Finite volume calculation of K-theory invariants

Hermann Schulz-Baldes, Erlangen

collaborator:

Terry Loring, Alberquerque

Erlangen January, 2017
Plan of the talk

- Classical topological invariants and index theorem
- Construction of associated Bott operator (matrix)
- Main result: invariant as signature of Bott operator
- Connection to η-invariant
- Elements of proof based on K-theory
- Implementation of symmetries
- Application to topological insulators
- Even dimensional case
Motivating example: higher winding numbers

\mathbb{T}^d torus of odd dimension d

Given: smooth function $k \in \mathbb{T}^d \mapsto A(k) \in \text{Gl}(N, \mathbb{C})$

Higher winding number (also called odd Chern number):

$$\text{Ch}_d(A) = \frac{1}{d!} \left(\frac{i}{2\pi} \right)^{d+1} \int_{\mathbb{T}^d} \text{Tr} \left((A^{-1}dA)^d \right)$$

Faithful irrep $\Gamma_1, \ldots, \Gamma_d$ of complex Clifford \mathbb{C}_d on \mathbb{C}^N

(possibly given only after augmenting N)

Selfadjoint Dirac operator on $L^2(\mathbb{T}^d, \mathbb{C}^N)$:

$$D = \sum_{j=1}^{d} \Gamma_j \partial_{k_j}$$

Positive spectral (Hardy) projection $\Pi = \chi(D \geq 0)$
Theorem

*Viewing A as multiplication operator on $L^2(\mathbb{T}^d, \mathbb{C}^N)$, the operator $\Pi A \Pi + (1 - \Pi)$ is Fredholm and:

$$
\text{Ch}_d(A) = \text{Ind}(\Pi A \Pi + (1 - \Pi))
$$

Case $d = 1$: Fritz Noether 1921 and Gohberg-Krein 1960

Case $d \geq 3$: probably follows from Atiyah-Singer 1960’s and 1970’s

Extension to covariant operators with Prodan 2016

Aim: express $\text{Ch}_d(A)$ as signature of a finite dimensional matrix

Also extend to situations where no differential calculus available

This makes invariants numerically calculable
Extension to local operators on lattice

After Fourier transform \(\mathcal{F} : L^2(\mathbb{T}^d, \mathbb{C}^N) \rightarrow \ell^2(\mathbb{Z}^d, \mathbb{C}^N) \)

\[
(\mathcal{F}\psi)(x) = \int_{\mathbb{T}^d} \frac{dk}{(2\pi)^d} e^{-i k \cdot x} \psi(k)
\]

Dirac \(\hat{D} = \mathcal{F} D \mathcal{F}^* = \sum_{j=1}^d X_j \Gamma_j \) with position operators \(X_j \)

\(\hat{A} = \mathcal{F} A \mathcal{F}^* \) convolution operator

Differentiability satisfied if locality condition holds:

\[
\| [\hat{A}, X_j] \| \leq C \quad \forall j = 1, \ldots, d \quad \iff \quad \| [\hat{A}, D] \| \leq C'
\]

From now on only local operators on \(\ell^2(\mathbb{Z}, \mathbb{C}^N) \), so let’s drop hats

Fact: If \(A \) invertible local operator, \(\Pi A \Pi + 1 - \Pi \) is Fredholm

Fact: If \(A \) covariant, index is still given by a Chern number

Aim: calculate index as signature of finite matrix
For tuning parameter $\kappa > 0$ and invertible local A:

$$B_\kappa = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix} = \kappa D \otimes \sigma_3 + H$$

where $H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$. Clearly B_κ selfadjoint

D unbounded with discrete spectrum, A viewed as perturbation A may lead to spectral asymmetry of B_κ, but not for $A = 1$

Measured by signature, already on finite volume approximation!

A_ρ restriction of A (Dirichlet b.c.) to $\mathbb{D}_\rho = \{ x \in \mathbb{Z}^d : |x| \leq \rho \}$

$$B_{\kappa, \rho} = \begin{pmatrix} \kappa D_\rho & A_\rho \\ A_\rho^* & -\kappa D_\rho \end{pmatrix}$$
Main Result

Theorem

Let $g = \|A^{-1}\|^{-1}$ be the invertibility gap. Provided that

$$\| [D, A] \| \leq \frac{g^3}{18 \| A \| \kappa} \quad (*)$$

and

$$\frac{2g}{\kappa} \leq \rho \quad (**)$$

the matrix $B_{\kappa, \rho}$ is invertible and

$$\frac{1}{2} \operatorname{Sig}(B_{\kappa, \rho}) = \operatorname{Ind}(\Pi A \Pi + (1 - \Pi))$$

How to use: form (*) infer κ, then ρ from (**)

If A unitary, $g = \| A \| = 1$ and $\kappa = (18\| [D, A] \|)^{-1}$ and $\rho = 2/\kappa$

Hence small matrix of size ≤ 100 sufficient! Great for numerics!
Finite volume calculation of K-theory invariants

Why it can work:

Proposition

If (*) and (**) hold,

$$B^2_{\kappa, \rho} \geq \frac{g^2}{2}$$

Proof:

$$B^2_{\kappa, \rho} = \begin{pmatrix} A^*_\rho A_\rho & 0 \\ 0 & A_\rho A^*_\rho \end{pmatrix} + \kappa^2 \begin{pmatrix} D^2_\rho & 0 \\ 0 & D^2_\rho \end{pmatrix} + \kappa \begin{pmatrix} 0 & [D_\rho, A_\rho]^* \\ [D_\rho, A_\rho] & 0 \end{pmatrix}$$

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)

Now $A^* A \geq g^2$, but $(A^* A)_\rho \neq A^*_\rho A_\rho$

This issue can be dealt with by tapering argument:
Proposition (Bratelli-Robinson)

For $f : \mathbb{R} \rightarrow \mathbb{R}$ with Fourier transform defined without $\sqrt{2\pi}$,

$$\|[f(D), A]\| \leq \|\hat{f}'\|_1 \|[D, A]\|$$

Lemma

\exists even function $f : \mathbb{R} \rightarrow [0, 1]$ with $f(x) = 0$ for $|x| \geq \rho$

and $f(x) = 1$ for $|x| \leq \frac{\rho}{2}$ such that $\|\hat{f}'\|_1 = \frac{8}{\rho}$

With this, $f = f(D) = f(|D|)$ and $1_{\rho} = \chi(|D| \leq \rho)$:

$$A_{\rho}^*A_{\rho} = 1_{\rho}A^*1_{\rho}A1_{\rho} \geq 1_{\rho}A^*f^2A1_{\rho}$$

$$= 1_{\rho}fA^*Af1_{\rho} + 1_{\rho}([A^*, f]fA + fA^*[f, A])1_{\rho}$$

$$\geq g^2 f^2 + 1_{\rho}([A^*, f]fA + fA^*[f, A])1_{\rho}$$

So indeed $A_{\rho}^*A_{\rho}$ positive close to origin
Then one can conclude... but TEDIOUS
η-invariant (Atiyah-Patodi-Singer 1977)

Definition

\[B = B^* \text{ invertible operator on } \mathcal{H} \text{ with compact resolvent. Then} \]

\[\eta(B) = \text{Tr}(B|B|^{-s-1})|_{s=0} = \frac{1}{\Gamma\left(\frac{s+1}{2}\right)} \int_0^\infty dt \ t^{\frac{s-1}{2}} \ \text{Tr}(B e^{-tB^2}) \bigg|_{s=0} \]

provided it exists!

If \(\dim(\mathcal{H}) < \infty \), then \(\eta(B) = \text{Sig}(B) \)

Usually existence of \(\eta \)-invariant for \(\psi \)-Diffs difficult issue

Proposition

If () holds, \(B_{\bar{\kappa}} \) has well-defined \(\eta \)-invariant*

Proof. Integral for large \(t \) controlled by gap (Proposition above)
For small t appeal to Dyson series (iteration of DuHamel):

$$e^{-tB_{\kappa}^2} = e^{-t\Delta} + t \int_0^1 dr \, e^{-(1-r)t\Delta} \text{Re}^{-rtB_{\kappa}^2}$$

where $B_{\kappa}^2 = \Delta + R$ with

$$\Delta = \kappa^2 \begin{pmatrix} D^2 & 0 \\ 0 & D^2 \end{pmatrix}, \quad R = \begin{pmatrix} AA^* & \kappa[D, A] \\ \kappa[D, A]^* & A^*A \end{pmatrix}$$

Now replacing $B_{\kappa} = \kappa D \otimes \sigma_3 + H$

$$\text{Tr}(B_{\kappa}e^{-t\Delta}) = \kappa \text{Tr} \left(\begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix} e^{-t\Delta} \right) + \text{Tr} \left(\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} e^{-t\Delta} \right) = 0$$

Second term has supplementary factor t
Finite volume calculation of K-theory invariants

Theorem (follows from Getzler 1993, Carey-Phillips 2004)

Suppose (*) so that B_κ has well-defined η-invariant

For path $\lambda \in [0, 1] \mapsto B_\kappa(\lambda) = \kappa D \otimes \sigma_3 + \lambda H$ of selfadjoints

\[2 \text{SF}(\lambda \in [0, 1] \mapsto B_\kappa(\lambda)) = \eta(B_\kappa(1)) - \eta(B_\kappa(0)) = \eta(B_\kappa) \]

Consequence: As spectral flow homotopy invariant, so is $\eta(B_\kappa)$

Using this, first proof of Main Result for dimension $d = 1$:

By homotopy invariance sufficient: $A = S^n$ for $n \in \mathbb{Z}$ and S shift

Then calculate spectrum of $B_\kappa(\lambda)$ explicity using $XS = (X + 1)S$:

\[\sigma(B_\kappa(\lambda)) = \left\{ \frac{\kappa}{2} \left(n \pm \left((n - 2k)^2 + \frac{4\lambda^2}{\kappa^2} \right)^{\frac{1}{2}} \right) : k \in \mathbb{Z} \right\} \]

Now carefully follow eigenvalues to calculate spectral flow \(\Box\)
Preparations for K-theoretic argument for other d

Unitization $\mathcal{A}^+ = \mathcal{A} \oplus \mathbb{C}$ of \mathbb{C}^*-algebra \mathcal{A} by

$$(A, t)(B, s) = (AB + As + Bt, ts), \quad (A, t)^* = (A^*, \bar{t})$$

Natural \mathbb{C}^*-norm $\|(A, t)\| = \max\{\|A\|, |t|\}$. Unit $1 = (0, 1) \in \mathcal{A}^+$

Exact sequence of \mathbb{C}^*-algebras $0 \to \mathcal{A} \xrightarrow{i} \mathcal{A}^+ \xrightarrow{\rho} \mathbb{C} \to 0$

ρ has inverse $i'(t) = (0, t)$, then $s = i' \circ \rho : \mathcal{A}^+ \to \mathcal{A}^+$ scalar part

$\mathcal{V}_0(\mathcal{A}) = \{ V \in \bigcup_{n \geq 1} M_{2n}(\mathcal{A}^+) : V^* = V, \ V^2 = 1, \ s(V) \sim_0 E_{2n} \}$

where homotopic to $E_{2n} = E_2^\oplus n$ with $E_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Equivalence relation \sim_0 on $\mathcal{V}_0(\mathcal{A})$ by homotopy and $V \sim_0 \begin{pmatrix} V & 0 \\ 0 & E_2 \end{pmatrix}$

Then $K_0(\mathcal{A}) = \mathcal{V}_0(\mathcal{A})/ \sim_0$ abelian group via $[V] + [V'] = [\begin{pmatrix} V & 0 \\ 0 & V' \end{pmatrix}]$
Definition of $K_0(\mathcal{A})$ is equivalent standard one via $V = 2P - 1$:

$$K_0(\mathcal{A}) = \{ [P] - [s(P)] : \text{projections in some } M_n(\mathcal{A}^+) \}$$

For definition of $K_1(\mathcal{A})$ set

$$\mathcal{V}_1(\mathcal{A}) = \{ U \in \bigcup_{n \geq 1} M_n(\mathcal{A}^+) : U^{-1} = U^* \}$$

Equivalence relation \sim_1 by homotopy and $[U] = [(U_{01})]$

Then $K_1(\mathcal{A}) = \mathcal{V}_1(\mathcal{A})/ \sim_1$ with addition $[U] + [U'] = [U \oplus U']$

If \mathcal{A} unital, one can work with $M_n(\mathcal{A})$ instead of $M_n(\mathcal{A}^+)$ in $\mathcal{V}_1(\mathcal{A})$

Example 1: $K_0(\mathbb{C}) = \mathbb{Z}$ with invariant $\dim(P)$

Example 2: $K_1(C(S^1)) = \mathbb{Z}$ with invariant "winding number"
Index map

Example 3: Calkin’s exact sequence over a Hilbert space:

$$0 \to \mathcal{K} \to \mathcal{B} \xrightarrow{\pi} \mathcal{Q} = \mathcal{B}/\mathcal{K} \to 0$$

For Calkin algebra $K_1(\mathcal{Q}) = \mathbb{Z}$ with invariant = index of Fredholm

Also $K_0(\mathcal{B}) = K_1(\mathcal{B}) = 0$ and $K_0(\mathcal{K}) = \mathbb{Z}$

Isomorphism $K_1(\mathcal{Q}) \cong K_0(\mathcal{K})$ given by index map (Rordam et. al.):

Unitary $U = \pi(B) \in \mathcal{V}_1(\mathcal{Q})$, with contraction lift $B \in \mathcal{B}$,

$$\text{Ind}[U]_1 = \begin{bmatrix}
2BB^* - 1 & 2B(1 - B^*B)^{\frac{1}{2}} \\
2(1 - B^*B)^{\frac{1}{2}}B^* & 1 - 2B^*B
\end{bmatrix}_0$$

where for r.h.s. $V \in \mathcal{K}^+$: $V^2 = 1$ and $s(V) \sim_0 E_2$ up to compact
Index map versus index of Fredholm operator

B unitary up to compact $\iff 1 - B^*B \in \mathcal{K}$ and $1 - BB^* \in \mathcal{K}$

$\implies B$ Fredholm operator and $U = \pi(B) \in \mathcal{Q}$ unitary

Fedosov formula if $1 - B^*B$ and $1 - BB^*$ are traceclass:

$$\text{Ind}(B) = \dim(\text{Ker}(B)) - \dim(\text{Ker}(B^*))$$

$$= \text{Tr}(1 - B^*B) - \text{Tr}(1 - BB^*)$$

$$= \text{Tr} \left(\begin{pmatrix} BB^* - 1 & B(1 - B^*B)^{1/2} \\ (1 - B^*B)^{1/2}B^* & 1 - B^*B \end{pmatrix} \right)$$

$$= \text{Tr} \left(\frac{1}{2}(V - 1) \right)$$

$$= \frac{1}{2} \text{Sig}(V) \quad \text{if } 1 - B^*B, 1 - BB^* \text{ projections}$$

$$= \text{Tr} \left(\frac{1}{2}(\text{Ind}[U] - 1) \right)$$

$$= \text{Tr}(\text{Ind}^\sim[U])$$

if $\text{Ind}^\sim[U]$ is the projection-valued version of index map
Localizing index map for index pairings

Suppose now \(U = \pi(\Pi A \Pi + (1 - \Pi)) \in \mathcal{Q} \) as in Main Theorem but first \(A \) unitary. Then contraction lift \(B = \Pi A \Pi + (1 - \Pi) \)

Modify \(\Pi \) and \(1 - \Pi \) to \(p = p(D) \) smooth and \(n = n(D) \) where

\[
p(x) = \begin{cases}
0, & x \leq -\rho \\
p(x), & |x| \leq \rho \\
1, & x \geq \rho
\end{cases}
\]

\[
n(x) = \begin{cases}
1, & x \leq -\rho \\
0, & x \geq -\rho
\end{cases}
\]

Now \(p - \Pi, n - (1 - \Pi) \) compact, \(np = pn = 0 \) and \(n + p|\mathbb{D}_\rho^c = 1_{\mathbb{D}_\rho^c} \)

With notation \(A_p = pAp \) acting only on \(\ell^2(\mathbb{D}_\rho) \otimes \mathbb{C}^N \):

\[
\text{Ind}[U] = \text{Ind}[pAp + n] = \text{Ind}[A_p + n] = \begin{pmatrix}
2A_p A_p^* - 1 & 2A_p (1 - A_p^* A_p)^{\frac{1}{2}} \\
2(1 - A_p^* A_p)^{\frac{1}{2}} A_p^* & 1 - 2A_p^* A_p
\end{pmatrix} \oplus \begin{pmatrix}
1_{\mathbb{D}_\rho^c} & 0 \\
0 & -1_{\mathbb{D}_\rho^c}
\end{pmatrix}
\]
Summand on \mathbb{D}_ρ^c trivial (as equal to E_2). Thus:

$$\text{Ind}[U] = \begin{pmatrix} 2A_pA_p^* - 1 & 2A_p(1 - A_p^*A_p)^{1/2} \\ 2(1 - A_p^*A_p)^{1/2}A_p^* & 1 - 2A_p^*A_p \end{pmatrix}$$

Numerical index is signature of this finite-dimensional matrix!

Modify to self-adjoint matrix without spoiling invertibility

$$\|A_pA_p^* - p^4\| = \|pAp^2A^*p - p^3AA^*p\| \leq \|[p^2, A]\|$$

$$\leq \frac{C}{\rho}\|[D, A]\| < \frac{1}{4}$$

by the smoothness of p and for ρ sufficiently large. Similarly

$$\|A_p(1 - A_p^*A_p)^{1/2} - (1 - p^4)^{1/4}pAp(1 - p^4)^{1/4}\| \leq \frac{C}{\rho}\|[D, A]\| < \frac{1}{4}$$

Thus just replace matrix entries without changing signature!
Proposition

If (*) and (**) hold,

\[
\text{Ind}(\Pi A \Pi + (1 - \Pi)) = \text{Sig}\left(\begin{array}{cc}
2p^4 - 1 & 2(1 - p^4)^{1/4} p A p (1 - p^4)^{1/4} \\
2(1 - p^4)^{1/4} p A^* p (1 - p^4)^{1/4} & 1 - 2p^4
\end{array}\right)
\]

Last tasks:

1) replace \(2p^4 - 1\) by \(\kappa D_\rho\)

2) replace \(\sqrt{2}(1 - p^4)^{1/4} p\) by \(1_\rho\) indicator on \(\mathbb{D}_\rho\). Then \(1_\rho A 1_\rho = A_\rho\)

Both follows again by a tapering argument
Implementation of real symmetries

Fix a real structure on complex Hilbert space, denoted by \(\overline{\cdot} \). There is irrep \(\Gamma_1, \ldots, \Gamma_d \) and real unitary matrix \(\Sigma \)

\[
\begin{array}{c | c c c c}
 d \text{ mod 8} & 1 & 3 & 5 & 7 \\
\hline
 \Sigma^* \overline{D} \Sigma & D & -D & D & -D \\
 \Sigma^2 & 1 & -1 & -1 & 1 \\
 \Sigma^* \overline{\Pi} \Sigma & \Pi & 1 - \Pi & \Pi & 1 - \Pi \\
\end{array}
\]

For \(d = 3 \): \(D = X_1 \sigma_1 + X_2 \sigma_2 + X_3 \sigma_3 \) and \(\Sigma = i \sigma_2 \)

Furthermore given real unitary \(S \) with \([S, \Sigma] = [S, D] = 0\):

\[
\begin{array}{c | c c c c}
 j \text{ mod 8} & 2 & 4 & 6 & 8 \\
\hline
 S^* \overline{A} S & A^* & A & A^* & A \\
 S^2 & 1 & -1 & -1 & 1 \\
\end{array}
\]
Symmetries of $T = \Pi A \Pi + (1 - \Pi)$ such that index pairings are:

<table>
<thead>
<tr>
<th>$\text{Ind}_{(2)}(T)$</th>
<th>$j = 2$</th>
<th>$j = 4$</th>
<th>$j = 6$</th>
<th>$j = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>0</td>
<td>$2\mathbb{Z}$</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>$2\mathbb{Z}$</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>$d = 5$</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>$2\mathbb{Z}$</td>
</tr>
<tr>
<td>$d = 7$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>$2\mathbb{Z}$</td>
<td>\mathbb{Z}_2</td>
</tr>
</tbody>
</table>

where $\text{Ind}_{2}(T) = \dim(\text{Ker}(T)) \mod 2 \in \mathbb{Z}_2$

For Bott operator follows $R^* \overline{B_{\kappa}} R = s B_{\kappa}$ and $R^2 = s'1$ with

<table>
<thead>
<tr>
<th>$s = , s' =$</th>
<th>$j = 2$</th>
<th>$j = 4$</th>
<th>$j = 6$</th>
<th>$j = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 1$</td>
<td>$-1, -1$</td>
<td>$1, -1$</td>
<td>$-1, 1$</td>
<td>$1, 1$</td>
</tr>
<tr>
<td>$d = 3$</td>
<td>$1, -1$</td>
<td>$-1, 1$</td>
<td>$1, 1$</td>
<td>$-1, -1$</td>
</tr>
<tr>
<td>$d = 5$</td>
<td>$-1, 1$</td>
<td>$1, 1$</td>
<td>$-1, -1$</td>
<td>$1, -1$</td>
</tr>
<tr>
<td>$d = 7$</td>
<td>$1, 1$</td>
<td>$-1, -1$</td>
<td>$1, -1$</td>
<td>$-1, 1$</td>
</tr>
</tbody>
</table>
Same pattern!

Thus Ind and Ind_2 can be calculated from Bott operator using:

Proposition

$B = B^*$ invertible complex matrix. $R = \overline{R}$ real unitary such

$$R^* \overline{B} R = s B, \quad R^2 = s' 1$$

(i) If $s = 1$ and $s' = 1$, then $\text{Sig}(B) \in \mathbb{Z}$ arbitrary

(ii) If $s = 1$ and $s' = -1$, then $\text{Sig}(B) \in 2\mathbb{Z}$ arbitrary

(iii) If $s = -1$ and $s' = 1$, then $\text{Sig}(B) = 0$, but setting $M = R^{\frac{1}{2}}$

one obtains real antisymmetric matrix $iMBM^*$ with

invariant $\text{sgn}(\text{Pf}(iMBM^*)) \in \mathbb{Z}_2$

(iv) If $s = -1$ and $s' = -1$, then $\text{Sig}(B) = 0$
Application to topological insulators

\[B_\kappa = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix} = \kappa D \otimes \sigma_3 + H \quad , \quad H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \]

Data: \(H = -J^* H J \) chiral quantum Hamiltonian where \(J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

Invertibility of \(H \) (and hence \(A \)) means: \(H \) describes insulator

Non-trivial higher winding numbers make it a topological insulator

Main Theorem allows to efficiently calculate this topology

As calculation local, one can determine quantum phase transitions

Implementation of physical symmetries on \(H \) (like TRS and PHS) lead to symmetries of \(A \) \(\Rightarrow \mathbb{Z}_2 \) invariants calculable

Now: not every \(H \) is chiral & dimension not always even...
Even dimensional pairings

Consider projection P on $\ell^2(\mathbb{Z}^d, \mathbb{C}^{2N})$ with d even.

Even-dimensional Dirac operator has grading $\Gamma_{d+1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Dirac phase F is unitary operator in $D|D|^{-1} = \begin{pmatrix} 0 & F \\ F^* & 0 \end{pmatrix}$

Fredholm operator $PFP + (1 - P)$ has index equal to $\mathrm{Ch}_d(P)$

Associated Bott operator

$$B_\kappa = \kappa D + (2P - 1)\Gamma_{d+1}$$

Theorem

Suppose $\|[P, D]\| < \infty$ and that κ is sufficiently small.

For ρ sufficiently large,

$$\mathrm{Ind}(PFP + (1 - P)) = \mathrm{Sig}(B_\kappa, \rho)$$
Resumé = Plan of the talk

- Classical topological invariants and index theorem
- Construction of associated Bott operator (matrix)
- Main result: invariant as signature of Bott operator
- Connection to η-invariant
- Elements of proof based on K-theory
- Implementation of symmetries
- Application to topological insulators
- Even dimensional case