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Cross-diffusion systems

• We are interested in systems of the form

∂tui −
n∑

j=1

∇ · Aij(u)∇uj = fi (u) in Λ := Ω× (0,T ),

for i = 1, . . . , n, with the boundary/initial data

Aij(u)∇uj · ν = 0, u(·, 0) = u0 a.e. in Ω.

Here, Ω ⊂ Rd (d ≥ 2) is a bounded domain and T > 0.

• Systems of this form can be used to model: gaseous or fluid mixtures
(Maxwell-Stefan model, 1866 and 1871), population dynamics (SKT model,
‘79), semiconductors with electron-hole scattering (Reznik, ‘95), tumour
growth (Jackson and Bryne, 2002), ...

→ The components ui are chemical or population densities, with
interactions governed by the diffusion coefficients Aij(u) and the reaction terms
fi (u).
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Heuristic description of Main Results

• The existence, uniqueness, and long-time behavior of weak solutions of
cross-diffusion systems have been quite well-studied in recent years.

→ But there are few works addressing the regularity of weak solutions.

Our main result is of the following form: Let A : Rn → Rn×n be uniformly continuous
and f : Rn → R continuous.

I We derive sufficient conditions on A such that bounded weak solutions
of the cross-diffusion system satisfy a partial C0,α-regularity result.

→ These conditions are on an entropy structure for the system.

I If A is also Hölder continuous with exponent σ ∈ (0, 1), then we
find that the gradient of a bounded weak solution also satisfies a partial
C0,σ-regularity result.

I We motivate our techniques with the 2-component Shigesada-Kawasaki-
Teramoto model for population dynamics.

? The only previous works that we are aware of are (Le, ‘98), (Le, 2005), and (Le and
Nguyen, 2006). These do not take advantage of an entropy structure.
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Shigesada-Kawasaki-Teramoto Model

We will use the following as an example of a prototypical cross-diffusion system:

Example: (SKT model for population dynamics) This model is for the
dynamics of interacting subpopulations –here we give it for n = 2. The model
is defined by the diffusion matrix

ASKT(u) =

[
α10 + 2α11u1 + α12u2 α12u1

α21u2 α20 + α21u1 + 2α22u2

]
,

where we assume that each αij > 0. One usually considers this model with
Lotka-Volterra type source terms

fi (u) = (βi0 − βi1u1 − βi2u2)ui for i = 1, 2,

where the βij ≥ 0.

Some observations:

• ASKT(u) is not bounded, unless u is bounded.
• ASKT(u) is not symmetric.
• ASKT(u) is not strictly positive-definite.

→ Obtaining a priori estimates is going to be a problem...
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A priori estimates for cross-diffusion systems

An illustrative example: Let A = Id, then the coupling of the components
only enters in the reaction terms on the right-hand side.

Two equivalent notions:

Energy estimate Testing the system
with u, we obtain:ˆ

Λ

∂tu
2 =−

ˆ
Λ

∇u : A(u)∇u

+

ˆ
Λ

u · f (u).

Since ∇u : A(u)∇u = |∇u|2, we
then find that:

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω))

.
ˆ

Λ

|f (u)|2.

Entropy estimate Let h(u) = u2 and
take the time derivative:

∂t

ˆ
Ω

h(u) =−
ˆ

Ω

∇u : h′′(u)A(u)∇u

+

ˆ
Ω

u · f (u).

Since ∇u : h′′(u)A(u)∇u = 2|∇u|2,
we then find that:

∂t

ˆ
Ω

h(u) ≤ −2

ˆ
Ω

|∇u|2 +

ˆ
Ω

u · f (u).

If we assume that
´

Ω
u · f (u) < 0,

then H(·) :=
´

Ω
h(·) is a Lyapunov

functional.
→ In this example, these two estimate are pretty much the same thing.

• But what happens if things become more complicated?
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A priori estimates for cross-diffusion systems: An entropy structure

• For the cross-diffusion systems that we are interested in A is neither
symmetric nor positive definite → We cannot use energy estimates.

• To make some apriori estimates available, we restrict ourselves to
cross-diffusion systems with a strict entropy structure.

→ This means that... there exists a convex function h such that

h′′(y)A(y) ≥ λ|y |2 for some λ > 0 and y ∈ D,

where we assume that the range of u is contained in D.

• The function h : D ⊂ Rn → R is the entropy density and the functional
H(·) =

´
Ω
h(·) is the entropy .

• When there is a strict entropy structure, we have access to the entropy
estimate shown on the previous slide.

Intuitive take-away: If we would like to obtain partial regularity results
similarly to the traditional way via energy methods, we will have to replace
energy estimates by entropy estimates.
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Existence of weak solutions via entropy methods.

• The concept of replacing the use of energy estimates by entropy estimates is
by no means new.

→ This can, e.g., be seen is in the existence theory for weak solutions of
cross-diffusion systems with entropy structure via the boundedness by entropy
method (Jüngel, 2015).

Steps of the boundedness by entropy method:

• Regularize: Discretize the time derivative with a first-order implicit Euler
scheme and add vanishing viscosity and massive terms.

• Solve: The regularized systems (which are elliptic) can be solved using a
Lax-Milgram argument.

• Pass to the limit: Using uniform estimates for the regularized solutions
obtained via entropy methods, one can then pass to the limit in the
regularization.
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Example of an entropy structure : SKT Model

A simple calculation shows that the SKT model has an entropy structure with

h(u) =
2∑

i=1

hi (ui ) =
u1

α12
(log(u1)− 1) +

u2

α21
(log(u2)− 1).

In particular, we find that

h′′(u)A(u) =

[ 1
α12u1

(α10 + 2α11u1 + α12u2) 1

1 1
α21u2

(α20 + 2α21u1 + 2α22u2)

]
.

→ h′′(·)A(·) is positive-definite on D = Rn
+, which contains the range of u,

and is symmetric.

• Non-negative weak solutions of the SKT system are now provided by the
boundedness by entropy method.

→ But since the system is not volume-filling, the boundedness of the solutions
is not free. While there are partial results available –e.g. in the case that
self-diffusion dominates (Le, 2006) or A(u) is triangular (Choi, Liu, and
Yamada, 2003)– showing the boundedness of solutions of the SKT system
remains an open problem.
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A notion of distance between two functions: Relative entropy

• Let h be an entropy density. Then for v ∈ H1(Λ,Rn) we define the relative
entropy density with respect to v as

H[ · |v ] :=

ˆ
Λ

h(· |v) =

ˆ
Λ

h(·)−
ˆ

Λ

h(v)−
〈ˆ

Λ

h′(v) , · − v

〉
.

• The above expression is obtained by looking for an affine functional, `, such
that H[ · ]−H[v ]− `(·) is positive and takes its minimum value of 0 at v

• The relative entropy also satisfies an entropy estimate.

→ So, it is a convenient notion of distance between two functions that
lends itself to obtaining estimates.

Intuitive take-away: If we would like to obtain partial regularity results
similarly to the traditional way via energy methods, we will have to replace the
squared L2-distance by the relative entropy.

• This intuition has already been used to study the uniqueness (Chen and
Jüngel, 2018; Fischer, 2017) and the long-time asymptotics (Carrillo, Jüngel
Markowich, Toscani, and Unterreiter, 2001) of solutions.
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Campanato spaces and Hölder regularity

• To prove regularity results, it is helpful to characterize Hölder spaces in terms
of Campanato norms –i.e. their approximability properties with respect to
polynomials.

• For α ∈ (0, 1), we define the Campanato space

L2,d+2+2α(Λ) :=
{
u ∈ L2(Λ) : sup

z0∈Λ,R>0
R−α

ˆ
CR (z0)

|u − (u)z0,R |
2dz <∞

}
,

where CR(z0) = BR(x0)× (t0, t0 − R2) with z0 = (x0, t0) ∈ Ω× (0,T ).

• It is a classical observation that L2,d+2+2α(Λ) ∼= C 0,α(Λ), where both spaces
are defined in terms of the parabolic metric

δ(z1, z2) := max(|x1 − x2|, |t1 − t2|
1
2 ).

• We will use the following local version of this equivalence: If there exists a
neighborhood of z0 ∈ Λ in which the estimate

R−d−2−2α

ˆ
CR (z)

|u − (u)z,R |2dz < C (?)

holds uniformly in z for any R > 0 small enough, then u is locally Hölder
continuous with exponent α around z0.
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Campanato iteration: An excess-decay

• To show the local condition (?) around a point z0, one usually proceeds by
showing an iterative decay of the tilt excess.

• For z0 ∈ Λ and R > 0, we define the tilt excess as

φ(z0,R) :=

 
CR (z0)

|u − (u)z,R |2dz .

• The condition (?) is equivalent to the following excess decay: For R0 > 0
chosen sufficiently small, there exists a neighborhood of z0 with the property
that

φ(z , r) .
( r

R

)2α

φ(z ,R) + R2α

holds uniformly in z for any 0 < r ≤ R < R0.

→ To summarize: The above excess decay is equivalent to the local
C 0,α-regularity of u around the point z0.
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Partial regularity for nonlinear parabolic systems: (Giaquinta and Struwe, 1982)

• To obtain our partial regularity result for cross-diffusion systems, we emulate
the previous work of Giaquinta and Struwe.

Giaquinta and Struwe: Consider weak solutions of the nonlinear parabolic
system

∂tui −
n∑

j=1

∇ · (A(z , u)∇uj) = fi (z , u,∇u) in Ω× (0,T ),

for i = 1, . . . , n. The assumptions on the system are:
• A is uniformly bounded and satisfies an ellipticity condition.
• f (z , u, p) ≤ a|p|2 + b for some a, b ∈ R+.

They show a partial regularity result:

I Let α ∈ (0, 1), then there exists an open set Λ0 ⊂ Λ such that u ∈ C 0,α
loc (Λ0).

The set Λ0 satisfies the condition

Λ \ Λ0 ⊂
{
z ∈ Λ : lim inf

R→0

 
CR (z)

|u − (u)z,R |2 > ε0

}
.

I If A ∈ C 0,σ
loc (Λ), then ∇u ∈ C 0,σ

loc (Λ0).

I There exists γ > 0 so that Hd−γ(Λ \ Λ0) = 0.
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Main ideas of the proof: (Giaquinta and Struwe, 1982)

For simplicity, let z0 = 0, fix 0 < r < R/4 < R < R0, and assume that f ≡ 0.

Goal: Prove a C 0,α-excess decay.

Main idea: Compare the weak solution u to ū, which solves the frozen system

∂t ū −∇A(0, (u)0,R)∇ū = 0 in CR/4(0)

ū = u on ∂PCR/4(0).

Constant-coefficient regularity theory gives an estimate of the formˆ
Cr (0)

|∇ū|2 .
( r

R

)d+2
ˆ
CR/4(0)

|∇ū|2 .
( r

R

)d+2
ˆ
CR/4(0)

|∇u|2,

which implies the local C 0,α-regularity of ū around the point 0.

→ This regularity estimate follows from the Sobolev embedding and an
iterative use of the Caccioppoli estimate satisfied by ū.



Introduction Adaption of the classical techniques to cross-diffusion systems with an entropy structure Conclusion

Main ideas of the proof: (Giaquinta and Struwe, 1982), cont’d

Now we want to transfer the regularity from ū onto u.

• In particular, towards obtaining the desired excess decay for u, we writeˆ
Cr (0)

|∇u|2 .
´
Cr (0)
|∇ū|2 +

´
Cr (0)
|∇(u − ū)|2.

regularity of ū approximation error; ∇v = ∇(ū − u)

Treating the approximation error: After taking the energy estimate for the
equation solved by v , for p > 2 one obtainsˆ
CR/4(0)

|∇v̄ |2 dz .
( ˆ
CR/4(0)

|∇u|p dz
) 2

p
( ˆ
CR/4(0)

|A((0, u)0,R)− A(u)|
2p

p−2 .
) p−2

p
.

• To treat the term on the right-hand side one requires a reverse Hölder
inequality. In particular, we must know that for some p > 2(  

CR/4(0)

|∇u|p dz
) 1

p
.
(  
CR (0)

|∇u|2 dz
) 1

2
.

→ Such a reverse Hölder estimate can be proved via Caccioppoli-type and
Poincaré-Wirtinger type estimates for u.
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Adapting the classical technique to cross-diffusions systems

To adapt the strategy of Giaquinta and Struwe, we need:

I A Caccioppoli-type estimate satisfied by ū.

I A reverse-Hölder estimate satisfied by u, which requires access to a
Caccioppoli-type estimate and a Poincaré-Wirtinger type estimate.

• Since we have not assumed an ellipticity condition, each of these estimates
will be a problem.

→ Substitute for lacking ellipticity condition with the entropy structure.

• However, since the Hessian of the entropy often blows up as ui → 0, e.g. for
the SKT system h′′i (ui ) = 1/ui , it is necessary to modify the entropy structure
to avoid this problem.

→ For this purpose we introduce the “glued entropy.”
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Intuition behind our strategy

Consider the SKT model with

ASKT(u) =

[
α10 + 2α11u1 + α12u2 α12u1

α21u2 α20 + α21u1 + 2α22u2

]
and h′′1 (u1) = α12/u1 and h′′2 (u2) = α21/u2.

Our main observation: As u → 0, we have that

ASKT(u)→
[
α10 0
0 α20.

]
This motivates the main strategy of our paper, which is to for z0 ∈ Λ consider
two cases:

Case 1: (u(z0) ≥ ε) We use the entropy structure to obtain the required a
priori estimates.

Case 2: (u(z0) < ε) We view the system as a perturbation of a system of heat
equations (that are only coupled through the reaction terms) and obtain the
required a priori estimates as energy estimates.

→ This intuition is formalized by the “glued entropy.”
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Conditions that the glued entropy must satisfy: A Caccioppoli-type estimate for u

Motivation for the glued entropy: Comes from the proof of the
Caccioppoli-type estimate satisfied by u.

A Caccioppoli-type estimate for u: Assuming that there exists a glued entropy
and u is bounded, we find that

Lemma: For z0 ∈ Λ and 0 < r < R such that C2R(z0) ⊂ Λ we have thatˆ
CR (z0)

|∇u|2 dz .
1

R2

ˆ
C2R (z0)

|u − (ũ)x0,R(t)|2 dz + Rd+4‖f (u)‖2
L∞(C2R (z0)).

Here, it is practical to use the weighted, time-dependent average

(ũ)x0,R)(t) :=

´
B2R (x0)

u(x , t)χ2
x0,R

dx´
B2R (x0)

χ2
x0,R

dx
,

where χx0,R is a smooth spatial-cutoff of BR(x0) in B2R(x0) such that
|∇χx0,R | . 1/R.
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Conditions that the glued entropy must satisfy: A Caccioppoli-type estimate, cont’d

Main idea of the proof: In the classical proof of the Caccioppoli estimate, replace
energy estimates by entropy estimates and the squared L2-distance by the relative
entropy.

• Letting η = χx0,Rτ , where τ ≡ 1 on (t0, t0 − R2), τ ≡ 0 for t ≤ t0 − (2R)2, and
|∇τ | . 1/R2, we calculate

∂t
(
h(u|(ũ)z0,R)η2

)
=η2(h′(u)− h′((ũ)z0,R)) · ∂tu + 2h(u|(ũ)z0,R)η∂tη

− η2h′′((ũ)z0,R)(u − (ũ)z0,R) · ∂t(ũ)z0,R .

Integrating this and then using the equation in conjunction with the entropy
structure and the boundedness of A(u) yieldsˆ
C2R (z0)

η2|∇u|2 dz .
ˆ
C2R (z0)

η2∇u : h′′(u)A(u)∇u dz

.
1

R2

ˆ
C2R (z0)

(
h(u |(ũ)z0,R) + sup

y∈D
|h′′(y)|2|u − (ũ)z0,R |

2
)
dz

+ Rd+4‖f ‖L∞(C2R (z0)).

? Conditions on the glued entropy: To obtain the Caccioppoli-type estimate it would
suffice that

h(u|b) . |u − b|2 for b ∈ Rn and sup
y∈D

h′′(y) . 1,

which are actually equivalent conditions when h is C2.
→ These are the conditions that we enforce on the glued entropy.
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An ansatz for the glued entropy

Motivation via the SKT model: Recall that when α21 = α12 = 1, we have that
h′′i (ui ) = 1

ui
.

• To make sure that h′′ε . 1, the most naive ansatz for the glued entropy hε
would be

hε,i (x)“ = ”

ˆ x

0

ˆ z

0

h′′i
(

max{y , ε}
)
dy dz .

• Notice that h̃ε(u) = ε−1∑n
i=1 u

2
i is an entropy for a system of n heat

equations. So, the naive ansatz corresponds to gluing h̃′′ε,i to h′′i and integrating
up the result –this, of course, guarantees the boundedness of the Hessian.

→ This naive ansatz coincides with our intuition as when ui < ε, the
entropy used is that of the heat equation.

• Going from the naive ansatz to the actual definition of the glued entropy, is a
simple matter of replacing “ max{·, ε}” by a smooth gluing via a partition of
unity.
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Sufficient conditions for the existence of a glued entropy

For the existence of a C2- glued entropy hε, it suffices that the cross-diffusion system
has an entropy structure such that

(H1) The entropy h : D → [0,∞) has the form

h(y) :=
n∑

i=1

hi (yi )

for y ∈ D and hi ∈ C2(R+; [0,∞)). We assume that each h′′i (yi )→∞ monotonically
as yi → 0 in such a way that there exists C ∈ R for which h′′i (ε) ≤ Ch′′i (2ε) holds for
any ε > 0.

(H2) There exists β′ > 0 such that for any y ∈ D and ρ ∈ Rn we have that
ρ · h′′(y)A(y)ρ ≥ β′|ρ|2.

Furthermore, h′′(y)A(y) is symmetric.

(H3) There exist functions a1, . . . , an ∈ C0(D̄) such that
µ := min

i=1,...,n
inf
D

ai > 0

and the relation
max

i,j=1,...,n
|Aij (y)− ai (y)δij ||h′′i (yi )| . 1

holds for any y ∈ D.

→ Checking that these conditions are sufficient is one of the novel contributions of
our work.
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Checking that the SKT model satisfies the conditions

• The conditions (H1) and (H2) have already been checked.

• Recall the condition (H3): There exist functions a1, . . . , an ∈ C0(D̄) such that

µ := min
i=1,...,n

inf
D

ai > 0

and the relation

max
i,j=1,...,n

|Aij (y)− ai (y)δij ||h′′i (yi )| . 1

holds for any y ∈ D.

• Recall that for the SKT model h′′(yi ) = 1/yi and

ASKT(u) =

[
α10 + 2α11u1 + α12u2 α12u1

α21u2 α20 + α21u1 + 2α22u2

]

Checking the condition: We see that (H3) holds with

a1 = α10 + α12u2 and a2 = α20 + α21u1,

where we require that α10, α20 > 0 and we remark that the components of u are
non-negative.
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Results and Summary of main ideas

Inserting the use of the glued entropy into the framework of Giaquinta and
Struwe we obtain:

Theorem: Let u be a bounded weak solution and assume that the conditions
(H1) - (H3) hold.

I Then there exists an open set Λ0 ⊂ Λ such that u ∈ C 0,α
loc (Λ0) for any

α ∈ (0, 1). Furthermore, we have that

Λ \ Λ0 ⊂
{
z0 ∈ Λ | lim inf

R→0

 
CR (z0)

|u − (u)z0,R |
2 dz > ε

}
.

I If A ∈ C 0,σ
loc (Λ), then ∇u ∈ C 0,σ

loc (Λ0).

I There exists γ > 0 such that Hd−γ(Λ \ Λ0) = 0.

Applications: SKT model and the semiconductor model with electron-hole
scattering; see e.g. (Jüngel, 2015).

Main idea: Conditions (H1) - (H3) → glued entropy → partial Hölder
regularity via classical techniques.
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Future directions: Volume filling systems?

• Recall that part of condition (H1) was that the entropy h : D → [0,∞) has the form

h(y) :=
n∑

i=1

hi (yi )

for y ∈ D and hi ∈ C2(R+; [0,∞)).

→ This mean that the construction of the glued entropy does not apply to
volume-filling systems, for which the entropy has an addition term that enforces the
volume constraint.

Example: The volume-filling model of Burgers –transport of ions through narrow
channels– is given by

A(u) =

[
D1(1− ρ+ u1) D1u1

D2u2 D2(1− ρ+ u2)

]
,

where ρ =
∑2

i=1 ui and Di > 0. This system has the entropy
h(u) = u1(log(u1)− 1) + u2(log(u2)− 1) + (1− ρ)(log(1− ρ)− 1),

the Hessian of which blows up when ui → 0 and when ρ→ 1.

• Notice that when ρ→ 1, we have that

A(u) −→
[

D1u1 D1u1

D2u2 D2u2

]
.

Conclusion: By taking advantage of the regularity theory for the porous medium
equation, it may be possible to get a partial regularity result also for volume-filling
systems.
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Thanks for your attention!
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