Half-Projective TQFTs

Thomas Kerler

The Ohio State University

March 5, 2014

-

Structures on Tensor Categories and Topological Field Theories
Universität Erlangen-Nürnberg
Some (Naïve) TQFT Properties:
Some (Naïve) TQFT Properties:

Notations & Conventions

- Cob_n category of n-dim (compact, oriented) cobordisms between $(n-1)$-dim closed (model) manifolds (mod homeomorphism type).
Some (Naïve) TQFT Properties:

Notations & Conventions

- Cob_n category of n-dim (compact, oriented) cobordisms between $(n-1)$-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing
Some (Naïve) TQFT Properties:

Notations & Conventions

- \(\text{Cob}_n \) category of \(n \)-dim (compact, oriented) cobordisms between \((n-1)\)-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing \(\otimes = \sqcup \)
Some (Naïve) TQFT Properties:

Notations & Conventions

- \(\text{Cob}_n\) category of \(n\)-dim (compact, oriented) cobordisms between \((n - 1)\)-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing \(\otimes = \sqcup\)

- Possibly additional geometric structures (framings, graphs, ...)

\[\text{R} = \text{comm. ring}, \quad \text{R-mod} = \text{category of (free...)}\]

\[\text{TQFT is tensor functor} \quad V : \text{Cob}_n \rightarrow \text{R-mod}\]

\[\text{Compatibility with symmetry constraint}\]

\[\gamma : \Sigma_1 \sqcup \Sigma_2 \rightarrow \Sigma_2 \sqcup \Sigma_1\]

\[V(\emptyset) = \text{R}\]
Some (Naïve) TQFT Properties:

Notations & Conventions

- Cob_n category of n-dim (compact, oriented) cobordisms between $(n - 1)$-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing $\otimes = \sqcup$

- Possibly additional geometric structures (framings, graphs, ...)

- $\mathbb{R} = \text{comm. ring}$,
Some (Naïve) TQFT Properties:

Notations & Conventions

- \(\text{Cob}_n \): Category of \(n \)-dim (compact, oriented) cobordisms between \((n-1)\)-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing \(\otimes = \sqcup \)

- Possibly additional geometric structures (framings, graphs, ...)

- \(R = \text{comm. ring} \), \(R\text{-mod} = \text{category of (free...) } R\text{-modules} \).
Some (Naïve) TQFT Properties:

Notations & Conventions

- Cob_n category of n-dim (compact, oriented) cobordisms between $(n-1)$-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing $\otimes = \sqcup$

- Possibly additional geometric structures (framings, graphs, ...)

- $\mathbf{R} =$ comm. ring, $\mathbf{R}\text{-mod} =$ category of (free...) \mathbf{R}-modules.

- TQFT is tensor functor $\mathcal{V} : \mathsf{Cob}_n \to \mathbf{R}\text{-mod}$.
Some (Naïve) TQFT Properties:

Notations & Conventions

- \(\mathbb{Cob}_n \) catgeory of \(n \)-dim (compact, oriented) cobordisms between \((n - 1)\)-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing \(\otimes = \sqcup \)

- Possibly additional geometric structures. (framings, graphs, ...)

- \(\mathbb{R} = \) comm. ring, \(\mathbb{R}\text{-mod} = \) category of (free...) \(\mathbb{R} \)-modules.

- TQFT is tensor functor \(\mathcal{V} : \mathbb{Cob}_n \rightarrow \mathbb{R}\text{-mod} \).

- Compatibility with symmetry constraint \(\gamma : \Sigma_1 \sqcup \Sigma_2 \rightarrow \Sigma_2 \sqcup \Sigma_1 \).
Some (Naïve) TQFT Properties:

Notations & Conventions

- Cob_n category of n-dim (compact, oriented) cobordisms between $(n - 1)$-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing $\otimes = \sqcup$

- Possibly additional geometric structures (framings, graphs, ...)

- $\mathbb{R} = \text{comm. ring, } \mathbb{R}\text{-mod} = \text{category of (free...) } \mathbb{R}\text{-modules.}$

- TQFT is tensor functor $\mathcal{V} : \text{Cob}_n \to \mathbb{R}\text{-mod}.$

- Compatibility with symmetry constraint $\gamma : \Sigma_1 \sqcup \Sigma_2 \to \Sigma_2 \sqcup \Sigma_1.$

- $\mathcal{V}(\emptyset) = \mathbb{R}.$
Some (Naïve) TQFT Properties:

Notations & Conventions

- Cob_n category of n-dim (compact, oriented) cobordisms between $(n-1)$-dim closed (model) manifolds (mod homeomorphism type).

- Composition = gluing $\otimes = \sqcup$

- Possibly additional geometric structures. (framings, graphs, ...)

- $\mathcal{R} = \text{comm. ring}, \quad \mathcal{R}\text{-mod} = \text{category of (free...) } \mathcal{R}\text{-modules}.$

- TQFT is tensor functor $\mathcal{V} : \mathsf{Cob}_n \to \mathcal{R}\text{-mod}$.

- Compatibility with symmetry constraint $\gamma : \Sigma_1 \sqcup \Sigma_2 \to \Sigma_2 \sqcup \Sigma_1$.

- $\mathcal{V}(\emptyset) = \mathcal{R}$.
Morphisms from Cylinder $\Sigma \times [0, 1]$
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n - 1)$-manifold.
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n-1)$-manifold. Can interpret $\Sigma \times [0, 1]$ with $\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma$ as cobordism in several ways:

$$\text{id} : \Sigma \to \Sigma$$
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n-1)$-manifold. Can interpret $\Sigma \times [0, 1]$ with $\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma$ as cobordism in several ways:

$$\text{id} : \Sigma \to \Sigma \quad \text{or} \quad \text{ev}_\Sigma : \Sigma \sqcup \Sigma \to \emptyset$$
Morphisms from Cylinder \(\Sigma \times [0, 1] \)

Let \(\Sigma \) be fixed \((n-1)\)-manifold. Can interpret \(\Sigma \times [0, 1] \) with \(\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma \) as cobordism in several ways:

\[
\text{id} : \Sigma \to \Sigma \quad \text{or} \quad \text{ev}_\Sigma : \Sigma \sqcup \Sigma \to \emptyset \quad \text{or} \quad \text{coev}_\Sigma : \emptyset \to \Sigma \sqcup \Sigma
\]
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n - 1)$-manifold. Can interpret $\Sigma \times [0, 1]$ with $\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma$ as cobordism in several ways:

$$\text{id} : \Sigma \rightarrow \Sigma \quad \text{or} \quad \text{ev}_\Sigma : \Sigma \sqcup \Sigma \rightarrow \emptyset \quad \text{or} \quad \text{coev}_\Sigma : \emptyset \rightarrow \Sigma \sqcup \Sigma$$

For appropriate parametrization have

$$\text{id} = (\text{id} \sqcup \text{ev}_\Sigma) \circ (\text{coev}_\Sigma \sqcup \text{id}) = (\text{ev}_\Sigma \sqcup \text{id}) \circ (\text{id} \sqcup \text{coev}_\Sigma)$$
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n - 1)$-manifold. Can interpret $\Sigma \times [0, 1]$ with $\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma$ as cobordism in several ways:

\[\text{id} : \Sigma \to \Sigma \quad \text{or} \quad \text{ev}_\Sigma : \Sigma \sqcup \Sigma \to \emptyset \quad \text{or} \quad \text{coev}_\Sigma : \emptyset \to \Sigma \sqcup \Sigma \]

For appropriate parametrization have

\[\text{id} = (\text{id} \sqcup \text{ev}_\Sigma) \circ (\text{coev}_\Sigma \sqcup \text{id}) = (\text{ev}_\Sigma \sqcup \text{id}) \circ (\text{id} \sqcup \text{coev}_\Sigma) \]

as well as

\[\Sigma \times S^1 = \text{ev}_\Sigma \circ \text{coev}_\Sigma \]
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n-1)$-manifold. Can interpret $\Sigma \times [0, 1]$ with $\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma$ as cobordism in several ways:

$$\text{id}: \Sigma \rightarrow \Sigma \quad \text{or} \quad \text{ev}_\Sigma: \Sigma \sqcup \Sigma \rightarrow \emptyset \quad \text{or} \quad \text{coev}_\Sigma: \emptyset \rightarrow \Sigma \sqcup \Sigma$$

For appropriate parametrization have

$$\text{id} = (\text{id} \sqcup \text{ev}_\Sigma) \circ (\text{coev}_\Sigma \sqcup \text{id}) = (\text{ev}_\Sigma \sqcup \text{id}) \circ (\text{id} \sqcup \text{coev}_\Sigma)$$

as well as

$$\Sigma \times S^1 = \text{ev}_\Sigma \circ \text{coev}_\Sigma \quad \text{and} \quad \text{ev}_\Sigma \circ \gamma = \text{ev}_\Sigma$$
Morphisms from Cylinder $\Sigma \times [0, 1]$

Let Σ be fixed $(n - 1)$-manifold. Can interpret $\Sigma \times [0, 1]$ with $\partial \Sigma \times [0, 1] \cong \Sigma \sqcup \Sigma$ as cobordism in several ways:

$id : \Sigma \to \Sigma$ or $ev_\Sigma : \Sigma \sqcup \Sigma \to \emptyset$ or $coev_\Sigma : \emptyset \to \Sigma \sqcup \Sigma$

For appropriate parametrization have

\[id = (id \sqcup ev_\Sigma) \circ (coev_\Sigma \sqcup id) = (ev_\Sigma \sqcup id) \circ (id \sqcup coev_\Sigma) \]

as well as

\[\Sigma \times S^1 = ev_\Sigma \circ coev_\Sigma \quad \text{and} \quad ev_\Sigma \circ \gamma = ev_\Sigma \]
Dimension formula for $\mathbb{R} = \text{field}$
Dimension formula for \(\mathbb{R} = \text{field} \)

Let \(V = \mathcal{V}(\Sigma) \)
\textbf{Dimension formula for }\mathbb{R} = \text{field}

Let \(V = \mathcal{V}(\Sigma) = \mathbb{R}^n \).
Dimension formula for $\mathbb{R} = \text{field}$

Let $V = \mathcal{V}(\Sigma) = \mathbb{R}^n$.

Denote $ev_V = \mathcal{V}(ev_\Sigma)$ and $coev_V = \mathcal{V}(coev_\Sigma)$.
Dimension formula for $R = \text{field}$

Let $V = \mathcal{V}(\Sigma) = R^n$.

Denote $ev_V = \mathcal{V}(ev\Sigma)$ and $coev_V = \mathcal{V}(coev\Sigma)$.

By functoriality these are symmetric side-inverses:
Dimension formula for $\mathbb{R} = \text{field}$

Let $V = \mathcal{V}(\Sigma) = \mathbb{R}^n$.

Denote $ev_V = \mathcal{V}(ev_{\Sigma})$ and $coev_V = \mathcal{V}(coev_{\Sigma})$.

By functoriality these are symmetric side-inverses:

$$id : V \xrightarrow{id \otimes coev_V} V \otimes V \otimes V \xrightarrow{ev_V \otimes id} V$$

Implies $ev_V \circ coev_V = \dim(V)$.
Dimension formula for $\mathbb{R} = \text{field}$

Let $V = \mathcal{V}(\Sigma) = \mathbb{R}^n$.

Denote $ev_V = \mathcal{V}(ev_\Sigma)$ and $coev_V = \mathcal{V}(coev_\Sigma)$.

By functoriality these are symmetric side-inverses:

$$
\begin{array}{ccc}
\text{id} : V & \xrightarrow{id \otimes coev_V} & V \otimes V \otimes V & \xrightarrow{ev_V \otimes \text{id}} & V \\
\end{array}
$$

Implies $ev_V \circ coev_V = \dim(V)$.

Thus

$$\mathcal{V}(\Sigma \times S^1)$$
Dimension formula for $R = \text{field}$

Let $V = \mathcal{V}(\Sigma) = R^n$.

Denote $ev_V = \mathcal{V}(ev_{\Sigma})$ and $coev_V = \mathcal{V}(coev_{\Sigma})$.

By functoriality these are symmetric side-inverses:

\[
\begin{align*}
\text{id} : V & \xrightarrow{id \otimes coev_V} V \otimes V \otimes V & \xrightarrow{ev_V \otimes \text{id}} V \\
\end{align*}
\]

Implies $ev_V \circ coev_V = \dim(V)$.

Thus

\[
\mathcal{V}(\Sigma \times S^1) = \mathcal{V}(ev_{\Sigma} \circ coev_{\Sigma})
\]
Dimension formula for $\mathbb{R} = \text{field}$

Let $V = \mathcal{V}(\Sigma) = \mathbb{R}^n$.

Denote $ev_V = \mathcal{V}(ev_\Sigma)$ and $coev_V = \mathcal{V}(coev_\Sigma)$.

By functoriality these are symmetric side-inverses:

$$
\begin{align*}
\text{id} : V & \xrightarrow{id \otimes coev_V} V \otimes V \otimes V \\
& \xrightarrow{ev_V \otimes \text{id}} V
\end{align*}
$$

Implies $ev_V \circ coev_V = \dim(V)$.

Thus

$$
\mathcal{V}(\Sigma \times S^1) = \mathcal{V}(ev_\Sigma \circ coev_\Sigma) = \mathcal{V}(ev_\Sigma) \circ \mathcal{V}(coev_\Sigma) = \dim(V)
$$
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

R-matrix $R = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes \mathcal{H}$.

Integral: $\mu: \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1$ $\mu(x)$.

Co-integral: $\lambda \in \mathcal{H}$ such that $x\lambda = \epsilon(x)\lambda$.

$\mu(\lambda) = 1$.

Ribbon: $M = R' R = \Delta(v) v - 1 \otimes v - 1$ for $v \in z(\mathcal{H})$.

M non-degenerate.

Lemma (Larson, Sweedler, ...): \mathcal{H} finite dimensional λ and μ exist and are unique up to scalar.

\mathcal{H} is semi-simple iff $\epsilon(\Lambda) \neq 0$.

\mathcal{H} is co-semi-simple iff $\mu(1) \neq 0$.
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \(\mathcal{H} \) (over \(\mathbb{R} \)) with ingredients

- **R-matrix** \(\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes^2 \).
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- R-matrix $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes^2$.
- Integral: $\mu : \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id} \left(\Delta(x) \right) = 1 \mu(x)$.
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- **R-matrix** $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes^2$.
- **Integral**: $\mu : \mathcal{H} \rightarrow \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- **Co-Integral**: $\lambda \in \mathcal{H}$ such that $x\lambda = \epsilon(x)\lambda$.

Naïve TQFT Axioms

Hennings Invariant Paradox

Elementary Example
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- R-matrix $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes^2$.
- Integral: $\mu : \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- Co-Integral: $\lambda \in \mathcal{H}$ such that $\varepsilon(x) \lambda = \mu(\lambda) = 1$
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- **R-matrix** $R = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes 2$.
- **Integral**: $\mu : \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- **Co-Integral**: $\lambda \in \mathcal{H}$ such that $x\lambda = \epsilon(x)\lambda$. ($\mu(\lambda) = 1$)
- **Ribbon**: $\mathcal{M} = R' R = \Delta(\nu)\nu^{-1} \otimes \nu^{-1}$ for $\nu \in \mathfrak{z}(\mathcal{H})$.
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- **R-matrix** $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes^2$.
- **Integral**: $\mu : \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- **Co-Integral**: $\lambda \in \mathcal{H}$ such that $x\lambda = \epsilon(x)\lambda$. ($\mu(\lambda) = 1$)
- **Ribbon**: $\mathcal{M} = \mathcal{R}'\mathcal{R} = \Delta(\nu)\nu^{-1} \otimes \nu^{-1}$ for $\nu \in z(\mathcal{H})$.
- \mathcal{M} non-degenerate.
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- **R-matrix** $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes \mathcal{H}$.
- **Integral**: $\mu : \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- **Co-Integral**: $\lambda \in \mathcal{H}$ such that $x\lambda = \epsilon(x)\lambda$. ($\mu(\lambda) = 1$)
- **Ribbon**: $\mathcal{M} = \mathcal{R}'\mathcal{R} = \Delta(\mathcal{v})\mathcal{v}^{-1} \otimes \mathcal{v}^{-1}$ for $\mathcal{v} \in \mathcal{z}(\mathcal{H})$.
- \mathcal{M} non-degenerate.

Lemma (Larson, Sweedler, ...)

If \mathcal{H} finite dimensional λ and μ exist and are unique up to scalar.
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- **R-matrix** $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes 2$.
- **Integral**: $\mu : \mathcal{H} \to \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- **Co-Integral**: $\lambda \in \mathcal{H}$ such that $x\lambda = \epsilon(x)\lambda$. ($\mu(\lambda) = 1$)
- **Ribbon**: $\mathcal{M} = \mathcal{R}'\mathcal{R} = \Delta(\nu)\nu^{-1} \otimes \nu^{-1}$ for $\nu \in z(\mathcal{H})$.
- \mathcal{M} non-degenerate.

Lemma (Larson, Sweedler, ...)

- If \mathcal{H} finite dimensional λ and μ exist and are unique up to scalar.
- \mathcal{H} is semi-simple iff $\epsilon(\Lambda) \neq 0$
Hennings Invariant

Alternative to Reshetikhin Turaev Invariant.

Starting from ribbon Hopf algebra \mathcal{H} (over \mathbb{R}) with ingredients

- **R-matrix** $\mathcal{R} = \sum_i e_i \otimes f_i \in \mathcal{H} \otimes 2$.
- **Integral**: $\mu : \mathcal{H} \rightarrow \mathbb{R}$ such that $\mu \otimes \text{id}(\Delta(x)) = 1 \mu(x)$
- **Co-Integral**: $\lambda \in \mathcal{H}$ such that $x\lambda = \varepsilon(x)\lambda$. ($\mu(\lambda) = 1$)
- **Ribbon**: $\mathcal{M} = \mathcal{R}'\mathcal{R} = \Delta(\nu)\nu^{-1} \otimes \nu^{-1}$ for $\nu \in \mathfrak{z}(\mathcal{H})$.
- \mathcal{M} non-degenerate.

Lemma (Larson, Sweedler, ...)

- If \mathcal{H} finite dimensional λ and μ exist and are unique up to scalar.
- \mathcal{H} is semi-simple iff $\varepsilon(\Lambda) \neq 0$
- \mathcal{H} is co-semi-simple iff $\mu(1) \neq 0$.
Hennings Functor or Algorithm

For ribbon Hopf algebra \mathcal{H} and closed, framed 3-manifold M compute:
Hennings Functor or Algorithm

For ribbon Hopf algebra \mathcal{H} and closed, framed 3-manifold M compute:

- Surgery presentation of manifold M by framed link $\mathcal{L} \subset S^3$.
Hennings Functor or Algorithm

For ribbon Hopf algebra \mathcal{H} and closed, framed 3-manifold M compute:

- Surgery presentation of manifold M by framed link $\mathcal{L} \subset S^3$.
- Turn projection of \mathcal{L} into planar diagram with \mathcal{H}-decorations:

For example

```
\begin{figure}[h]
\centering
\begin{tikzpicture}
\draw (-1,0) -- (1,0);
\draw (0,-1) -- (0,1);
\node at (0,0) {$e_i$};
\node at (0,0) {$f_i$};
\end{tikzpicture}
\end{figure}
```
Hennings Functor or Algorithm

For ribbon Hopf algebra \mathcal{H} and closed, framed 3-manifold M compute:

- Surgery presentation of manifold M by framed link $L \subset S^3$.
- Turn projection of L into planar diagram with \mathcal{H}-decorations:

 ![Diagram](attachment:planar_diagram.png)

 For example

 \[
 \begin{array}{c}
 \begin{array}{c}
 b \\
 a
 \end{array}
 \end{array}
 =
 \begin{array}{c}
 ab
 \end{array}
 \]

 \[
 \begin{array}{c}
 a
 \end{array}
 \quad = \quad
 \begin{array}{c}
 \downarrow
 \end{array}
 S(a)
 \]

- Collect \mathcal{H}-decorations along components using diagrammatic rules.

 For example

 \[
 e_i \quad f_i
 \]

 \[
 \begin{array}{c}
 b \\
 a
 \end{array}
 =
 \begin{array}{c}
 ab
 \end{array}
 \]

 \[
 \begin{array}{c}
 a
 \end{array}
 \quad = \quad
 \begin{array}{c}
 \downarrow
 \end{array}
 S(a)
 \]
Hennings Functor or Algorithm

For ribbon Hopf algebra \mathcal{H} and closed, framed 3-manifold M compute:

- Surgery presentation of manifold M by framed link $\mathcal{L} \subset S^3$.
- Turn projection of \mathcal{L} into planar diagram with \mathcal{H}-decorations:

 For example

 ![Diagram](image)

- Collect \mathcal{H}-decorations along components using diagrammatic rules.

 For example

 ![Diagram](image)

- Evaluate collective element on each component against μ.

Theorem (Hennings)

The number $V_{\mathcal{H}}(M)$ resulting from the algorithm above is an invariant of closed, oriented 3-manifolds.
Hennings Functor or Algorithm

For ribbon Hopf algebra \mathcal{H} and closed, framed 3-manifold M compute:

- Surgery presentation of manifold M by framed link $L \subset S^3$.
- Turn projection of L into planar diagram with \mathcal{H}-decorations:

For example

- Collect \mathcal{H}-decorations along components using diagrammatic rules.

For example

- Evaluate collective element on each component against μ.

Theorem (Hennings)

The number $\mathcal{V}_H(M)$ resulting from the algorithm above is an invariant of closed, oriented 3-manifolds.
Improvements by Kauffman, Radford, Ohtsuki.
Improvements by Kauffman, Radford, Ohtsuki.

Special case of Lyubashenko invariant.
Improvements by Kauffman, Radford, Ohtsuki.
Special case of Lyubashenko invariant.

Theorem

The invariant extends to a TQFT $\mathcal{V}_\mathcal{H}$ between connected surfaces.
Improvements by Kauffman, Radford, Ohtsuki.
Special case of Lyubashenko invariant.

Theorem

The invariant extends to a TQFT \mathcal{V}_H between connected surfaces.

It coincides with Reshetikhin-Turaev TQFT if \mathcal{H} is semi-simple.

At the same time compute $\mathcal{V}(S^1 \times S^2)$.
- $S^1 \times S^2$ surgery-represented by 0-framed unknot

$$\mu(1) = 0$$
Improvements by Kauffman, Radford, Ohtsuki.
Special case of Lyubashenko invariant.

Theorem

The invariant extends to a TQFT \mathcal{V}_H between connected surfaces.

It coincides with Reshetikhin-Turaev TQFT if \mathcal{H} is semi-simple.

At the same time compute $\mathcal{V}(S^1 \times S^2)$.
- $S^1 \times S^2$ surgery-represented by 0-framed unknot
- Evaluate $\mathcal{V}(S^1 \times S^2) = \mu(1)$.
Improvements by Kauffman, Radford, Ohtsuki.
Special case of Lyubashenko invariant.

Theorem

The invariant extends to a TQFT $\mathcal{V}_\mathcal{H}$ between connected surfaces.

It coincides with Reshetikhin-Turaev TQFT if \mathcal{H} is semi-simple.

At the same time compute $\mathcal{V}(S^1 \times S^2)$.
- $S^1 \times S^2$ surgery-represented by 0-framed unknot
- Evaluate $\mathcal{V}(S^1 \times S^2) = \mu(1)$.
- For naïve TQFT and \mathcal{H} is non-(co-)semi-simple.

\[\Rightarrow \dim(S^2) = 0 \quad \Rightarrow \quad \mathcal{V}_\mathcal{H} \equiv 0 \]
Integral TQFTs

- Consider Reshetikhin-Tuarev (or BHMV) TQFT for SO(3)-theory at \(\zeta \), a primitive \(p \)-th root of unity for prime \(p \).
Integral TQFTs

- Consider Reshetikhin-Tuarev (or BHMV) TQFT for $SO(3)$-theory at ζ, a primitive p-th root of unity for prime p.
- Let $\mathbb{R} = \mathbb{Z}[\zeta]$ (or $\mathbb{Z}[i, \zeta]$).
Integral TQFTs

- Consider Reshetikhin-Turaev (or BHMV) TQFT for $SO(3)$-theory at ζ, a primitive p-th root of unity for prime p.

- Let $R = \mathbb{Z}[\zeta]$ (or $\mathbb{Z}[i, \zeta]$).

- [Murakami, Ohtsuki, Le, …]
 For suitable normalization and homology constraints the invariant of closed manifolds is in R.

Background and Motivation

- Half Projective TQFTs
- Example, Non-Example, & Questions
- Naïve TQFT Axioms
- Hennings Invariant Paradox
- Elementary Example

Thomas Kerler

- Half-Projective TQFTs
Integral TQFTs

- Consider Reshetikhin-Turaev (or BHMV) TQFT for $SO(3)$-theory at ζ, a primitive p-th root of unity for prime p.

- Let $R = \mathbb{Z}[\zeta]$ (or $\mathbb{Z}[i, \zeta]$).

- [Murakami, Ohtsuki, Le, ...]
 For suitable normalization and homology constraints the invariant of closed manifolds is in R.

- [Gilmer, Masbaum]
 Restricts/extends to TQFT over R with connectivity contraints.
Integral TQFTs

- Consider Reshetikhin-Turaev (or BHMV) TQFT for \(SO(3) \)-theory at \(\zeta \), a primitive \(p \)-th root of unity for prime \(p \).

- Let \(R = \mathbb{Z}[\zeta] \) (or \(\mathbb{Z}[i, \zeta] \)).

- [Murakami, Ohtsuki, Le, ...]
 For suitable normalization and homology constraints the invariant of closed manifolds is in \(R \).

- [Gilmer, Masbaum]
 Restricts/extends to TQFT over \(R \) with connectivity contraints.

- Have \(\mathcal{V}(S^1 \times S^2) = D = u(\zeta - 1)^q \in R \)

 where \(q = \frac{p-3}{2} \) and \(u \in R \) a unit and use normalization \(\mathcal{V}(S^3) = 1 \).
Integral TQFTs

- Consider Reshetikhin-Turaev (or BHMV) TQFT for $SO(3)$-theory at ζ, a primitive p-th root of unity for prime p.

- Let $R = \mathbb{Z}[\zeta]$ (or $\mathbb{Z}[i, \zeta]$).

- [Murakami, Ohtsuki, Le, ...]
 For suitable normalization and homology constraints the invariant of closed manifolds is in R.

- [Gilmer, Masbaum]
 Restricts/extends to TQFT over R with connectivity constraints.

- Have $\mathcal{V}(S^1 \times S^2) = D = u(\zeta - 1)^q \in R$

 where $q = \frac{p-3}{2}$ and $u \in R$ a unit and use normalization $\mathcal{V}(S^3) = 1$.

- Yield connectivity information (cut-numbers).
How does Connectivity affect Functoriality?
How does Connectivity affect Functoriality?

- Issues composing over disconnected surfaces
How does Connectivity affect Functoriality?

- Issues composing over disconnected surfaces
 - but \otimes-structure should remain intact.
How does Connectivity affect Functoriality?

- Issues composing over disconnected surfaces
 - but \otimes-structure should remain intact.

- May be explained by connectivity anomaly in integral TQFT cases.
How does Connectivity affect Functoriality?

- Issues composing over disconnected surfaces
 - but \otimes-structure should remain intact.
- May be explained by connectivity anomaly in integral TQFT cases.
- Will need refinement of axioms for Hennings formalism
 - will explain from set-up.
Elementary Example

Currents on Graphs

\[G = \text{finite abelian group}, \ \Gamma \text{ a graph with orientations}, \ E_\Gamma \text{ edge set}. \]
Elementary Example

Currents on Graphs

$G = \text{finite abelian group, } \Gamma \text{ a graph with orientations, } E_\Gamma \text{ edge set.}$

Current Configuration: \(\varphi : E_\Gamma \to G \) such that at each vertex \(p \)

\[
\begin{align*}
\varphi(e_1) + \varphi(e_2) + \ldots + \varphi(e_k) &= \varphi(d_1) + \varphi(d_2) + \ldots + \varphi(d_m),
\end{align*}
\]

except at (degree one) boundary points \(\partial \Gamma. \)
Elementary Example

Currents on Graphs

$G = \text{finite abelian group, } \Gamma \text{ a graph with orientations, } E_\Gamma \text{ edge set.}$

Current Configuration: $\varphi : E_\Gamma \rightarrow G$ such that at each vertex p

\[\varphi(e_1) + \varphi(e_2) + \ldots + \varphi(e_k) = \varphi(d_1) + \varphi(d_2) + \ldots + \varphi(d_m),\]

except at (degree one) boundary points $\partial \Gamma$.

Space of current configurations naturally identified with

$Z_1(\Gamma, \partial \Gamma, G) = H_1(\Gamma, \partial \Gamma, G)$
Elementary Example

Currents on Graphs

$G =$ finite abelian group, Γ a graph with orientations, E_Γ edge set.

Current Configuration: $\varphi : E_\Gamma \to G$ such that at each vertex p

\[
\begin{array}{c}
\varphi(e_1) + \varphi(e_2) + \ldots + \varphi(e_k) = \varphi(d_1) + \varphi(d_2) + \ldots + \varphi(d_m),
\end{array}
\]

except at (degree one) boundary points $\partial \Gamma$.

Space of current configurations naturally identified with

\[
Z_1(\Gamma, \partial \Gamma, G) = H_1(\Gamma, \partial \Gamma, G)
\]
Let G^* be the oriented **Graph Category**:
Let \mathcal{G}^* be the oriented Graph Category:

- Object $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ with $\epsilon = \pm$.
Let \(G^* \) be the oriented Graph Category:

- Object \(\mathbf{e} = (\epsilon_1, \ldots, \epsilon_k) \) with \(\epsilon = \pm \).
Let \mathcal{G}^* be the oriented **Graph Category**:

- **Object** $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ with $\epsilon = \pm$.

- **Morphism** $\epsilon \rightarrow \delta$ is oriented graph Γ with boundary points $\partial \Gamma$ and orientation compatible identification $\partial \Gamma \cong -\epsilon \sqcup \delta$.
Let \mathcal{G}^* be the oriented Graph Category:

- **Object** $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ with $\epsilon = \pm$.
- **Morphism** $\epsilon \to \delta$ is oriented graph Γ with boundary points $\partial \Gamma$ and orientation compatible identification $\partial \Gamma \cong -\epsilon \sqcup \delta$.
- **Composition** via connecting graphs along boundary points.

Construction of Morphisms

- Basis of free \mathbb{R}-module $\mathcal{V}(\epsilon)$ associated to $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ labeled by point configurations $g = (g_1, g_2, \ldots, g_k) \in G^k$.
- For $\Gamma : \epsilon \to \delta$ let the matrix element be

$$\mathcal{V}(\Gamma)_{\mathbf{h}, \mathbf{g}} = \text{Number of current configurations on } \Gamma$$
Let \mathcal{G}^* be the oriented **Graph Category**:

- **Object** $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ with $\epsilon = \pm$.
- **Morphism** $\epsilon \rightarrow \delta$ is an oriented graph Γ with boundary points $\partial \Gamma$ and orientation compatible identification $\partial \Gamma \cong -\epsilon \sqcup \delta$.
- **Composition** via connecting graphs along boundary points.

Construction of Morphisms

- **Basis of free** \mathbb{R}-module $\mathcal{V}(\epsilon)$ **associated to** $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ **labeled** by point configurations $g = (g_1, g_2, \ldots, g_k) \in G^k$.
- **For** $\Gamma : \epsilon \rightarrow \delta$ **let the matrix element be**

$$\mathcal{V}(\Gamma)_{h, g} = \text{Number of current configurations on } \Gamma \text{ that restrict to } g \text{ and } h \text{ at the end points in } \partial \Gamma$$
Let \mathcal{G}^* be the oriented Graph Category:

- **Object** $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ with $\epsilon = \pm$.
- **Morphism** $\epsilon \to \delta$ is oriented graph Γ with boundary points $\partial \Gamma$ and orientation compatible identification $\partial \Gamma \cong -\epsilon \sqcup \delta$.
- **Composition** via connecting graphs along boundary points.

Construction of Morphisms

- Basis of free \mathbb{R}-module $\mathcal{V}(\epsilon)$ associated to $\epsilon = (\epsilon_1, \ldots, \epsilon_k)$ labeled by point configurations $g = (g_1, g_2, \ldots, g_k) \in G \times^k$.
- For $\Gamma : \epsilon \to \delta$ let the matrix element be

 $$\mathcal{V}(\Gamma)_{h, g} = \text{Number of current configurations on } \Gamma$$

 that restrict to g and h at the end points in $\partial \Gamma$

- Naturally functorial - that is, $\mathcal{V}(\Gamma_1) \mathcal{V}(\Gamma_2) = \mathcal{V}(\Gamma_1 \circ \Gamma_2)$
Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Also denote $\chi : C(X) \to \mathbb{R} : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.
Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Also denote $\chi : C(X) \rightarrow \mathbb{R} : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.
- Consider connecting homomorphism

$$\overline{\partial} : H_1(\Gamma, \partial \Gamma, G) \rightarrow H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G).$$
Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Also denote $\chi : C(X) \to \mathbb{R} : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.
- Consider connecting homomorphism $\bar{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G)$.
- For morphism $\Gamma : \epsilon \to \delta$ as above construct pairing
Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Also denote $\chi : C(X) \to \mathbb{R} : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.
- Consider connecting homomorphism $\bar{\delta} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G)$.
- For morphism $\Gamma : \epsilon \to \delta$ as above construct pairing $\mathcal{V}(\epsilon) \otimes \mathcal{V}(\delta) =$
Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Also denote $\chi : C(X) \to \mathbb{R} : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \emptyset$.
- Consider connecting homomorphism
 \[\bar{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\emptyset, G) \oplus H_0(\delta, G). \]
- For morphism $\Gamma : \emptyset \to \delta$ as above construct pairing
 \[\mathcal{V}(\emptyset) \otimes \mathcal{V}(\delta) = C(H_0(\emptyset, G)) \otimes C(H_0(\delta, G)) \]
Equivalent, algebraic topology construction

Denote \(C(X) = R^X \) for ring \(R \) and finite set \(X \).

Also denote \(\chi : C(X) \to R : f \mapsto \chi(f) = \sum_{x \in X} f(x) \) as well as bilinear form on \(C(X) \) by \(\langle f, g \rangle = \chi(f \cdot g) \).

- Let \(\mathcal{V}(P) = C(H_0(P, G)) \) for point set \(P = \epsilon \).
- Consider connecting homomorphism

\[
\bar{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G).
\]

- For morphism \(\Gamma : \epsilon \to \delta \) as above construct pairing

\[
\mathcal{V}(\epsilon) \otimes \mathcal{V}(\delta) = C(H_0(\epsilon, G)) \otimes C(H_0(\delta, G)) \\
\cong C(H_0(\epsilon, G) \oplus H_0(\delta, G))
\]
Equivalent, algebraic topology construction

Denote $C(X) = \mathbb{R}^X$ for ring \mathbb{R} and finite set X.

Also denote $\chi : C(X) \to \mathbb{R} : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.
- Consider connecting homomorphism
 \[\overline{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G). \]
- For morphism $\Gamma : \epsilon \to \delta$ as above construct pairing
 \[\mathcal{V}(\epsilon) \otimes \mathcal{V}(\delta) = C(H_0(\epsilon, G)) \otimes C(H_0(\delta, G)) \]
 \[\cong C(H_0(\epsilon, G) \oplus H_0(\delta, G)) \xrightarrow{\overline{\partial}^*} C(H_1(\Gamma, \partial \Gamma, G)). \]
Equivalent, algebraic topology construction

Denote $C(X) = R^X$ for ring R and finite set X.

Also denote $\chi : C(X) \to R : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.

- Consider connecting homomorphism
 $$\overline{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G).$$

- For morphism $\Gamma : \epsilon \to \delta$ as above construct pairing
 $$\mathcal{V}(\epsilon) \otimes \mathcal{V}(\delta) = C(H_0(\epsilon, G)) \otimes C(H_0(\delta, G))$$
 $$\cong C(H_0(\epsilon, G) \oplus H_0(\delta, G)) \xrightarrow{\overline{\partial}^*} C(H_1(\Gamma, \partial \Gamma, G)) \xrightarrow{\chi} R.$$

- Use inner form $\langle -, - \rangle$ to dualize and obtain map:
Equivalent, algebraic topology construction

Denote $C(X) = R^X$ for ring R and finite set X.

Also denote $\chi : C(X) \to R : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \epsilon$.
- Consider connecting homomorphism

 $\overline{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\epsilon, G) \oplus H_0(\delta, G)$.

- For morphism $\Gamma : \epsilon \to \delta$ as above construct pairing

 $\mathcal{V}(\epsilon) \otimes \mathcal{V}(\delta) = C(H_0(\epsilon, G)) \otimes C(H_0(\delta, G))$

 $\cong C(H_0(\epsilon, G) \oplus H_0(\delta, G))^{\overline{\partial}^*} \to C(H_1(\Gamma, \partial \Gamma, G)) \xrightarrow{\chi} R$.

- Use inner form $\langle - , - \rangle$ to dualize and obtain map:

 $\mathcal{V}(\Gamma) : \mathcal{V}(\epsilon) \to \mathcal{V}(\delta)$
Equivalent, algebraic topology construction

Denote $C(X) = R^X$ for ring R and finite set X.

Also denote $\chi : C(X) \to R : f \mapsto \chi(f) = \sum_{x \in X} f(x)$ as well as bilinear form on $C(X)$ by $\langle f, g \rangle = \chi(f \cdot g)$.

- Let $\mathcal{V}(P) = C(H_0(P, G))$ for point set $P = \emptyset$.
- Consider connecting homomorphism
 \[\overline{\partial} : H_1(\Gamma, \partial \Gamma, G) \to H_0(\partial \Gamma, G) \cong H_0(\emptyset, G) \oplus H_0(\delta, G). \]
- For morphism $\Gamma : \emptyset \to \delta$ as above construct pairing
 \[\mathcal{V}(\emptyset) \otimes \mathcal{V}(\delta) = C(H_0(\emptyset, G)) \otimes C(H_0(\delta, G)) \]
 \[\cong C(H_0(\emptyset, G) \oplus H_0(\delta, G)) \xrightarrow{\overline{\partial}^*} C(H_1(\Gamma, \partial \Gamma, G)) \xrightarrow{\chi} R. \]
- Use inner form $\langle _, _ \rangle$ to dualize and obtain map:
 $\mathcal{V}(\Gamma) : \mathcal{V}(\emptyset) \to \mathcal{V}(\delta)$.
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $\mathcal{V}(\epsilon)$ given by indicator functions 1_g. Note:
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $V(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $V(\epsilon)_{h,g}$ same as before.
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $\mathcal{V}(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $\mathcal{V}(\epsilon)_{h,g}$ same as before.
- Pairing formula yields $\mathcal{V}(\Gamma)_{h,g} = |\partial^{-1}((g, h))|$
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $V(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $V_{h,g}(\epsilon)$ same as before.
- Pairing formula yields $V(\Gamma)_{h,g} = |\partial^{-1}((g, h))|$
- Short exact sequence
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $\mathcal{W}(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $\mathcal{W}(\epsilon)_{h,g}$ same as before.
- Pairing formula yields $\mathcal{W}(\Gamma)_{h,g} = |\partial^{-1}((g, h))|$
- Short exact sequence

$$0 \to H_1(\Gamma, G) \xrightarrow{i_*} H_1(\Gamma, \partial \Gamma, G) \xrightarrow{\overline{\partial}} H_0(\partial \Gamma, G)$$

- $\partial^{-1}((g, h)) = [\varphi] + H_1(\Gamma, G)$ if $(g, h) \in \text{im}(\overline{\partial})$.

Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $\mathcal{V}(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $\mathcal{V}(\epsilon)_{h,g}$ same as before.
- Pairing formula yields $\mathcal{V}(\Gamma)_{h,g} = |\partial^{-1}((g, h))|$
- Short exact sequence

 $0 \rightarrow H_1(\Gamma, G) \xrightarrow{i_*} H_1(\Gamma, \partial \Gamma, G) \xrightarrow{\partial} H_0(\partial \Gamma, G)$

- $\partial^{-1}((g, h)) = [\varphi] + H_1(\Gamma, G)$ if $(g, h) \in \text{im}(\partial)$.
- Also $|H_1(\Gamma, G)| = |G|^{\beta_1(\Gamma)}$.

Thomas Kerler
Half-Projective TQFTs
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $\mathcal{V}(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $\mathcal{V}(\epsilon)_{h,g}$ same as before.
- Pairing formula yields $\mathcal{V}(\Gamma)_{h,g} = |\partial^{-1}((g, h))|$
- Short exact sequence

 $0 \to H_1(\Gamma, G) \xrightarrow{i_*} H_1(\Gamma, \partial \Gamma, G) \xrightarrow{\partial} H_0(\partial \Gamma, G)$

- $\partial^{-1}((g, h)) = [\varphi] + H_1(\Gamma, G)$ if $(g, h) \in \text{im}(\partial)$.
- Also $|H_1(\Gamma, G)| = |G|^\beta_1(\Gamma)$.

- Let $\hat{\mathcal{V}}(\Gamma)_{h,g} = \begin{cases} 1 & (h, g) \text{ boundary of charge configuration} \\ 0 & \text{otherwise} \end{cases}$
Matrix Coefficients

$H_0(\epsilon, G) \oplus H_0(\delta, G)$ is the set of elements/pairs (g, h).

Basis of $\mathcal{V}(\epsilon)$ given by indicator functions 1_g. Note:

- In this basis matrix elements $\mathcal{V}(\epsilon)_{h,g}$ same as before.
- Pairing formula yields $\mathcal{V}(\Gamma)_{h,g} = |\partial^{-1}((g, h))|$
- Short exact sequence

$$0 \to H_1(\Gamma, G) \xrightarrow{i_*} H_1(\Gamma, \partial \Gamma, G) \xrightarrow{\partial} H_0(\partial \Gamma, G)$$

- $\partial^{-1}((g, h)) = [\varphi] + H_1(\Gamma, G)$ if $(g, h) \in \text{im}(\partial)$.
- Also $|H_1(\Gamma, G)| = |G|^{\beta_1(\Gamma)}$.
- Let $\widehat{\mathcal{V}}(\Gamma)_{h,g} = \begin{cases} 1 & (h, g) \text{ boundary of charge configuration} \\ 0 & \text{otherwise} \end{cases}$

$$\mathcal{V}(\Gamma) = |G|^{\beta_1(\Gamma)} \widehat{\mathcal{V}}(\Gamma).$$
Composition Rules for $\hat{\mathcal{V}}$

Functoriality of \mathcal{V} implies

$$|G|\beta_1(\Gamma_1)|G|\beta_1(\Gamma_2)\hat{\mathcal{V}}(\Gamma_1)\hat{\mathcal{V}}(\Gamma_2) = |G|\beta_1(\Gamma_1 \circ \Gamma_2)\hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2)$$
Composition Rules for \(\hat{V}\)

Functoriality of \(\mathcal{V}\) implies

\[
|G|\beta_1(\Gamma_1) |G|\beta_1(\Gamma_2) \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2) = |G|\beta_1(\Gamma_1 \circ \Gamma_2) \hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2)
\]

Assume \(|G| \in R\) is a unit and denote \(x = |G|^{-1}\) obtain
Composition Rules for \hat{V}

Functoriality of \mathcal{V} implies

$$|G|\beta_1(\Gamma_1)|G|\beta_1(\Gamma_2)\hat{V}(\Gamma_1)\hat{V}(\Gamma_2) = |G|\beta_1(\Gamma_1\circ\Gamma_2)\hat{V}(\Gamma_1\circ\Gamma_2)$$

Assume $|G| \in \mathbb{R}$ is a unit and denote $x = |G|^{-1}$ obtain

$$\hat{V}(\Gamma_1 \circ \Gamma_2) = x^{c(\Gamma_1, \Gamma_2)}\hat{V}(\Gamma_1)\hat{V}(\Gamma_2)$$
Composition Rules for $\hat{\mathcal{V}}$

Functoriality of \mathcal{V} implies

$$|G|\beta_1(\Gamma_1) |G|\beta_1(\Gamma_2) \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2) = |G|\beta_1(\Gamma_1 \circ \Gamma_2) \hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2)$$

Assume $|G| \in \mathbb{R}$ is a unit and denote $x = |G|^{-1}$ obtain

$$\hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2) = x^{c(\Gamma_1, \Gamma_2)} \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2)$$

where

$$c(\Gamma_1, \Gamma_2) = \beta_1(\Gamma_1 \circ \Gamma_2) - \beta_1(\Gamma_1) - \beta_1(\Gamma_2).$$
Composition Rules for \(\hat{\mathcal{V}} \)

Functoriality of \(\mathcal{V} \) implies

\[
|G| \beta_1(\Gamma_1) |G| \beta_1(\Gamma_2) \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2) = |G| \beta_1(\Gamma_1 \circ \Gamma_2) \hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2)
\]

Assume \(|G| \in \mathbb{R} \) is a unit and denote \(x = |G|^{-1} \) obtain

\[
\hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2) = x^{c(\Gamma_1, \Gamma_2)} \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2)
\]

where

\[
c(\Gamma_1, \Gamma_2) = \beta_1(\Gamma_1 \circ \Gamma_2) - \beta_1(\Gamma_1) - \beta_1(\Gamma_2).
\]

Mayer-Vietoris

\[
0 \rightarrow H_1(\Gamma_1) \oplus H_1(\Gamma_2) \xrightarrow{i_*} H_1(\Gamma_1 \circ \Gamma_2) \xrightarrow{\partial_*} H_0(\Gamma_1 \cap \Gamma_2)
\]
Composition Rules for \(\hat{V} \)

Functoriality of \(\forall \) **implies**

\[
|G| \beta_1(\Gamma_1) |G| \beta_1(\Gamma_2) \hat{V}(\Gamma_1) \hat{V}(\Gamma_2) = |G| \beta_1(\Gamma_1 \circ \Gamma_2) \hat{V}(\Gamma_1 \circ \Gamma_2)
\]

Assume \(|G| \in \mathbb{R} \) **is a unit and denote** \(x = |G|^{-1} \)

obtain

\[
\hat{V}(\Gamma_1 \circ \Gamma_2) = x^c(\Gamma_1, \Gamma_2) \hat{V}(\Gamma_1) \hat{V}(\Gamma_2)
\]

where

\[
c(\Gamma_1, \Gamma_2) = \beta_1(\Gamma_1 \circ \Gamma_2) - \beta_1(\Gamma_1) - \beta_1(\Gamma_2).
\]

Mayer-Vietoris

\[
0 \rightarrow H_1(\Gamma_1) \oplus H_1(\Gamma_2) \xrightarrow{i_*} H_1(\Gamma_1 \circ \Gamma_2) \xrightarrow{\partial_*} H_0(\Gamma_1 \cap \Gamma_2)
\]

Thus

\[
c(\Gamma_1, \Gamma_2) = \text{rank}(\partial_*)
\]
Composition Rules for \(\hat{\mathcal{V}} \)

Functoriality of \(\mathcal{V} \) **implies**

\[
|G|\beta_1(\Gamma_1)|G|\beta_1(\Gamma_2) \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2) = |G|\beta_1(\Gamma_1 \circ \Gamma_2) \hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2)
\]

Assume \(|G| \in \mathbb{R} \) **is a unit and denote** \(x = |G|^{-1} \) **obtain**

\[
\hat{\mathcal{V}}(\Gamma_1 \circ \Gamma_2) = x^c(\Gamma_1, \Gamma_2) \hat{\mathcal{V}}(\Gamma_1) \hat{\mathcal{V}}(\Gamma_2)
\]

where

\[
c(\Gamma_1, \Gamma_2) = \beta_1(\Gamma_1 \circ \Gamma_2) - \beta_1(\Gamma_1) - \beta_1(\Gamma_2).
\]

Mayer-Vietoris

\[
0 \to H_1(\Gamma_1) \oplus H_1(\Gamma_2) \xrightarrow{i_*} H_1(\Gamma_1 \circ \Gamma_2) \xrightarrow{\partial_*} H_0(\Gamma_1 \cap \Gamma_2)
\]

Thus

\[
c(\Gamma_1, \Gamma_2) = \text{rank}(\partial_*) = \# \text{ of new 1-cycles}
\]
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms \(M : \Sigma_i \rightarrow \Sigma_m \) and \(N : \Sigma_m \rightarrow \Sigma_o \).

\[
\begin{align*}
H_1(M \cap N) & \oplus H_1(N) = H_1(N \circ M) \\
H_0(M \cap N) & \oplus H_0(N) = H_0(N \circ M)
\end{align*}
\]

From exactness of lower row:

\[
\omega(N, M) = \beta_0(\Sigma_m) - (\beta_0(M) + \beta_0(N)) + \beta_0(N \circ M)
\]

Thomas Kerler

Half-Projective TQFTs
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms $M : \Sigma_i \rightarrow \Sigma_m$ and $N : \Sigma_m \rightarrow \Sigma_o$.

Thus $N \circ M : \Sigma_i \rightarrow \Sigma_o$ with $M \cap N = \Sigma_m$.

From exactness of lower row:

$\omega(N, M) = \beta_0(\Sigma_m) - (\beta_0(M) + \beta_0(N)) + \beta_0(N \circ M)$
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms $M : \Sigma_i \to \Sigma_m$ and $N : \Sigma_m \to \Sigma_o$.

Thus $N \circ M : \Sigma_i \to \Sigma_o$ with $M \cap N = \Sigma_m$.

$$
\begin{array}{c}
H_1(N \circ M) \leftarrow H_1(M) \oplus H_1(N) \leftarrow H_1(M \cap N) \\
\partial_* \downarrow \\
0 \rightarrow \text{im}(\partial_*) \rightarrow H_0(M \cap N) \rightarrow H_0(M) \oplus H_0(N) \rightarrow H_0(N \circ M) \rightarrow 0
\end{array}
$$

$\partial_* = \beta_0(\Sigma_m) - (\beta_0(M) + \beta_0(N)) + \beta_0(N \circ M)$.

From exactness of lower row:

$\omega(N, M) = \beta_0(\Sigma_m) - (\beta_0(M) + \beta_0(N)) + \beta_0(N \circ M)$.

Thomas Kerler
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms \(M : \Sigma_i \to \Sigma_m \) and \(N : \Sigma_m \to \Sigma_o \).

Thus \(N \circ M : \Sigma_i \to \Sigma_o \) with \(M \cap N = \Sigma_m \).

\[
\begin{align*}
H_1(N \circ M) & \leftarrow H_1(M) \oplus H_1(N) \leftarrow H_1(M \cap N) \\
\partial_* & \downarrow \\
0 \to \text{im}(\partial_*) & \to H_0(M \cap N) \to H_0(M) \oplus H_0(N) \to H_0(N \circ M) \to 0
\end{align*}
\]

\[\omega(N, M) = \text{rank}(\partial_*)\]
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms $M : \Sigma_i \to \Sigma_m$ and $N : \Sigma_m \to \Sigma_o$.

Thus $N \circ M : \Sigma_i \to \Sigma_o$ with $M \cap N = \Sigma_m$.

\[
\begin{align*}
H_1(N \circ M) & \leftarrow H_1(M) \oplus H_1(N) \leftarrow H_1(M \cap N) \\
\partial_* \downarrow & \\
0 & \rightarrow \text{im}(\partial_*) \rightarrow H_0(M \cap N) \rightarrow H_0(M) \oplus H_0(N) \rightarrow H_0(N \circ M) \rightarrow 0
\end{align*}
\]

\[
\omega(N, M) = \text{rank}(\partial_*) = \# \text{ of new 1-cycles}
\]
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms $M : \Sigma_i \to \Sigma_m$ and $N : \Sigma_m \to \Sigma_o$.

Thus $N \circ M : \Sigma_i \to \Sigma_o$ with $M \cap N = \Sigma_m$.

\[
\begin{align*}
H_1(N \circ M) &\leftarrow H_1(M) \oplus H_1(N) \leftarrow H_1(M \cap N) \\
\partial_* \downarrow & \\
0 &\rightarrow \text{im}(\partial_*) \rightarrow H_0(M \cap N) \rightarrow H_0(M) \oplus H_0(N) \rightarrow H_0(N \circ M) \rightarrow 0
\end{align*}
\]

\[
\omega(N, M) = \text{rank}(\partial_*) = \# \text{ of new 1-cycles} \in \mathbb{N} \cup \{0\}.
\]
Half Projective TQFT Axiom

Mayer-Vietoris Sequence for Cobordisms:

Consider cobordisms $M : \Sigma_i \to \Sigma_m$ and $N : \Sigma_m \to \Sigma_o$. Thus $N \circ M : \Sigma_i \to \Sigma_o$ with $M \cap N = \Sigma_m$.

\[
\begin{align*}
H_1(N \circ M) &\leftarrow H_1(M) \oplus H_1(N) \leftarrow H_1(M \cap N) \\
\partial_* \downarrow \\
0 &\rightarrow \text{im}(\partial_*) \rightarrow H_0(M \cap N) \rightarrow H_0(M) \oplus H_0(N) \rightarrow H_0(N \circ M) \rightarrow 0
\end{align*}
\]

\[
\omega(N, M) = \text{rank}(\partial_*) = \# \text{ of new } 1\text{-cycles} \in \mathbb{N} \cup \{0\}.
\]

From exactness of lower row:

\[
\omega(N, M) = \beta_0(\Sigma_m) - (\beta_0(M) + \beta_0(N)) + \beta_0(N \circ M)
\]
Cocyle Property

For cobordism $M : \Sigma_{\text{in}} \to \Sigma_{\text{out}}$ set

$$\alpha(M) = \beta_0(M) - \beta_0(\Sigma_{\text{out}}) \in \mathbb{Z}$$
Cocyle Property

For cobordism $M : \Sigma_{\text{in}} \rightarrow \Sigma_{\text{out}}$ set

$$\alpha(M) = \beta_0(M) - \beta_0(\Sigma_{\text{out}}) \in \mathbb{Z}$$

The previous identity becomes

$$\omega(N, M) = \alpha(N \circ M) - \alpha(M) - \alpha(N)$$
Cocyle Property

For cobordism $M : \Sigma_{\text{in}} \rightarrow \Sigma_{\text{out}}$ set

$$\alpha(M) = \beta_0(M) - \beta_0(\Sigma_{\text{out}}) \in \mathbb{Z}$$

The previous identity becomes

$$\omega(N, M) = \alpha(N \circ M) - \alpha(M) - \alpha(N)$$

- May interpret $\omega = -\delta \alpha$.
Cocyle Property

For cobordism $\mathcal{M} : \Sigma_{\text{in}} \rightarrow \Sigma_{\text{out}}$ set

$$\alpha(\mathcal{M}) = \beta_0(\mathcal{M}) - \beta_0(\Sigma_{\text{out}}) \in \mathbb{Z}$$

The previous identity becomes

$$\omega(N, \mathcal{M}) = \alpha(N \circ \mathcal{M}) - \alpha(\mathcal{M}) - \alpha(N)$$

- May interpret $\omega = -\delta \alpha$.

- Thus $\delta \omega = 0$ as required for “extensions”
Cocyle Property

For cobordism $M : \Sigma_{\text{in}} \to \Sigma_{\text{out}}$ set

$$\alpha(M) = \beta_0(M) - \beta_0(\Sigma_{\text{out}}) \in \mathbb{Z}$$

The previous identity becomes

$$\omega(N, M) = \alpha(N \circ M) - \alpha(M) - \alpha(N)$$

- May interpret $\omega = -\delta \alpha$.

- Thus $\delta \omega = 0$ as required for “extensions”.

- However, ω non-negative, while α may be negative.
A half-projective TQFT $\mathcal{V} : \text{Cob}_n \to \mathbb{R}\text{-mod}$ with respect to an element $x \in \mathbb{R}$ fulfills all axioms of a standard TQFT.
A half-projective TQFT $\mathcal{V} : \text{Cob}_n \to \mathbf{R}-\text{mod}$ with respect to an element $x \in \mathbf{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$
A half-projective TQFT \(\mathcal{V} : \text{Cob}_n \rightarrow \mathbb{R}\text{-mod} \) with respect to an element \(x \in \mathbb{R} \) fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

\[
\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).
\]

This is well defined since \(\omega \geq 0 \) and \(\delta \omega = 0 \).
Definition

A half-projective TQFT $\mathcal{V} : \text{Cob}_n \to \mathbb{R}\text{-mod}$ with respect to an element $x \in \mathbb{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$

- This is well defined since $\omega \geq 0$ and $\delta \omega = 0$.

- If $x \in \mathbb{R}$ is a unit, renormalize $\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M)$.
A half-projective TQFT $\mathcal{V} : \text{Cob}_n \rightarrow \mathbb{R}$-mod with respect to an element $x \in \mathbb{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$

- This is well defined since $\omega \geq 0$ and $\delta \omega = 0$.

- If $x \in \mathbb{R}$ is a unit, renormalize $\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M)$.

Then \mathcal{V}^* is a standard TQFT functor.
Definition

A half-projective TQFT $\mathcal{V} : \text{Cob}_n \rightarrow \mathbb{R}\text{-mod}$ with respect to an element $x \in \mathbb{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$

- This is well defined since $\omega \geq 0$ and $\delta \omega = 0$.
- If $x \in \mathbb{R}$ is a unit renormalize $\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M)$.

 Then \mathcal{V}^* is a standard TQFT functor.
- May have x is not invertible
A half-projective TQFT $\mathcal{V} : \text{Cob}_n \rightarrow \text{R-mod}$ with respect to an element $x \in \text{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$

- This is well defined since $\omega \geq 0$ and $\delta \omega = 0$.
- If $x \in \text{R}$ is a unit, renormalize $\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M)$.

Then \mathcal{V}^* is a standard TQFT functor.

- May have x is not invertible- in fact, even $x = 0$.
A half-projective TQFT $\mathcal{V} : \text{Cob}_n \to \mathbb{R}\text{-mod}$ with respect to an element $x \in \mathbb{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$

- This is well defined since $\omega \geq 0$ and $\delta \omega = 0$.
- If $x \in \mathbb{R}$ is a unit, renormalize $\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M)$.
 Then \mathcal{V}^* is a standard TQFT functor.
- May have x is not invertible - in fact, even $x = 0$.
- If Σ_m is connected $\Rightarrow \omega(N, M) = 0$
A half-projective TQFT \(\mathcal{V} : \text{Cob}_n \rightarrow \text{R-mod} \) with respect to an element \(x \in \text{R} \) fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

\[
\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).
\]

- This is well defined since \(\omega \geq 0 \) and \(\delta \omega = 0 \).

- If \(x \in \text{R} \) is a unit renormalize \(\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M) \).

Then \(\mathcal{V}^* \) is a standard TQFT functor.

- May have \(x \) is not invertible - in fact, even \(x = 0 \).

- If \(\Sigma_m \) is connected \(\Rightarrow \omega(N, M) = 0 \Rightarrow \) Anomaly \(x^0 = 1 \) absent.
Definition

A half-projective TQFT \(\mathcal{V} : \text{Cob}_n \to \mathbb{R}\text{-mod} \) with respect to an element \(x \in \mathbb{R} \) fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

\[
\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).
\]

- This is well defined since \(\omega \geq 0 \) and \(\delta \omega = 0 \).
- If \(x \in \mathbb{R} \) is a unit renormalize \(\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M) \).

Then \(\mathcal{V}^* \) is a standard TQFT functor.
- May have \(x \) is not invertible- in fact, even \(x = 0 \).
- If \(\Sigma_m \) is connected \(\Rightarrow \omega(N, M) = 0 \Rightarrow \) Anomaly \(x^0 = 1 \) absent.
- In particular, \(0^0 = 1 \).
A half-projective TQFT $\mathcal{V} : \text{Cob}_n \to \mathbb{R}\text{-mod}$ with respect to an element $x \in \mathbb{R}$ fulfills all axioms of a standard TQFT except that functoriality of composition is modified as

$$\mathcal{V}(N \circ M) = x^{\omega(N,M)} \mathcal{V}(N) \mathcal{V}(M).$$

- This is well defined since $\omega \geq 0$ and $\delta \omega = 0$.
- If $x \in \mathbb{R}$ is a unit, renormalize $\mathcal{V}^*(M) = x^{-\alpha(M)} \mathcal{V}(M)$.

Then \mathcal{V}^* is a standard TQFT functor.

- May have x is not invertible- in fact, even $x = 0$.

- If Σ_m is connected $\Rightarrow \omega(N, M) = 0 \Rightarrow$ Anomaly $x^0 = 1$ absent.

- In particular, $0^0 = 1$.
Basic Properties

Cut-Numbers

For an oriented connected cobordism M call an oriented co-dim=1 sub-manifold $\Sigma \subset M$ properly non-separating (p.n.s.) if Σ is two-sided. $\Sigma \cap \partial M = \emptyset$. $M - \Sigma$ is connected.

Cut-Number: For connected cobordism as above defined by $\rho(M) = \max \{ \beta_0(\Sigma) : \Sigma \text{ is an p.n.s. sub-mfld in } M \}$.

For a connected M call an epimorphism onto free group $f : \pi_1(M) \twoheadrightarrow F_k = \mathbb{Z} \ast \cdots \ast \mathbb{Z}$ an internal k-free projection if its restriction to all $i^* (\pi_1(\partial M))$ trivial.
Basic Properties

Cut-Numbers

For an oriented connected cobordism M call an oriented co-dim=1 sub-manifold $\Sigma \subset M$ properly non-separating (p.n.s.) if

- Σ is two-sided.
- $\Sigma \cap \partial M = \emptyset$.
- $M - \Sigma$ is connected.
Basic Properties

Cut-Numbers

For an oriented connected cobordism M call an oriented co-dim=1 sub-manifold $\Sigma \subset M$ properly non-separating (p.n.s.) if

- Σ is two-sided.
- $\Sigma \cap \partial M = \emptyset$.
- $M - \Sigma$ is connected.

Cut-Number: For connected cobordism as above defined by

$$\rho(M) = \max\{\beta_0(\Sigma) : \Sigma \text{ is an p.n.s. sub-mfld in } M\}.$$
Basic Properties

Cut-Numbers

For an oriented connected cobordism M call an oriented co-dim=1 sub-manifold $\Sigma \subset M$ properly non-separating (p.n.s.) if

- Σ is two-sided.
- $\Sigma \cap \partial M = \emptyset$.
- $M - \Sigma$ is connected.

Cut-Number: For connected cobordism as above defined by

$$\rho(M) = \max\{\beta_0(\Sigma) : \Sigma \text{ is an p.n.s. sub-mfld in } M\}.$$

For a connected M call an epimorphism onto free group

$$f : \pi_1(M) \twoheadrightarrow F_k$$
Basic Properties

Cut-Numbers

For an oriented connected cobordism M call an oriented co-dim=1 sub-manifold $\Sigma \subset M$ properly non-separating (p.n.s.) if
- Σ is two-sided.
- $\Sigma \cap \partial M = \emptyset$.
- $M - \Sigma$ is connected.

Cut-Number: For connected cobordism as above defined by

$$\rho(M) = \max\{\beta_0(\Sigma) : \Sigma \text{ is an p.n.s. sub-mfld in } M\}.$$

For a connected M call an epimorphism onto free group

$$f : \pi_1(M) \twoheadrightarrow F_k = \mathbb{Z} \star \ldots \star \mathbb{Z}$$

an internal k-free projection if its restriction to all $i_* (\pi_1(\partial M))$ trivial.
Internal Free Degree: For \mathcal{M} as above define

$$\varphi(\mathcal{M}) = \max\{k : \text{There is internal } k\text{-free projection on } \mathcal{M}\}$$
Internal Free Degree: For M as above define

$$\varphi(M) = \max\{k : \text{There is internal } k\text{-free projection on } M\}$$

Lemma

For $n = 3$ (and smooth manifolds in higher dim):

$$\rho(M) = \varphi(M)$$
Internal Free Degree: For M as above define

$$\varphi(M) = \max\{k : \text{There is internal } k\text{-free projection on } M\}$$

Lemma

For $n = 3$ (and smooth manifolds in higher dim):

$$\rho(M) = \varphi(M)$$

Notes:

- Any cobordism can written as $M = \widehat{M} \circ C$ such that

$$\rho(M) = \omega(\widehat{M}, C)$$
Internal Free Degree: For \mathcal{M} as above define

$$\varphi(\mathcal{M}) = \max\{k : \text{There is internal } k\text{-free projection on } \mathcal{M}\}$$

Lemma

For $n = 3$ *(and smooth manifolds in higher dim)*:

$$\rho(\mathcal{M}) = \varphi(\mathcal{M})$$

Notes:

- Any cobordism can written as $\mathcal{M} = \hat{M} \circ C$ such that
 $$\rho(\mathcal{M}) = \omega(\hat{M}, C)$$

- For $n = 3$ have
 $$\rho(S^1 \times \Sigma_g) = \max(g, 1).$$
Applications to half-projective TQFT and Dimensions

Theorem

Suppose \mathcal{V} is a half-projective TQFT w.r.t. $x \in \mathbb{R}$, then

$$\mathcal{V}(M) \in x^{\rho(M)}\text{Hom}(\ldots) \quad \forall \text{cobordisms } M.$$

For dimension formula redo previous calculation
Applications to half-projective TQFT and Dimensions

Theorem

Suppose \mathcal{V} is a half-projective TQFT w.r.t. $x \in \mathbb{R}$, then

$$\mathcal{V}(M) \in x^{\rho(M)} \text{Hom}(\ldots) \quad \forall \text{cobordisms } M.$$

For dimension formula redo previous calculation

noting for connected Σ that $\omega(ev_{\Sigma}, coev_{\Sigma}) = 1$
Applications to half-projective TQFT and Dimensions

Theorem

Suppose \mathcal{V} is a half-projective TQFT w.r.t. $x \in \mathbb{R}$, then

$$\mathcal{V}(M) \in x^{\rho(M)}\text{Hom}(\ldots) \quad \forall \text{cobordisms } M.$$

For dimension formula redo previous calculation

noting for connected Σ that $\omega(\text{ev}_\Sigma, \text{coev}_\Sigma) = 1$

and hence $\mathcal{V}(\text{ev}_\Sigma \circ \text{coev}_\Sigma) = x^1 \mathcal{V}(\text{ev}_\Sigma) \mathcal{V}(\text{coev}_\Sigma)$, so that
Applications to half-projective TQFT and Dimensions

Theorem

Suppose \mathcal{V} is a half-projective TQFT w.r.t. $x \in \mathbb{R}$, then

$$\mathcal{V}(M) \in x^{\rho(M)}\text{Hom}(\ldots) \quad \forall \text{cobordisms } M.$$

For dimension formula redo previous calculation

noting for connected Σ that $\omega(ev_\Sigma, coev_\Sigma) = 1$

and hence $\mathcal{V}(ev_\Sigma \circ coev_\Sigma) = x^1 \mathcal{V}(ev_\Sigma) \mathcal{V}(coev_\Sigma)$, so that

$$\mathcal{V}(\Sigma \times S^1) = x \cdot \text{dim}(\mathcal{V}(\Sigma)).$$
Applications to half-projective TQFT and Dimensions

Theorem

Suppose \(\mathcal{V} \) is a half-projective TQFT w.r.t. \(x \in \mathbb{R} \), then

\[
\mathcal{V}(M) \in x^{\rho(M)}\text{Hom}(\ldots) \quad \forall \text{cobordisms } M.
\]

For dimension formula redo previous calculation noting for connected \(\Sigma \) that \(\omega(ev_\Sigma, coev_\Sigma) = 1 \)

and hence \(\mathcal{V}(ev_\Sigma \circ coev_\Sigma) = x^1 \mathcal{V}(ev_\Sigma) \mathcal{V}(coev_\Sigma) \), so that

\[
\mathcal{V}(\Sigma \times S^1) = x \cdot \text{dim}(\mathcal{V}(\Sigma)).
\]

Thus half-projective TQFTs with \(x = 0 \) will vanish on circle products!
Applications to half-projective TQFT and Dimensions

Theorem

Suppose \mathcal{V} is a half-projective TQFT w.r.t. $x \in \mathbb{R}$, then

$$\mathcal{V}(M) \in x^{\rho(M)} \text{Hom}(\ldots) \quad \forall \text{cobordisms } M.$$

For dimension formula redo previous calculation

noting for connected Σ that $\omega(ev_\Sigma, coev_\Sigma) = 1$

and hence $\mathcal{V}(ev_\Sigma \circ coev_\Sigma) = x^1 \mathcal{V}(ev_\Sigma) \mathcal{V}(coev_\Sigma)$, so that

$$\mathcal{V}(\Sigma \times S^1) = x \cdot \dim(\mathcal{V}(\Sigma)).$$

Thus half-projective TQFTs with $x = 0$ will vanish on circle products!

Also $x = \mathcal{V}(S^1 \times S^2)$ under standard assumption $\mathcal{V}(S^2) = \mathbb{R}.$
Combining the previous

Corollary

\[x \dim(V(\Sigma_g)) \in x^{\max(g,1)} R \]

If \(R \) is a domain thus have

\[\dim(V(\Sigma_g)) \in x^{g-1} R \text{ for } g \geq 1. \]
Combining the previous

Corollary

\[x \dim(\mathcal{V}(\Sigma_g)) \in x^{\max(g,1)} R \]

If \(R \) is a domain thus have

\[\dim(\mathcal{V}(\Sigma_g)) \in x^{g-1} R \text{ for } g \geq 1. \]

Implies divisibility constraints for example for TQFTs over \(R = \mathbb{Z}[\zeta] \).
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\mathsf{Cob}_n\).
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\text{Cob}_n\).

Consider connect sum \(\Sigma^\# = \Sigma_1 \# \Sigma_2\) also as object of \(\text{Cob}_n\).
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\text{Cob}_n\).

Consider connect sum \(\Sigma \# = \Sigma_1 \# \Sigma_2\) also as object of \(\text{Cob}_n\).

Natural cobordism \(\Pi_\Sigma : \Sigma \rightarrow \Sigma \#\) where \(\Sigma = \Sigma_1 \sqcup \Sigma_2\):

- \(\Pi_\Sigma\) given by \(\Sigma \times [0, 1]\) with 1-handle attached at target connecting components.
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\text{Cob}_n\).

Consider connect sum \(\Sigma^\# = \Sigma_1^\# \Sigma_2\) also as object of \(\text{Cob}_n\).

Natural cobordism \(\Pi_\Sigma : \Sigma \rightarrow \Sigma^\#\) where \(\Sigma = \Sigma_1 \sqcup \Sigma_2\):

- \(\Pi_\Sigma\) given by \(\Sigma \times [0, 1]\) with 1-handle attached at target connecting components.

- or by \(\Sigma^\# \times [0, 1]\) with \((n - 1)\)-handle attached at source along separating \(S^{n-2} \subset \Sigma^\#\).
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\mathcal{Cob}_n\).

Consider connect sum \(\Sigma^\# = \Sigma_1^\# \Sigma_2\) also as object of \(\mathcal{Cob}_n\).

Natural cobordism \(\Pi_\Sigma : \Sigma \to \Sigma^\#\) where \(\Sigma = \Sigma_1 \cup \Sigma_2\):

- \(\Pi_\Sigma\) given by \(\Sigma \times [0, 1]\) with 1-handle attached at target connecting components.

- or by \(\Sigma^\# \times [0, 1]\) with \((n - 1)\)-handle attached at source along separating \(S^{n-2} \subset \Sigma^\#\).

- Analogously, construct \(\Pi_\Sigma^\dagger : \Sigma^\# \to \Sigma\).
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\text{Cob}_n\).

Consider connect sum \(\Sigma^\# = \Sigma_1 \# \Sigma_2\) also as object of \(\text{Cob}_n\).

Natural cobordism \(\Pi_\Sigma : \Sigma \to \Sigma^\#\) where \(\Sigma = \Sigma_1 \sqcup \Sigma_2\):

- \(\Pi_\Sigma\) given by \(\Sigma \times [0, 1]\) with 1-handle attached at target connecting components.

- or by \(\Sigma^\# \times [0, 1]\) with \((n - 1)\)-handle attached at source along separating \(S^{n-2} \subset \Sigma^\#\).

- Analogously, construct \(\Pi_\Sigma^\dagger : \Sigma^\# \to \Sigma\).

Composite Identities:

- \(\Pi_\Sigma^\dagger \Pi_\Sigma = \text{id}_{\Sigma_1} \# \text{id}_{\Sigma_2}\) (interior connect sum)
Construction from connected TQFTs

Given two \((n - 1)\)-manifolds \(\Sigma_1\) and \(\Sigma_2\) viewed as objects of \(\text{Cob}_n\).

Consider connect sum \(\Sigma^\# = \Sigma_1 \# \Sigma_2\) also as object of \(\text{Cob}_n\).

Natural cobordism \(\Pi_\Sigma : \Sigma \to \Sigma^\#\) where \(\Sigma = \Sigma_1 \sqcup \Sigma_2\):

- \(\Pi_\Sigma\) given by \(\Sigma \times [0, 1]\) with 1-handle attached at target connecting components.

- or by \(\Sigma^\# \times [0, 1]\) with \((n - 1)\)-handle attached at source along separating \(S^{n-2} \subset \Sigma^\#\).

- Analogously, construct \(\Pi^\dag_\Sigma : \Sigma^\# \to \Sigma\).

Composite Identities:

- \(\Pi^\dag_\Sigma \Pi_\Sigma = \text{id}_{\Sigma_1} \# \text{id}_{\Sigma_2}\) (interior connect sum)
Composite Identities (cont.):

\[\Lambda_\Sigma = \Pi_\Sigma \Pi^\dagger_\Sigma = \text{id}_{\Sigma#/C} \] (interior index=$n - 1$) surgery
Composite Identities (cont.):

- $\Lambda_\Sigma = \Pi_\Sigma \Pi_\Sigma^\dagger = \text{id}_{\Sigma^\#}/C$ (interior index=$ (n - 1) $ surgery)

 where $C \subset \Sigma^\# \times [0, 1]$ is the separating $S^{n-2} \subset \Sigma^\# \times \{\frac{1}{2}\}$.
Composite Identities (cont.):

- \(\Lambda_\Sigma = \Pi_\Sigma \Pi_\Sigma^\dagger = \text{id}_{\Sigma^\#} / \mathcal{C} \) (interior index=\((n - 1)\) surgery)

where \(\mathcal{C} \subset \Sigma^\# \times [0, 1] \) is the separating \(S^{n-2} \subset \Sigma^\# \times \{\frac{1}{2}\} \).

![Diagram of composite identities](image-url)
Composite Identities (cont.):

- $\Lambda_\Sigma = \Pi_\Sigma \Pi_\Sigma^\dagger = \text{id}_{\Sigma^\#} / \mathcal{C}$ (interior index = $(n - 1)$ surgery)
 where $\mathcal{C} \subset \Sigma^\# \times [0, 1]$ is the separating $S^{n-2} \subset \Sigma^\# \times \{1/2\}$.

- $\Lambda_\Sigma \circ \Lambda_\Sigma = \Lambda_\Sigma^\#(S^1 \times S^{n-1})$
Composite Identities (cont.):

- \(\Lambda_\Sigma = \Pi_\Sigma \Pi_\Sigma^\dagger = \text{id}_{\Sigma\#} / C \) (interior index = \((n - 1)\) surgery)
 where \(C \subset \Sigma\# \times [0, 1] \) is the separating \(S^{n-2} \subset \Sigma\# \times \{\frac{1}{2}\} \).

- \(\Lambda_\Sigma \circ \Lambda_\Sigma = \Lambda_\Sigma\#(S^1 \times S^{n-1}) \)

- By induction/iteration obtain analogous maps/identities o for
 \(\Sigma = \Sigma_1 \sqcup \ldots \sqcup \Sigma_k \) and \(\Sigma\# = \Sigma_1\# \ldots \#\Sigma_k \).
Composite Identities (cont.):

- \(\Lambda_\Sigma = \Pi_\Sigma \Pi_\Sigma^\dagger = \text{id}_{\Sigma^\#} / C \) (interior index = \((n - 1)\) surgery)

 where \(C \subset \Sigma^\# \times [0, 1] \) is the separating \(S^{n-2} \subset \Sigma^\# \times \{1/2\} \).

\[
\begin{array}{c}
\Lambda_\Sigma \circ \Lambda_\Sigma = \Lambda_\Sigma^\#(S^1 \times S^{n-1}) \\
\text{By induction/iteration obtain analogous maps/identities o for} \\
\Sigma = \Sigma_1 \sqcup \ldots \sqcup \Sigma_k \quad \text{and} \quad \Sigma^\# = \Sigma_1^\# \ldots \# \Sigma_k.
\end{array}
\]

(except we have \((k - 1) = \beta_0(\Sigma)\) connected \((S^1 \times S^{n-1})\)-factors)
Main ingredient for construction \((n = 3)\).

Lemma

Every connected morphism \(M : \Sigma_{\text{in}} \rightarrow \Sigma_{\text{out}}\) can be expressed as

\[
M = \Pi_{\Sigma_{\text{out}}} \circ \hat{M} \circ \Pi_{\Sigma_{\text{in}}}
\]

where \(\hat{M} : \Sigma^\#_{\text{in}} \rightarrow \Sigma^\#_{\text{out}}\) is conn. cobordism of connected surfaces.

Given TQFT \(\mathcal{V}^{\text{conn}}\) of connected surfaces.
Main ingredient for construction \((n = 3)\).

Lemma

Every connected morphism \(M : \Sigma_{\text{in}} \to \Sigma_{\text{out}}\) *can be expressed as*

\[
M = \Pi_{\Sigma_{\text{out}}}^\dagger \circ \hat{M} \circ \Pi_{\Sigma_{\text{in}}}
\]

where \(\hat{M} : \Sigma^\#_{\text{in}} \to \Sigma^\#_{\text{out}}\) *is conn. cobordism of connected surfaces.*

Given TQFT \(\mathcal{V}^\text{conn}\) *of connected surfaces.*

Attempt to build a general TQFT \(\mathcal{V}\) *via*

\[
\mathcal{V}(M) = p_{\Sigma_{\text{out}}} \mathcal{V}^\text{conn}(\hat{M}) i_{\Sigma_{\text{in}}}.
\]
Main ingredient for construction \((n = 3)\).

Lemma

Every connected morphism \(M : \Sigma_{\text{in}} \to \Sigma_{\text{out}}\) *can be expressed as*

\[
M = \Pi_{\Sigma_{\text{out}}}^\dagger \circ \hat{M} \circ \Pi_{\Sigma_{\text{in}}}
\]

where \(\hat{M} : \Sigma^\#_{\text{in}} \to \Sigma^\#_{\text{out}}\) *is conn. cobordism of connected surfaces.*

Given TQFT \(\mathcal{V}^{\text{conn}}\) of connected surfaces.

Attempt to build a general TQFT \(\mathcal{V}\) via

\[
\mathcal{V}(M) = p_{\Sigma_{\text{out}}} \mathcal{V}^{\text{conn}}(\hat{M})i_{\Sigma_{\text{in}}}.
\]

using suitable natural maps

\[
p_{\Sigma} = \mathcal{V}(\Pi_{\Sigma}^\dagger) : \mathcal{V}(\Sigma^\#) \to \mathcal{V}(\Sigma_1) \otimes \ldots \otimes \mathcal{V}(\Sigma_k)
\]
Main ingredient for construction \((n = 3)\).

Lemma

Every connected morphism \(M: \Sigma_{\text{in}} \rightarrow \Sigma_{\text{out}}\) *can be expressed as*

\[
M = \Pi_{\Sigma_{\text{out}}}^{\dagger} \circ \widehat{M} \circ \Pi_{\Sigma_{\text{in}}}
\]

where \(\widehat{M}: \Sigma_{\text{in}}^{\#} \rightarrow \Sigma_{\text{out}}^{\#}\) *is conn. cobordism of connected surfaces.*

Given TQFT \(\mathcal{V}^{\text{conn}}\) of connected surfaces.

Attempt to build a general TQFT \(\mathcal{V}\) *via*

\[
\mathcal{V}(M) = p_{\Sigma_{\text{out}}} \mathcal{V}^{\text{conn}}(\widehat{M})i_{\Sigma_{\text{in}}}
\]

using suitable natural maps

\[
p_{\Sigma} = \mathcal{V}(\Pi_{\Sigma}^{\dagger}) : \mathcal{V}(\Sigma^{\#}) \rightarrow \mathcal{V}(\Sigma_{1}) \otimes \ldots \otimes \mathcal{V}(\Sigma_{k})
\]

\[
i_{\Sigma} = \mathcal{V}(\Pi_{\Sigma}) : \mathcal{V}(\Sigma_{1}) \otimes \ldots \otimes \mathcal{V}(\Sigma_{k}) \rightarrow \mathcal{V}(\Sigma^{\#})
\]
Main ingredient for construction ($n = 3$).

Lemma

Every connected morphism $M : \Sigma_{\text{in}} \to \Sigma_{\text{out}}$ can be expressed as

$$M = \Pi_{\Sigma_{\text{out}}}^\dagger \circ \widehat{M} \circ \Pi_{\Sigma_{\text{in}}}$$

where $\widehat{M} : \Sigma_{\text{in}} \to \Sigma_{\text{out}}$ is conn. cobordism of connected surfaces.

Given TQFT V^conn of connected surfaces.
 Attempt to build a general TQFT \mathcal{V} via

$$\mathcal{V}(M) = p_{\Sigma_{\text{out}}} V^\text{conn}(\widehat{M}) i_{\Sigma_{\text{in}}}.$$

using suitable natural maps

$$p_{\Sigma} = \mathcal{V}(\Pi_{\Sigma}^\dagger) : \mathcal{V}(\Sigma^\#) \to \mathcal{V}(\Sigma_1) \otimes \ldots \otimes \mathcal{V}(\Sigma_k)$$

$$i_{\Sigma} = \mathcal{V}(\Pi_{\Sigma}) : \mathcal{V}(\Sigma_1) \otimes \ldots \otimes \mathcal{V}(\Sigma_k) \to \mathcal{V}(\Sigma^\#)$$
List of Properties

- Expression independent of choice of \hat{M}.
 \[p_{\Sigma} i_{\Sigma} = \text{id} \]
 so that
 \[P = p_{\Sigma} i_{\Sigma} \]
 an idempotent.
List of Properties

- Expression independent of choice of \hat{M}. $p_\Sigma i_\Sigma = \text{id}$ so that $P = p_\Sigma i_\Sigma$ an idempotent.

- $x = \mathcal{V}^{\text{conn}}(S^1 \times S^2)$.
List of Properties

- Expression independent of choice of \widehat{M}. $p_{\Sigma} i_{\Sigma} = \text{id}$ so that $P = p_{\Sigma} i_{\Sigma}$ an idempotent.

- $x = \mathcal{V}^{\text{conn}}(S^1 \times S^2)$.

- $\mathcal{V}^{\text{conn}}(\Lambda_{\Sigma}) = x^{\beta_0(\Sigma) - 1} P_{\Sigma}$.

A few more general structure axioms.

Theorem

Suppose $\mathcal{V}^{\text{conn}}$ is a connected TQFT that admits maps with properties as listed. Then $\mathcal{V}^{\text{conn}}$ extends to a half-projective TQFT with respect to x as above.
List of Properties

- Expression independent of choice of \(\widehat{M} \). \(p_\Sigma i_\Sigma = \text{id} \) so that \(P = p_\Sigma i_\Sigma \) an idempotent.
- \(x = V^{\text{conn}}(S^1 \times S^2) \).
- \(V^{\text{conn}}(\Lambda_\Sigma) = x^{\beta_0(\Sigma)-1}P_\Sigma \).
- A few more general structure axioms.
List of Properties

- Expression independent of choice of \hat{M}. $p_\Sigma i_\Sigma = \text{id}$ so that $P = p_\Sigma i_\Sigma$ an idempotent.

- $x = \mathcal{V}^{\text{conn}}(S^1 \times S^2)$.

- $\mathcal{V}^{\text{conn}}(\Lambda_\Sigma) = x^{\beta_0(\Sigma) - 1}P_\Sigma$.

- A few more general structure axioms.

Theorem

Suppose $\mathcal{V}^{\text{conn}}$ is a connected TQFT that admits maps with properties as listed. Then $\mathcal{V}^{\text{conn}}$ extends to a half-projective TQFT with respect to x as above.
Integral TQFT – \(p = 5 \) example

- Consider case \(p = 5 \) so that \(q = 1 \) and hence

\[
x = \mathcal{V}(S^1 \times S^2) = \mathcal{D} = u(\zeta - \zeta^{-1}).
\]
Integral TQFT – \(p = 5 \) example

- Consider case \(p = 5 \) so that \(q = 1 \) and hence

\[
x = \mathcal{V}(S^1 \times S^2) = D = u(\zeta - \zeta^{-1}).
\]

- Have \(\mathcal{V}(\Lambda_\Sigma) = x^{\beta_0(\Sigma) - 1}P \), with integral projector \(P \).
Integral TQFT – $p = 5$ example

- Consider case $p = 5$ so that $q = 1$ and hence
 \[x = \mathcal{V}(S^1 \times S^2) = D = u(\zeta - \zeta^{-1}) \]

- Have $\mathcal{V}(\Lambda \Sigma) = x^{\beta_0(\Sigma) - 1}P$, with integral projector P.

- Thus $(\zeta - \zeta^{-1})^{\rho(M)}$ divides $\mathcal{V}(M)$ for closed manifold.
Integral TQFT – $p = 5$ example

- Consider case $p = 5$ so that $q = 1$ and hence $x = \mathcal{V}(S^1 \times S^2) = \mathcal{D} = u(\zeta - \zeta^{-1})$.

- Have $\mathcal{V}(\Lambda \Sigma) = x^{\beta_0(\Sigma) - 1} \mathbb{P}$, with integral projector \mathbb{P}.

- Thus $(\zeta - \zeta^{-1})^{\rho(M)}$ divides $\mathcal{V}(M)$ for closed manifold.

⇒ “rederivation” of Gilmer cut-number result from general axioms.
Integral TQFT – $p = 5$ example

- Consider case $p = 5$ so that $q = 1$ and hence
 \[x = \mathcal{V}(S^1 \times S^2) = \mathcal{D} = u(\zeta - \zeta^{-1}) \]

- Have $\mathcal{V}(\Lambda_\Sigma) = x^{\beta_0(\Sigma)^{-1}}P$, with integral projector P.

- Thus $(\zeta - \zeta^{-1})^\rho(M)$ divides $\mathcal{V}(M)$ for closed manifold.

 \Rightarrow “rederivation” of Gilmer cut-number result from general axioms.

- From dimension corollary get $\dim(\mathcal{V}(\Sigma_g)) \in (\zeta - \zeta^{-1})^{g-1}\mathbb{R}$.
Integral TQFT – $p = 5$ example

- Consider case $p = 5$ so that $q = 1$ and hence
 $$x = \mathcal{V}(S^1 \times S^2) = D = u(\zeta - \zeta^{-1}).$$

- Have $\mathcal{V}(\Lambda \Sigma) = x^{\beta_0(\Sigma)} \mathbb{P}$, with integral projector \mathbb{P}.

- Thus $(\zeta - \zeta^{-1})^{\rho(M)}$ divides $\mathcal{V}(M)$ for closed manifold.

 \Rightarrow “rederivation” of Gilmer cut-number result from general axioms.

- From dimension corollary get $\dim(\mathcal{V}(\Sigma_g)) \in (\zeta - \zeta^{-1})^{g-1}\mathbb{R}$.

- Using $5 = w(\zeta - \zeta^{-1})^4$ for unit $w \in \mathbb{R}$ obtain (elem. number theory)
 $$5^{\alpha} \text{ divides } \dim(\mathcal{V}(\Sigma_g)) \text{ for } \alpha = \left\lfloor \frac{g - 1}{4} \right\rfloor.$$
Integral TQFT – \(p = 5 \) example

- Consider case \(p = 5 \) so that \(q = 1 \) and hence
 \[
 x = \mathcal{V}(S^1 \times S^2) = D = u(\zeta - \zeta^{-1}).
 \]

- Have \(\mathcal{V}(\Lambda_\Sigma) = x^{\beta_0(\Sigma)-1}P \), with integral projector \(P \).

- Thus \((\zeta - \zeta^{-1})^{\rho(M)} \) divides \(\mathcal{V}(M) \) for closed manifold.

 \[\Rightarrow \text{“rederivation” of Gilmer cut-number result from general axioms.}\]

- From dimension corollary get \(\dim(\mathcal{V}(\Sigma_g)) \in (\zeta - \zeta^{-1})^{g-1}\mathbb{R} \).

- Using \(5 = w(\zeta - \zeta^{-1})^4 \) for unit \(w \in \mathbb{R} \) obtain (elem. number theory)
 \[
 5^a \text{ divides } \dim(\mathcal{V}(\Sigma_g)) \text{ for } a = \left\lfloor \frac{g-1}{4} \right\rfloor.
 \]

- Indeed have \(\left\lfloor \frac{g}{2} \right\rfloor \text{ divides } \dim(\mathcal{V}(\Sigma_g)) \).
Hennings TQFTs

- Vector spaces $\mathcal{V}(\Sigma_g) = \text{Inv}_H(H \otimes g)$ w.r.t. to adjoint action of H.
- Denote λ_α the adjoint action of λ on $H \otimes \alpha$.
Hennings TQFTs

- Vector spaces \(\mathcal{V}(\Sigma_g) = \text{Inv}_\mathcal{H}(\mathcal{H}^{\otimes g}) \) w.r.t. to adjoint action of \(\mathcal{H} \).
- Denote \(\overline{\lambda}_a \) the adjoint action of \(\lambda \) on \(\mathcal{H}^{\otimes a} \).
- For \(\Sigma = \Sigma_{g_1} \sqcup \Sigma_{g_2} \) have

\[
\overline{\Lambda}_\Sigma = \mathcal{V}(\Lambda_\Sigma) = \text{Inv}(\overline{\lambda}_{g_1} \otimes \text{id}_{g_2}) = \text{Inv}_\mathcal{H}(\text{id}_{g_1} \otimes \overline{\lambda}_{g_2})
\]
acting on \(\text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \mathcal{H}^{\otimes g_2}) \).
Hennings TQFTs

- Vector spaces $\mathcal{V}(\Sigma_g) = \text{Inv}_{\mathcal{H}}(\mathcal{H} \otimes g)$ w.r.t. to adjoint action of \mathcal{H}.

- Denote $\overline{\lambda}_a$ the adjoint action of λ on $\mathcal{H} \otimes a$.

- For $\Sigma = \Sigma g_1 \sqcup \Sigma g_2$ have

 $\overline{\Lambda}_\Sigma = \mathcal{V}(\Lambda_\Sigma) = \text{Inv}(\overline{\lambda}_{g_1} \otimes \text{id}_{g_2}) = \text{Inv}_{\mathcal{H}}(\text{id}_{g_1} \otimes \overline{\lambda}_{g_2})$

 acting on $\text{Inv}(\mathcal{H} \otimes g_1 \otimes \mathcal{H} \otimes g_2)$.

- Similarly, for $\Sigma = \Sigma g_1 \sqcup \Sigma g_2 \sqcup \ldots \Sigma g_k$ (with movable id insertion)

 $\overline{\Lambda}_\Sigma = \text{Inv}(\overline{\lambda}_{g_1} \otimes \ldots \otimes \overline{\lambda}_{g_{k-1}} \otimes \text{id}_{g_k})$.

- For non-semisimple \mathcal{H} have $\epsilon(\lambda) = 0$ and hence $\lambda^2 = 0$ implying
Hennings TQFTs

- Vector spaces $\mathcal{V}(\Sigma_g) = \text{Inv}_\mathcal{H}(\mathcal{H}^\otimes g)$ w.r.t. to adjoint action of \mathcal{H}.

- Denote $\overline{\lambda}_a$ the adjoint action of λ on $\mathcal{H}^\otimes a$.

- For $\Sigma = \Sigma_{g_1} \sqcup \Sigma_{g_2}$ have

$$
\overline{\Lambda}_\Sigma = \mathcal{V}(\Lambda_\Sigma) = \text{Inv}(\overline{\lambda}_{g_1} \otimes \text{id}_{g_2}) = \text{Inv}_\mathcal{H}(\text{id}_{g_1} \otimes \overline{\lambda}_{g_2})
$$
acting on $\text{Inv}(\mathcal{H}^\otimes g_1 \otimes \mathcal{H}^\otimes g_2)$.

- Similarly, for $\Sigma = \Sigma_{g_1} \sqcup \Sigma_{g_2} \sqcup \ldots \Sigma_{g_k}$ (with movable id insertion)

$$
\overline{\Lambda}_\Sigma = \text{Inv}(\overline{\lambda}_{g_1} \otimes \ldots \otimes \overline{\lambda}_{g_{k-1}} \otimes \text{id}_{g_k}).
$$

- For non-semisimple \mathcal{H} have $\epsilon(\lambda) = 0$ and hence $\lambda^2 = 0$ implying

 - $\text{im}(\overline{\Lambda}_\Sigma) \subseteq \text{Inv}(\mathcal{H}^\otimes g_1) \otimes \ldots \otimes \text{Inv}(\mathcal{H}^\otimes g_k)$.

 - $\text{Inv}(\mathcal{H}^\otimes g_1) \otimes \ldots \otimes \text{Inv}(\mathcal{H}^\otimes g_k) \subseteq \ker(\overline{\Lambda}_\Sigma)$.
Thus, instead of a multiple of a projector have \(\Lambda^2 \Sigma = 0 \)
Thus, instead of a multiple of a projector have $\Lambda^2_\Sigma = 0$ (but generally $\Lambda_\Sigma \neq 0$).
Thus, instead of a multiple of a projector have $\Lambda^2_\Sigma = 0$ (but generally $\Lambda_\Sigma \neq 0$).

Natural inclusion

$$i_\Sigma : \text{Inv}(\mathcal{H}^{\otimes g_1}) \otimes \ldots \otimes \text{Inv}(\mathcal{H}^{\otimes g_k}) \rightarrow \text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \mathcal{H}^{\otimes g_k}).$$
Thus, instead of a multiple of a projector have $\Lambda^2_\Sigma = 0$
(but generally $\Lambda_\Sigma \neq 0$).

Natural inclusion
\[
i_\Sigma : \text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \text{Inv}(\mathcal{H}^{\otimes g_k}) \to \text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \mathcal{H}^{\otimes g_k}).
\]

Natural opposite map $\tilde{p}_\Sigma = i^{-1}_\Sigma \Lambda_\Sigma$:
\[
\text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \mathcal{H}^{\otimes g_k}) \to \text{Inv}(\mathcal{H}^{\otimes g_1}) \otimes \ldots \otimes \text{Inv}(\mathcal{H}^{\otimes g_k})
\]
Thus, instead of a multiple of a projector have \(\overline{\Lambda}^2 = 0 \)
(but generally \(\overline{\Lambda} \neq 0 \)).

Natural inclusion
\[
i_\Sigma : \text{Inv}(\mathcal{H} \otimes g_1) \otimes \ldots \otimes \text{Inv}(\mathcal{H} \otimes g_k) \rightarrow \text{Inv}(\mathcal{H} \otimes g_1 \otimes \ldots \otimes \mathcal{H} \otimes g_k).
\]

Natural opposite map \(\tilde{p}_\Sigma = i_{\Sigma}^{-1} \overline{\Lambda} \) :
\[
\text{Inv}(\mathcal{H} \otimes g_1 \otimes \ldots \otimes \mathcal{H} \otimes g_k) \rightarrow \text{Inv}(\mathcal{H} \otimes g_1) \otimes \ldots \otimes \text{Inv}(\mathcal{H} \otimes g_k)
\]
\[
i_\Sigma \tilde{p}_\Sigma = \text{id} \quad \text{but} \quad \tilde{p}_\Sigma i_\Sigma = 0.
\]
Thus, instead of a multiple of a projector have \(\Lambda_\Sigma^2 = 0 \)
(but generally \(\Lambda_\Sigma \neq 0 \)).

Natural inclusion

\[i_\Sigma : \text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \text{Inv}(\mathcal{H}^{\otimes g_k}) \rightarrow \text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \mathcal{H}^{\otimes g_k}) \].

Natural opposite map \(\tilde{p}_\Sigma = i_\Sigma^{-1} \Lambda_\Sigma \):

\[\text{Inv}(\mathcal{H}^{\otimes g_1} \otimes \ldots \otimes \mathcal{H}^{\otimes g_k}) \rightarrow \text{Inv}(\mathcal{H}^{\otimes g_1}) \otimes \ldots \otimes \text{Inv}(\mathcal{H}^{\otimes g_k}) \]

\[i_\Sigma \tilde{p}_\Sigma = \text{id} \quad \text{but} \quad \tilde{p}_\Sigma i_\Sigma = 0. \]

Strategies

- For closed \(M \) with \(\rho(M) > 0 \) have \(\mathcal{V}(M) = \text{trace}(\Lambda f) = 0. \)
Thus, instead of a multiple of a projector have \(\Lambda^2 = \lambda \Sigma = 0 \) (but generally \(\lambda \Sigma \neq 0 \)).

Natural inclusion
\[
i_\Sigma : \text{Inv}(\mathcal{H} \otimes g_1) \otimes \ldots \otimes \text{Inv}(\mathcal{H} \otimes g_k) \rightarrow \text{Inv}(\mathcal{H} \otimes g_1 \otimes \ldots \otimes \mathcal{H} \otimes g_k).
\]

Natural opposite map \(\tilde{p}_\Sigma = i_\Sigma^{-1} \lambda \Sigma : \)
\[
\text{Inv}(\mathcal{H} \otimes g_1 \otimes \ldots \otimes \mathcal{H} \otimes g_k) \rightarrow \text{Inv}(\mathcal{H} \otimes g_1) \otimes \ldots \otimes \text{Inv}(\mathcal{H} \otimes g_k)
\]
\[
i_\Sigma \tilde{p}_\Sigma = \text{id} \quad \text{but} \quad \tilde{p}_\Sigma i_\Sigma = 0.
\]

Strategies

For closed \(\mathcal{M} \) with \(\rho(\mathcal{M}) > 0 \) have \(\mathcal{V}(\mathcal{M}) = \text{trace}(\lambda f) = 0 \).

Note that \(\mathcal{V}(N \circ \mathcal{M}) = \text{Inv}_\mathcal{H}(\mathcal{N} \circ \lambda \circ \mathcal{M}) \) where \(\lambda \) is tensor of \(c(N, \mathcal{M}) \) factors \(\lambda_{g_i} \).
Thus, instead of a multiple of a projector have $\Lambda^2 = 0$ (but generally $\Lambda \neq 0$).

Natural inclusion

$$i_\Sigma : \text{Inv}(H^{\otimes g_1}) \otimes \ldots \otimes \text{Inv}(H^{\otimes g_k}) \to \text{Inv}(H^{\otimes g_1} \otimes \ldots \otimes H^{\otimes g_k})$$

Natural opposite map $\tilde{p}_\Sigma = i^{-1}\Lambda :$

$$\text{Inv}(H^{\otimes g_1} \otimes \ldots \otimes H^{\otimes g_k}) \to \text{Inv}(H^{\otimes g_1}) \otimes \ldots \otimes \text{Inv}(H^{\otimes g_k})$$

$$i_\Sigma \tilde{p}_\Sigma = \text{id} \quad \text{but} \quad \tilde{p}_\Sigma i_\Sigma = 0.$$

Strategies

For closed M with $\rho(M) > 0$ have $\mathcal{V}(M) = \text{trace}(\lambda f) = 0$.

Note that $\mathcal{V}(N \circ M) = \text{Inv}_H(\tilde{N} \circ \lambda \circ \tilde{M})$ where λ is tensor of $c(N, M)$ factors $\bar{\lambda}_{g_i}$.

In some sense “categorify” $x \sim$ insertion of $\bar{\lambda}$-factors.
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), \ldots) \ldots \).
Other Situations

Invariants from Character Varieties

- Variety $J(X) = \text{Hom}(\pi_1(X), G)/G$ for Lie group G.
- Linearize $\mathcal{V}(X) = H^*(J(X), ...)$.
- Correspondence – using top form evaluation
 $\mathcal{V}(\Sigma_{in}) \otimes \mathcal{V}(\Sigma_{out}) \longrightarrow \mathcal{V}(M)$.

$G = U(1)$ is Frohman-Nicas TQFT = Hennings TQFT.

Casson and other finite types Invariants.

More "exotic" examples with vanishing/connectivity properties

[Wehrheim & Woodward]: Floer Field & Connected Cerf Theory.

Heegaard-Floer Homology.
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), ...) \).
- Correspondence – using top form evaluation
 \[\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R} \]
- Too much homology in \(M \)
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), ...) \).
- Correspondence – using top form evaluation
 \[\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R} \]
- Too much homology in \(M \) \(\Rightarrow \) degree mismatches
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), \ldots) \ldots \).
- Correspondence – using top form evaluation
 \(\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R} \)
- Too much homology in \(M \) \(\Rightarrow \) degree mismatches \(\Rightarrow 0 \).
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), ...) \)...
- Correspondence – using top form evaluation
 \[\mathcal{V}(\Sigma_{in}) \otimes \mathcal{V}(\Sigma_{out}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R} \]
- Too much homology in \(M \) ⇒ degree mismatches ⇒ 0.
- \(G = \mathbb{U}(1) \) is Frohman-Nicas TQFT
Other Situations

Invariants from Character Varieties

- Variety $J(X) = \text{Hom}(\pi_1(X), G)/G$ for Lie group G.

- Linearize $\mathcal{V}(X) = H^* (J(X), ...)$.

- Correspondence – using top form evaluation
 $\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R}$

- Too much homology in M \Rightarrow degree mismatches $\Rightarrow 0$.

- $G = U(1)$ is Frohman-Nicas TQFT $=$ Hennings TQFT.
Other Situations

Invariants from Character Varieties

- Variety $J(X) = \text{Hom}(\pi_1(X), G)/G$ for Lie group G.

- Linearize $\mathcal{V}(X) = H^*(J(X), \ldots)$.

- Correspondence – using top form evaluation

 $\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R}$

- Too much homology in M \Rightarrow degree mismatches $\Rightarrow 0$.

- $G = U(1)$ is Frohman-Nicas TQFT $= \text{Hennings TQFT}$.

- Casson and other finite types Invariants.
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), ...) \)....
- Correspondence – using top form evaluation
 \[\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R} \]
- Too much homology in \(M \) \(\Rightarrow \) degree mismatches \(\Rightarrow 0 \).
- \(G = U(1) \) is Frohman-Nicas TQFT = Hennings TQFT.
- Casson and other finite types Invariants.

More “exotic” examples with vanishing/connectivity properties
Other Situations

Invariants from Character Varieties

- Variety $\mathcal{J}(X) = \text{Hom}(\pi_1(X), G)/G$ for Lie group G.
- Linearize $\mathcal{V}(X) = H^*(\mathcal{J}(X), \ldots)$.
- Correspondence – using top form evaluation
 $\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \rightarrow \mathcal{V}(M) \rightarrow \mathbb{R}$
- Too much homology in $M \Rightarrow$ degree mismatches $\Rightarrow 0$.
- $G = U(1)$ is Frohman-Nicas TQFT $= \text{Hennings TQFT}$.
- Casson and other finite types Invariants.

More “exotic” examples with vanishing/connectivity properties

- [Wehrheim & Woodward]: Floer Field & Connected Cerf Theory.
Other Situations

Invariants from Character Varieties

- Variety \(J(X) = \text{Hom}(\pi_1(X), G)/G \) for Lie group \(G \).
- Linearize \(\mathcal{V}(X) = H^*(J(X), ...) \).
- Correspondence – using top form evaluation
 \[\mathcal{V}(\Sigma_{\text{in}}) \otimes \mathcal{V}(\Sigma_{\text{out}}) \to \mathcal{V}(M) \to \mathbb{R} \]
- Too much homology in \(M \) \(\Rightarrow\) degree mismatches \(\Rightarrow 0\).
- \(G = U(1) \) is Frohman-Nicas TQFT \(=\) Hennings TQFT.
- Casson and other finite types Invariants.

More “exotic” examples with vanishing/connectivity properties

- [Wehrheim & Woodward]: Floer Field & Connected Cerf Theory.
- Heegaard-Floer Homology.
Thank You!