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Topological invariants in solid state
Here: focus on tight-binding models in one-particle electronic systems

This covers topological insulators and semimetals

Complex theory: no real symmetries (TRS, BdG, but chiral/sublattice)

‚ odd invariants: (higher) winding numbers (also odd Chern numbers)

‚ Even invariants: (higher) Chern numbers

‚ Strong invariants: involve all d space directions, Z-valued

‚ Weak invariants: involve less than d space directions, R-valued

‚ Other invariants: number of Weyl or Dirac points in semimetals

Real invariants: requires real symmetries (TRS, BdG)

‚ often Z2-valued

Aim: spectral localizer as numerical technique for computation
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Formulas: bulk invariants and index pairings
P “ χpH ă 0q Fermi projection of Hamiltonian H on `2pZd ,CLq

X “ pX1, . . . ,Xdq position and D “
řk

j“1 Xij Γij partial (dual) Dirac

dP “ irD,Ps bounded or at least Besov (localization or pseudogap)

Chk pPq “ ck T
`

PpdPqk
˘

, even Chern for k even

If chiral symmetry JPJ “ 1´ P for J “ J˚ “ J´1

Chk pPq “ ck T
`

JPpdPqk
˘

, odd Chern for k odd

Strong invariant for k “ d . By index theorems (many references):

Chk pPq “ T -IndpT q , T “ PFP ` 1´ P , k even

Chk pPq “ T -IndpT q , T “ ΠUΠ` 1´ Π , k odd

Π“χpD ą 0q Hardy, F Dirac phase, U“A|A|´1Fermi unitary H“
` 0 A

A˚ 0

˘
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General framework: strong odd index pairings

A bounded invertible operator on Hilbert space H (K1-class)

D selfadjoint Dirac operator on H with compact resolvent (K 1-class)

A differentiable w.r.t. D, namely commutator rD,As bounded

D then called odd Fredholm module for A (Atiyah, Kasparov)

Hardy projection Π “ χpD ą 0q Set: T “ ΠAΠ` p1´ Πq

Fact: T Fredholm operator and IndpT q called index pairing

Index theorems (Atiyah-Singer, Connes, ...):
local formula for IndpT q

Best-known example: Noether index theorem for winding number

Aim here: numerical technique for calculation of IndpT q
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Spectral localizer = Hamiltonian in Dirac trap
For (semiclassical) parameter κ ą 0 introduce spectral localizer:

Lod
κ “

˜

κD A
A˚ ´κD

¸

, H “

˜

0 A
A˚ 0

¸

Aρ restriction of A (Dirichlet) to finite-dimensional range of χp|D| ď ρq

Lod
κ,ρ “

˜

κDρ Aρ
A˚ρ ´κDρ

¸

Clearly selfadjoint matrix:
pLod
κ,ρq

˚ “ Lod
κ,ρ

Fact 1: Lod
κ,ρ is gapped, namely 0 R Lod

κ,ρ (A is like a mass)
Fact 2: Lod

κ,ρ has spectral asymmetry measured by signature
Fact 3: signature linked to topological invariant
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Schematic representation of intuition

Lod
κ pλq “

˜

κD λA
λA˚ ´κD

¸

, λ ě 0

Spectrum for λ “ 0 symmetric and with space quanta κ

σpLod
κ p0qq

κ

0

Spectrum for λ “ 1: less regular, central gap open and asymmetry

σpLod
κ p1qq

g

0

Spectral asymmetry determined by low-lying spectrum (finite volume!)
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Theorem (with Loring 2017)

Given D “ D˚ with compact resolvent and invertible A
with invertibility gap g “ }A´1}´1. Provided that

}rD,As} ď
g3

12 }A}κ
(*)

and
2 g
κ

ď ρ (**)

the matrix Lod
κ,ρ is invertible and with Π “ χpD ě 0q

1
2 SigpLod

κ,ρq “ Ind
`

ΠAΠ` p1´ Πq
˘

How to use: form (*) infer κ, then ρ from (**)
If A unitary, g “ }A} “ 1 and κ “ p12}rD,As}q´1 then ρ “ 2

κ

Hence small matrix with ρ ď 100 sufficient! Great for numerics!
N.B.: scaling A ÞÑ λA in (*) forces κ ÞÑ λκ, so same ρ due to (**)
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Sketch on how to use this in a concrete situation
Solid state system in d “ 3 in one-particle tight-binding approximation

H : `2pZ3,C2Lq Ñ `2pZ3,C2Lq with 2L orbitals per unit cell

H is local, namely only matrix elements between neighboring sites

Matrix elements from quantum chemistry (tunneling, exchange)

H gapped (insulator!) and has a chiral (or sublattice) symmetry

H “ ´JHJ “

˜

0 A
A˚ 0

¸

, J “

˜

1L 0
0 ´1L

¸

If H periodic, in Fourier space k P T3 ÞÑ Apkq P CLˆL smooth invertible

Ch3pAq “ Wind3pAq “
1

24π2

ż

T3
Tr
`

A´1 dA dA´1 dA
˘

Index theorem Π “ χp
ř3

i“1 ΓiBki ą 0q spectral projection of Dirac

Ch3pAq “ ´ Ind
`

ΠAΠ` p1´ Πq
˘
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Spectrum and signature of localizer
(Dual) Dirac D “

ř3
j“1 ΓjXj on `2pZ3,C2q locality: }rD,Hs} ă 8

Spectral localizer:

Lod
κ “

˜

κD A
A˚ ´κD

¸

No functional calculus, just place H and D in 2ˆ 2: Typical result:
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ρ “ 6, κ “ 0.1, etc. half-signature easy to compute
Invariants of disordered semimetals via the spectral localizer 9 / 25



Even strong index pairings (in even dimension d)
Consider gapped Hamiltonian H “ H˚ on H and P “ χpH ă 0q

Dirac operator D on H‘H is odd w.r.t. grading Γ “ Γd`1 “
`1 0

0 ´1

˘

Thus D “ ´ΓDΓ “
`0 D˚

0
D0 0

˘

and Dirac phase F “ D0|D0|
´1

rH,D0s bounded ùñ T “ PFP ` p1´ Pq Fredholm (index “ Chern #)

Spectral localizer = Hamiltonian in Dirac trap

Lev
κ “

˜

´H κD˚0
κD0 H

¸

Theorem (with Loring 2018)
Suppose }rH,D0s} ă 8 and κ, ρ with (*) and (**)

Ind
`

PFP ` p1´ Pq
˘

“ 1
2 SigpLev

κ,ρq
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16 Real Z2-valued index pairings (Real K -theory)
Real structure C “ complex conjugation on H, then A “ CAC

Possible: P “ P real, P quaternionic, P “ 1´ P Lagrangian , odd Lag.

Depending on d : D “ D real, D “ ´D imaginary, D (odd) quaternionic

Focus on BdG, d “ 1: H “ ´H with P “ χpH ă 0q “ 1´ P and D “ D

With Π “ χpD ą 0q again T “ Πp1´ 2PqΠ` 1´ Π Fredholm and

Ind2pT q “ dimpKerpT qqmod 2 P Z2

Real skew spectral localizer

Lsk
κ “

˜

0 κD ´ iH
κD ` iH 0

¸

Theorem (with Doll 2021)
Suppose }rH,Ds} ă 8 and κ, ρ with (*) and (**)

Ind2
`

PFP ` p1´ Pq
˘

“ sgnpPfpLsk
κ,ρqq “ sgnpdetpκDρ ` ıHρqq
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Semifinite (here odd) index pairings (weak invar.)
pN , T q semifinite von Neumann with T normal, faithful
K norm-closure of span of T -finite projections. Then Calkin sequence:

0 Ñ K Ñ N π
Ñ N {K Ñ 0

T P N Fredholm if πpT q invertible

Definition
Breuer-Fredholm index of T P N w.r.t. projections P,Q P N

T -IndpP¨QqpT q “ T
`

KerpT q XQ
˘

´ T
`

KerpT ˚q X P
˘

provided KerpT q XQ and KerpT ˚q X P are T -finite

For Π “ χpD ą 0q, U P N and rD,Usp1` D2q´
1
2 P K, index pairing

xrUs, rDsy “ T -IndpΠ¨ΠqpΠUΠq P R

Link to weak invariant via index theorem (with Prodan, Bourne, Stoiber)
Invariants of disordered semimetals via the spectral localizer 12 / 25



Semifinite (weak) odd spectral localizer

for U “ A|A|´1

Lod
κ “

˜

κD A
A˚ ´κD

¸

and restrictions

Lod
κ,ρ “ ΠρLwe

κ Πρ , Πρ “ χpD2 ă ρ2q

Theorem (with Stoiber 2021)

For κ, ρ satisfying (*) and (**), and U “ A|A|´1 as above,

xrUs, rDsy “ 1
2 T -SigpLod

κ,ρq

where T -SigpLq “ T pχpL ą 0qq ´ T pχpL ă 0qq

Application: numerical method for weak invariants of topo. insul.
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2d topological semimetal: graphene
On honeycomb lattice “ decorated triangular lattice, so on `2pZ2q b C2

H “

˜

0 S1 ` S˚1 S2 ` 1
S˚1 ` S˚2 S1 ` 1 0

¸

where S1,S2 shifts on `2pZ2q. Clearly chiral σ3Hσ3 “ ´H. Fourier:

H –

ż ‘

T2
dk

˜

0 eik1 ` eipk2´k1q ` 1
e´ik1 ` e´ipk2´k1q ` 1 0

¸

Dirac points k˘ “ p
p3˘1qπ

3 ,0q DOS vanishes at E “ 0 (pseudogap)
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Edges of graphene

Zigzag boundary – replace S1 by unilateral shift pS1

Armchair boundary – replace S2 by unilateral shift pS2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag
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Edge states and BBC for surface DOS

ξ “
`

ξ1
ξ2

˘

P S1 direction perpendicular to boundary (possibly irrational)

pH “ Πξ H Πξ half-space restriction of graphene Hamiltonian

Kernel projection pP “ pP` ` pP´ on flat band of surface states
pT trace per unit volume along the boundary

bulk Fermi unitary U “ pS1 ` S˚1 S2 ` 1q|S1 ` S˚1 S2 ` 1|´1 (singular!)

Theorem (Semimetal BBC - with Stoiber)

i T pU´1∇ξUq “ pT ppP`q ´ pT ppP´q

where T pBq “ E Trpx0|B|0yq and ∇ξ “ ξ ¨∇ with ∇jB “ irXj ,Bs

Moreover, result stable under chiral surface disorder

Flat band in clean graphene as weak invariants i T pU´1∇jUq “ 1
3 δj,1
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Other chiral 2d toy model: Stacked SSH
SSH in direction 1 with coupling in direction 2 and chiral randomness

H “

˜

0 S1 ´ µ

S˚1 ´ µ 0

¸

´ δ

˜

0 S2 ` S˚2
S2 ` S˚2 0

¸

` λ
ÿ

nPZ2

vn

˜

0 1
1 0

¸

where vn i.i.d. random variables with uniform distribution in r´1
2 ,

1
2 s

(2 or 4) Dirac points for periodic model if k1 “ 0, π, 2δ cospk2q ` µ “ ˘1
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λ “ 0.2, µ “ 1.3, δ “ 0.3 and volume r´ρ, ρs2 with ρ “ 20
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Central DOS and edge states
Zoom into the central DOS Same parameters as above
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Central DOS Ham

There are 28 “ 2 ¨ 14 (approximate) zero modes of H

Corresponding eigenstates only on two opposite edges

(edges weakly coupled, edge states vanish on other edges!)

Edge state dens. “ 14
41 « iT pU´1∇1Uq “

ş dk2
2π χpµ` 2δ cospk2q ă 1q « 1

3

Here first « is precisely the equality in the theorem (1 chiral sector)
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Weak spectral localizer for weak winding numbers

Lod
κ “

˜

κX1 A˚per

Aper ´κX1

¸

Hper “

˜

0 A˚per

Aper 0

¸

Hper stacked SSH H periodized in 2-direction κ “ 0.1
As above λ “ 0.2, µ “ 1.3, δ “ 0.3 and volume r´ρ, ρs2 with ρ “ 20
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Half-signature of Lod
κ,ρ « 14

weak winding number iT pU´1∇1Uq “half-signature density« 14
41 «

1
3
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Approximate zero modes of spectral localizer

Lev
κ “

˜

´H κ12 b pX1 ` ıX2q

κ12 b pX1 ´ ıX2q H

¸

“ ´σ1 b 1 Lev
κ σ1 b 1

Vanishing signature (Chern number vanishes due to chiral symmetry)
Lev
κ,ρ restriction to r´ρ, ρs2 Stacked SSH as above and κ “ 0.07
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Low-lying DOS of Spectral Localizer

Approximate kernel of multiplicity 2 = number of Dirac points
Very large gap to first excited «

?
κ « 0.26 (as for Dirac Ham.)

Gap above groundstate as for Dirac Hamiltonian (explicit computation)
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Ground states of spectral localizer

Plot of modulus (over 4-dim fiber) of one of the two ground states:
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Low-lying DOS of Spectral Localizer

lowest eigenvalue ν « C λ with C very small (perturbation theory)

For λ “ 0, one has ν « e´1{κ (phase space tunnelling)

Approximate kernel dimension counts number of Dirac points

Conclusion: Concept of number of Dirac points stable under disorder

Moreover: existence of Dirac points ùñ non-vanishing weak windings
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Why it works so well (for general dimension d):

In Fourier space:

FpLev
κq

2F˚ “ ´κ2
d
ÿ

j“1

B2
kj
`

˜

pHk q
2 κ

řd
j“1 ΓjpBkj Hk q

κ
řd

j“1 ΓjpBkj Hk q pHk q
2

¸

Second oder differential operator on L2pT2,C2Lq

As in semi-classical analysis with ~ “ κ

IMS localization isolates Dirac points

At each Dirac point solvable ”double” Dirac Hamiltonians
`

γk κΓBk
κΓBk ´γk

˘

Each Dirac Hamiltonian has simple zero mode and a gap of order κ

Theorem (with Stoiber)
Lκ has as many eigenvalues ď κ as H has Dirac points
Next excited level is Op

?
κq
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Weyl points of 3d systems (same strategy)

H “ Hp`ip ` δ

˜

0 S3 ` S˚3
S3 ` S˚3 0

¸

` HWeyl shift ` λHdis

HWeyl shift shifts Weyl points to different energies (no pseudogap)

-2 -1 0 1 2
0

50

100

150

DOS of Spectral Localizer

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

2.0

Low-lying DOS of Spectral Localizer

ρ “ 7, so cube of size 15, δ “ 0.6, µ “ 1.2, λ “ 0.5, κ “ 0.1

Approximate kernel dimension counts number of Weyl points

Existence of Weyl points ùñ non-vanishing weak Chern numbers

ùñ surface currents (as in QHE)
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Resumé (four spectral localizers):

Lod
κ “

˜

κD A˚

A ´κD

¸

, d odd, chiral class AIII

Lev
κ “

˜

´H κD˚0
κD0 H

¸

, d even, class A

Lod
κ “

˜

´H κD
κD H

¸

, d odd, Weyl point count

Lev
κ “

˜

´H κD˚0
κD0 H

¸

, d even, Dirac point count

spectral localizer is a
fun and versatile new tool
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