Topological Insulators: From *K*-theory to Physics

Hermann Schulz-Baldes, Erlangen

main collaborators:

Prodan, Grossmann, De Nittis, Kellendonk, Bellissard

ZMP Kolloquium, Hamburg, December 2015

What is a topological insulator?

 d-dimensional disordered system of independent Fermions with a combination of basic symmetries

TRS, PHS, CHS = time reversal, particle hole, chiral symmetry

- Fermi level in a Gap or Anderson localization regime
- Topology of bulk (in Bloch bundles over Brillouin torus): winding numbers, Chern numbers, \mathbb{Z}_2 -invariants, higher invariants
- Delocalized edge modes with non-trivial topology
- Bulk-edge correspondence
- Topological bound states at defects (zero modes)
- Toy models: tight-binding

Here: *K*-theory, index theory and non-commutative geometry

Start with concrete model in dimension d=1

Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)

$$H = \frac{1}{2}(\sigma_1 + i\sigma_2) \otimes S + \frac{1}{2}(\sigma_1 - i\sigma_2) \otimes S^* + m\sigma_2 \otimes \mathbf{1}$$

where S bilateral shift on $\ell^2(\mathbb{Z})$, $m \in \mathbb{R}$ mass and Pauli matrices. In their grading

$$H = \begin{pmatrix} 0 & S - im \\ S^* + im & 0 \end{pmatrix} \quad \text{on } \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2$$

Off-diagonal \cong chiral symmetry $\sigma_3^* H \sigma_3 = -H$. In Fourier space:

$$H = \int^{\oplus} dk \, H_k \qquad H_k = \begin{pmatrix} 0 & e^{-ik} - im \\ e^{ik} + im & 0 \end{pmatrix}$$

Topological invariant for $m \neq -1, 1$

Wind
$$(k \mapsto e^{ik} + im) = \delta(m \in (-1,1))$$

Chiral bound states

Half-space Hamiltonian

$$\widehat{H} = \begin{pmatrix} 0 & \widehat{S} - im \\ \widehat{S}^* + im & 0 \end{pmatrix} \quad \text{on } \ell^2(\mathbb{N}) \otimes \mathbb{C}^2$$

where \widehat{S} unilateral right shift on $\ell^2(\mathbb{N})$

Still chiral symmetry $\sigma_3^* \widehat{H} \sigma_3 = -\widehat{H}$

If m=0, simple bound state at E=0 with eigenvector $\psi_0=\binom{\ket{0}}{0}$.

Perturbations, e.g. in m, cannot move or lift this bound state ψ_m !

Positive chirality conserved: $\sigma_3 \psi_m = \psi_m$

Theorem (Basic bulk-boundary correspondence)

If \widehat{P} projection on bound states of \widehat{H} , then

$$\operatorname{Wind}(k \mapsto e^{ik} + im) = \operatorname{Tr}(\widehat{P}\sigma_3)$$

Disordered model

Add i.i.d. random mass term $\omega = (m_n)_{n \in \mathbb{Z}}$:

$$H_{\omega} = H + \sum_{n \in \mathbb{Z}} m_n \, \sigma_2 \otimes |n\rangle\langle n|$$

Still chiral symmetry $\sigma_3^* H_\omega \sigma_3 = -H_\omega$ so

$$H_{\omega} = \begin{pmatrix} 0 & A_{\omega}^* \\ A_{\omega} & 0 \end{pmatrix}$$

Bulk gap at $E=0\Longrightarrow A_{\omega}$ invertible

Non-commutative winding number, also called first Chern number:

Wind =
$$\operatorname{Ch}_1(A) = i \mathbf{E}_{\omega} \operatorname{Tr} \langle 0|A_{\omega}^{-1} i[X, A_{\omega}]|0\rangle$$

where \mathbf{E}_{ω} is average over probability measure \mathbb{P} on i.i.d. masses

Index theorem and bulk-boundary correspondence

Theorem (Disordered Noether-Gohberg-Krein Theorem)

If Π is Hardy projection on positive half-space, then \mathbb{P} -almost surely

Wind =
$$Ch_1(A) = -Ind(\Pi A_{\omega}\Pi)$$

For periodic model as above, $A_{\omega} = e^{ik} \in C(\mathbb{S}^1)$

Fredholm operator is then standard Toeplitz operator

Theorem (Disoreded bulk-boundary correspondence)

If \widehat{P}_{ω} projection on bound states of \widehat{H}_{ω} , then

Wind =
$$Ch_1(A) = Ch_0(\widehat{P}_{\omega}) = Tr(\widehat{P}_{\omega}\sigma_3)$$

Structural robust result:

holds for chiral Hamiltonians with larger fiber, other disorder, etc.

Structure: Toeplitz extension (no disorder)

S bilateral shift on $\ell^2(\mathbb{Z})$, then $C^*(S) \cong C(\mathbb{S}^1)$

 \widehat{S} unilateral shift on $\ell^2(\mathbb{N})$, only partial isometry with a defect:

$$\widehat{S}^*\widehat{S} = \mathbf{1}$$
 $\widehat{S}\,\widehat{S}^* = \mathbf{1} - |0\rangle\langle 0|$

Then $C^*(\widehat{S}) = \mathcal{T}$ Toeplitz algebra with exact sequence:

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T} \longrightarrow \mathcal{C}(\mathbb{S}^1) \longrightarrow 0$$

K-groups for any C*-algebra A (only rough definition):

$$K_0(A) = \{[P] - [Q] : \text{projections in some } M_n(A)\}$$

 $K_1(A) = \{[U] : \text{unitary in some } M_n(A)\}$

Abelian group operation: Whitney sum

Example: $K_0(\mathbb{C}) = \mathbb{Z} = K_0(\mathcal{K})$ with invariant dim(P)

Example: $K_1(C(\mathbb{S}^1)) = \mathbb{Z}$ with invariant given by winding number

6-term exact sequence for Toeplitz extension

 C^* -algebra short exact sequence $\Longrightarrow K$ -theory 6-term sequence

$$\mathsf{K}_0(\mathcal{K}) = \mathbb{Z} \longrightarrow \mathsf{K}_0(\mathcal{T}) = \mathbb{Z} \longrightarrow \mathsf{K}_0(\mathsf{C}(\mathbb{S}^1)) = \mathbb{Z}$$

Ind
$$\uparrow$$
 \downarrow Exp

$$K_1(C(\mathbb{S}^1)) = \mathbb{Z} \leftarrow K_1(T) = 0 \leftarrow K_1(K) = 0$$

Here:
$$[A]_1\in \mathcal{K}_1(\mathcal{C}(\mathbb{S}^1))$$
 and $[\widehat{P}\sigma_3]_0=[\widehat{P}_+]_0-[\widehat{P}_-]_0\in \mathcal{K}_0(\mathcal{K})$

$$\operatorname{Ind}([A]_1) = [\widehat{P}_+]_0 - [\widehat{P}_-]_0$$
 (bulk-boundary for K-theory)

$$\mathrm{Ch}_0(\mathrm{Ind}(A)) = \mathrm{Ch}_1(A)$$
 (bulk-boundary for invariants)

Disordered case: analogous

Tight-binding toy models in dimension d

One-particle Hilbert space $\ell^2(\mathbb{Z}^d)\otimes \mathbb{C}^L$

Fiber $\mathbb{C}^L=\mathbb{C}^{2s+1}\otimes\mathbb{C}^r$ with spin s and r internal degrees e.g. $\mathbb{C}^r=\mathbb{C}^2_{\mathrm{ph}}\otimes\mathbb{C}^2_{\mathrm{sl}}$ particle-hole space and sublattice space Typical Hamiltonian

$$H_{\omega} = \Delta^{B} + W_{\omega} = \sum_{i=1}^{d} (t_{i}^{*}S_{i}^{B} + t_{i}(S_{i}^{B})^{*}) + W_{\omega}$$

Magnetic translations $S_j^B S_i^B = e^{iB_{i,j}} S_i^B S_j^B$ in Laudau gauge:

$$S_1^B = S_1$$
 $S_2^B = e^{iB_{1,2}X_1}S_2$ $S_3^B = e^{iB_{1,3}X_1 + iB_{2,3}X_2}S_3$

 t_i matrices $L \times L$, e.g. spin orbit coupling, (anti)particle creation matrix potential $W_\omega = W_\omega^* = \sum_{n \in \mathbb{Z}^d} |n\rangle \omega_n \langle n|$ with matrices ω_n

Observable algebra

Configurations $\omega = (\omega_n)_{n \in \mathbb{Z}^d} \in \Omega$ compact probability space (Ω, \mathbb{P})

 \mathbb{P} invariant and ergodic w.r.t. $\mathcal{T}: \mathbb{Z}^d \times \Omega \to \Omega$

Covariance w.r.t. to dual magnetic translations $V_a = S_j^B V_a (S_j^B)^*$

$$V_a H_\omega V_a^* = H_{T_a \omega} \qquad a \in \mathbb{Z}^d$$

 $||A|| = \sup_{\omega} ||A_{\omega}||$ is C*-norm on

$$\mathcal{A}_d = \mathrm{C}^* \left\{ A = (A_\omega)_{\omega \in \Omega} \text{ finite range covariant operators} \right\}$$

 $\cong \text{ twisted crossed product } \mathcal{C}(\Omega) \rtimes_B \mathbb{Z}^d$

Fact: Suppose Ω contractible

 \Longrightarrow rotation algebra $\mathsf{C}^*(S^B_i)$ is deformation retract of \mathcal{A}_d

In particular: K-groups of $C^*(S_i^B)$ and A_d coincide

Pimsner-Voiculescu (1980)

Theorem

$$K_0(A_d) = \mathbb{Z}^{2^{d-1}}$$
 and $K_1(A_d) = \mathbb{Z}^{2^{d-1}}$

Explicit generators $[G_I]$ of K-groups labelled by $I \subset \{1, \ldots, d\}$

Top generator $I = \{1, ..., d\}$ identified with $K_j(C(\mathbb{S}^d)) = \mathbb{Z}$

Example $G_{\{1,2\}}$ Powers-Rieffel projection and Bott projection In general, any projection $P \in M_n(\mathcal{A}_d)$ can be decomposed as

$$[P] = \sum_{I \subset \{1,\dots,d\}} n_I [G_I] \qquad n_I \in \mathbb{Z}, |I| \text{ even}$$

Invariants n_I , top invariant $n_{\{1,...,d\}} \in \mathbb{Z}$ called *strong*, others weak **Questions:** calculate $n_I = c_I \operatorname{Ch}_I(P)$, physical significance?

K-group elements of physical interest

Fermi level $\mu \in \mathbb{R}$ in spectral gap of H_{ω}

$$P_{\omega} = \chi(H_{\omega} \leq \mu)$$
 covariant Fermi projection

Hence: $P=(P_{\omega})_{\omega\in\Omega}\in\mathcal{A}_d$ fixes element in $K_0(\mathcal{A}_d)$

If chiral symmetry present: Fermi invertible (or unitary)

$$egin{array}{lll} H_{\omega} &=& -J_{
m ch}^* H_{\omega} J_{
m ch} &=& egin{pmatrix} 0 & A_{\omega} \ A_{\omega}^* & 0 \end{pmatrix} & J_{
m ch} &=& egin{pmatrix} oldsymbol{1} & 0 \ 0 & -oldsymbol{1} \end{pmatrix} \end{array}$$

If $\mu=0$ in gap, $A=(A_\omega)_{\omega\in\Omega}\in\mathcal{A}_d$ invertible and $[A]_1\in\mathcal{K}_1(\mathcal{A}_d)$

Remark Sufficient to have an approximate chiral symmetry

$$H_{\omega} = \begin{pmatrix} B_{\omega} & A_{\omega} \\ A_{\omega}^* & C_{\omega} \end{pmatrix}$$
 with invertible A_{ω}

Definition of topological invariants

For invertible $A \in \mathcal{A}_d$ and odd |I|, with $\rho : \{1, \dots, |I|\} \to I$:

$$\operatorname{Ch}_I(A) \; = \; \frac{i(i\pi)^{\frac{|I|-1}{2}}}{|I|!!} \; \sum_{\rho \in S_I} (-1)^\rho \; \mathcal{T} \left(\prod_{j=1}^{|I|} A^{-1} \nabla_{\rho_j} A \right) \; \in \; \mathbb{R}$$

where $\mathcal{T}(A) = \mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{L} \langle 0|A_{\omega}|0\rangle$ and $\nabla_{j}A_{\omega} = i[X_{j}, A_{\omega}]$

For even |I| and projection $P \in A_d$:

$$\operatorname{Ch}_{I}(P) = \frac{(2i\pi)^{\frac{|I|}{2}}}{\frac{|I|}{2}!} \sum_{\rho \in S_{I}} (-1)^{\rho} \mathcal{T} \left(P \prod_{j=1}^{|I|} \nabla_{\rho_{j}} P \right) \in \mathbb{R}$$

Theorem (Connes 1985)

 $\operatorname{Ch}_I(A)$ and $\operatorname{Ch}_I(P)$ homotopy invariants; pairings with $K(\mathcal{A}_d)$

Bulk-boundary via Toeplitz extension

Theorem

$$\operatorname{Ch}_{I \cup \{d\}}(A) = \operatorname{Ch}_{I}(\operatorname{Ind}(A)) \qquad |I| \text{ even }, \ [A] \in \mathcal{K}_{1}(\mathcal{A}_{d})$$

$$\operatorname{Ch}_{I \cup \{d\}}(P) = \operatorname{Ch}_{I}(\operatorname{Exp}(P)) \qquad |I| \text{ odd }, \ [P] \in \mathcal{K}_{0}(\mathcal{A}_{d})$$

Physical implication in d = 2: QHE

P Fermi projection below a bulk gap $\Delta \subset \mathbb{R}$. Kubo formula:

Hall conductance =
$$Ch_{\{1,2\}}(P)$$

Bulk-boundary:

$$\operatorname{Ch}_{\{1,2\}}(P) = \operatorname{Ch}_{\{1\}}(\operatorname{Exp}(P)) = \operatorname{Wind}(\operatorname{Exp}(P))$$

With continuous g(E)=1 for $E<\Delta$ and g(E)=0 for $E>\Delta$:

$$\operatorname{Exp}(P) = \exp(-2\pi i g(\widehat{H}))$$

Theorem (Quantization of boundary currents)

$$\mathrm{Ch}_{\{1,2\}}(P) \; = \; \mathbb{E} \sum_{n_2 > 0} \langle 0, n_2 | g'(\widehat{H}) i[X_2, \widehat{H}] | 0, n_2 \rangle$$

Chiral system in d = 3: anomalous surface QHE

Chiral Fermi projection P (off-diagonal) \Longrightarrow Fermi unitary A

$$\mathrm{Ch}_{\{1,2,3\}}(A) = \mathrm{Ch}_{\{1,2\}}(\mathrm{Ind}(A))$$

Magnetic field perpendicular to surface opens gap in surface spec.

With $\widehat{P} = \widehat{P}_+ + \widehat{P}_-$ projection on central surface band, as in SSH:

$$\operatorname{Ind}(A) = [\widehat{P}_{+}] - [\widehat{P}_{-}]$$

$\mathsf{Theorem}$

Suppose either $\hat{P}_+ = 0$ or $\hat{P}_- = 0$ (conjectured to hold). Then:

 $\operatorname{Ch}_{\{1,2,3\}}(A) \neq 0 \Longrightarrow \operatorname{\it surface} \ QHE, \ Hall \ \operatorname{\it cond.} \ \operatorname{\it imposed} \ \operatorname{\it by} \ \operatorname{\it bulk}$

Experiment? No (approximate) chiral topological material known

Generalized Streda formulæ

In QHE: integrated density of states grows linearly in magnetic field integrated density of states: $\mathbf{E} \langle 0|P|0\rangle = \mathrm{Ch}_{\emptyset}(P)$

$$\partial_{B_{1,2}} \operatorname{Ch}_{\emptyset}(P) \; = \; \frac{1}{2\pi} \; \operatorname{Ch}_{\{1,2\}}(P)$$

Theorem

$$\partial_{B_{i,j}}\operatorname{Ch}_I(P) = \frac{1}{2\pi}\operatorname{Ch}_{I\cup\{i,j\}}(P) \qquad |I| \mathrm{even}, \ i,j \notin I$$

$$\partial_{B_{i,j}} \operatorname{Ch}_{I}(A) = \frac{1}{2\pi} \operatorname{Ch}_{I \cup \{i,j\}}(A) \qquad |I| \text{ odd }, i,j \notin I$$

Application: magneto-electric effects in d = 3

Time is 4th direction needed for calculation of polarization Non-linear response is derivative w.r.t. B given by $Ch_{\{1,2,3,4\}}(P)$

Link to Volovik-Essin-Gurarie invariants

Express the invariants in terms of the Green function/resolvent

Consider path $z: [0,1] \to \mathbb{C} \setminus \sigma(H)$ encircling $(-\infty, \mu] \cap \sigma(H)$

Set

$$G(t) = (H - z(t))^{-1}$$

Theorem

For |I| even and with $\nabla_0 = \partial_t$,

$$\operatorname{Ch}_{I}(P_{\mu}) = \frac{(i\pi)^{\frac{|I|}{2}}}{i(|I|-1)!!} \sum_{\rho \in S_{I \cup \{0\}}} (-1)^{\rho} \int_{0}^{1} dt \, \mathcal{T} \left(\prod_{j=1}^{|I|} G(t)^{-1} \nabla_{\rho_{j}} G(t) \right)$$

Proof by suspension. Similar formula for odd pairings.

Index theorem for strong invariants and odd d

 $\gamma_1, \ldots, \gamma_d$ irrep of Clifford C_d on $\mathbb{C}^{2^{(d-1)/2}}$

$$D = \sum_{i=1}^d X_i \otimes \mathbf{1} \otimes \gamma_j$$
 Dirac operator on $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L \otimes \mathbb{C}^{2^{(d-1)/2}}$

Dirac phase $F = \frac{D}{|D|}$ provides odd Fredholm module on A_d :

$$F^2 = \mathbf{1}$$
 $[F, A_{\omega}]$ compact and in $\mathcal{L}^{d+\epsilon}$ für $A = (A_{\omega})_{\omega \in \Omega} \in \mathcal{A}_d$

Theorem (Local index = generalizes Noether-Gohberg-Krein)

Let $E=rac{1}{2}(F+\mathbf{1})$ be Hardy Projektion for F. For invertible A_{ω}

$$\mathrm{Ch}_{\{1,\ldots,d\}}(A) = \mathrm{Ind}(E A_{\omega} E)$$

The index is \mathbb{P} -almost surely constant.

Local index theorem for even dimension *d*

As above $\gamma_1, \ldots, \gamma_d$ Clifford, grading $\Gamma = -i^{-d/2}\gamma_1 \cdots \gamma_d$

Dirac
$$D = -\Gamma D\Gamma = |D| \begin{pmatrix} 0 & F \\ F^* & 0 \end{pmatrix}$$
 even Fredholm module

Theorem (Connes d=2, Prodan, Leung, Bellissard 2013)

Almost sure index $\operatorname{Ind}(P_{\omega}FP_{\omega})$ equal to $\operatorname{Ch}_{\{1,\ldots,d\}}(P)$

Special case
$$d=2$$
: $F=\frac{X_1+iX_2}{|X_1+iX_2|}$ and
$$\operatorname{Ind}(P_{\omega}FP_{\omega}) = 2\pi\imath \, \mathcal{T}(P[[X_1,P],[X_2,P]])$$

Proofs: geometric identity of high-dimensional simplexes

Advantages: phase label also for dynamical localized regime implementation of discrete symmetries (CPT)

Delocalization of boundary states

Hypothesis: bulk gap at Fermi level μ

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem

For even d, if strong invariant $Ch_{\{1,...,d\}}(P) \neq 0$, then no Anderson localization of boundary states in bulk gap. Technically: Aizenman-Molcanov bound for no energy in bulk gap.

Theorem

For odd $d \geq 3$, if strong invariant $Ch_{\{1,...,d\}}(A) \neq 0$, then no Anderson localization at $\mu = 0$.

Discrete symmetries (invoking real structure)

chiral symmetry (CHS): $J_{ch}^* H J_{ch} = -H$ time reversal symmetry (TRS): $S_{tr}^* \overline{H} S_{tr} = H$ particle-hole symmetry (PHS): $S_{ch}^* \overline{H} S_{ph} = -H$

 $S_{
m tr}=e^{i\pi s^y}$ orthogonal on \mathbb{C}^{2s+1} with $S_{
m tr}^2=\pm {f 1}$ even or odd $S_{
m ph}$ orthogonal on $\mathbb{C}^2_{
m ph}$ with $S_{
m ph}^2=\pm {f 1}$ even or odd

Note: TRS + PHS \implies CHS with $J_{\rm ch} = S_{\rm tr} S_{\rm ph}$ 10 combinations of symmetries: none (1), one (5), three (4) 10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real Further distinction in each of the 10 classes: topological insulators

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008: just strong invariants

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2 Z		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z
5	-1	-1	1	2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Periodic table: real classes only

64 pairings = 8 KR-cycles paired with 8 KR-groups

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2 Z		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z
5	-1	-1	1	2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Focus on system in d=2 with odd TRS $S=S_{
m tr}$:

$$S^2 = -1$$
 $S^*\overline{H}S = H$

\mathbb{Z}_2 index for odd TRS and d=2

Rewrite
$$S^*\overline{H}S = H = S^*H^tS$$
 with $H^t = (\overline{H})^*$
 $\implies S^*(H^n)^tS = H^n$ for $n \in \mathbb{N} \implies S^*P^tS = P$

For
$$d=2$$
, Dirac phase $F=\frac{X_1+iX_2}{|X_1+iX_2|}=F^t$ and $[S,F]=0$

Hence Fredholm operator T = PFP of following type

Definition T odd symmetric $\iff S^*T^tS = T \iff (TS)^t = -TS$

Theorem (Atiyah-Singer 1969)

 $\mathbb{F}_2(\mathcal{H}) = \{ odd \ symmetric \ Fredholm \ operators \} \ has \ 2 \ connected$ components labelled by compactly stable homotopy invariant

$$\operatorname{Ind}_2(T) = \dim(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_2$$

Application: \mathbb{Z}_2 phase label for Kane-Mele model if dyn. localized

Symmetries of the Dirac operator

$$D = \sum_{j=1}^{a} X_j \otimes \mathbf{1} \otimes \gamma_j$$

 γ_1,\ldots,γ_d irrep of C_d with $\gamma_{2j}=-\overline{\gamma_{2j}}$ and $\gamma_{2j+1}=\overline{\gamma_{2j+1}}$ In even d exists grading $\Gamma=\Gamma^*$ with $D=-\Gamma D\Gamma$ and $\Gamma^2=\mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

d = 8 - i	8	7	6	5	4	3	2	1
Σ^2	1	1	-1	-1	-1	-1	1	1
$\sum^* \overline{D} \Sigma$	D	-D	D	D	D	-D	D	D
ΓΣΓ	Σ		$-\Sigma$		Σ		$-\Sigma$	

 (D, Γ, Σ) defines a KR^i -cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Index theorems for periodic table

Symmetries of KR-cycles and Fermi projection/unitary lead to:

$\mathsf{Theorem}$

Index theorems for all strong invariants in periodic table

Remarks:

Result holds also in the regime of strong Anderson localization $2\mathbb{Z}$ entries result from quaternionic Fredholm (even Ker, CoKer) Links to Atiyah-Singer classifying spaces Formulation as Clifford valued index theorem possible

Physical implications: case by case study necessary!

Example: focus on TRS d = 2 quantum spin Hall system (QSH)

Spin filtered helical edge channels for QSH

Approximate spin conservation \implies spin Chern numbers SCh(P)

Theorem

$$\operatorname{Ind}_2(PFP) = \operatorname{SCh}(P) \mod 2$$

Remark Non-trivial topology SCh(P) persists TRS breaking!

Theorem

If $SCh(P) \neq 0$, spin filtered edge currents in $\Delta \subset gap$ are stable w.r.t. perturbations by magnetic field and disorder:

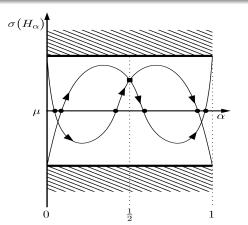
E Tr
$$\langle 0|\chi_{\Delta}(\widehat{H})\frac{1}{2}\{i[\widehat{H},X_1],s^z\}|0\rangle = |\Delta| \operatorname{SCh}(P) + correct.$$

Resumé: $\operatorname{Ind}_2(PFP)=1\Longrightarrow$ no Anderson loc. for edge states Rice group of Du (since 2011): QSH stable w.r.t. magnetic field

\mathbb{Z}_2 invariant and \mathbb{Z}_2 spectral flow for QSH

Theorem

$$\alpha \in [0,1] \mapsto \mathcal{H}(\alpha)$$
 inserted flux through 1 lattice cell (defect)
$$\operatorname{Ind}_2(\textit{PFP}) = 1 \implies \mathcal{H}(\alpha = \frac{1}{2}) \text{ has } \operatorname{TRS} + \textit{Kramers pair in gap}$$



Résumé

- invariants for bulk and boundary
- bulk-boundary correspondence
- index theorems for strong invariants in complex classes
- index theorems with symmetries for every entry of periodic table

Current aims:

- Index theory for weak invariants via KK-theory
- bulk-edge correspondence in real cases
- further investigation of physical implications of invariants
- stability of invariants w.r.t. interactions

Related works and references

Other groups (each with personal point of view):

- Carey, Rennie, Bourne, Kellendonk
- Mathai, Thiang, Hanabus
- Zirnbauer, Kennedy
- Loring, Hastings, Boersema
- Graf, Porta
- Li, Kaufmann, Kaufmann
- many theoretical physics groups

Prodan, Schulz-Baldes: *Bulk and Boundary Invariants for complex topological insulators* (Springer Monograph 2016, see arXiv)

Grossmann, Schulz-Baldes: Fredholm operators with symmetries (CMP 2015, see arXiv)