Invariants of disordered semimetals via the spectral localizer

Hermann Schulz-Baldes, Tom Stoiber (Erlangen) also: Nora Doll (Erlangen), Terry Loring (Albuquerque)

August 2021

Topological invariants in solid state

Here: focus on tight-binding models in one-particle electronic systems This covers topological insulators and semimetals

Complex theory: no real symmetries (TRS, BdG, but chiral/sublattice)

- odd invariants: (higher) winding numbers (also odd Chern numbers)
- Even invariants: (higher) Chern numbers
- Strong invariants: involve all *d* space directions, Z-valued
- Weak invariants: involve less than d space directions, \mathbb{R} -valued
- Other invariants: number of Weyl or Dirac points in semimetals

Real invariants: requires real symmetries (TRS, BdG)

 \bullet often $\mathbb{Z}_2\text{-valued}$

Aim: spectral localizer as numerical technique for computation

Formulas: bulk invariants and index pairings

 $P = \chi(H < 0)$ Fermi projection of Hamiltonian H on $\ell^2(\mathbb{Z}^d, \mathbb{C}^L)$ $X = (X_1, \dots, X_d)$ position and $D = \sum_{j=1}^k X_{i_j} \Gamma_{i_j}$ partial (dual) Dirac dP = i[D, P] bounded or at least Besov (localization or pseudogap)

 $\operatorname{Ch}_{k}(\boldsymbol{P}) = \boldsymbol{c}_{k} \mathcal{T}(\boldsymbol{P}(\boldsymbol{dP})^{k})$, even Chern for k even

If chiral symmetry $JPJ = \mathbf{1} - P$ for $J = J^* = J^{-1}$

 $\operatorname{Ch}_{k}(\boldsymbol{P}) = \boldsymbol{c}_{k} \mathcal{T}(\boldsymbol{J}\boldsymbol{P}(\boldsymbol{d}\boldsymbol{P})^{k})$, odd Chern for k odd

Strong invariant for k = d. By index theorems (many references):

 $\begin{aligned} \mathrm{Ch}_k(P) &= \mathcal{T}\text{-}\mathrm{Ind}(T) \quad , \quad T &= PFP + \mathbf{1} - P \; , \; k \; \mathrm{even} \\ \mathrm{Ch}_k(P) &= \mathcal{T}\text{-}\mathrm{Ind}(T) \quad , \quad T &= \Pi U\Pi + \mathbf{1} - \Pi \; , \; k \; \mathrm{odd} \end{aligned}$

 $\Pi = \chi(D > 0)$ Hardy, *F* Dirac phase, $U = A|A|^{-1}$ Fermi unitary $H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$

General framework: strong odd index pairings

A bounded invertible operator on Hilbert space \mathcal{H} (K_1 -class) D selfadjoint Dirac operator on \mathcal{H} with compact resolvent (K¹-class) A differentiable w.r.t. D, namely commutator [D, A] bounded D then called odd Fredholm module for A (Atiyah, Kasparov) Hardy projection $\Pi = \chi(D > 0)$ Set: $T = \Pi A \Pi + (1 - \Pi)$ **Fact**: T Fredholm operator and Ind(T) called index pairing **Index theorems** (Atiyah-Singer, Connes, ...): local formula for Ind(T)Best-known example: Noether index theorem for winding number

Aim here: numerical technique for calculation of Ind(T)

Spectral localizer = Hamiltonian in Dirac trap

For (semiclassical) parameter $\kappa > 0$ introduce spectral localizer:

$$L_{\kappa}^{\mathrm{od}} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix}$$
, $H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$

 A_{ρ} restriction of A (Dirichlet) to finite-dimensional range of $\chi(|D| \leq \rho)$

$$\mathcal{L}^{ ext{od}}_{\kappa,
ho} \;=\; egin{pmatrix} \kappa \, \mathcal{D}_{
ho} & \mathcal{A}_{
ho} \ \mathcal{A}^*_{
ho} & -\kappa \, \mathcal{D}_{
ho} \end{pmatrix}$$

Clearly selfadjoint matrix:

$$(L^{\mathrm{od}}_{\kappa,
ho})^* = L^{\mathrm{od}}_{\kappa,
ho}$$

Fact 1: $L_{\kappa,\rho}^{\text{od}}$ is gapped, namely $0 \notin L_{\kappa,\rho}^{\text{od}}$ (*A* is like a mass) **Fact 2:** $L_{\kappa,\rho}^{\text{od}}$ has spectral asymmetry measured by signature **Fact 3:** signature linked to topological invariant

Schematic representation of intuition

$$L^{\rm od}_{\kappa}(\lambda) = \begin{pmatrix} \kappa D & \lambda A \\ \lambda A^* & -\kappa D \end{pmatrix} , \qquad \lambda \ge 0$$

Spectrum for $\lambda = 0$ symmetric and with space quanta κ

Spectrum for $\lambda = 1$: less regular, central gap open and asymmetry

Spectral asymmetry determined by low-lying spectrum (finite volume!)

Theorem (with Loring 2017)

Given $D = D^*$ with compact resolvent and invertible A with invertibility gap $g = ||A^{-1}||^{-1}$. Provided that

$$\|[D,A]\| \leqslant \frac{g^3}{12 \|A\| \kappa}$$

and

$$\frac{2g}{\kappa} \leqslant \rho \qquad (**)$$

the matrix $L_{\kappa,\rho}^{\text{od}}$ is invertible and with $\Pi = \chi(D \ge 0)$

$$\frac{1}{2}\operatorname{Sig}(\mathcal{L}_{\kappa,\rho}^{\operatorname{od}}) = \operatorname{Ind}(\Pi A \Pi + (\mathbf{1} - \Pi))$$

How to use: form (*) infer κ , then ρ from (**) If *A* unitary, g = ||A|| = 1 and $\kappa = (12||[D, A]||)^{-1}$ then $\rho = \frac{2}{\kappa}$ Hence **small** matrix with $\rho \leq 100$ sufficient! Great for numerics! **N.B.:** scaling $A \mapsto \lambda A$ in (*) forces $\kappa \mapsto \lambda \kappa$, so same ρ due to (**)

Sketch on how to use this in a concrete situation

Solid state system in d = 3 in one-particle tight-binding approximation $H : \ell^2(\mathbb{Z}^3, \mathbb{C}^{2L}) \to \ell^2(\mathbb{Z}^3, \mathbb{C}^{2L})$ with 2*L* orbitals per unit cell *H* is local, namely only matrix elements between neighboring sites Matrix elements from quantum chemistry (tunneling, exchange) *H* gapped (insulator!) and has a chiral (or sublattice) symmetry

$$H = -JHJ = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} , \quad J = \begin{pmatrix} \mathbf{1}_L & 0 \\ 0 & -\mathbf{1}_L \end{pmatrix}$$

If *H* periodic, in Fourier space $k \in \mathbb{T}^3 \mapsto A(k) \in \mathbb{C}^{L \times L}$ smooth invertible

$$Ch_3(A) = Wind_3(A) = \frac{1}{24\pi^2} \int_{\mathbb{T}^3} Tr(A^{-1} \, dA \, dA^{-1} \, dA)$$

Index theorem $\Pi = \chi(\sum_{i=1}^{3} \Gamma_i \partial_{k_i} > 0)$ spectral projection of Dirac $Ch_3(A) = -Ind(\Pi A \Pi + (\mathbf{1} - \Pi))$

Spectrum and signature of localizer

(Dual) Dirac $D = \sum_{j=1}^{3} \Gamma_{j} X_{j}$ on $\ell^{2}(\mathbb{Z}^{3}, \mathbb{C}^{2})$ locality: $||[D, H]|| < \infty$ Spectral localizer:

$$\mathcal{L}^{ ext{od}}_{\kappa} = egin{pmatrix} \kappa D & \mathcal{A} \ \mathcal{A}^* & -\kappa D \end{pmatrix}$$

No functional calculus, just place H and D in 2×2 :

Typical result:

$$\rho = 6, \kappa = 0.1, \text{ etc}$$

half-signature easy to compute

Invariants of disordered semimetals via the spectral localizer

Even strong index pairings (in even dimension *d*)

Consider gapped Hamiltonian $H = H^*$ on \mathcal{H} and $P = \chi(H < 0)$

Dirac operator *D* on $\mathcal{H} \oplus \mathcal{H}$ is odd w.r.t. grading $\Gamma = \Gamma_{d+1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Thus
$$D = -\Gamma D\Gamma = inom{0}{D_0} inom{D_0}{D_0}$$
 and Dirac phase $F = D_0 |D_0|^{-1}$

 $[H, D_0]$ bounded $\implies T = PFP + (\mathbf{1} - P)$ Fredholm (index = Chern #)

Spectral localizer = Hamiltonian in Dirac trap

$$L_{\kappa}^{\rm ev} = \begin{pmatrix} -H & \kappa D_0^* \\ \kappa D_0 & H \end{pmatrix}$$

Theorem (with Loring 2018) Suppose $||[H, D_0]|| < \infty$ and κ , ρ with (*) and (**) $\operatorname{Ind}(PFP + (\mathbf{1} - P)) = \frac{1}{2}\operatorname{Sig}(L_{\kappa,\rho}^{ev})$ 16 Real \mathbb{Z}_2 -valued index pairings (Real *K*-theory) Real structure $\mathcal{C} = \text{complex conjugation on } \mathcal{H}$, then $\overline{A} = \mathcal{C}A\mathcal{C}$ Possible: $P = \overline{P}$ real, P quaternionic, $P = \mathbf{1} - \overline{P}$ Lagrangian , odd Lag. Depending on $d: D = \overline{D}$ real, $D = -\overline{D}$ imaginary, D (odd) quaternionic Focus on BdG, $d = 1: H = -\overline{H}$ with $P = \chi(H < 0) = \mathbf{1} - \overline{P}$ and $D = \overline{D}$ With $\Pi = \chi(D > 0)$ again $T = \Pi(\mathbf{1} - 2P)\Pi + \mathbf{1} - \Pi$ Fredholm and $\text{Ind}_2(T) = \dim(\text{Ker}(T)) \mod 2 \in \mathbb{Z}_2$

Real skew spectral localizer

$$\mathcal{L}^{
m sk}_{\kappa} = egin{pmatrix} 0 & \kappa D - i H \ \kappa D + i H & 0 \end{pmatrix}$$

Theorem (with Doll 2021)

Suppose $||[H, D]|| < \infty$ and κ , ρ with (*) and (**)

 $\mathrm{Ind}_{2}\big(\textit{PFP} + (\mathbf{1} - \textit{P})\big) \ = \ \mathrm{sgn}(\mathrm{Pf}(\textit{L}^{\mathrm{sk}}_{\kappa,\rho})) \ = \ \mathrm{sgn}(\mathrm{det}(\kappa\textit{D}_{\rho} + \imath\textit{H}_{\rho}))$

Semifinite (here odd) index pairings (weak invar.)

 $(\mathcal{N}, \mathcal{T})$ semifinite von Neumann with \mathcal{T} normal, faithful \mathcal{K} norm-closure of span of \mathcal{T} -finite projections. Then Calkin sequence:

$$\mathbf{0} \to \mathcal{K} \to \mathcal{N} \stackrel{\pi}{\to} \mathcal{N}/\mathcal{K} \to \mathbf{0}$$

 $T \in \mathcal{N}$ Fredholm if $\pi(T)$ invertible

Definition

Breuer-Fredholm index of $T \in \mathcal{N}$ w.r.t. projections $P, Q \in \mathcal{N}$

$$\mathcal{T}$$
-Ind_(P·Q) $(T) = \mathcal{T}(\operatorname{Ker}(T) \cap Q) - \mathcal{T}(\operatorname{Ker}(T^*) \cap P)$

provided $\operatorname{Ker}(T) \cap Q$ and $\operatorname{Ker}(T^*) \cap P$ are \mathcal{T} -finite

For $\Pi = \chi(D > 0)$, $U \in \mathcal{N}$ and $[D, U](1 + D^2)^{-\frac{1}{2}} \in \mathcal{K}$, index pairing

$$\langle [U], [D] \rangle = \mathcal{T}\text{-Ind}_{(\Pi \cdot \Pi)}(\Pi U \Pi) \in \mathbb{R}$$

Link to weak invariant via index theorem (with Prodan, Bourne, Stoiber)

Semifinite (weak) odd spectral localizer

for
$$U = A|A|^{-1}$$

 $L^{
m od}_{\kappa} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix}$

and restrictions

$$L_{\kappa,\rho}^{\mathrm{od}} = \Pi_{\rho} L_{\kappa}^{\mathrm{we}} \Pi_{\rho} \qquad , \qquad \Pi_{\rho} = \chi(D^2 < \rho^2)$$

Theorem (with Stoiber 2021)

For κ , ρ satisfying (*) and (**), and $U = A|A|^{-1}$ as above,

$$\langle [U], [D] \rangle = \frac{1}{2} \mathcal{T}$$
-Sig $(L_{\kappa,\rho}^{\mathrm{od}})$

where $\mathcal{T}\text{-}Sig(L) = \mathcal{T}(\chi(L>0)) - \mathcal{T}(\chi(L<0))$

Application: numerical method for weak invariants of topo. insul.

2d topological semimetal: graphene

On honeycomb lattice = decorated triangular lattice, so on $\ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^2$

$$H = \begin{pmatrix} 0 & S_1 + S_1^* S_2 + 1 \\ S_1^* + S_2^* S_1 + 1 & 0 \end{pmatrix}$$

where S_1, S_2 shifts on $\ell^2(\mathbb{Z}^2)$. Clearly chiral $\sigma_3 H \sigma_3 = -H$. Fourier:

Invariants of disordered semimetals via the spectral localizer

Edges of graphene

Zigzag boundary \cong replace S_1 by unilateral shift \widehat{S}_1

Armchair boundary \cong replace S_2 by unilateral shift \widehat{S}_2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag

Edge states and BBC for surface DOS

 $\xi = {\xi_1 \choose \xi_2} \in \mathbb{S}^1$ direction perpendicular to boundary (possibly irrational) $\hat{H} = \Pi_{\xi} H \Pi_{\xi}$ half-space restriction of graphene Hamiltonian Kernel projection $\hat{P} = \hat{P}_+ + \hat{P}_-$ on flat band of surface states $\hat{\mathcal{T}}$ trace per unit volume along the boundary bulk Fermi unitary $U = (S_1 + S_1^* S_2 + 1)|S_1 + S_1^* S_2 + 1|^{-1}$ (singular!)

Theorem (Semimetal BBC - with Stoiber)

$$i \mathcal{T}(U^{-1} \nabla_{\xi} U) = \hat{\mathcal{T}}(\hat{P}_{+}) - \hat{\mathcal{T}}(\hat{P}_{-})$$

where $\mathcal{T}(B) = \mathbf{E} \operatorname{Tr}(\langle 0|B|0 \rangle)$ and $\nabla_{\xi} = \xi \cdot \nabla$ with $\nabla_{j}B = i[X_{j}, B]$

Moreover, result stable under chiral surface disorder

Flat band in clean graphene as weak invariants $i \mathcal{T}(U^{-1}\nabla_j U) = \frac{1}{3} \delta_{j,1}$

Other chiral 2d toy model: Stacked SSH

SSH in direction 1 with coupling in direction 2 and chiral randomness

$$H = \begin{pmatrix} 0 & S_1 - \mu \\ S_1^* - \mu & 0 \end{pmatrix} - \delta \begin{pmatrix} 0 & S_2 + S_2^* \\ S_2 + S_2^* & 0 \end{pmatrix} + \lambda \sum_{n \in \mathbb{Z}^2} v_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where v_n i.i.d. random variables with uniform distribution in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (2 or 4) Dirac points for periodic model if $k_1 = 0, \pi, 2\delta \cos(k_2) + \mu = \pm 1$

 $\lambda = 0.2, \, \mu = 1.3, \, \delta = 0.3 \text{ and volume } [-\rho, \rho]^2 \text{ with } \rho = 20$

Invariants of disordered semimetals via the spectral localizer

Central DOS and edge states

There are $28 = 2 \cdot 14$ (approximate) zero modes of *H*

Corresponding eigenstates only on two opposite edges (edges weakly coupled, edge states vanish on other edges!) Edge state dens. = $\frac{14}{41} \approx i\mathcal{T}(U^{-1}\nabla_1 U) = \int \frac{dk_2}{2\pi} \chi(\mu + 2\delta \cos(k_2) < 1) \approx \frac{1}{3}$

Here first \approx is precisely the equality in the theorem (1 chiral sector)

Weak spectral localizer for weak winding numbers

$$L_{\kappa}^{\rm od} = \begin{pmatrix} \kappa X_1 & A_{\rm per}^* \\ A_{\rm per} & -\kappa X_1 \end{pmatrix} \qquad \qquad H_{\rm per} = \begin{pmatrix} 0 & A_{\rm per}^* \\ A_{\rm per} & 0 \end{pmatrix}$$

 H_{per} stacked SSH *H* periodized in 2-direction $\kappa = 0.1$ As above $\lambda = 0.2$, $\mu = 1.3$, $\delta = 0.3$ and volume $[-\rho, \rho]^2$ with $\rho = 20$

Half-signature of $L_{\kappa,
ho}^{
m od} \, pprox \,$ 14

weak winding number $i\mathcal{T}(U^{-1}\nabla_1 U) = \text{half-signature density} \approx \frac{14}{41} \approx \frac{1}{3}$

Approximate zero modes of spectral localizer

$$L_{\kappa}^{ev} = \begin{pmatrix} -H \\ \kappa \mathbf{1}_{2} \otimes (X_{1} - iX_{2}) \end{pmatrix} = -\sigma_{1} \otimes \mathbf{1} L_{\kappa}^{ev} \sigma_{1} \otimes \mathbf{1}$$

Vanishing signature (Chern number vanishes due to chiral symmetry)
$$L_{\kappa,\rho}^{ev} \text{ restriction to } [-\rho,\rho]^{2} \qquad \text{Stacked SSH as above and } \kappa = 0.07$$

Approximate kernel of multiplicity 2 = number of Dirac points Very large gap to first excited $\approx \sqrt{\kappa} \approx 0.26$ (as for Dirac Ham.) Gap above groundstate as for Dirac Hamiltonian (explicit computation)

Ground states of spectral localizer

Plot of modulus (over 4-dim fiber) of one of the two ground states:

lowest eigenvalue $\nu \approx C \lambda$ with C very small (perturbation theory)

For $\lambda = 0$, one has $\nu \approx e^{-1/\kappa}$ (phase space tunnelling)

Approximate kernel dimension counts number of Dirac points Conclusion: Concept of number of Dirac points stable under disorder Moreover: existence of Dirac points \implies non-vanishing weak windings

Why it works so well (for general dimension *d*):

In Fourier space:

$$\mathcal{F}(L_{\kappa}^{ev})^{2}\mathcal{F}^{*} = -\kappa^{2}\sum_{j=1}^{d}\partial_{k_{j}}^{2} + \begin{pmatrix} (H_{k})^{2} & \kappa \sum_{j=1}^{d} \Gamma_{j}(\partial_{k_{j}}H_{k}) \\ \kappa \sum_{j=1}^{d} \Gamma_{j}(\partial_{k_{j}}H_{k}) & (H_{k})^{2} \end{pmatrix}$$

Second oder differential operator on $L^2(\mathbb{T}^2, \mathbb{C}^{2L})$

As in semi-classical analysis with $\hbar = \kappa$

IMS localization isolates Dirac points

At each Dirac point solvable "double" Dirac Hamiltonians $\begin{pmatrix} \gamma k & \kappa \Gamma \partial_k \\ \kappa \Gamma \partial_k & -\gamma k \end{pmatrix}$

Each Dirac Hamiltonian has simple zero mode and a gap of order κ

Theorem (with Stoiber)

 L_{κ} has as many eigenvalues $\leqslant \kappa$ as H has Dirac points Next excited level is $\mathcal{O}(\sqrt{\kappa})$

Weyl points of 3d systems (same strategy)

$$H = H_{\rho+i\rho} + \delta \begin{pmatrix} 0 & S_3 + S_3^* \\ S_3 + S_3^* & 0 \end{pmatrix} + H_{Weyl shift} + \lambda H_{dis}$$

H_{weyl shift} shifts Weyl points to different energies (no pseudogap)

 $\rho=$ 7, so cube of size 15, $\delta=$ 0.6, $\mu=$ 1.2, $\lambda=$ 0.5, $\kappa=$ 0.1

Approximate kernel dimension counts number of Weyl points Existence of Weyl points \implies non-vanishing weak Chern numbers \implies surface currents (as in QHE)

Resumé (four spectral localizers):

$$\begin{split} \mathcal{L}_{\kappa}^{\mathrm{od}} &= \begin{pmatrix} \kappa D & A^{*} \\ A & -\kappa D \end{pmatrix} \\ \mathcal{L}_{\kappa}^{\mathrm{ev}} &= \begin{pmatrix} -H & \kappa D_{0}^{*} \\ \kappa D_{0} & H \end{pmatrix} \\ \mathcal{L}_{\kappa}^{\mathrm{od}} &= \begin{pmatrix} -H & \kappa D \\ \kappa D & H \end{pmatrix} , \\ \mathcal{L}_{\kappa}^{\mathrm{ev}} &= \begin{pmatrix} -H & \kappa D_{0}^{*} \\ \kappa D_{0} & H \end{pmatrix} , \end{split}$$

d odd, chiral class AIII

d even, class A

d odd, Weyl point count

d even, Dirac point count

spectral localizer is a fun and versatile new tool

References (all but one on arXiv)

• with Loring, *Finite volume calculations of K-theory invariants*, New York J. Math. (2017)

• with Loring, *The spectral localizer for even index pairings*, J. Noncommutative Geometry (2020)

 \bullet with Doll, Skew localizer and $\mathbb{Z}_2\mbox{-flows}$ for real index pairings, preprint 2021

• with Stoiber, *The spectral localizer for semifinite spectral triples*, Proc. AMS (2021)

• with Stoiber, *Harmonic analysis in operator algebras and its applications to index theory*, preprint 2020.

• with Stoiber, *Invariants of disordered semimetals via the spectral localizer*, preprint 2021.