Invariants of disordered semimetals via the spectral localizer

Hermann Schulz-Baldes, Tom Stoiber (Erlangen) also: Nora Doll (Erlangen), Terry Loring (Albuquerque)

August 2021

Topological invariants in solid state

Here: focus on tight-binding models in one-particle electronic systems
This covers topological insulators and semimetals
Complex theory: no real symmetries (TRS, BdG, but chiral/sublattice)

- odd invariants: (higher) winding numbers (also odd Chern numbers)
- Even invariants: (higher) Chern numbers
- Strong invariants: involve all d space directions, \mathbb{Z}-valued
- Weak invariants: involve less than d space directions, \mathbb{R}-valued
- Other invariants: number of Weyl or Dirac points in semimetals

Real invariants: requires real symmetries (TRS, BdG)

- often \mathbb{Z}_{2}-valued

Aim: spectral localizer as numerical technique for computation

Formulas: bulk invariants and index pairings

$P=\chi(H<0)$ Fermi projection of Hamiltonian H on $\ell^{2}\left(\mathbb{Z}^{d}, \mathbb{C}^{L}\right)$
$X=\left(X_{1}, \ldots, X_{d}\right)$ position and $D=\sum_{j=1}^{k} X_{i j} \Gamma_{i j}$ partial (dual) Dirac
$d P=i[D, P]$ bounded or at least Besov (localization or pseudogap)

$$
\mathrm{Ch}_{k}(P)=c_{k} \mathcal{T}\left(P(d P)^{k}\right) \quad, \quad \text { even Chern for } k \text { even }
$$

If chiral symmetry $J P J=\mathbf{1}-P$ for $J=J^{*}=J^{-1}$

$$
\mathrm{Ch}_{k}(P)=c_{k} \mathcal{T}\left(J P(d P)^{k}\right) \quad, \quad \text { odd Chern for } k \text { odd }
$$

Strong invariant for $k=d$. By index theorems (many references):

$$
\begin{array}{rlrl}
\mathrm{Ch}_{k}(P) & =\mathcal{T}-\operatorname{-\operatorname {lnd}(T)} \\
\mathrm{Ch}_{k}(P) & =\mathcal{T}-\operatorname{Ind}(T) & , & T=P F P+\mathbf{1}-P, k \text { even } \\
\end{array}
$$

$\Pi=\chi(D>0)$ Hardy, F Dirac phase, $U=A|A|^{-1}$ Fermi unitary $H=\left(\begin{array}{cc}0 & A \\ A * 0\end{array}\right)$

General framework: strong odd index pairings

A bounded invertible operator on Hilbert space \mathcal{H} (K_{1}-class)
D selfadjoint Dirac operator on \mathcal{H} with compact resolvent (K^{1}-class)
A differentiable w.r.t. D, namely commutator $[D, A]$ bounded
D then called odd Fredholm module for A (Atiyah, Kasparov)
Hardy projection $\Pi=\chi(D>0) \quad$ Set: $T=\Pi A \Pi+(1-\Pi)$
Fact: T Fredholm operator and $\operatorname{Ind}(T)$ called index pairing
Index theorems (Atiyah-Singer, Connes, ...):
local formula for $\operatorname{Ind}(T)$
Best-known example: Noether index theorem for winding number
Aim here: numerical technique for calculation of $\operatorname{Ind}(T)$

Spectral localizer = Hamiltonian in Dirac trap

For (semiclassical) parameter $\kappa>0$ introduce spectral localizer:

$$
L_{\kappa}^{\text {od }}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right) \quad, \quad H=\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right)
$$

A_{ρ} restriction of A (Dirichlet) to finite-dimensional range of $\chi(|D| \leqslant \rho)$

$$
L_{\kappa, \rho}^{\text {od }}=\left(\begin{array}{cc}
\kappa D_{\rho} & A_{\rho} \\
A_{\rho}^{*} & -\kappa D_{\rho}
\end{array}\right)
$$

Clearly selfadjoint matrix:

$$
\left(L_{\kappa, \rho}^{\mathrm{od}}\right)^{*}=L_{\kappa, \rho}^{\mathrm{od}}
$$

Fact 1: $L_{\kappa, \rho}^{\text {od }}$ is gapped, namely $0 \notin L_{\kappa, \rho}^{\text {od }} \quad$ (A is like a mass)
Fact 2: $L_{\kappa, \rho}^{\text {od }}$ has spectral asymmetry measured by signature
Fact 3: signature linked to topological invariant

Schematic representation of intuition

$$
L_{\kappa}^{o d}(\lambda)=\left(\begin{array}{cc}
\kappa D & \lambda A \\
\lambda A^{*} & -\kappa D
\end{array}\right) \quad, \quad \lambda \geqslant 0
$$

Spectrum for $\lambda=0$ symmetric and with space quanta κ

Spectrum for $\lambda=1$: less regular, central gap open and asymmetry

Spectral asymmetry determined by low-lying spectrum (finite volume!)

Theorem (with Loring 2017)

Given $D=D^{*}$ with compact resolvent and invertible A with invertibility gap $g=\left\|A^{-1}\right\|^{-1}$. Provided that

$$
\begin{equation*}
\|[D, A]\| \leqslant \frac{g^{3}}{12\|A\| \kappa} \tag{}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 g}{\kappa} \leqslant \rho \tag{**}
\end{equation*}
$$

the matrix $L_{\kappa, \rho}^{\mathrm{od}}$ is invertible and with $\Pi=\chi(D \geqslant 0)$

$$
\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}^{\text {od }}\right)=\operatorname{Ind}(\Pi A \Pi+(1-\Pi))
$$

How to use: form (*) infer κ, then ρ from (**)
If A unitary, $g=\|A\|=1$ and $\kappa=(12\|[D, A]\|)^{-1}$ then $\rho=\frac{2}{\kappa}$ Hence small matrix with $\rho \leqslant 100$ sufficient! Great for numerics! N.B.: scaling $A \mapsto \lambda A$ in (*) forces $\kappa \mapsto \lambda \kappa$, so same ρ due to ($\left.{ }^{* *}\right)$

Sketch on how to use this in a concrete situation

Solid state system in $d=3$ in one-particle tight-binding approximation $H: \ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2 L}\right) \rightarrow \ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2 L}\right)$ with $2 L$ orbitals per unit cell H is local, namely only matrix elements between neighboring sites Matrix elements from quantum chemistry (tunneling, exchange) H gapped (insulator!) and has a chiral (or sublattice) symmetry

$$
H=-J H J=\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right) \quad, \quad J=\left(\begin{array}{cc}
1_{L} & 0 \\
0 & -1_{L}
\end{array}\right)
$$

If H periodic, in Fourier space $k \in \mathbb{T}^{3} \mapsto A(k) \in \mathbb{C}^{L \times L}$ smooth invertible

$$
\operatorname{Ch}_{3}(A)=\operatorname{Wind}_{3}(A)=\frac{1}{24 \pi^{2}} \int_{\mathbb{T}^{3}} \operatorname{Tr}\left(A^{-1} d A d A^{-1} d A\right)
$$

Index theorem $\Pi=\chi\left(\sum_{i=1}^{3} \Gamma_{i} \partial_{k_{i}}>0\right)$ spectral projection of Dirac

$$
\mathrm{Ch}_{3}(A)=-\operatorname{Ind}(\Pi A \Pi+(\mathbf{1}-\Pi))
$$

Spectrum and signature of localizer

(Dual) Dirac $D=\sum_{j=1}^{3} \Gamma_{j} X_{j}$ on $\ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2}\right) \quad$ locality: $\|[D, H]\|<\infty$ Spectral localizer:

$$
L_{\kappa}^{\text {od }}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right)
$$

No functional calculus, just place H and D in 2×2 :
Typical result:

$\rho=6, \kappa=0.1$, etc.
half-signature easy to compute

Even strong index pairings (in even dimension d)

Consider gapped Hamiltonian $H=H^{*}$ on \mathcal{H} and $P=\chi(H<0)$
Dirac operator D on $\mathcal{H} \oplus \mathcal{H}$ is odd w.r.t. grading $\Gamma=\Gamma_{d+1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Thus $D=-\Gamma D \Gamma=\left(\begin{array}{cc}0 & D_{0}^{*} \\ D_{0} & 0\end{array}\right)$ and Dirac phase $F=D_{0}\left|D_{0}\right|^{-1}$
$\left[H, D_{0}\right]$ bounded $\Longrightarrow T=P F P+(\mathbf{1}-P)$ Fredholm (index $=$ Chern \#)
Spectral localizer = Hamiltonian in Dirac trap

$$
L_{\kappa}^{\mathrm{cv}}=\left(\begin{array}{cc}
-H & \kappa D_{0}^{*} \\
\kappa D_{0} & H
\end{array}\right)
$$

Theorem (with Loring 2018)
Suppose $\left\|\left[H, D_{0}\right]\right\|<\infty$ and κ, ρ with (*) and (**)

$$
\operatorname{Ind}(P F P+(\mathbf{1}-P))=\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}^{\mathrm{ev}}\right)
$$

16 Real \mathbb{Z}_{2}-valued index pairings (Real K-theory)

Real structure $\mathcal{C}=$ complex conjugation on \mathcal{H}, then $\bar{A}=\mathcal{C A C}$
Possible: $P=\bar{P}$ real, P quaternionic, $P=\mathbf{1}-\bar{P}$ Lagrangian , odd Lag.
Depending on d : $D=\bar{D}$ real, $D=-\bar{D}$ imaginary, D (odd) quaternionic
Focus on BdG, $d=1: H=-\bar{H}$ with $P=\chi(H<0)=\mathbf{1}-\bar{P}$ and $D=\bar{D}$
With $\Pi=\chi(D>0)$ again $T=\Pi(\mathbf{1}-2 P) \Pi+\mathbf{1}-\Pi$ Fredholm and

$$
\operatorname{Ind}_{2}(T)=\operatorname{dim}(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_{2}
$$

Real skew spectral localizer

$$
L_{\kappa}^{\text {sk }}=\left(\begin{array}{cc}
0 & \kappa D-i H \\
\kappa D+i H & 0
\end{array}\right)
$$

Theorem (with Doll 2021)
Suppose $\|[H, D]\|<\infty$ and κ, ρ with (${ }^{*}$) and (**)

$$
\operatorname{Ind}_{2}(P F P+(\mathbf{1}-P))=\operatorname{sgn}\left(\operatorname{Pf}\left(L_{\kappa, \rho}^{\mathrm{s}}\right)\right)=\operatorname{sgn}\left(\operatorname{det}\left(\kappa D_{\rho}+\imath H_{\rho}\right)\right)
$$

Semifinite (here odd) index pairings (weak invar.)

$(\mathcal{N}, \mathcal{T})$ semifinite von Neumann with \mathcal{T} normal, faithful
\mathcal{K} norm-closure of span of \mathcal{T}-finite projections. Then Calkin sequence:

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{N} \xrightarrow{\pi} \mathcal{N} / \mathcal{K} \rightarrow 0
$$

$T \in \mathcal{N}$ Fredholm if $\pi(T)$ invertible

Definition

Breuer-Fredholm index of $T \in \mathcal{N}$ w.r.t. projections $P, Q \in \mathcal{N}$

$$
\mathcal{T}-\operatorname{Ind}_{(P \cdot Q)}(T)=\mathcal{T}(\operatorname{Ker}(T) \cap Q)-\mathcal{T}\left(\operatorname{Ker}\left(T^{*}\right) \cap P\right)
$$

provided $\operatorname{Ker}(T) \cap Q$ and $\operatorname{Ker}\left(T^{*}\right) \cap P$ are \mathcal{T}-finite
For $\Pi=\chi(D>0), U \in \mathcal{N}$ and $[D, U]\left(1+D^{2}\right)^{-\frac{1}{2}} \in \mathcal{K}$, index pairing

$$
\langle[U],[D]\rangle=\mathcal{T}-\operatorname{Ind}_{(\Pi \cdot \Pi)}(\Pi \cup \Pi) \in \mathbb{R}
$$

Link to weak invariant via index theorem (with Prodan, Bourne, Stoiber)

Semifinite (weak) odd spectral localizer

 for $U=A|A|^{-1}$$$
L_{\kappa}^{\text {od }}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right)
$$

and restrictions

$$
L_{\kappa, \rho}^{\mathrm{od}}=\Pi_{\rho} L_{\kappa}^{\mathrm{we}} \Pi_{\rho} \quad, \quad \Pi_{\rho}=\chi\left(D^{2}<\rho^{2}\right)
$$

Theorem (with Stoiber 2021)
For κ, ρ satisfying (${ }^{*}$) and (${ }^{* *)}$, and $U=A|A|^{-1}$ as above,

$$
\langle[U],[D]\rangle=\frac{1}{2} \mathcal{T}-\operatorname{Sig}\left(L_{\kappa, \rho}^{\mathrm{od}}\right)
$$

where $\mathcal{T}-\operatorname{Sig}(L)=\mathcal{T}(\chi(L>0))-\mathcal{T}(\chi(L<0))$
Application: numerical method for weak invariants of topo. insul.

$2 d$ topological semimetal: graphene

On honeycomb lattice $=$ decorated triangular lattice, so on $\ell^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2}$

$$
H=\left(\begin{array}{cc}
0 & S_{1}+S_{1}^{*} S_{2}+1 \\
S_{1}^{*}+S_{2}^{*} S_{1}+1 & 0
\end{array}\right)
$$

where S_{1}, S_{2} shifts on $\ell^{2}\left(\mathbb{Z}^{2}\right)$. Clearly chiral $\sigma_{3} H \sigma_{3}=-H$. Fourier:

$$
H \cong \int_{\mathbb{T}^{2}}^{\oplus} d k\left(\begin{array}{cc}
0 & e^{i k_{1}}+e^{i\left(k_{2}-k_{1}\right)}+1 \\
e^{-i k_{1}}+e^{-i\left(k_{2}-k_{1}\right)}+1 & 0
\end{array}\right)
$$

Dirac points $k_{ \pm}=\left(\frac{(3 \pm 1) \pi}{3}, 0\right) \quad$ DOS vanishes at $E=0$ (pseudogap)

Edges of graphene

Zigzag boundary \cong replace S_{1} by unilateral shift \hat{S}_{1}
Armchair boundary \cong replace S_{2} by unilateral shift \hat{S}_{2}
Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag

Edge states and BBC for surface DOS

$\xi=\binom{\xi_{1}}{\xi_{2}} \in \mathbb{S}^{1}$ direction perpendicular to boundary (possibly irrational)
$\hat{H}=\Pi_{\xi} H \Pi_{\xi}$ half-space restriction of graphene Hamiltonian
Kernel projection $\hat{P}=\hat{P}_{+}+\hat{P}_{-}$on flat band of surface states
$\hat{\mathcal{T}}$ trace per unit volume along the boundary bulk Fermi unitary $U=\left(S_{1}+S_{1}^{*} S_{2}+1\right)\left|S_{1}+S_{1}^{*} S_{2}+1\right|^{-1}$ (singular!)
Theorem (Semimetal BBC - with Stoiber)

$$
i \mathcal{T}\left(U^{-1} \nabla_{\xi} U\right)=\hat{\mathcal{T}}\left(\hat{P}_{+}\right)-\hat{\mathcal{T}}\left(\hat{P}_{-}\right)
$$

where $\mathcal{T}(B)=\mathbf{E} \operatorname{Tr}(\langle 0| B|0\rangle)$ and $\nabla_{\xi}=\xi \cdot \nabla$ with $\nabla_{j} B=i\left[X_{j}, B\right]$
Moreover, result stable under chiral surface disorder
Flat band in clean graphene as weak invariants $i \mathcal{T}\left(U^{-1} \nabla_{j} U\right)=\frac{1}{3} \delta_{j, 1}$

Other chiral $2 d$ toy model: Stacked SSH

SSH in direction 1 with coupling in direction 2 and chiral randomness
$H=\left(\begin{array}{cc}0 & S_{1}-\mu \\ S_{1}^{*}-\mu & 0\end{array}\right)-\delta\left(\begin{array}{cc}0 & S_{2}+S_{2}^{*} \\ S_{2}+S_{2}^{*} & 0\end{array}\right)+\lambda \sum_{n \in \mathbb{Z}^{2}} v_{n}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
where v_{n} i.i.d. random variables with uniform distribution in $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(2 or 4) Dirac points for periodic model if $k_{1}=0, \pi, 2 \delta \cos \left(k_{2}\right)+\mu= \pm 1$

$\lambda=0.2, \mu=1.3, \delta=0.3$ and volume $[-\rho, \rho]^{2}$ with $\rho=20$

Central DOS and edge states

Zoom into the central DOS

Same parameters as above

There are $28=2 \cdot 14$ (approximate) zero modes of H
Corresponding eigenstates only on two opposite edges (edges weakly coupled, edge states vanish on other edges!)
Edge state dens. $=\frac{14}{41} \approx i \mathcal{T}\left(U^{-1} \nabla_{1} U\right)=\int \frac{d k_{2}}{2 \pi} \chi\left(\mu+2 \delta \cos \left(k_{2}\right)<1\right) \approx \frac{1}{3}$ Here first \approx is precisely the equality in the theorem (1 chiral sector)

Weak spectral localizer for weak winding numbers

$$
L_{\kappa}^{\text {od }}=\left(\begin{array}{cc}
\kappa X_{1} & A_{\text {per }}^{*} \\
A_{\mathrm{per}} & -\kappa X_{1}
\end{array}\right) \quad H_{\mathrm{per}}=\left(\begin{array}{cc}
0 & A_{\mathrm{pr}}^{*} \\
A_{\mathrm{per}} & 0
\end{array}\right)
$$

$H_{\text {per }}$ stacked SSH H periodized in 2-direction $\quad \kappa=0.1$
As above $\lambda=0.2, \mu=1.3, \delta=0.3$ and volume $[-\rho, \rho]^{2}$ with $\rho=20$

Half-signature of $L_{\kappa, \rho}^{\text {od }} \approx 14$
weak winding number $i \mathcal{T}\left(U^{-1} \nabla_{1} U\right)=$ half-signature density $\approx \frac{14}{41} \approx \frac{1}{3}$

Approximate zero modes of spectral localizer

$$
L_{k}^{c v}=\left(\begin{array}{cc}
-H & \kappa \mathbf{1}_{2} \otimes\left(X_{1}+\imath X_{2}\right) \\
\kappa \mathbf{1}_{2} \otimes\left(X_{1}-\imath X_{2}\right) & H
\end{array}\right)=-\sigma_{1} \otimes \mathbf{1} L_{k}^{\infty} \sigma_{1} \otimes \mathbf{1}
$$

Vanishing signature (Chern number vanishes due to chiral symmetry)
$L_{\kappa, \rho}^{e v}$ restriction to $[-\rho, \rho]^{2}$
Stacked SSH as above and $\kappa=0.07$

Approximate kernel of multiplicity $2=$ number of Dirac points Very large gap to first excited $\approx \sqrt{\kappa} \approx 0.26$ (as for Dirac Ham.)
Gap above groundstate as for Dirac Hamiltonian (explicit computation)

Ground states of spectral localizer

Plot of modulus (over 4-dim fiber) of one of the two ground states:

lowest eigenvalue $\nu \approx C \lambda$ with C very small (perturbation theory) For $\lambda=0$, one has $\nu \approx e^{-1 / \kappa}$ (phase space tunnelling)

Approximate kernel dimension counts number of Dirac points
Conclusion: Concept of number of Dirac points stable under disorder Moreover: existence of Dirac points \Longrightarrow non-vanishing weak windings

Why it works so well (for general dimension d):

In Fourier space:

$$
\mathcal{F}\left(L_{k}^{\text {Lv }}\right)^{2} \mathcal{F}^{*}=-\kappa^{2} \sum_{j=1}^{d} \partial_{k_{j}}^{2}+\left(\begin{array}{cc}
\left(H_{k}\right)^{2} & \kappa \sum_{j=1}^{d} \Gamma_{j}\left(\partial_{k_{j}} H_{k}\right) \\
\kappa \sum_{j=1}^{d} \Gamma_{j}\left(\partial_{k_{j}} H_{k}\right) & \left(H_{k}\right)^{2}
\end{array}\right)
$$

Second oder differential operator on $L^{2}\left(\mathbb{T}^{2}, \mathbb{C}^{2 L}\right)$
As in semi-classical analysis with $\hbar=\kappa$
IMS localization isolates Dirac points
At each Dirac point solvable "double" Dirac Hamiltonians $\left(\begin{array}{cc}\gamma_{k} k \\ \kappa\left\ulcorner\partial_{k}\right. & \kappa\left\ulcorner\partial_{k}\right. \\ -\gamma k\end{array}\right)$
Each Dirac Hamiltonian has simple zero mode and a gap of order κ
Theorem (with Stoiber)
L_{κ} has as many eigenvalues $\leqslant \kappa$ as H has Dirac points
Next excited level is $\mathcal{O}(\sqrt{\kappa})$

Weyl points of 3d systems (same strategy)

$$
H=H_{p+i p}+\delta\left(\begin{array}{cc}
0 & S_{3}+S_{3}^{*} \\
S_{3}+S_{3}^{*} & 0
\end{array}\right)+H_{\text {weyl shift }}+\lambda H_{\text {dis }}
$$

$H_{\text {weyl shift }}$ shifts Weyl points to different energies (no pseudogap)

$\rho=7$, so cube of size $15, \delta=0.6, \mu=1.2, \lambda=0.5, \kappa=0.1$
Approximate kernel dimension counts number of Weyl points
Existence of Weyl points \Longrightarrow non-vanishing weak Chern numbers
\Longrightarrow surface currents (as in QHE)

Resumé (four spectral localizers):

$$
\begin{gathered}
L_{k}^{\mathrm{od}}=\left(\begin{array}{cc}
\kappa D & A^{*} \\
A & -\kappa D
\end{array}\right), \quad d \text { odd, chiral class Alll } \\
L_{\kappa}^{\mathrm{ev}}=\left(\begin{array}{cc}
-H & \kappa D_{0}^{*} \\
\kappa D_{0} & H
\end{array}\right), \quad d \text { even, class A } \\
L_{\kappa}^{\text {od }}=\left(\begin{array}{cc}
-H & \kappa D \\
\kappa D & H
\end{array}\right), \quad d \text { odd, Weyl point count } \\
L_{k}^{\mathrm{cv}}=\left(\begin{array}{cc}
-H & \kappa D_{0}^{*} \\
\kappa D_{0} & H
\end{array}\right), \quad d \text { even, Dirac point count } \\
\text { Spectral localizer is a } \\
\text { fun and versatile new tool }
\end{gathered}
$$

References (all but one on arXiv)

- with Loring, Finite volume calculations of K-theory invariants, New York J. Math. (2017)
- with Loring, The spectral localizer for even index pairings,
J. Noncommutative Geometry (2020)
- with Doll, Skew localizer and \mathbb{Z}_{2}-flows for real index pairings, preprint 2021
- with Stoiber, The spectral localizer for semifinite spectral triples, Proc. AMS (2021)
- with Stoiber, Harmonic analysis in operator algebras and its applications to index theory, preprint 2020.
- with Stoiber, Invariants of disordered semimetals via the spectral localizer, preprint 2021.

