quantum Hall systems
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Why is the theorem true?

Solve Schrödinger at energy E ∈ R using transfer matrices

TE (n, n − 1) = e IVne∂x−E I

Lies in the group

SO∗(2N) =
{
T ∈ GL(2N,C)

∣∣T ∗ I T = I , I ∗TI = T
}

For such T one has Kramers’ degeneracy:

T ∗T v = λv =⇒ T ∗T Iv = λ I v

Implies double degeneracy of Lyapunov spectrum γn ≥ γn+1

Moreover, usual symmetry γn = −γ2N−n
Together for N odd: γN = γN+1 = 0 open channel
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Now the work starts (for a mathematician):

• Show that all other Lyapunov exponents are non-vanishing

Apply Goldsheid-Margulis theory for to the group SO∗(2N)

For even N there are no vanishing Lyapunov exponents

• Adapt Kotani-Simon (magical) theory for ergodic Dirac operator

mult. of a.c. spectrum = # of vanishing Lyapunov exponents

Proves existence of a.c. spectrum

• Almost sure absence of singular spectrum

Adapt Jaksic-Last theory (purity of a.c. spectrum in Anderson)
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Is all this tightly linked to the group SO∗(2N)?

Transfer matrices in SO∗(2N) for H in CAZ AII (odd TRS)

• 2 vanishing γ’s in groups O(N,C) with N odd (H Class DIII)

• |N −M| vanishing in U(N,M), O(N,M), SP(N,M)

Corresponds to Hamiltonians of CAZ classes A, D and C

Effective model for edge states in QHE on L2(R)⊗ CN+M

H = J i ∂x + V J =

(
1N 0
0 − 1M

)
Random matrix potential V = V ∗ =

∑
n Vnδn with coupling hyp.

Then transfer matrices in U(N,M)

Theorem (with Ludwig, Stolz 2013)

Almost surely pure a.c. spectrum of multiplicity |N −M|
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Quantum spin Hall system (odd TRS, Class AII)

Disordered Kane-Mele model on hexagon lattice and with s = 1
2

H = ∆hexagon + HSO + HRa + λdisV

Pseudo-gap at Dirac point opens non-trivially due to

HSO = i λSO

∑
i=1,2,3

(Snn
i − (Snn

i )∗) sz

No sz -conservation due to Rashba term HRa, but odd TRS

H = I ∗H I I = e iπs
y

Non-trivial topology:

Kane-Mele (2005): Z2 invariant for periodic system from Pfaffians

Haldane et al. (2005): spin Chern numbers for sz invariant systems

Prodan (2009): spin Chern number from Ps = χ(|PszP − 1
2 | <

1
2)

with Avila, Villegas (2012): Z2 invariant for edge states

Here: Z2 invariant for disordered system as index of Fredholm
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Z2 index for odd TRS and d = 2

QHE: P = χ(H ≤ µ) Fermi projection and F = X1+iX2
|X1+iX2| = F t

Then: T = PFP Fredholm operator, namely dim(Ker(T (∗))) <∞

And: Hall conductance = Ind(T ) = dim(Ker(T ))− dim(Ker(T ∗))

Here: I ∗HI = H = I ∗Ht I with Ht = (H)∗ =⇒ I ∗Pt I = P

Definition T odd symmetric ⇐⇒ I ∗T t I = T with I 2 = −1

Theorem (Atiyah-Singer 1969, S-B 2013)

F2(H) = {odd symmetric Fredholm operators} has 2 connected

components labelled by compactly stable homotopy invariant

Ind2(T ) = dim(Ker(T )) mod 2 ∈ Z2

Application: Z2 phase label for Kane-Mele model if dyn. localized
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Proof via Kramers degeneracy:

First of all: Ind(T ) = 0 because Ker(T ∗) = I Ker(T )

Idea: Ker(T ) = Ker(T ∗T )

and positive eigenvalues of T ∗T have even multiplicity

Let T ∗Tv = λv and w = I Tv (N.B. λ 6= 0). Then

T ∗T w = I (I ∗T ∗I ) (I ∗TI )Tv

= I T T ∗ T v = λ I T v = λw .

Suppose now µ ∈ C with v = µw . Then

v = µ I T v = µ I T µ I T v = −|µ|2 T ∗T v = −|µ|2 λ v

Contradiction to v 6= 0.

Now span{v ,w} invariant subspace of T ∗T , so orth. complement

Connectedness statement complicated to prove!
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Spin filtered helical edge channels for QSH

Theorem (S-B 2013)

Ind2(PFP) = 1 =⇒ spin Chern numbers SCh(P) 6= 0

Remark Non-trivial topology SCh(P) persists TRS breaking!

Theorem (S-B 2012) Ĥ Kane-Mele on half-space Z× N
If SCh(P) 6= 0, dissipationless spin filtered edge currents are stable

w.r.t. perturbations by magnetic field and disorder:

T̂
(
g(Ĥ) 1

2

{
i [Ĥ,X1], sz

})
= SCh(P) + controlled corrections

where g ≥ 0 supported in bulk gap and
∫
g = 1

Resumé: Ind2(PFP) = 1 =⇒ no Anderson loc. for edge states

Rice group: Du, Knez, et al since 2011 in InAs/GaSb Bilayers

Four-terminal conductance plateaux stable w.r.t. magnetic field
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No And. loc. for other edge states in d = 2?

Class A: QHE with quantized edge currents

Class C (BdG, odd PHS): spin quantum Hall effect (with De Nittis)

Class D and DIII (even PHS): thermal quantum Hall effect (???)

Resuming: exactly CAZ classes as in quasi-1d above

Structuring: Topological insulators

Disordered Fermion systems with (mobility) gap and basic sym.

chiral sym. (CHS) and/or even/odd time reversal (TRS)

and/or even/odd particle-hole (PHS)

Ludwig et al. (2008): non-trivial ⇐⇒ surface states don’t localize

Here: topological invariants and Fredholm indices

Then prove bulk-edge correspondence and delocalized edge states
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Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008

j\d TRS PHS CHS 1 2 3 4 5 6 7 8

0 0 0 0 Z Z Z Z
1 0 0 1 Z Z Z Z
0 +1 0 0 2Z Z2 Z2 Z
1 +1 +1 1 Z 2Z Z2 Z2

2 0 +1 0 Z2 Z 2Z Z2

3 −1 +1 1 Z2 Z2 Z 2Z
4 −1 0 0 Z2 Z2 Z 2Z
5 −1 −1 1 2Z Z2 Z2 Z
6 0 −1 0 2Z Z2 Z2 Z
7 +1 −1 1 2Z Z2 Z2 Z

Real K -theory (8-periodic) Inv(j , d) = KRj(Rd
τ ) ∼= πj−1−d(O)
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Focus on chiral system in d = 3 (with Prodan)

Hamiltonian on `2(Z3)⊗ C4 first without disorder:

H =
3∑

j=1

1

2i
(Sj − S∗j )⊗ γj +

m +
3∑

j=1

1

2
(Sj + S∗j )

⊗ γ4
where γ0, . . . , γ4 irrep of Clifford C5 such that γ0 =

(
1 0
0 −1

)
Chiral sym: H = −γ0H γ0 =

(
0 A
A∗ 0

)
with invertible A in gap

Invariant (also with disorder!):

Chd(A) =
(−iπ)

d−1
2

i d!!

∑
ρ∈Sd

(−1)ρ T

 d∏
j=1

A−1i [XρjA]

 ∈ Z

where T (A) = EP Tr 〈0|Aω|0〉 trace per unit volume

Gap for m 6= −3,−1, 1, 3 with Ch3(A) = 0,−1, 2,−1, 0
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Why is invariant an integer?

Periodic system: differential geometric invariant (Schnyder et al)

Chd(A) =
(12(d − 1))!

d!

(
i

2π

) d+1
2
∫
Td

Tr
([

A−1dA
]d)

Disordered system: index theorem

D =
d∑

j=1

Xj ⊗ 1⊗ σj Dirac operator on `2(Zd)⊗ CN ⊗ CN′

Dirac phase F = D
|D| satisfies F 2 = 1 and [F ,A] compact

Theorem (with Prodan, 2014)

Let E = 1
2(F + 1) be Hardy Projektion from D and A invertible.

Almost surely:

Ind(E AωE ) = Chd(A) ∈ Z
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QHE for surface states (with Prodan)

Restriction Ĥ to half-space Z2 × N has surface state bands

Adding magnetic field perpendicular to surface opens gaps

Decompose projection on central band

P̂ = P̂+ + P̂− γ0 P̂± = ±P̂±
Theorem

Bulk-edge correpondence

Ch3(A) = Ch2(P̂+) − Ch2(P̂−)

If Ch3(A) odd, surface QHE: Ch2(P̂) = Ch2(P̂+) + Ch2(P̂−) 6= 0

Hence somewhere divergence of localization length in surface states

Everything stable under weak breaking of chiral symmetry.

Again: non-trivial topology =⇒ no Anderson localization
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Resumé

• Index theorems guarantee stability of invariants

• Odd d invariants persist under weak breaking of CHS

• Non-trivial topology may survive weak breaking of TRS, PHS

• Bulk-edge correspondence establishes link of topologies

• Surface states are not exposed to Anderson localization

(rigorous proofs)

• Physical effects have to be studied case by case
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Z2 invariant and spin-charge separation

Other physical effect linked to non-trivial Z2 invariant:

Theorem (with De Nittis, 2014)

Ind2(PFP) = 1 =⇒ H(α = 1
2) has TRS + Kramers pair in gap


