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1 Weyl’s theorem on the essential spectrum
In quantum mechanical one-particle scattering theory, one is typically interested in the following situation.
There is a self-adjoint Hamiltonian H0 = H∗0 on a separable Hilbert space H describing the free of a
particle. This operator often has purely absolutely continuous spectrum and can be analyzed explicitly (e.g.
the Laplacian). The perturbed Hamiltonian is then H = H0 + V with a perturbation V = V ∗ that is in
some sense small. In this section, it will be supposed that V is a compact operator and then the spectral
properties of H will be compared to those of H0. Recall that the discrete spectrum σdis(A) ⊂ C of a closed
operator A on H is defined the union of all isolated eigenvalues of A with finite multiplicity (namely, all
λ ∈ σ(A) such that there exists an r > 0 with Br(λ) ∩ σ(A) = {λ} and λ has finite multiplicity). The
essential spectrum is then by definition σess(A) = σ(A) \ σdis(A). Let us remark that there are various other
notions of essential spectrum, in particular the set σ′ess(A) = {z ∈ C | z 1 − A is Fredholm} is often called
the essential spectrum and it is clearly stable under compact perturbations. For self-adjoint operators these
sets coincide (a non-trivial fact), but for non-normal operators they do not.

1.1 Theorem (Weyl’s theorem on the essential spectrum) If V is compact, then

σess(H0 + V ) = σess(H0) ,

namely the essential spectrum is stable under compact perturbations.

Of course, the perturbation V may produce eigenvalues which may accumulate on σess(H0). The argu-
ments in proof are quite robust and apply also to not necessarily self-adjoint operator pairs of operators A
andB such that A−B is compact. Let us begin with the following preparatory result [RS, Theorem VI.14].

1.2 Theorem (Analytic Fredholm theorem) Let Ω ⊂ C be an opend connected set and f : Ω → B(H)
an analytic operator-valued function such that f(z) is a compact operator for every z ∈ Ω. Then one of the
following two claims holds true:
(i) There is a discrete set S ⊂ Ω (without limit points in Ω) such that 1−f(z) is invertible for no z ∈ Ω\S.
(ii) 1− f(z) is invertible for no z ∈ Ω.
In the case (i), (1 − f(z))−1 is meromorphis in Ω with poles in S having residues that are finite rank
operators. Moreover, for z ∈ S, the equation f(z)ψ = ψ has a non-zero solution ψ ∈ H.

Proof. By connectedness, it is sufficient to prove the result locally at every point z0 ∈ Ω. Choose an r > 0
such that

‖f(z)− f(z0)‖ <
1

2
, ∀ z ∈ Br(z0) .

By density of the finite rank operators on the compact operators, choose a finite rank operator F such that

‖F − f(z0)‖ <
1

2
.

Then a Neumann series shows that 1− f(z) + F is invertible for all z ∈ Br(z0). Let us write

1− f(z) =
(
1− F (1− f(z) + F )−1

)
(1− f(z) + F )

= (1− g(z))(1− f(z) + F ) ,

where we set g(z) = F (1−f(z)+F )−1 which is obviously a finite rank operator. This shows that 1−f(z)
is invertible if and only if 1− g(z) is invertible. But the invertibility of 1− g(z) can be tested with a finite
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dimensional determinant which depends analytically on z so that it is either identical to 0 in Br(z0) or has
a discrete set of zeros there. With more details, let us write

F =
N∑
n=1

|ψn〉〈φn| ,

with linearly independent vector ψ1, . . . , ψN ∈ H, and then

g(z) =
N∑
n=1

|ψn〉〈φn(z)|

where φn(z) = (1−f(z)∗+F ∗)−1φn. Then g(z)ψ = ψ implies ψ =
∑N

n=1 λnψn with coefficients λn ∈ C,
and g(z)ψ = ψ has a solution if and only if there are coefficients λ1, . . . , λN such that

λm =
N∑
n=1

λn 〈φm(z)|ψn〉 ,

which in turn is equivalent to having a vanishing determinant

d(z) = det (1N − 〈φm(z)|ψn〉n,m=1,...,N) .

This determinant is analytic so that Sr = {z ∈ Br(z0) | d(z) = 0} is either equal to Br(z0) or discrete.
If d(z) = 0, then clearly 1 − g(z) is not invertible. If d(z) 6= 0, then we will show that the equation
(1− g(z))ψ = φ can be solved with φ ∈ H for any ψ ∈ H, which implies that 1− g(z) is invertible. The
solution will be sought-after in the form ψ = φ+

∑N
n=1 µnψn, so one needs

(1− g(z))
N∑
n=1

µnψn = g(z)φ ,

which is now an equation only involving vectors in the span of ψ1, . . . , ψN . For the coefficient of ψn, one
finds

µn −
N∑
m=1

〈φn(z)|ψm〉 µm = 〈φn(z)|φ〉 ,

which is solvable for µ1, . . . , µN because d(z) 6= 0. In conclusion, 1− g(z) and thus 1− f(z) is invertible
if and only if z 6∈ Sr. The additional facts follow from the explicit form of the solution. 2

1.3 Remark In the classical Fredholm alternative, one takes f(z) = zK for a compact operator K. Apply-
ing the above theorem at z = 1 shows that either 1−K is invertible or the equation Kψ = ψ has a solution
ψ ∈ H. �

1.4 Theorem Let A and B be two bounded operators on a separable Hilbert space such that A − B is
compact. Let Ω ⊂ C be one connected component of C\σ(A). Then one of the following two claims holds
true:
(i) Ω contains a point in the resolvent set of B.
(ii) All points of Ω are eigenvalues of B.
In the case (i), the spectrum of B in Ω is discrete.
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Proof. Let K = A − B. Then z ∈ Ω 7→ K(A − z)−1 is analytic and compact-valued. For z ∈ Ω one has
B−z = (1−K(A−z)−1)(A−z), so the inverse (B−z)−1 exists if and only if (1−K(A−z)−1)−1 exists
(asA−z is invertible). Now one clearly has the dichotomy that either Ω contains some point in the resolvent
set of B or it contains none. The first case corresponds to (i). Then there exists some z0 ∈ Ω such that the
inverse (1−K(A−z0)−1)−1 exists. But by the analytic Fredholm theorem, the inverse (1−K(A−z)−1)−1

then exists for all z ∈ Ω except for a discrete set of points. Hence also the spectrum of B lying in Ω only
consists of a discrete set of points. In the second possibility, where no point of Ω lies in the resolvent set of
B, the operator 1 −K(A − z)−1 is not invertible for any z ∈ Ω. By the Fredholm alternative this implies
that for each z ∈ Ω there is a vector vz lying in the kernel of 1−K(A− z)−1. Setting wz = (A− z)−1vz,
one then has (A − z)wz = Kwz, that is Bwz = zwz. Therefore in the second possibility all points z ∈ Ω
are eigenvalues of B. 2

Proof of Theorem 1.1 for the case of bounded H0. Then A = H0 and B = H0 + V have spectrum on
the real line and their resolvent sets are connected in C. As z with |z| > ‖H0‖ + ‖V ‖ lies in the resolvent
set, only option (i) in Theorem 1.4 applies. Thus σ(H) \ σ(H0) is discrete and σess(H) ⊂ σess(H0). By
symmetry, also σess(H0) ⊂ σess(H). If the operators are only self-adjoint (and not necessarily bounded, then
one has to work with resolvents and use the fact that there is a mapping property connecting the essential
spectra of the Hamiltonian to that of the resolvents, see [RS]. 2

1.5 Remark Here is an example that also possibility (ii) in Theorem 1.4 can happen once one leaves the
world of normal operators. Let S =

∑
n∈Z |n〉〈n− 1| be the bilateral right shift on `2(Z). It is unitary and

its spectrum is σ(S) = σess(S) = S1. Now consider the rank one perturbation V = −|1〉〈0|. Then S + V is
the sum of two unilateral shifts and the spectrum of S + V is the fill unit disc so that σess(S + V ) = D1. On
the other hand, σ′ess(S + V ) = S1. �

2 RAGE theorem and extensions
In this chapter, we begin by discussing basic approaches to the phenomena of quantum transport: escape
probabilities and diffusion exponents. In particular, their connections to spectral properties are analyzed.

2.1 The time-averaged transition and return probabilities
Let H be a selfadjoint Hamiltonian on a separable Hilbert space. Suppose the system is initially in a
normalized state ψ, e.g. the state |0〉 localized at the origin. Then the probability to be in a normalized state
φ at time t is |〈φ|e−ıtH |ψ〉|2. Unfortunately it is difficult to analyze this quantity directly and one therefore
usually considers the time-averaged probability to reach φ when starting from ψ:

pT (φ, ψ) =

∫ T

0

dt

T
|〈φ|e−ıtH |ψ〉|2 .

Then pT (φ, ψ) is called the time-averaged transition probability from ψ to φ (under the dynamics generated
by H) and pT (ψ, ψ) is often also called the time-averaged return probability to ψ. Clearly, if ψ is an
eigenstate of H with energy E so that e−ıtHψ = e−ıtEψ, then pT (ψ, ψ) = 1. On the other hand, if initial
state ψ lies in the continuous spectral subspace of H , that is, its spectral measure contains no atom, then the
return probability pT (ψ, ψ) converges to 0 in the long time limit. This follows from the so-called RAGE
theorem which can be tracked back to contributions by Ruelle, Amrein, Georgescu and Enss in 1970’s.
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2.1 Theorem (RAGE theorem) Let H be a self-adjoint operator and K a compact operator on a separable
Hilbert spaceH. Then for any ψ in the continuous subspaceHc ⊂ H associated to H , one has

lim
T→∞

∫ T

0

dt

T
‖K e−ıHt ψ‖2 = 0 .

The main ingredient of the proof is following classical result of Wiener on the Fourier transform of a
measure.

2.2 Theorem (Wiener) Let ν be a complex measure on R. Then

lim
T→∞

∫ T

0

dt

T

∣∣∣∣∫ ν(dE) eıtE
∣∣∣∣2 =

∑
E∈R

|ν({E})|2 .

Proof. Let us begin by evaluating the l.h.s. before the limit:∫ T

0

dt

T

∣∣∣∣∫ ν(dE) eıtE
∣∣∣∣2 =

∫ T

0

dt

T

∫
ν(dE)

∫
ν(dE ′) eıt(E−E

′)

=

∫
ν(dE)

∫
ν(dE ′)

(
eıT (E−E′) − 1

ı(E − E ′)T
δE 6=E′ + δE=E′

)
,

where the δ is of Kronecker and not Dirac type. Now the integrand is bounded by 1 and therefore the
dominated convergence theorem allows to move the limit inside of the integral. Thus

lim
T→∞

∫ T

0

dt

T

∣∣∣∣∫ ν(dE) eıtE
∣∣∣∣2 =

∫
ν(dE)

∫
ν(dE ′) δE=E′ =

∫
ν(dE) ν({E}) ,

which implies the result. 2

2.3 Lemma Let H be a self-adjoint operator and ψ, φ normalized vectors in Hilbert space. Further let µ
be the spectral (probability) measure of ψ and ν the spectral (complex) measure of ψ, φ correspondingly,
namely

〈ψ|f(H)|ψ〉 =

∫
µ(dE) f(E) , 〈φ|f(H)|ψ〉 =

∫
ν(dE) f(E) , f ∈ C0(R) . (2.1)

Then ν is absolutely continuous w.r.t. µ and the (complex) Radon-Nykodym derivative in ν(dE) =
g(E)µ(dE) satisfies g ∈ L2(µ) ∩ L1(µ).

Proof. If Pψ denotes the orthogonal projection on the cyclic subspace of ψ which by the spectral theorem
is isomorphic to L2(µ), then Pψ|φ〉 is also in the cyclic subspace and isomorphic to an element g ∈ L2(µ).
But as by the Cauchy-Schwarz inequality L2(µ) ⊂ L1(µ) for any finite measure space, the result follows.
Alternatively, for any Borel set B ⊂ R, the Cauchy-Schwarz inequality implies

|ν(B)| = |〈φ|χB(H)|ψ〉| ≤ |〈φ|φ〉|
1
2 |〈ψ|χB(H)|ψ〉|

1
2 = µ(B)

1
2 ,

where it was used that χB(H) is a projection. Thus ν (more precisely, its real and imaginary parts sepa-
rately) is absolutely continuous w.r.t. µ and there exists a density g ∈ L1(µ). To prove that g is also in
L2(µ) requires again the above argument. 2

Proof of Theorem 2.1. As the compact operators are norm limits of finite rank operator, it is sufficient to
prove the result for finite rank operators. Furthermore, by the triangle inequality one then shows that it is
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even sufficient to prove the result for a rank one operator K = |φ〉〈φ| (it is an exercise to fill in the details).
Thus we need to show

lim
T→∞

∫ T

0

dt

T

∣∣〈φ|e−ıHt|ψ〉∣∣2 = 0 .

But using the spectral measure ν as in (2.1) this becomes

lim
T→∞

∫ T

0

dt

T

∣∣∣∣∫ ν(dE) e−ıEt
∣∣∣∣2 = 0 .

As ν has no atoms, the Wiener theorem concludes the proof. 2

There are two other ways to take time averages which are technically convenient later on. One uses a
gaussian cut-off, the other is obtained by averaging with an exponential weight which effectively cuts of the
integral at 1

2
T :

pg
T (φ, ψ) =

1

(2π)
1
2T

∫
R
dt e−

t2

T2 |〈φ|e−ıtH |ψ〉|2 , pe
T (φ, ψ) =

2

T

∫ ∞
0

dt e−
2t
T |〈φ|e−ıtH |ψ〉|2 .

Using the upper bound χ[0,T ](t) ≤ e e−
t2

T2 and (2π)−
1
2 e−

t2

T2 ≤ 2e−
t
T for t ≥ 0, one gets

pT (φ, ψ) ≤ e (2π)
1
2 pg

T (φ, ψ) ≤ 2 e (2π)
1
2 pe

T (φ, ψ) .

We will see further below that so-called scaling exponent are independent of the choice of time-averaging.
The following formula explains why it is convenient to introduce the factor 1

2
in the exponential average

and also why this variant is of the interest in the first place (it is possible to calculated pe
T (φ, ψ) from the

resolvent of H):

2.4 Lemma Let H be a self-adjoint operator on a separable Hilbert spaceH. Then

pe
T (φ, ψ) =

1

π T

∫
R
dE

∣∣〈φ|(E + ı T−1 −H)−1|ψ〉
∣∣2 .

Proof. Let ν be the complex spectral measure of H associated to φ and ψ. Then

pe
T (φ, ψ) =

2

T

∫ ∞
0

dt e−
2t
T

∫
ν(dE ′)

∫
ν(dE ′′) eıt(E

′−E′′)

=
2

T

∫
ν(dE ′)

∫
ν(dE ′′)

− 1

2T−1 − ı(E ′ − E ′′)

=
2 ı

T

∫
ν(dE ′)

∫
ν(dE ′′)

1

(E ′′ − ı T−1)− (E ′ + ı T−1)

=
2 ı

T

∫
ν(dE ′)

∫
ν(dE ′′)

∫
dE

2πı

1

E ′ + ı T−1 − E
1

E ′′ − ı T−1 − E
,

where the last equation follows from a contour integration. Now again using Fubini’s theorem and replacing
the spectral theorem shows the claim. 2

Again a RAGE theorem can be formulated for exponential time averages. Let us directly focus on the
return probability in the following proposition.
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2.5 Proposition Let H be a self-adjoint operator on a separable Hilbert space H. If ν denotes the spectral
measure of H associated to φ and ψ, then one has

lim
T→∞

pe
T (φ, ψ) = lim

T→∞
pg
T (φ, ψ) =

∑
E∈R

|ν({E})|2 .

In particular, if ψ is in the continuous subspace Hc ⊂ H associated to H , the time-averaged transition
probability pe

T (φ, ψ) vanishes as T →∞.

Proof. Due to the spectral theorem, one has

pe
T (φ, ψ) =

2

T

∫ ∞
0

dt e−
2t
T

∫
ν(dE)

∫
ν(dE ′) eıt(E−E

′) =

∫
ν(dE)

∫
ν(dE ′)

1

1 + ı T
2

(E − E ′)
.

The integrand is bounded above by 1 and therefore the limit T → ∞ can again be taken into the integral
and one can conclude as in the proof of Wiener’s theorem. Similarly for the gaussian averages,

pg
T (φ, ψ) =

1

(2π)
1
2T

∫
R
dt e−

t2

T2

∫
ν(dE)

∫
ν(dE ′) eıt(E−E

′) =

∫
ν(dE)

∫
ν(dE ′) e−

1
4
T 2(E−E′)2

.

Again one can proceed as before. 2

The next aim is to get more quantitative information on the decay of transition probabilities. Roughly,
one wants to show that continuity properties of the spectral measures implies decay properties of the tran-
sition properties. Such continuity properties are typically associated to fractal dimensions of the spectral
measure and there is a whole zoology of such dimensions: Hausdorff dimensions, packing dimensions,
multifractal dimensions, box-counting dimensions, and so on. A very rough version is the following:

2.6 Definition Let α ∈ R. A probability measure µ on R is said to be uniformly α-continuous if there is a
constant C such that for all E ∈ R and ε > 0:

µ([E − ε, E + ε]) ≤ C εα .

A measure with Dirac peaks has the minimal regularity α = 0, which an absolutely continuous measure
with a smooth density has α = 1. In between are the fractal measures. However, if one considers µ(dE) =

(E2 − 1)−
1
2χ|E|≤1dE (as van Hove singularities at the band edges in dimension 1), then the regularity is

only α = 1
2

even though this results only from the two points E = ±1. Here is a more refined definition:

2.7 Definition The local spectral exponents of a probability measure µ on R are defined by

αµ(E) = lim inf
ε→0

log(µ([E − ε, E + ε]))

log(ε)
.

The Hausdorff dimension of µ is then

dimH(µ) = µ- essinf
E∈R

αµ(E) .

Then one can show that to every absolutely continuous measure with an integrable density has Hausdorff
dimension 1. In general, for every uniformly α-continuous measure µ one has dimH(µ) ≥ α. Actually the
notion of uniform α-continuity is of limit practical use because typically fractal measures have a much
larger Hausdorff dimension, but it does allow to derive simple quantitative decay estimates of the transition
probability based on the following result from harmonic analysis.
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2.8 Theorem (Strichartz 1990) Let µ be a uniform α-continuous probability measure on R and let f ∈
L2(µ). Then there is a constant C such that∫ T

0

dt

T

∣∣∣∣∫ µ(dE) f(E) eıtE
∣∣∣∣2 ≤ C T−α .

The same holds for a gaussian time average.

Proof. Let us begin from

e

T

∫
R
dt e−

t2

T2

∣∣∣∣∫ µ(dE) f(E) eıtE
∣∣∣∣2 =

e

T

∫
R
dt e−

t2

T2

∫
µ(dE)

∫
µ(dE ′) f(E) f(E ′) eıt(E−E

′)

= e (2π)
1
2

∫
µ(dE)

∫
µ(dE ′) f(E) f(E ′) e−

1
4
T 2(E−E′)2

≤ e (2π)
1
2

∫
µ(dE) |f(E)|2

∫
µ(dE ′) e−

1
4
T 2(E−E′)2

,

where in the last step the Cauchy-Schwarz inequality was used. Now using the hypothesis∫
µ(dE ′) e−

1
4
T 2(E−E′)2

=
∑
n≥0

∫
n
T
≤|E−E′|<n+1

T

µ(dE ′) e−
1
4
T 2(E−E′)2

≤
∑
n≥0

∫
n
T
≤|E−E′|<n+1

T

µ(dE ′) e−
1
4
n2

≤
∑
n≥0

2C T−α e−
1
4
n2

= C ′ T−α ,

for some constant C ′. Replacing this bound completes the proof. 2

Now follows the quantitative version of the RAGE theorem.

2.9 Proposition Let H be a self-adjoint operator on a separable Hilbert spaceH. Suppose that the spectral
measure µ of H associated to ψ is uniformly α-continuous. Then there is a constant C such that for any φ

pg
T (φ, ψ) ≤ C T−α .

Proof. By Lemma 2.3,

pg
T (φ, ψ) =

1

(2π)
1
2T

∫
R
dt e−

t2

T2

∣∣∣∣∫ µ(dE) g(E) eıtE
∣∣∣∣2 ,

with g ∈ L2(µ). Thus the result follows immediately from Strichartz theorem. 2

2.2 The diffusion exponents and their basic properties
The RAGE theorem tells us that the particle leaves its initial state when the spectrum is continuous, but it
does not tell us where it goes or how far it gets. Of course, in order to address such issues one needs to use
the spatial structure of the Hilbert space which is supposed to be `2(Zd) in this section. Let us introduce the
notations

pT (n,m) = pT (|n〉, |m〉) ,
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for the time-averaged probability to pass from site m to n. Note that (pT (n,m))n∈Zd is for each time T and
initial site m ∈ Zd a classical probability distribution:

∑
n∈Zd

pT (n,m) =
1

T

∫ T

0

dt
∑
n∈Zd
〈m|eıHt|n〉〈n|e−ıHt|m〉 = 1 .

As for every classical probability distribution, one can now calcuate the moments of these distributions. For
sake of concreteness, let the initial state be localized at the origin:

Mq(T ) =
∑
n∈Zd

|n|q pT (n, 0) , q > 0 , (2.2)

Now Mq(T ) measures the spread of the distribution and it typically grows with a powerlaw in time and the
exponent of the powerlaw behavior is then by definition the diffusion exponent. For larger q, the growth is
faster so that one should extract a factor q, namely one defines the diffusion exponents βq roughly by

Mq(T ) ≈ Cq T
qβq as T →∞ .

Some mathematical care is needed to give a precise meaning to the diffusion exponents. Most used in the
literature are the upper and lower exponents defined by

βq,+ = lim sup
T→∞

log(Mq(T ))

log(T q)
, βq,− = lim inf

T→∞

log(Mq(T ))

log(T q)
,

but sometimes it is also technically convenient to work with exponents defined via Mellin transform:

βq =
1

q
inf

{
γ > 0

∣∣∣∣ ∫ ∞
1

dT T−1−γMq(T ) <∞
}
,

and in this latter case we also write Mq(T ) ∼ T qβq . We shall shortly show that βq ∈ [0, 1], which is why
the factor 1

q
is taken out. Then the following terminology is used:

• If βq = 1, say for all q, one speaks of ballistic motion.

• If βq = 1
2
, say again for all q, one speaks of diffusive motion.

• If βq < 1
2

one speaks of subdiffusive motion, for βq > 1
2

of superdiffusive motion.

• For βq = 0, the system or Hamiltonian is called localized. As a vanishing diffusion exponent does
allow for logarithmically divergent terms (in time), the term dynamical localization is reserved for
the situation where

sup
T>0

Mq(T ) ≤ C < ∞ , q > 0 .

One then speaks of Anderson localization, namely localization of quantum wave packets due to de-
structive quantum interferences.

• For any other value of the diffusion exponents one speaks of anomalous diffusion (in the framework
of classical mechanics also of Levy flights), and if there is, moreover a non-trivial dependence of βq
on q of quantum intermittency.
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It is also possible to define local (in energy) diffusion exponents βq(∆) by inserting spectral projections
P∆ = χ∆(H) on intervals ∆ ⊂ R:

∑
n∈Zd

∫ T

0

dt

T
|〈n|e−ıtHP∆|0〉|2 ∼ T qβq(∆) .

This will not be developed in detail below. We will now first prove a series of general results on diffusion
exponents and then come to examples towards the end of this section.

2.10 Proposition Suppose that |0〉 is not an eigenvector of H and the matrix elements of H satisfy

|〈n|H|m〉| ≤ C e−η|n−m| ,

for some positive constants η and C. Then the diffusion exponents satisfy

0 ≤ βq,− ≤ βq ≤ βq,+ ≤ 1 .

The functions q ∈ (0,∞) 7→ βq,∗ are increasing.

Proof. First let us prove 0 ≤ βq,−. Using nq ≥ 1 for n 6= 0, one obtains

Mq(T ) ≥
∑
n6=0

pT (n, 0) = 1− pT (0, 0) .

But pT (0) converges to some number strictly less than 1 by Proposition 2.5 and the hypothesis that |0〉 is
not an eigenvector (note that this does not exclude other point spectrum). Thus Mq(T ) is larger than some
positive constant and thus βq,− ≥ 0. The proofs for the inequalities βq,− ≤ βq ≤ βq,+ are elementary and left
as an exercise, so let us now focus on the bound βq,+ ≤ 1 (this is called a ballistic upper bound). For each
α > 0 let us define Bα ⊂ `2(Zd) as the set of vectors having finite norm ‖ψ‖α = supk∈Zd e

α|k||〈k|ψ〉| <∞.
Furnished with this norm Bα is actually a Banach space. Let us next show that H is a bounded operator on
Bα as long as α ≤ η

2
:

‖Hψ‖α = sup
k∈Zd

eα|k||〈k|H|ψ〉|

≤ sup
k∈Zd

eα|k|
∑
n∈Zd

|〈k|H|n〉| |〈n|ψ〉|

≤ sup
k∈Zd

eα|k|
∑
n∈Zd

C e−η|k−n| ‖ψ‖α e−α|n|

≤ ‖ψ‖αC sup
k∈Zd

eα|k|
∑
n∈Zd

e−2α|k−n| e−α|n|

≤ ‖ψ‖αC sup
k∈Zd

∑
n∈Zd

e−α|k−n|

where in the last step the triangle inequality |k− n| − |n|+ |k| ≥ 0 was used. The sum over n is now finite
and thus ‖H‖α <∞. This implies that

|〈n|e−ıHt|0〉| ≤ e−|n|α ‖e−ıHt|0〉‖α ≤ e−|n|α+t ‖H‖α .
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Thus, for any ε > 0,∑
n∈Zd

|n|q |〈n|e−ıHt|0〉|2 ≤ tq(1+ε)
∑
|n|≤t1+ε

|〈n|e−ıHt|0〉|2 +
∑
|n|>t1+ε

|n|q e−2 |n|α+2 t ‖H‖α

≤ tq(1+ε) +
∑
|n|>t1+ε

|n|q e−2 |n|α+2 t ‖H‖α .

Now the second summand vanishes in the limit t → ∞. Furthermore, the inequality remains true with
exponential time average so that Mq(T ) ≤ T q(1+ε) + o(1) which implies βq ≤ 1 + ε. As ε is arbitrary, the
inequality follows.

Now let us come to the fact that the diffusion exponents are increasing in q. Actually, the moments
Mq(T )

1
q are increasing in q. Indeed, as already pointed out, pT = (pT (n, 0))n∈Zd is a probability measure

on Zd and Mq(T ) = EpT (Xq) where X is the position operator on Zd. Therefore the Hölder inequality
implies

Mq(T ) = EpT (Xq 1) ≤ EpT (Xp)
q
p EpT (1)1− q

p = Mp(T )
q
p ,

so that the claim follows. 2

The a priori ballistic upper bound proved above combined with the following lemma shows that one can
also use the exponential and gaussian averaged transition probabilities in (2.2) if one is only interested in
calculating the diffusion exponents.

2.11 Lemma Let f be a non-negative measurable function satisfying f(t) ≤ Ctn for some C > 0 and
n ≥ 0. Then

lim inf
T→∞

log
(∫ T

0
dt f(t)

)
log(T )

= lim inf
T→∞

log
(∫∞

0
dt e−t

2/4T 2
f(t)

)
log(T )

.

Similar equalities hold for lim sup and other growth exponents, as well as an exponential mean instead of
gaussian mean.

Proof: Let α and β denote the exponents on the left and right hand side respectively. The inequality∫ T

0

dt f(t) ≤ e4

∫ ∞
0

dt e−
t2

4T2 f(t)

implies that α ≤ β. On the other hand, we have

∫ ∞
0

dt e−
t2

4T2 f(t) ≤
∫ T 1+ε

0

dtf(t) + C

∫ ∞
T 1+ε

dt e−
t2

4T2 tn

≤
∫ T 1+ε

0

dtf(t) + C ′e−
Tε

4 T n .

This implies that β ≤ (1 + ε)α for any ε > 0. The other claims are left as an exercise. 2

The following so-called Guarneri bound is the main general (in the sense of model independent) con-
nection there is between diffusion exponents and spectral properties of the Hamiltonian.
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2.12 Theorem (Guarneri 1989) Let H be a Hamiltonian on `2(Zd). Suppose that the spectral measure of
|0〉 is uniformly α-continuous. Then

βq,− ≥
α

d
.

Proof. Let us work with the gaussian time averages. Then the basic estimates are, for arbitrary N ,

M g
q(T ) ≥ N q

∑
|n|>N

pg
T (n, 0) ≥ N q

1−
∑
|n|≤N

pg
T (n, 0)

 ≥ N q

(
1− (2N + 1)d sup

|n|≤N
pg
T (n, 0)

)
.

Now using the hypothesis and Proposition 2.9 one finds

M g
q(T ) ≥ N q

(
1− C Nd T−α

)
=

1

2
(2C)−

q
d T q

α
d ,

where in the second inequality we chose N = ( 1
2C
Tα)

1
d . This completes the proof. 2

2.13 Remark Theorem 2.12 can be significantly improved to

βq,− ≥
1

d
dimH(µ) .

Actually this is the bound proved by Guarneri. If furthermore the so-called multifractal dimensions Dq of
the spectral measure µ of H associated to |0〉 are used, another generalization is:

βq,− ≥
1

d
D 1

1+q
, q > 0 .

Also lower bounds on the upper diffusion exponents βq,+ can be given in terms of packing dimensions. �

2.14 Remark The main message of all variants of the Guarneri bound is that continuity properties of the
spectral measures (namely, α-continuity) imply diffusion properties of the wave packet spreading, and this
in a quantitative way. The bounds imply, in particular:

• In dimension d = 1 absolutely continuous spectral measures imply ballistic transport.

• In dimension d = 2 it is possible to have absolutely continuous measures and nevertheless a diffusion
motion.

• In dimension d ≥ 3 one can have a (slow) subdiffusive motion even though the spectral measures are
absolutely continuous.

• The Guarneri bound does not exclude non-trivial transport (positive βq) if the spectral measures are
pure point so that the Hausdorff dimension vanishes.

Now let us cite some examples. Each of them needs quite extensive analysis which can be found in the
literature, except for the first one which will be studied below:

• For periodic systems (Bloch electrons) the transport is always ballistic.

• There are numerous one-dimensional quasi-periodic and almost periodic models for which one can
prove that the transport is anomalous (by proving lower bounds on the Hausdorff dimension of the
spectral measures and corresponding upper bounds on the transport).
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• There are examples of models with limq→0 βq = 1
d

and absolutely continuous spectral measures. This
means that the Guarneri bound cannot be improved (except with supplementary assumptions).

• There are several models with pure-point spectrum (so that the Hausdorff dimension of the spectral
measures vanishes), but limq→∞ βq = 1. In these models the Hilbert space is spanned by eigenfunc-
tions of H , but many of these eigenfunctions are very extended.

Finally let us conclude with one of most prominent conjectures in the field Schrödinger operators: in dimen-
sion d ≥ 3 the motion in the Anderson model (Laplacian plus random potential) is expected to be diffusion,
namely βq = 1

2
. �

3 Existence and basic properties of the wave operators
LetH be a separable Hilbert space andH0, V andH = H0 +V self-adjoint operators onH. We will mainly
be interested in two situations:

(i) H = L2(Rd) and H0 = −∆, with V a potential, namely a multiplication operator which has a
common domain with H0 given by the Sobolev space. The potential is supposed to fall off at infinity.

(ii) H = `2(Zd) and H0 is a periodic background operator and V is a local perturbation, e.g. a multiplica-
tion operator with finite support.

(iii) H = `2(Zd) and H0 is a periodic background operator and V is a concentrated on a hypersurface and,
say, again given by a multiplication operator. This set-up is called surface scattering.

Because V is local, one can expect that for long times (and far away from the support of V ) the dynamics of
the particle is rather described by H0 than by H . Hence it is reasonable to assume the following. Suppose
that ψ = ψ(0) ∈ H is an initial condition which evolves acccoring to the Schrödinger equation as

ψ(t) = e−ıtH ψ , t ∈ R .

Then there exist two initial condition φ± ∈ H such that

lim
t→±∞

ψ(t)− e−ıtH0φ± = 0 ,

namely using unitary invariance of the norm

lim
t→±∞

‖ψ(t)− e−ıtH0φ±‖ = lim
t→±∞

‖ψ(0)− eıtHe−ıtH0φ±‖ = 0 .

Of course, the limit may not exist, but if it does, it defines the wave operator. If φ+ is an eigenvector of
H0, then the limit can only exist if φ+ is also an eigenvector of H with same eigenvalue. Therefore in the
definition of the wave operator, one introduces a supplementary projection on the absolutely continuous
spectrum of H0 (which typically is the identity anyway). Again it is possibile and useful to consider general
operator pairs A = H and B = H0. For sake of simplicity, we will always assume that A and B are
bounded.

3.1 Definition Let A and B be two self-adjoint operators. Then the generalized wave operators Ω±(A,B)
exist if the strong limits

Ω±(A,B) = s-lim
t→±∞

eıtAe−ıtB Pac(B) .
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In many application, B = H0 has purely absolutely continuous spectrum so that Pac(B) = 1.

3.2 Theorem (Cook’s method 1957) Suppose suppose that there are dense subsets D± ⊂ Pac(B)H such
that for φ ∈ D± there is some T0 > 0 with∫ ∞

T0

dt ‖(B − A)e∓ıtBφ‖ < ∞ .

Then Ω±(A,B) exists.

Proof. Let us introduce the unitary W (t) = eıtAe−ıtB. Note that in general this is not a one-parameter
group. Then

∂tW (t) = ı eıtA(A−B)e−ıtB ,

and thus for t ≥ s

W (t)−W (s) =

∫ t

s

du ∂uW (u) =

∫ t

s

du ı eıuA(A−B)e−ıuB . (3.1)

Therefore, for φ ∈ D+,

‖(W (t)−W (s))φ‖ ≤
∫ t

s

du ‖eıuA(A−B)e−ıuBφ‖

=

∫ t

s

du ‖(A−B)e−ıuBφ‖ .

By the integrability assumption this goes to 0 as s → ∞. Consequently t 7→ W (t)φ has the Cauchy
property for t→∞ and therefore the limit

lim
t→∞

eıtAe−ıtB Pac(B)φ

exists. By a 3ε-argument it exists for all φ ∈ Pac(B)H (because eıtAe−ıtB Pac(B) is uniformly bounded in
t). For φ ∈ (Pac(B)H)⊥ it exists trivially. Hence the existence of Ω+(A,B) is shown. 2

3.3 Theorem (Kato 1957, Rosenblum 1957) Let A and B be two bounded self-adjoint operators such that
A−B is traceclass. Then Ω±(A,B) exist.

The result also holds for unbounded self-adjoint operators, basically with the same proof. The argument
presented here [RS] goes back to Pearson (1978). Let us focus on Ω+(A,B) as obviously Ω−(A,B) =
Ω+(−A,−B). By Cook’s method it is sufficient to show

lim
t→∞

sup
s>t
‖(W (t)−W (s))φ‖ = 0 (3.2)

for a dense set D of φ’s where again W (t) = eıtAe−ıtB. Here we choose

D =
{
φ ∈ Pac(B) | µφ(dE) = |f(E)|2dE with f ∈ L∞(R)

}
,

where µφ denotes the spectral measure of B w.r.t. φ, satisfying

〈φ|g(B)φ〉 =

∫
µφ(dE) g(E) , g ∈ C0(R) .

For φ ∈ D let us set |||φ||| = ‖f‖∞. Then the following estimate holds.
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3.4 Lemma For φ ∈ D and any ψ ∈ H,∫
R
dt |〈ψ|e−ıtBφ〉|2 ≤ 2π ‖ψ‖2 |||φ|||2 .

Proof. Let Q be the projection on the cyclic subspace of φ w.r.t. B. By the spectral theorem

〈ψ|e−ıtBφ〉 = 〈Qψ|e−ıtBφ〉 =

∫
dE |f(E)|2 η(E) e−ıtE , (3.3)

where η is a function representing Qψ. It satisfies∫
dE |η(E)|2 |f(E)|2 = 〈Qψ|Qψ〉 = ‖Qψ‖2 ≤ ‖ψ‖2 .

Thus |f(E)|2 η(E) is in L2(R) and therefore 〈ψ|e−ıtBφ〉 is its Fourier transform. By the Plancharel theorem,
it follows that ∫

R
dt |〈ψ|e−ıtBφ〉|2 = 2π

∫
dE |η(E)|2 |f(E)|4 .

Using |f(E)|4 ≤ |||φ|||2|f(E)|2 and the above, the bound follows. 2

3.5 Lemma For φ ∈ Pac(B)H and any ψ ∈ H,

lim
t→∞
〈ψ|e−ıtBφ〉 = 0 ,

and for any compact operator K
lim
t→∞
‖Ke−ıtBφ‖ = 0 .

Proof. Let us look at (3.3). Choosing t = 0 one sees that E 7→ |f(E)|2 η(E) is in L1(R) and therefore
the Riemann-Lebesgue lemma shows the first claim. The second follows by a 3ε-argument using that every
compact operator can be approximated in norm by a finite rank operator. 2

Proof of Theroem 3.3. Let us start from

‖(W (t)−W (s))φ‖2 = 〈φ|W (t)∗(W (t)−W (s))φ〉 − 〈φ|W (s)∗(W (t)−W (s))φ〉
= 〈φ|(1−W (t)∗W (s))φ〉 + 〈φ|(1−W (s)∗W (t))φ〉 . (3.4)

Let us focus on the first summand on the r.h.s.. The hypothesis and (3.1) imply that W (t) − W (s) is
compact. Therefore by Lemma 3.5

lim
a→∞

eıaBW (t)∗(W (t)−W (s))e−ıaBφ = 0 ,

that is
φ = lim

a→∞
eıaBW (t)∗W (s)e−ıaBφ .

Hence

〈φ|(1−W (t)∗W (s))φ〉 = lim
a→∞
〈φ|
(
eıaBW (t)∗W (s)e−ıaB −W (t)∗W (s)

)
φ〉

= lim
a→∞

∫ a

0

db 〈φ|∂b(eıbBW (t)∗W (s)e−ıbB)φ〉 .
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With K = A−B one now finds

∂b(e
ıbBW (t)∗W (s)e−ıbB) = ı BeıbBeıtBe−ıtAeısAe−ısBe−ıbB − ı eıbBeıtBe−ıtAeısAe−ısBe−ıbBB

= ı eı(b+t)B[B, eı(s−t)A]e−ı(s+b)B

= −ı eı(b+t)B[K, eı(s−t)A]e−ı(s+b)B .

It follows that

〈φ|(1−W (t)∗W (s))φ〉 = lim
a→∞
−ı
∫ a

0

db 〈φ|eı(b+t)B[K, eı(s−t)A]e−ı(s+b)Bφ〉

= lim
a→∞
−ı
∫ t+a

t

db 〈φ|eıbBKeı(s−t)Aeı(t−s)Be−ıbBφ〉

+ lim
a→∞

ı

∫ s+a

s

db 〈φ|eıbBe−ı(s−t)Beı(s−t)AKe−ıbBφ〉

= lim
a→∞
−ı
∫ t+a

t

db 〈φ|eıbBKW (s− t)e−ıbBφ〉

+ lim
a→∞

ı

∫ s+a

s

db 〈φ|eıbBW (s− t)∗Ke−ıbBφ〉 .

Next let us write out the trace class operator using two orthonormal basis (φn)n≥1 and (ψn)n≥1

K =
∑
n≥1

λn |φn〉〈ψn| ,

where (λn)n≥1 are the (positive) singular values and
∑

n≥1 λn < ∞. Now we can bound one of the terms
above using the Cauchy-Schwarz inequality:∣∣∣∣∫ t+a

t

db 〈φ|eıbBKW (s− t)e−ıbBφ〉
∣∣∣∣ =

∣∣∣∣∣∑
n≥1

λn

∫ t+a

t

db 〈φ|eıbBφn〉〈ψn|W (s− t)e−ıbBφ〉

∣∣∣∣∣
≤

∣∣∣∣∣∑
n≥1

λn

∫ t+a

t

db |〈φ|eıbBφn〉|2
∣∣∣∣∣

1
2

·

∣∣∣∣∣∑
n≥1

λn

∫ t+a

t

db |〈ψn|W (s− t)e−ıbBφ〉|2
∣∣∣∣∣

1
2

≤

∣∣∣∣∣
∫ ∞
t

db
∑
n≥1

λn |〈φn|e−ıbBφ〉|2
∣∣∣∣∣

1
2

·
(
2π ‖K‖1|||φ|||2

) 1
2

≤ 2π ‖K‖1|||φ|||2 ,

where in the last two steps Lemma 3.4 was used. Thus the integral over b is bounded uniformly in t and
hence has to converge to 0 as t→∞. All this applies to both contributions in 〈φ|(1−W (t)∗W (s))φ〉 and,
using the first identity (3.4) of the proof, also to

‖(W (t)−W (s))φ‖2 ≤ 4
(
2π ‖K‖1|||φ|||2

) 1
2

∣∣∣∣∣
∫ ∞

min{s,t}
db
∑
n≥1

λn |〈φn|e−ıbBφ〉|2
∣∣∣∣∣

1
2

. (3.5)

In particular, ‖(W (t)−W (s))φ‖2 converges to 0 as t→∞ and s→∞, namely the Cook criterium (3.2)
is satisfied. 2
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3.6 Proposition Let A and B be bounded operators such that the wave operators exist. Then the intertwin-
ing property

f(A) Ω±(A,B) = Ω±(A,B) f(B) ,

holds for every measurable function f .

Proof. From the definition, one has for all s ∈ R

Ω±(A,B) = s-lim
t→±∞

eıtAe−ıtB Pac(B)

= s-lim
t→±∞

eı(t+s)Ae−ı(t+s)B Pac(B)

= eısA Ω±(A,B) e−ısB ,

namely
e−ısA Ω±(A,B) = Ω±(A,B) e−ısB .

Now taking a Fourier transform or arguing by density shows the intertwining property. 2

3.7 Definition Let A and B be self-adjoint operators such that the generalized wave operators Ω±(A,B)
exist. Then

(i) H− = Ω−(A,B)H is called the set of incoming asymptotic states.

(ii) H+ = Ω+(A,B)H is called the set of outgoing asymptotic states.

3.8 Proposition Let A and B be bounded operators such that the wave operators Ω±(A,B) exist.

(i) Ω±(A,B) are partial isometries from Pac(B)H toH±.

(ii) H± ⊂ Pac(A)H

(iii) σac(B) ⊂ σac(A)

(iv) If C is another operator such that Ω±(B,C) exist, then Ω±(A,C) exist and the concatenation property
holds:

Ω±(A,C) = Ω±(A,B) Ω±(B,C) .

Proof. (i) For ψ ∈ Pac(B)H, one has

‖Ω±(A,B)ψ‖ = lim
t→±∞

‖W (t)ψ‖ = ‖ψ‖ ,

which is already claim (i). For (ii), let us note that the intertwining property shows that A|H± is unitarily
equivalent to B|Pac(B)H with unitary equivalence given by Ω±(A,B) : Pac(B)H → H±. As B|Pac(B)H
has only absolutely continuous spectrum by definition, so does A|H± . This also implies (iii). (iv) By (ii)
Ω±(B,C)H ⊂ Pac(B)H so that for all ψ ∈ H

lim
t→±∞

‖(1− Pac(B))eıtBe−ıtCPac(C)ψ‖ = 0 .

Thus taking the strong limits of

eıtAe−ıtCPac(C) = eıtAe−ıtBPac(B)eıtBe−ıtCPac(C) + eıtAe−ıtB(1− Pac(B))eıtBe−ıtCPac(C)

and using the fact that the strong limit of a product is the product of the strong limits shows the claim. 2
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3.9 Definition Let A and B be self-adjoint operators such that the generalized wave operators Ω±(A,B)
exist. Then

(i) The wave operators are said to be complete if

H+ = H− = Pac(A)H .

(ii) The wave operators are said to be asymptotically complete if

H+ = H− = (Ppp(A)H)⊥ ,

or, equivalently, if the wave operators are complete and σsc(A) = ∅.

(iii) The scattering operator S = S(A,B) is defined as

S = Ω+(A,B)∗Ω−(A,B) .

3.10 Proposition Let A and B be bounded operators such that the wave operators Ω±(A,B) exist. Then
they are complete if and only if Ω±(B,A) exists. Moreover, completess implies σac(B) = σac(A).

Proof. “⇒” Let φ ∈ Pac(A)H. There there exist ψ± ∈ Pac(B)H with φ = Ω±(A,B)ψ±. Hence

0 = ‖Ω±(A,B)ψ± − φ‖
= lim

t→±∞
‖eıtAe−ıtBψ± − Pac(A)φ‖

= lim
t→±∞

‖ψ± − eıtBe−ıtAPac(A)φ‖

namely Ω±(B,A)φ exists. On the orthogonal complement of PacH nothing has to be shown. “⇐” By
hypothesis and the concatenation property,

Ω±(A,B) Ω±(B,A) = Ω±(A,A) = Pac(A) .

In particular, Pac(A)H ⊂ Ω±(A,B)H. The other inclusion was already proved in Proposition 3.8(ii). The
last claim now follows from Proposition 3.8(iii). 2

3.11 Proposition The scattering operator S = S(A,B) satisfies

f(B)S = S f(B) .

If the wave operators Ω±(A,B) exist and are complete and σ(B) = σac(B), then S is a unitary operator.

Proof. The first fact follows from the interlacing property, applied twice. The second claim from Proposi-
tion 3.8(i). 2

4 Invariance principle

4.1 Definition Let T ⊂ R be open and decomposed into a finite union T =
⋃N
n=1 In of open intervals. A

twice differentiable function ϕ : T → R is called admissable if

(i) on each In is ϕ′ either strictly positive or strictly negative and
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(ii) the second derivative ϕ′′ is integrable on each compact In.

4.2 Theorem (Birman’s invariance principle 1962) Let A and B be self-adjoint operators such that A−B
is trace class. Suppose that ϕ : T =

⋃N
n=1 In → R is an admissable function such that σ(A) ⊂ T and

σ(B) ⊂ T and that each boundary point Ec ∈ ∂T either ϕ has a finite limit or A and B have no eigenvalue
at Ec. Then Ω±(ϕ(A), ϕ(B)) exists and is complete, and is given by

Ω±(ϕ(A), ϕ(B)) = Ω±(A,B)PB(T+) − Ω∓(A,B)PB(T−) ,

where (PB(Ω))Ω∈B(R) is the projection valued spectral measure of B, and T+ and T− are the sets where
ϕ′ > 0 and ϕ′ < 0 respectively.

4.3 Lemma Let ϕ : T =
⋃N
n=1 In → R be admissable and σn ∈ {−1, 1} be the sign of ϕ′ on In. Then for

w ∈ L2(In)

lim
s→σn∞

∫ ∞
0

dt

∣∣∣∣∫ dE e−ı(tE+sϕ(E))w(E)

∣∣∣∣2 = 0 . (4.1)

Proof. The function E ∈ R 7→ e−ısϕ(E) w(E) is in L2(R) and
∫
dE e−ı(tE+sϕ(E))w(E) is its Fourier

transform. Thus by the Plancharel theorem∫
R
dt

∣∣∣∣∫ dE e−ı(tE+sϕ(E))w(E)

∣∣∣∣2 = 2π

∫
dE |e−ısϕ(E))w(E)|2 = 2π ‖w‖2

2 .

In particular, the l.h.s. (4.1) is bounded by 2π ‖w‖2
2 and therefore it is possible to approximate w by a dense

set of functions (in the L2-norm). This set is chosen to be the span of the indicator functions. Hence it is
sufficient to show (4.1) for w = χ[a,b] with [a, b] ⊂ I . Suppose that

λ = inf
E∈[a,b]

ϕ′(E) > 0 .

Let us now use the identity

e−ı(tE+sϕ(E)) =
ı

t+ sϕ′(E)
∂Ee

−ı(tE+sϕ(E)) .

Then for t > 0 and s > 0, an integration by parts shows∣∣∣∣∫ b

a

dE e−ı(tE+sϕ(E))

∣∣∣∣ =

∣∣∣∣∫ b

a

dE
ı

t+ sϕ′(E)
∂Ee

−ı(tE+sϕ(E))

∣∣∣∣
≤ 1

t+ sϕ′(b)
+

1

t+ sϕ′(a)
+

∣∣∣∣∫ b

a

dE
sϕ′′(E)

(t+ sϕ′(E))2
e−ı(tE+sϕ(E))

∣∣∣∣
≤ 1

t+ sϕ′(b)
+

1

t+ sϕ′(a)
+

s

(t+ sλ)2

∫ b

a

dE |ϕ′′(E)| .

The last integral is uniformly bounded by hypothesis. Therefore all three summands are in L2(R≥0) in the
variable t, with an L2-norm that converges to 0 as s→∞. 2

Proof of Theorem 4.2. The notations and results of Theorem 3.3 will be used. Let us setD′ = D∩PB(In)H.
This is a dense subset in PB(In)H, and recall that all vectors have absolutely continuous spectral measure.
For ψ ∈ D′ let us write out (3.5) with s = 0 for the vector φ = e−ıϕ(B)sψ (with a different new s):

‖(W (t)− 1)e−ıϕ(B)sψ‖2 ≤ C

∣∣∣∣∣
∫ ∞

0

db
∑
n≥1

λn |〈φn|e−ı(bB+ϕ(B)s)ψ〉|2
∣∣∣∣∣

1
2

.
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As W (t) converges strongly to the wave operator Ω+(A,B) as t→∞, one gets

‖(Ω+(A,B)− 1)e−ıϕ(B)sψ‖2 ≤ C

∣∣∣∣∣∑
n≥1

λn

∫ ∞
0

db |〈φn|e−ı(bB+ϕ(B)s)ψ〉|2
∣∣∣∣∣

1
2

.

Each integral on the r.h.s. converges to 0 in the limit s → σn∞ by Lemma 4.3. Moreover, by Lemma 3.4
each summand on the r.h.s. can be bounded uniformly in s showing

‖(Ω+(A,B)− 1)e−ıϕ(B)sψ‖2 ≤ C

∣∣∣∣∣∑
n≥1

λn 2π ‖eıϕ(B)sφn‖2 |||ψ|||2
∣∣∣∣∣

1
2

≤ C ′ .

Consequently
lim

s→σn∞
‖(Ω+(A,B)− 1)e−ıϕ(B)sψ‖ = 0 .

By the intertwining property

eıϕ(A)s Ω±(A,B) = Ω±(A,B) eıϕ(B)s ,

one concludes
lim

s→σn∞
‖(Ω+(A,B) − eıϕ(A)s e−ıϕ(B)s)ψ‖ = 0 ,

namely
Ω+(A,B) = Ωσn(ϕ(A), ϕ(B)) , on PB(In)H .

This leads to the formula stated in the theorem. The proof of completeness is left as an exercise. 2

5 Lattice scattering by a perturbation of finite support
The purpose of this section is to develop the full arsenal of scattering theory for a quantum particle described
by a tight-binding Hamiltonian

H = H0 + V : `2(Zd)→ `2(Zd) ,

where H0 is a translation invariant operator with a single band and V is a finite rank perturbation supported
by a finite subset Λ ⊂ Zd. A typical example for a local perturbation is a potential with support Λ, namely
V =

∑
n∈Λ vn |n〉〈n| with vn ∈ R\{0}. The presentation follows [BS], but leaves out the technicalities

linked to threshold eigenvalues.

5.1 Analysis of the free operator
The translation invariance of the free operator H0 implies that it is of the form

H0 =
∑

n,m∈Zd
En−m |n〉〈m| .

Self-adjointness of H0 implies E−n = En. It is supposed that the coefficients En decay rapidly in E such that

E(k) =
∑
n∈Zd

eıknEn
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is a real analytic function on the d-dimensional torus Td = Rd/(2πZd). This function is the spectral
representation of H0. More precisely, H0 is diagonalized by the discrete Fourier transform F : `2(Zd) →
L2(Td), where L2(Td) is the Hilbert space of square integrable functions on Td. It is densely defined by

(Fφ)(k) =
1

(2π)
d
2

∑
n∈Zd

eıkn 〈n|φ〉 .

and is unitary. Now FH0F∗ =mult(k 7→ E(k) is a multiplication operator on L2(Td). Hence we restrict
ourselves to a free operator with a single band.

Hypothesis: E is a real analytic Morse function E(k) having only one maximum E+ and one minimum E−.

A Morse function has by definition only a finite number of critical points S∗ ⊂ Td which are non-
degenerate in the sense that the Hessian E ′′(k∗) for each k∗ ∈ S∗ is a real symmetric invertible d×d matrix.
The two critical points k∗− and k∗+ corresponding to the minimal and maximal values E− = E(k∗−) and
E+ = E(k∗+) of E are the only ones of definite signature. Due to the hypothesis all other critical points
k∗ ∈ S∗ have critical values E(k∗) in (E−, E+) and are of indefinite signature. A typical example is the
discrete Laplacian

H0 =
∑
n∈Zd

∑
|e|=1

|n− e〉〈n| ,

for which E(k) =
∑d

i=1 2 cos(ki), and translation invariant perturbations of it.

Let F : [E−, E+]→ R≥0 be given by

F (E) = 2
(E − E−)(E+ − E)

E+ − E−
. (5.1)

Then let X̂ be the vector field on Td defined by

X̂(k) = F
(
E(k)

) ∇E(k)

|∇E(k)|2
, k ∈ Td . (5.2)

Apart from the factor F ◦ E , the vector field X̂ is precisely the one used in the standard argument of Morse
theory [Nic] as well as in the proof of the coarea formula [Sak]. As E and F are smooth, this vector field is
smooth away from the set S∗ of critical points. At the critical points k∗± with extremal energy E(k∗±) = E±,
the function k 7→ F (E(k∗± + k)) vanishes linearly and hence the vector field has a source or a sink there.
At all other critical points with critical values lying inside the band [E−, E+], the vector field X̂ has a
singularity which has to be dealt with below. Let θb : Td \ S∗ → Td be the flow of X̂ , that is,

∂bθb = X̂ ◦ θb , θ0 = id . (5.3)

The flow θb is not complete because an orbit can reach one of the critical points with indefinite signature
in a finite time. Choosing orbits which stay away from these critical points or times which are sufficiently
small, one can calculate the flow of energy along the orbits. By the definition of the vector field X̂ ,

∂b E(θb(k)) = F (E(θb(k))) .

This equation shows that the flow θb maps constant energy surfaces to constant energy surfaces. Moreover,
the energy flow is governed by a simple ordinary differential equation of first order which can be integrated.
Choosing some reference energy Er ∈ (E−, E+), it leads to the following invertible function
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f(E) =

∫ E

Er

de

F (e)
. (5.4)

Then b = f(E(θb(k)))− f(E(k)) and

E(θb(k)) = f−1
(
b+ f(E(k))

)
. (5.5)

If Er = (E+ + E−)/2, integration gives

f(E) =
1

2
ln

(
E − E−
E+ − E

)
, f−1(b) = Er + ∆ tanh(b) , F (f−1(b)) =

∆

cosh2(b)
, (5.6)

where ∆ = (E+−E−)/2. By restricting θb to an adequate subset of Td, a complete flow can be constructed.
Let S be the union of S∗ and of the set of points reaching one of the critical points k∗ ∈ S∗ in finite time
(either positive or negative). It is important to remark that, under this flow, almost all points reach the
maximum and the minimum eventually, but it takes an infinite time to do so. Therefore the finite time
condition is a strong constraint. In fact, S is the union of S∗ and the stable and unstable manifolds of all
critical points of indefinite signature.

5.1 Proposition The set S is compact and has zero Lebesgue measure. The flow θb : Td \ S → Td \ S
is defined for all b ∈ R, that is, X̂ is complete on Td \ S. In addition, limb→±∞ θb(k) = k∗± for all
k ∈ Td \ S. Furthermore, for any open neighborhood U of S there exists an open subset V ⊂ U which
contains S \ {k∗−, k∗+} and is invariant under the flow θ.

Sketch of a proof. The vector field X̂ is gradient-like in the terminology of [Nic] (it is actually a gradient
vector field). Hence [Nic, Section 2.4] shows that limb→±∞ θb(k) ∈ S∗ and that the stable and unstable
manifolds of all critical points of indefinite signature are locally smooth submanifolds of Td. For each
critical point, the sum of the dimensions of the stable and unstable manifolds is equal to d. Along the flow
on these submanifolds the energy increases with a finite speed, except in neighborhoods of k∗±. Hence either
the submanifolds reach another critical point in a finite time (non-generic) or the points k∗± in infinite time.
Consequently, the points k∗± compactify the stable and unstable manifolds. As the number of critical points
is finite, the set S is compact with zero Lebesgue measure. To prove the last statement of the proposition,
let k∗ be a critical point of indefinite signature. Then let V (k∗) be an open neighborhood of k∗ contained in
U . Then V =

⋃
k∗
⋃
b∈R θb(V (k∗)) is an open set that is invariant by the flow. A compactness argument can

be used to show that V ⊂ U by choosing V (k∗) sufficiently small. 2

The level set of E corresponding to an energy E ∈ (E−, E+) is defined by

ΣE =
{
k ∈ Td \ S

∣∣∣ E(k) = E
}
.

These level sets will be called the quasi-Fermi surfaces. This terminology is introduced to stress that ΣE is
a strict subset of Fermi surface E−1(E) because the points on the stable and unstable manifolds of all critical
points with indefinite signature are excluded. However, the difference is only of measure zero. A reference
quasi-Fermi surface will be taken at energy Er and denoted by Σ = ΣEr . Because the singularities are
excluded, the sets ΣE are smooth open submanifolds of Td of codimension 1 which, for d ≥ 2, have several
connected components. Now the flow θb maps these connected components diffeomorphically into each
other. By the above arguments, for each energy E, there is a time b = f(E) such that the flow θb maps the
reference quasi-Fermi surface Σ diffeomorphically into ΣE . Consequently we have:

5.2 Proposition For E ∈ (E−, E+), the map θf(E) : Σ→ ΣE is a diffeomorphism.
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The next aim is the construction of an unbounded conjugate (or dilation) operatorA such that ı[A,H0] =

F (H0) where F is as above. The basic idea is to implement the flow θb of X̂ in L2(Td) as a strongly contin-
uous group of unitaries. LetD denote the set of smooth functions on Td vanishing in some neighborhood of
S. Since S has zero Lebesgue measure and is compact, D is dense in L2(Td). Furthermore, Proposition 5.1
implies that every function in D vanishes on a flow invariant open subset containing S \ {k∗−, k∗+}. Hence
for φ ∈ D, the following operator can be defined

(Wb φ)(k) = exp

(
1

2

∫ b

0

du div(X̂)(θu(k))

)
φ(θb(k)) , (5.7)

because the singularities of X̂ are not reached, due to the restriction on the support of φ. The unitarity of
Wb follows from the change of variables k 7→ θb(k) and from the Jacobian formula

det(θ′b(k)) = exp

(∫ b

0

du div(X̂)(θu(k))

)
. (5.8)

This latter relation follows from integrating ∂b ln det(θ′b(k)) = div(X̂)(θb(k)) with the initial condition
det(θ′0) = 1. Furthermore, the group property θb ◦ θu = θb+u immediately implies WbWu = Wb+u. It
can be checked, by a direct calculation, that ‖Wbφ‖ = ‖φ‖ for φ ∈ D. In addition, using the Lebesgue
dominated convergence theorem, limb→0Wbφ = φ for φ ∈ D. It follows, from a 3ε argument, that Wb

can be extended as a one-parameter, strongly continuous group of unitary operators on L2(Td). By Stone’s
theorem the generator Â = 1

ı
∂bWb|b=0 is self-adjoint and Wb = exp(ıbÂ). Also [BR, Corollary 3.1.7]

implies that D is a core for Â because D is left invariant underWb. The derivation of equation (5.7) leads
to

Â φ =
1

ı

(
X̂(φ) +

1

2
div(X̂)φ

)
, (5.9)

where X̂(φ) = 〈X̂|∇〉φ is the action of the vector field on the function φ ∈ D. Note that the multiplicative
(zero order) operator 1

2
div(X̂) is needed to make the r.h.s. of (5.9) symmetric w.r.t. the scalar product

in L2(Td). The desired commutator property ı[A,H0] = F (H0) now follows directly from (5.9) because
ı[Â, Ĥ0] = X̂(E) = F (Ĥ0). This can be summarized as follows:

5.3 Theorem Let E be a Morse function with only one maximum and one local minimum. Let Wb be
defined by (5.7) for φ ∈ D and with X̂ and θb given by (5.2) and its flow. ThenWb is a strongly continuous
one-parameter group of unitary operators on L2(Td). Its generator Â = 1

ı
∂bWb|b=0 is self-adjoint with core

D and satisfies
ı[Â, Ĥ0] = F (Ĥ0) , ı[Â, f(Ĥ0)] = 1 .

Let us write out another formula for A. Let Xj = F∗X̂jF be the operator on `2(Zd) associated with the
jth component X̂j of X̂ . Also letQ = (Q1, . . . , Qd) be the position operator defined byQj φ(n) = nj φ(n),
for n ∈ Zd and φ decreasing sufficiently fast. Then the Fourier transform of the r.h.s. of (5.9) leads to

A =
1

2

d∑
j=1

(Xj Qj +Qj Xj) . (5.10)

In the remainder of this section, the boundary values of the Green’s function will be studied. That these
boundary values actually exist is often referred to as the limit absorption principle. Recall that Λ ⊂ Zd is
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finite. Associated with Λ is the subspace `2(Λ) = C|Λ|. Let Π∗ : C|Λ| → `2(Zd) be the canonical injection
obtained by extending elements of `2(Zd) by zero outside Λ. It is a partial isometry such that Π∗Π is the
|Λ|-dimensional projection in `2(Zd) onto the subspace of elements supported by Λ, while Π Π∗ = 1C|Λ| .
The finite volume Green matrix is defined by:

GΠ
0 (z) = Π (z −H0)−1 Π∗ .

This is a matrix of size |Λ| × |Λ|. An important basic fact about the Green matrix is its Herglotz property,
that is, GΠ

0 (z) is analytic in the upper half-plane and

−=mGΠ
0 (z) =

ı

2
(GΠ

0 (z)−GΠ
0 (z)∗) > 0 , =m(z) > 0 .

This implies, in particular, that GΠ
0 (z) is invertible for =m(z) 6= 0. Indeed, suppose that v 6= 0 lies in the

kernel. Then

0 = 〈v|GΠ
0 (z)|v〉 = 〈v|<eGΠ

0 (z)|v〉+ ı 〈v|=mGΠ
0 (z)|v〉 ∈ R + ıR ,

in contradiction to the positivity of =mGΠ
0 (z). The boundary values of GΠ

0 (z) on the real axis will be
analyzed next in high dimension.

5.4 Proposition Let d ≥ 3 and let E be analytic. The weak limits GΠ
0 (E ± ı0) = limε↓0G

Π
0 (E ± ıε) exist.

Furthermore:

(i) Away from the critical values of E , the map E ∈ R 7→ GΠ
0 (E ± ı0) is real analytic. At the critical

points it is Hölder continuous.

(ii) =mGΠ
0 (E − ı0) = −=mGΠ

0 (E + ı0) vanishes on (−∞, E−] ∪ [E+,∞). It is a positive matrix with
nonzero diagonal entries on (E−, E+).

(iii) The map E ∈ R 7→ <eGΠ
0 (E) is negative and decreasing on (−∞, E−] and positive and decreasing

on [E+,∞). Furthermore, GΠ
0 (±∞) = 0.

The proofs below are taken from [BS], but are merely detailed extensions of the work of van Hove [VH].
Let us also note that [BS] also provides detailed information about the asymptotics of the Green matrix at
the band edges by dwelling slightly more into the arguments below.

Proof: For m,n ∈ Λ, the matrix elements of GΠ
0 (z) are given by

〈m|GΠ
0 (z)|n〉 = 〈m|(z −H0)−1|n〉 =

∫
Td

ddk

(2π)d
eı(n−m)·k

z − E(k)
.

(i) Outside the critical values: By construction the matrix GΠ
0 (z) is holomorphic for z /∈ σ(H0). In

particular, since the spectrum of H0 is the interval σ(H0) = [E−, E+], it follows that the map E ∈ R \
[E−, E+] 7→ GΠ

0 (E) is real analytic and converges to zero at ±∞. Moreover, its derivative is negative.
In particular, if the limit of this matrix exists at E±, this limit is a negative matrix at E− and a positive
matrix at E+. Now, since E is analytic, it follows that it has only a finite number of critical points and it
admits a holomorphic continuation in (T + ıR)d in a small neighborhood of the form Bη = {k + ıκ ∈
(T + ıR)d | max1≤i≤d |κi| < η}. It follows that, for ε > 0 small enough, the manifold defined as the set
Tdε = {k + ıε∇E(k) | k ∈ Td} is entirely contained in Bη. Using the Cauchy formula, it follows that
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〈m|GΠ
0 (z)|n〉 =

∫
Tdε

ddk′

(2π)d
eı(n−m)·k′

z − E(k′)
.

Since k′ ∈ Tdε , it follows that k′ = k + ıε∇E(k) for some k ∈ Td, so that, using a Taylor expansion,

=m E(k′) = ε |∇E(k)|2 + O(ε2) .

Consequently, if E ∈ [E−, E+] \ E(S∗) is not a critical value, there is ρ > 0 such that, if |z − E| < ρ, the
distance of dist{z, E(Tdε )} > 0 does not vanish. In particular, GΠ

0 (z) extends as a holomorphic function of
z from =m(z) < 0 to a neighborhood of E. In particular, the boundary value GΠ

0 (E − ı0) is analytic in E
in [E−, E+] \ E(S∗). A similar argument applies to GΠ

0 (E + ı0).
(ii) Partitioning: For any k∗ ∈ S∗, let Bδ(k

∗) be the open ball centered at k∗ of radius δ > 0. Let also
Bδ/2(k∗) be the closed ball also centered at k∗ of radius δ/2. Let Ureg be the open set obtained by removing
from Td the union of the balls Bδ/2(k∗), k∗ ∈ S∗. It follows that the family {Ureg} ∪ {Bδ(k

∗) | k∗ ∈ S∗} is a
finite open cover of Td. Let then {χreg} ∪ {χk∗ | k∗ ∈ S∗} be a smooth partition of unity associated with this
open cover. The previous integral can be decomposed into a sum

〈m|(z −H0)−1|n〉 = Greg(z) +
∑
k∗∈S∗

Gk∗(z) , Gk∗(z) =

∫
Bδ(k∗)

ddk

(2π)d
χk∗(k)

eı(n−m)·k

z − E(k)
. (5.11)

The contribution Greg is regular because the integral vanishes around all critical points. Using the coarea
formula and the results of Appendix C, it follows thatGreg is holomorphic in the complement of the spectrum
of H0 and its boundary values are smooth everywhere on the real line.
(iii) Non extremal critical points: The boundary values of the Gk∗’s, however, may not be smooth because
of the contribution of the critical point. Let k∗ be one of the critical points of signature d = (d+, d−) with
d± 6= 0 and in the following G∗ = Gk∗ will denote its contribution to the previous decomposition. If δ is
small enough, the Morse lemma [Nic] implies that there exists a neighborhood U of k∗ containing Bδ(k∗)
and a diffeomorphism ϕ : Bδ(0)→ U such that ϕ(0) = k∗ and Eϕ = E ◦ ϕ is quadratic:

Eϕ(k) = E∗ +
1

2

d+∑
i=1

k2
i −

1

2

d∑
j=d++1

k2
j ,

for ‖k‖ < δ and where E∗ = E(k∗). This diffeomorphism has a Jacobian matrix J = ϕ′(0) satisfying
Jdiag(1d+ ,−1d−)J∗ = E ′′(k∗)−1. Thus the Jacobi determinant of ϕ stays close to | det(E ′′(k∗))|−1/2 over
the neighborhood U and is a smooth function. It follows that the integral defining G∗ is given by

G∗(z) =

∫
‖k‖<δ

ddk

(2π)d
∣∣det(ϕ′(k))

∣∣χk∗(ϕ(k))
eı(n−m)·ϕ(k)

z − Eϕ(k)
.

It will be convenient to use the following polar variables

ki = r+ω+ if 1 ≤ i ≤ d+ , kj = r−ω− if d+ < j ≤ d ,

were r± ≥ 0 are the radial variables and ω± ∈ Sd±−1 the angular ones. It follows that

G∗(z) =

∫
r2
++r2

−<δ
2

r
d+−1
+ dr+ r

d−−1
− dr−

(2π)d
F (r+, r−)

z − E∗ − 1
2
(r2

+ − r2
−)

,

where F is a smooth function with support inside the disk r2
+ + r2

− < δ2 given by
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F (r+, r−) =

∫
Sd+−1×Sd−−1

dω+ dω−
∣∣det(ϕ′(k))

∣∣χk∗(ϕ(k)) eı(n−m)·ϕ(k) .

Equivalently G∗ can be expressed as

G∗(z) =

∫
R

ρ(e)de

z − E∗ − e
,

where ρ is defined by

ρ(e) =

∫
r2
++r2

−<δ
2

r
d+−1
+ dr+ r

d−−1
− dr−

(2π)d
F (r+, r−) δ

(
r2

+ − r2
−

2
− e
)
.

If e > 0, the usual rule followed by the Dirac distribution δ leads to

ρ(e) =

∫ δ

0

dr

(2π)d
rd−−1(e+ r2)(d+−2)/2 F (

√
r2 + e, r) (5.12)

For e < 0, a similar formula holds by exchanging d+ with d− and F (r, r′) with Fs(r, r′) = F (r′, r). The
previous expression shows that, if d− ≥ 2, the Lebesgue dominated convergence theorem implies that the
limits ρ(±0) exist and are equal. In particular, ρ is continuous at e = 0. Moreover, since d ≥ 3, if d+ = 1,
then d− = d − 1 ≥ 2. Then rd−−1(e + r2)(d+−2)/2 = rd−2(e + r2)−1/2 ≤ rd−5/2 showing that, again, ρ is
continuous at e = 0.

Equation (5.12) also shows that ρ is differentiable for e 6= 0. Moreover, its derivative is given by the
sum of two terms ρ′1 + ρ′2 with

ρ′1(e) =
d+ − 2

2

∫ δ

0

dr

(2π)d
rd−−1(e+ r2)d+/2−2 F (

√
r2 + e, r) ,

ρ′2(e) =
1

2

∫ δ

0

dr

(2π)d
rd−−1(e+ r2)d+/2−3/2 ∂1F (

√
r2 + e, r) .

The same argument as before shows that, if d ≥ 3, ρ′2 admits a finite limit as ±e ↓ 0. However, these two
limits may not be equal, if F 6= Fs. On the other hand, if d ≥ 5, ρ′1 also admits limits and the two limits
coincide. For d = 3, 4, however, it follows that d+ < 4 so that ρ′1 may diverge at e → 0. Nevertheless, the
integrand can be bounded by

rd−−1(e+ r2)d+/2−2 ≤ e−α rd−5+2α ,

which is integrable if α > 1/2 for d = 3 and α > 0 for d = 4. Hence in both cases, there is K > 0 such
that

|∂eρ| ≤
K

eα
=⇒ |ρ(e)| ≤ K

1− α
e1−α ,

showing that ρ is Hölder continuous at the critical points. Using the Plemelj-Privalov theorem (Lemma C.1
of Appendix C), it follows that the same is true for the boundary values of G∗.
(iv) Near the extrema: The behavior near the maximum or the minimum can be treated similarly so that
it is enough to consider only the minimum at k∗−. Again by the Morse lemma, there is a neighborhood U
of k∗− containing Bδ(k

∗
−) and a diffeomorphism ϕ : Bδ(0) → U with ϕ(0) = k∗− and such that E ◦ ϕ(k) =

E− + 1
2

∑d
i=1 k

2
i . Introducing the polar coordinates r = ‖k‖ and ω ∈ Sd−1 so that k = rω, the contribution

G−(z) = Gk∗−
(z) is given by the integral
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G−(z) =

∫ δ

0

rd−1dr

(2π)d
eı(n−m)·k∗− F (r)

z − E− − 1
2
r2

, F (r) =

∫
Sd−1

dω | det(ϕ′(rω))|χ−(ϕ(rω)) eı(n−m)·(ϕ(rω)−k∗−) .

with χ− a smooth function with support in U(k∗−) which is equal to 1 on the ball ‖k − k∗−‖ ≤ δ/2. In
particular, F is smooth and bounded in 0 < r < δ, it vanishes in a neighborhood of r = δ and all its
derivatives have a limit at r = 0. Consequently, the integration domain can be extended to [0,∞) without
change. Let us note that F (0) = | det(ϕ′(0))| |Sd−1| > 0 and the Morse lemma shows that | det(ϕ′(0))| =
det(E ′′(k∗−))1/2. Next the change of variable e = r2/2 yields

G−(z) =
eı(n−m)·k∗−

(2π)d

∫ ∞
0

de
(2e)

d
2
−1F (

√
2e)

z − E− − e
. (5.13)

Since d ≥ 3, the function e ∈ [0,∞) 7→ e
d
2
−1F (

√
2e) is continuous and vanishes at e = 0 like ed/2−1.

Hence it can be continued as a Hölder continuous function on the entire real line with support in [0, δ
2

2
).

Consequently, thanks to the Lemma C.1, G−(E± ı0) is also continuous w.r.t. E. In particular, it has a finite
value at E = E−. Since the other contributions to GΠ

0 are regular near E−, GΠ
0 (E ± ı0) is also a Hölder

continuous function of E near E = E−. 2

5.2 Resolvent and spectral analysis of perturbed problem
Now the coupled Hamiltonian H = H0 + V with a perturbation V supported by a finite set Λ ⊂ Zd is
considered. This implies

V = Π∗ V Π Π , with V Π = ΠV Π∗ .

For sake of simplicity, we will suppose that V Π is invertible. Let

GΠ(z) = Π(z −H)−1Π∗

be the Green matrix of the perturbed Hamiltonian. As for the unperturbed case, it is also a Herglotz matrix
which is invertible for =m(z) 6= 0. Let us first write out widely used formulas for the resolvent.

5.5 Lemma For z ∈ C \ R,

GΠ(z) =
(
GΠ

0 (z)−1 − V Π
)−1

=
(
1−GΠ

0 (z)V Π
)−1

GΠ
0 (z) , (5.14)

Let the T -matrix be defined by

T (z) = Π∗ TΠ(z) Π , TΠ(z) =
(
1− V ΠGΠ

0 (z)
)−1

V Π . (5.15)

Then

1

z −H
=

1

z −H0

+
1

z −H0

T (z)
1

z −H0

, (5.16)

Proof: The resolvent identity yields

1

z −H0

=
1

z −H
+

1

z −H0

V
1

z −H
=

(
1 +

1

z −H0

V

)
1

z −H
.

Applying Π and Π∗ from the left and right respectively gives
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GΠ
0 (z) =

(
1−GΠ

0 (z)V Π
)
GΠ(z) .

Now GΠ
0 (z) is Herglotz and thus invertible since z /∈ R. Hence, GΠ

0 (z)−1− V Π is also Herglotz and invert-
ible, leading to the invertibility of 1−GΠ

0 (z)V Π = GΠ
0 (z)(GΠ

0 (z)−1 − V Π). To prove (5.16), the resolvent
identity gives the factor 1− 1

z−H0
V . This operator is invertible, because it is a finite rank perturbation of 1

and any element in its kernel is an eigenvector of H = H0 + V with eigenvalue z /∈ R, namely the kernel
is trivial. Using the identity (1 − A)−1A = (1 − A)−1(A − 1 + 1) = (1 − A)−1 − 1, the inverse can be
written as (

1− 1

z −H0

V

)−1

= 1 +
1

z −H0

Π∗ V Π Π

(
1− 1

z −H0

V

)−1

.

Since

Π

(
1− 1

z −H0

V

)
=
(
1−GΠ

0 (z)V Π
)

Π ,

it follows that

Π

(
1− 1

z −H0

V

)−1

=
(
1−GΠ

0 (z)V Π
)−1

Π ,

When combined with the resolvent identity this completes the proof. 2

Because the perturbation has finite range, the essential spectrum of H is given by the essential spectrum
of H0 by Weyl’s theorem. However, H may have some discrete spectrum, which, since H is selfadjoint,
is given by the simple poles of the resolvent on the real axis. Thanks to Proposition 5.4, it follows from
equation (5.14) that the only way to get a polar singularity in the Green matrix of H is for 1−GΠ

0 (z)V Π =(
(V Π)−1 −GΠ

0 (z)
)
V Π to have a nontrivial kernel (recall that we restrict ourselves to the case of invertible

V Π). This can be analyzed using the determinant of 1 − GΠ
0 (z)V Π which is also called the perturbation

determinant [Yaf]. Furthermore, if E is an eigenvalue of H ,

multiplicity of E = dim Ker
(
(V Π)−1 −GΠ

0 (E ± ı0)
)
. (5.17)

If E 6∈ [E−, E+], it is called an isolated eigenvalue while, if E ∈ (E−, E+), it is called an embedded
eigenvalue. ForE = E±, a non-trivial kernel of (V Π)−1−GΠ

0 (E±) leads to a so-called threshold singularity.
Both of these latter singularities are of positive co-dimension and will not be further considered here. See
again [BS] for a detailed analysis.

5.3 The wave operator as an integral operator
The perturbation being finite rank, the Kato-Rosenblum theorem for trace class scattering theory implies
that the wave operators

Ω± = s- lim
t→±∞

eıHt e−ıH0t ,

exist and are complete, that is, Ran(Ω+) = Ran(Ω−) = Pac(H) where Pac(H) is the projection on the
absolutely continuous subspace of H . Then the wave operators are partial isometries satisfying

Ω∗±Ω± = 1 , Ω±Ω∗± = Pac(H) = 1 − Ppp(H) , (5.18)
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where Ppp(H) is the projection on the pure-point spectrum of H and the last equality holds because there
is no singular continuous spectrum. Now we will derive an explicit formula for Ω̂± = FΩ±F∗ which will
serve as a tool to calculate the wave operator and the scattering operator.

5.6 Proposition The following formula holds

(
(Ω̂± − 1)φ

)
(k) = lim

ε↓0

∫
Td

dk′

(2π)d

∑
n,m∈Λ

〈n|T (E(k′)∓ ıε) |m〉 eı(k·n−k
′·m)

E(k′)∓ ıε− E(k)
φ(k′) .

5.7 Lemma (Tauberian Lemma) Let f : R→ R be a measurable function such that

L = lim
t→∞

∫ t

0

ds f(s)

exists. Then
L = lim

ε↓0

∫ ∞
0

ds e−εs f(s) .

Proof: It follows from a partial integration that∫ T

0

ds e−εs f(s) = e−εT
∫ T

0

ds f(s) + ε

∫ T

0

ds e−εs
∫ s

0

ds′ f(s′) .

For ε > 0, one can now take the limit T →∞ and the first term on the r.h.s. vanishes. Next the limit ε→ 0
can be taken and this yields the claim. 2

Proof of Proposition 5.6: It follows from DuHamel’s formula (3.1) and the Tauberian lemma that

Ω± = 1 ± ı s-lim
t→∞

∫ t

0

ds e±ıHs V e∓ıH0s = 1 ± ı s-lim
ε↓0

∫ ∞
0

ds e−εs e±ıHs V e∓ıH0s .

Hence (
(Ω̂± − 1)φ

)
(k) = ± ı lim

ε↓0

∫ ∞
0

ds e−εs
(
F e±ıHs V e∓ıH0sF∗ φ

)
(k) .

In the following, the notation Vl,m = 〈l|V |m〉 will be used. In addition,

〈m| e∓ıH0sF∗ |φ〉 =

∫
Td

dk′

(2π)d
e−ık

′·m e∓ıE(k′)s φ(k′)

Consequently the previous formula leads to

(
(Ω̂± − 1)φ

)
(k) = ±ı

∑
l,m∈Λ

Vl,m lim
ε↓0

∫ ∞
0

ds e−εs
(
F e±ıHs|l〉

)
(k)

∫
Td

dk′

(2π)d
e−ık

′·m e∓ıE(k′)s φ(k′) .

The integral over s can be performed to give

(
(Ω̂± − 1)φ

)
(k) = lim

ε↓0

∫
Td

dk′

(2π)d

∑
l,m∈Λ

Vl,m e
−ık′·m

(
F 1

E(k′)∓ ıε−H
|l〉
)

(k) φ(k′) .
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In the previous expression, it becomes possible to compute the part in the parenthesis. For indeed, using the
resolvent identity as in Lemma 5.5 yields

1

z1−H
Π∗ =

1

z1−H0

Π∗
1

1− V ΠGΠ
0 (z)

,

and remarking that l ∈ Λ. Hence, passing to the Fourier space leads to(
F 1

z −H
|l〉
)

(k) =
∑
n∈Λ

1

z − E(k)
eık·n 〈n|

(
1− V ΠGΠ

0 (z)
)−1 |l〉 .

Replacing this in the above expression for Ω̂± − 1 completes the proof. 2

5.4 Change of variables and REF representation
This section is devoted to the definition and the properties of the rescaled energy and Fermi surface (REF)
representation. The proof of Theorem 5.3 was mainly based on the change of variables θb : Td → Td with
Jacobian (5.8) where θb is the time b flow (5.3) of the vector field X̂ defined in (5.2):∫

Td
dk φ(k) =

∫
Td
dk det(θ′b(k))φ(θb(k))

=

∫
Td
dk exp

(∫ b

0

du div(X̂)(θu(k))

)
φ(θb(k)) .

It will be supplemented by the coarea formula (see e.g. [Sak] for a proof and note that S is of zero measure).
If νE denotes the Riemannian volume measure on ΣE (induced by the euclidean metric on Td),∫

Td
dk φ(k) =

∫ E+

E−

dE

∫
ΣE

νE(dσ)
1

|∇E(σ)|
φ(σ) . (5.19)

This holds for φ in the set D = C∞K (Td \ S) of smooth functions vanishing on a neighborhood of the stable
and unstable manifolds of the critical points with indefinite signature. For the reference energy surface
Σ = ΣEr , the measure is simply denoted by ν = νEr . The coarea formula leads to the following:

5.8 Lemma Let φ ∈ D. Then its integral can be written in the following three equivalent ways:

∫
Td
dk φ(k) =

∫
R
db

∫
Σ

ν(dσ)
∣∣∣ det(θ′b|TσΣ)

∣∣∣ ∣∣∣X̂(θb(σ))
∣∣∣ φ (θb(σ)) , (5.20)

=

∫
R
db

∫
Σ

ν(dσ) exp

(∫ b

0

du div(X̂)(θu(σ))

) ∣∣∣X̂(σ)
∣∣∣ φ (θb(σ)) , (5.21)

=

∫ E+

E−

dE

∫
Σ

ν(dσ)
| det(θ′f(E)|TσΣ)|
|∇E(θf(E)(σ))|

φ
(
θf(E)(σ)

)
, (5.22)

where θ′b|TσΣ denotes the derivative of θb restricted to the tangent space of Σ at σ (so that this is a (d− 1)×
(d− 1) matrix).

Proof: Starting from the coarea formula (5.19), the substitution b = f(E) given in (5.4) and the diffeomor-
phism of Proposition 5.2 will be used in the following change of variables. With dE = F (f−1(b))db,
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∫
Td
dk φ(k) =

∫
R
db

∫
Σf−1(b)

νf−1(b)(dσ)
F (f−1(b))

|∇E(σ)|
φ(σ)

=

∫
R
db

∫
Σ

ν(dσ)
∣∣∣ det(θ′b|TσΣ)

∣∣∣ F (E(θb(σ)))

|∇E(θb(σ))|
φ(θb(σ)) .

In the second equality, the diffeomorphism θb : Σ → Σf−1(b) as well as the identity F (f−1(b)) = F (E(σ))

for σ ∈ Σf−1(b) were used. Replacing the definition of X̂ already shows (5.20) as well as (5.22). Next θ′b
can be decomposed as θ′b|TσTd = θ′b|TσΣ ⊕ θ′b|(TσΣ)⊥ implying

| det(θ′b|TσTd)| = | det(θ′b|TσΣ)| |θ′b|(TσΣ)⊥ | . (5.23)

In order to compute θ′b|(TσΣ)⊥ it should be remarked that the derivative of the equation ∂bθb = X̂ ◦ θb is
∂bθ
′
b = X̂ ′ ◦ θb θ′b, leading to θ′b(X̂(σ)) = X̂(θb(σ)). As the one-dimensional space (TσΣ)⊥ is spanned by

X̂(σ), it follows that

|θ′b|(TσΣ)⊥| =
∣∣∣θ′b( X̂(σ)

|X̂(σ)|

)∣∣∣ =
|X̂(θb(σ))|
|X̂(σ)|

.

Consequently ∣∣∣ det(θ′b|TσΣ)
∣∣∣ ∣∣∣X̂(θb(σ))

∣∣∣ = exp

(∫ b

0

du div(X̂)(θu(σ))

) ∣∣∣X̂(σ)
∣∣∣ . (5.24)

Replacing this in (5.20) proves (5.21). 2

The following notation will be useful

db(σ) =
∣∣∣ det(θ′b|TσΣ)

∣∣∣ 1
2
∣∣∣X̂(θb(σ))

∣∣∣ 1
2

= exp

(
1

2

∫ b

0

du div(X̂)(θu(σ))

) ∣∣∣X̂(σ)
∣∣∣ 1

2
. (5.25)

From (5.21), it follows that the map U defined on D by

(Uφ)b(σ) = db(σ) φ(θb(σ)) , φ ∈ D ⊂ L2(Td) , (5.26)

extends to a unitary from L2(Td) to L2(R)⊗L2(Σ, ν). The variable b is the rescaled energy difference w.r.t.
the reference quasi-Fermi surface Σ. Expressing this in terms ofWb (see equation (5.7)), leads to

(Uφ)b(σ) = |X̂(σ)|
1
2 (Wbφ)(σ) .

The inverse, acting on ψ ∈ L2(R)⊗ L2(Σ, ν), is given by

(U∗ψ)(k) = db(θ−b(k))−1 ψb(θ−b(k)) , b = f(E(k)) .

The expression H̃0 = UĤ0U∗ = UFH0F∗U∗ will be called the REF representation of H0. Any operator in
the REF representation will carry a tilde. The operator (B̃ψ)b = bψb is the rescaled energy. Its conjugate
operator clearly is Ã with (Ãψ)b = 1

ı
∂bψb. Both of these operators are unbounded and have the standard

self-adjoint domains. The following result states that these notations are consistent with the above.

5.9 Proposition The following relations hold

U Ĥ0 U∗ = f−1(B̃)⊗ 1Σ , U f(Ĥ0)U∗ = B̃ , U ÂU∗ = Ã .
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Proof: The only point to be checked is how the commutation relations of H0 and A, as proved in Theo-
rem 5.3, are implemented under U . The first identity results from (5.26) and

f−1(b)φ(θb(σ)) = E(θb(σ))φ(θb(σ)) =
(
Ĥ0φ

)
(θb(σ)) .

The second formula is obtained from the first one through (unbounded) functional calculus. The third one
follows from

(Ã⊗ 1Uφ)b(σ) =
1

ı
∂b (|X̂|

1
2 eıbÂφ)(σ) = (

1

2
eıbÂ Â φ)(σ) = (UÂ φ)b(σ) ,

where U is expressed in terms of the unitary group Wb = eıbÂ up to the factor |X̂(σ)| 12 which does not
depend on b. 2

It is worth comparing the previous construction to the usual one used in scattering theory on Rd, where
H0 = −∆ is the Laplacian acting on L2(Rd). Then, the (unitary) Fourier transform F : L2(Rd) 7→ L2(Rd)
diagonalizes H0, that is, FH0F∗ is the operator of multiplication by E(k) = k2. This function has only one
critical point at k∗− = 0 corresponding to the minimum of energy E− = 0. The vector field X̂ is defined as
in (5.2), now with k ∈ Rd. Let the reference energy be Er = 1 so that the (quasi-) Fermi surface Σ is the
unit sphere Sd−1. Furthermore let F (E) = 2E, which vanishes at the only critical value. Then X̂(k) = k

and f(E) =
∫ E

1
de
2e

= 1
2

ln(E). The flow is θb(σ) = ebσ. As div(X̂) = d, it follows that db(σ) = e
1
2
db.

Therefore the unitary transformation U : L2(Rd) → L2(R) ⊗ L2(Sd−1) to the REF representation is given
by

(Uφ)b(σ) = e
1
2
db φ(ebσ) .

This transformation is discussed and used, e.g. in [Yaf].

The REF representation of the localized state at site m ∈ Zd is

ψm = UF |m〉 .

The states (ψm)m∈Zd form an orthonormal basis in L2(R)⊗ L2(Σ, ν). More explicitly, they are given by

ψm,b(σ) =
1

(2π)
d
2

db(σ) eım·θb(σ) , (5.27)

for any σ ∈ Σ avoiding S. It will be convenient below to consider ψm,b as a state in L2(Σ, ν). These
restricted localized states are not normalized, but their norm is independent of m:

‖ψm,b‖2
L2(Σ,ν) =

1

(2π)d

∫
Σ

ν(dσ) |db(σ)|2 .

This norm as well as scalar products between these states are linked to the resolvent.

5.10 Lemma The following holds

〈ψn,b|ψm,b〉L2(Σ,ν) =
F (f−1(b))

π
〈n| ∓ =m

(
(f−1(b)± ı0−H0)−1

)
|m〉 .

Proof: Thanks to the coarea formula and the Plemelj-Privalov theorem (see Lemma C.1)
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〈n| =m
(
(E ± ı0−H0)−1

)
|m〉 =

1

2ı

∫ E+

E−

de

(
1

E ± ı0− e
− 1

E ∓ ı0− e

) ∫
Σe

νe(dσ)

(2π)d
eı(m−n)·σ

|∇E(σ)|

= ∓π
∫

ΣE

νE(dσ)

(2π)d
1

|∇E(σ)|
eı(m−n)·σ .

Always using E = f−1(b), the map θb : Σ → ΣE is a diffeomorphism. Thus the associated change of
variables gives

〈n| =m
(
(E ± ı0−H0)−1

)
|m〉 = ∓ π

∫
Σ

ν(dσ)

(2π)d
∣∣det(θ′b|TσΣ)

∣∣ 1

|∇E(θb(σ))|
eı(m−n)·θb(σ)

=
∓ π

F (f−1(b))

∫
Σ

ν(dσ)

(2π)d
∣∣det(θ′b|TσΣ)

∣∣ |X̂(θb(σ))| eı(m−n)·θb(σ) .

Now the formula follows from the definition of ψm,b and (5.25). 2

5.11 Corollary Let us introduce the operator Rb =
∑

m∈Λ |ψm,b〉〈m| mapping `2(Λ) = C|Λ| onto the
subspace of L2(Σ, ν) spanned by the (ψm,b)m∈Λ. The range of its adjointR∗b =

∑
m∈Λ |m〉〈ψm,b| is denoted

by
Fb = Ran(R∗b) ⊂ C|Λ| .

Further let Πb be a partial isometry from Fb onto the subspace of L2(Σ, ν) spanned by the (ψm,b)m∈Λ.
(i) The following holds

R∗bRb =
F (E)

π
=mGΠ

0 (E − ı0) , b = f(E) .

(ii) If Pb denotes the orthogonal projection in C|Λ| onto the subspace Fb, then

Rb = Πb

√
F (E)

π

(
=mGΠ

0 (E − ı0)
) 1

2 Pb , b = f(E) .

(iii) The map b ∈ R 7→ Rb ∈ B
(
C|Λ|, L2(Σ, ν)

)
is norm continuous.

Proof: (i) is a re-phrasing of Lemma 5.10 and (ii) just the usual polar decomposition. (iii) Since Rb has
finite rank, the norm continuity follows form the strong continuity. In turns the strong continuity follows
from the continuity of the inner products 〈ψn,b|ψm,b〉L2(Σ,ν). The latter property follows from Lemma 5.10
and from the continuity of F , f−1 and the imaginary part of the Green function (see Proposition 5.4), with
respect to E or to b. 2

It is worth remarking that Pb = Π∗bΠb and Πb = ΠbPb. Furthermore, =mGΠ
0 (f−1(b) ± ı0) commutes

with Pb.

5.5 EF representation
Another natural useful representation is the energy and Fermi surface (EF) representation. A local version
of this representation is used in the paper by Birman and Yafaev [BY]. It is associated with the unitary map
V : L2(Td)→ L2([E−, E+])⊗ L2(Σ, ν) defined on D by
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(Vφ)E(σ) =
| det(θ′f(E)|TσΣ)| 12

|∇E(θf(E)(σ))| 12
φ(θf(E)(σ)) , φ ∈ D .

The unitarity follows directly from (5.22). It is related to the unitary operator U as follows

(Vφ)E(σ) =
1

F (E)
1
2

1

|X̂(σ)| 12
(Uφ)f(E)(σ) . (5.28)

The EF representation of an operator on L2(Td) is then obtained by conjugation with V . It will carry a

circle instead of a tilde, such as
◦
H0 = VĤ0V∗,

◦
A = VÂV∗ and so on. Any operator that is a direct integral

in the REF representation is also a direct integral in the EF representation. The first example of this type is
the Hamiltonian H0 itself:

(
◦
H0φ)E(σ) = E φE(σ) .

More generally, given any fibered operator Õ =
∫ ⊕

db Õb in the REF representation, its EF representation

is given by
◦
O =

∫ ⊕
dE

◦
OE with

◦
OE = Õf(E). Another example will be the scattering matrix below. The

dilation operator in the EF representation can be easily deduced from (5.28):

(
◦
Aφ)E(σ) = F (E)

1

ı
∂EφE(σ) +

1

2ı
F ′(E)φE(σ) ,

where φ is in the domain of
◦
A, in particular, its derivative is square integrable and φ vanishes at the bound-

aries of [E−, E+].

5.6 The wave operator in the REF representation

In this section, the REF representation will be used to calculate the wave operator Ω̃± = UΩ̂±U∗ in dimen-
sion d ≥ 3. It is an operator on L2(R) ⊗ L2(Σ, ν). From Proposition 5.6, the definition (5.26), the change
of variables formula (5.21) and the definition (5.27) of the states ψm,b, it follows that

((Ω̃± − 1)φ)b = lim
ε↓0

∫
db′

∑
n,m∈Λ

|ψn,b〉
〈n|T (f−1(b′)∓ ıε) |m〉
f−1(b′)∓ ıε− f−1(b)

〈ψm,b′ |φb′〉 ,

where 〈ψm,b′ |φb′〉 stands for the inner product in the Hilbert space L2(Σ, ν) and the integral of b′ carries
over R. Thanks to Corollary 5.11, the sums over n and m can be computed to give

((Ω̃± − 1)φ)b = lim
ε↓0

∫
db′

π

F (f−1(b))
1
2 F (f−1(b′))

1
2

f−1(b′)∓ ıε− f−1(b)
Πb

∣∣=mGΠ
0 (f−1(b))

∣∣ 1
2 (Õ±φ)b′ , (5.29)

where Õ± =
∫
db Õ±,b with

Õ±,b = lim
ε↓0

TΠ(f−1(b)∓ ıε)
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 Π∗b . (5.30)

It is part of the proof of the following result to show that the limit in (5.30) exists and that the expression
(5.15) for the T -matrix can be replaced to give

Õ±,b =
(

(V Π)−1 −<eGΠ
0 (f−1(b)) ∓ ı

∣∣=mGΠ
0 (f−1(b))

∣∣)−1 ∣∣=mGΠ
0 (f−1(b))

∣∣ 1
2 Π∗b . (5.31)
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5.12 Theorem Let d ≥ 3 and let V have finite support. In addition, F is chosen as in (5.1) and it will be
assumed that there are no threshold singularities and no embedded eigenvalues. Then the operators Õ±,b
are well-defined, continuous in b and uniformly bounded. The wave operators are given by

Ω̃± = 1 + ı ΠB̃

∣∣=mGΠ
0 (f−1(B̃))

∣∣ 1
2

(
± 1 + tanh(π

2
Ã)
)
Õ± . (5.32)

Formula (5.32) shows that the wave operator can be calculated in terms of Õ± and the dilation operator
Ã. In [BS] it is shown that a modified formula also holds in presence of certain threshold singularities and
embedded eigenvalues. The formula is similar to those obtained by Kellendonk and Richard for continuous
scattering systems [KR].

Proof of Theorem 5.12: It follows from the hypothesis that the operators Õ± are well-defined and bounded
with fibers Õ±,b depending continuously on b. We now show how (5.32) follows from (5.29). Thanks to the
formulas (5.6), E(θb(σ)) = f−1(b) = Er + ∆ tanh(b) and F (f−1(b)) = ∆ cosh−2(b), a bit of algebra now
leads to

((Ω̃± − 1)φ)b = Πb

∣∣=m GΠ
0 (f−1(b))

∣∣ 1
2

∫
db′

π

1

sinh(b′ − b)∓ ı0
(Õ±φ)b′ .

In the previous formula, Õ±φ is a vector in the Hilbert space L2(R)⊗ C|Λ|. As previously let Ã = −ı∂b be
the generator of the translation group in L2(R)⊗L2(Σ, ν) as well as L2(R)⊗C|Λ|. Changing the integration
variable b′ to u = b′ − b leads to (Õ±φ)u+b = (eıÃuÕ±φ)b. Hence(

(Ω̃± − 1)φ
)
b

=
∑
κ=±1

Πb

∣∣=m GΠ
0 (f−1(b))

∣∣ 1
2

∫
du

π

1

sinh(u)∓ ı0

(
eıÃuÕ±φ

)
b
.

Now (5.32) is obtained from the following identity:∫
du

πı

eıÃu

sinh
(
u
)
∓ ı0

= ±1 + tanh(π
2
Ã) .

This concludes the proof. 2

5.7 The scattering operator and scattering matrices
Whenever the wave operators are complete, the scattering operator is defined by:

S = Ω∗+Ω− .

It is unitary and satisfies [S,H0] = 0. Hence, in the REF representation, [S̃, B̃] = 0 and thus S̃ =
∫
db S̃b

with unitary operators S̃b on L2(Σ, ν). The intertwining relation and the invariance principle (Theorem 4.2)
imply that for any admissible function f with f ′ > 0, one has

s- lim
t→±∞

eıtf(H0) Ω± e
−ıtf(H0) = Ω∗±Ω± = 1 , s- lim

t→∓∞
eıtf(H0) Ω± e

−ıtf(H0) = Ω∗∓Ω± .

The second expression is either S or S∗. Let now f : (E−, E+)→ R be chosen as in (5.6). It is smooth and
has positive derivative and integrable second derivative. It is therefore admissible for Birman’s invariance
principle. In the REF representation, Proposition 5.9 then leads to
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s- lim
t→±∞

eıtB̃ Ω̃± e
−ıtB̃ = 1 , s-lim

t→∞
eıtB̃ Ω̃− e

−ıtB̃ = S̃ , s- lim
t→−∞

eıtB̃ Ω̃+ e
−ıtB̃ = S̃∗ . (5.33)

Using the explicit formula for Ω̃− given in Theorem 5.12 now leads to an explicit expression for the on-shell
scattering matrix. The structure of such formulas (in particular, the EF representation of the formula (5.35)
in the proof below) is well-known and has appeared in various guises (see [Yaf] for a list of references).

5.13 Theorem Let the assumptions of Theorem 5.12 hold. Then the on-shell scattering matrix S̃b is a
unitary operator on L2(Σ, ν) depending continuously on b and given by

S̃b = (1− ΠbΠ
∗
b) + Πb(Cb − ı)(Cb + ı)−1Π∗b ,

where the selfajoint L× L matrix Cb : PbC|Λ| → PbC|Λ| is defined by

Cb = Pb
∣∣=mGΠ

0 (f−1(b))
∣∣− 1

2

(
(V Π)−1 −<eGΠ

0 (f−1(b))
)∣∣=mGΠ

0 (f−1(b))
∣∣− 1

2 Pb .

Proof: For any function g the following formula holds eıtB̃g(Ã)e−ıtB̃ = g(Ã − t). The limits t → ±∞
can be taken whenever g has limits at infinity. The function appearing in (5.32) is of that type. The middle
formula in equation (5.33) and the expression of Ω̃− given in Theorem 5.12 leads to the calculation of S̃,
namely

S̃b = 1 + ı Πb

∣∣=mGΠ
0 (f−1(b))

∣∣ 1
2 (−2) Õ±,b , (5.34)

Because Theorem 5.12 states that Õ±,b is continuous in b, this formula already shows that S̃b is continuous
in b. Using equation (5.31), it now follows that

S̃b = 1− 2 ı Πb

∣∣=mGΠ
0 (f−1(b))

∣∣ 1
2

(
(V Π)−1 −GΠ

0 (f−1(b) + ı0)
)−1 ∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 Π∗b .

After simplification, one gets
S̃b = 1− 2 ı Πb(Cb + ı)−1Π∗b . (5.35)

This allows to prove the claim. 2

Similar formulas hold for the EF-representation of the scattering matrix. The comments made in Sec-
tion 5.5 and the results of Theorem 5.13 lead to (with CE = Cb for b = f(E)),

◦
SE = S̃f(E) = (1− ΠEΠ∗E) + ΠE(CE − ı)(CE + ı)−1Π∗E .

It is now possible to get results on the asymptotics of the scattering matrix.

5.14 Proposition Let the assumptions of Theorem 5.12 hold. Then limb→±∞ S̃b = 1.

Proof. If there are no threshold singularities, then limb→±∞ Õ±,b = 0 as was shown in Section 5.6. As∣∣=mGΠ
0 (f−1(b))

∣∣ 1
2 eκ

b
2 is bounded, it follows from (5.34) that limb→±∞ S̃b = 1. For d ≥ 5, it has

been shown that Õ±,b is uniformly bounded even in the presence of threshold singularities. As the fac-

tor
∣∣=mGΠ

0 (f−1(b))
∣∣ 1

2 eκ
b
2 vanishes in the limits b → ±∞, the same conclusion holds thanks to equa-

tion (5.34). 2
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5.8 The time delay operator
The time delay operator T is the derivative of the scattering matrix w.r.t. the energy (the notation T should
not be confused the T -matrix). More formally, it is defined by T = 1

ı
S−1[A, S] whenever S is differentiable

w.r.t. to the dilation A. In the REF it becomes

T̃ =

∫
db T̃b , T̃b =

1

ı
(S̃b)

−1∂bS̃b ,

while in the EF representations it is given by

◦
T =

∫ E+

E−

dE
◦
TE ,

◦
TE =

1

ı
(
◦
SE)−1∂E

◦
SE .

The total time delay is the trace of T . The formula given in the following result is sometimes called the
spectral property of the time-delay [TO, New]

5.15 Theorem Let the assumptions of Theorem 5.12. In addition, suppose that FE = C|Λ| for almost all
E. Then, for almost all E ∈ [E−, E+],

TrL2(Σ,ν)(
◦
TE) = lim

ε↓0
2 =m Tr`2(Zd)

(
1

E − ıε−H
− 1

E − ıε−H0

)
. (5.36)

Proof of Theorem 5.15: The following notation will be used ΠE = Πf(E), CE = Cf(E) etc. From
equation (5.35), it follows that

1

2ı
∂E
◦
SE = −∂EΠE(CE + ı)−1Π∗E + ΠE(CE + ı)−1∂ECE(CE + ı)−1Π∗E − ΠE(CE + ı)−1∂EΠ∗E .

The equation ΠEΠ∗E = 1C|Λ| implies ∂EΠEΠ∗E = −ΠE∂EΠ∗E . Hence,

TrL2(Σ,ν)(
◦
TE) =

1

ı
TrFE

(
Π∗E(

◦
SE)∗ΠE Π∗E∂E

◦
SEΠE

)
= 2 TrC|Λ|

(
(C2

E + 1)−1∂ECE
)
.

This can be rewritten as

TrL2(Σ,ν)(
◦
TE) =

1

ı
∂E ln det

(
CE − ı
CE + ı

)
.

Therefore dividing out the imaginary part of the Green function appearing in the definition of CE (see
Theorem 5.13) gives

TrL2(Σ,ν)(
◦
TE) =

1

ı
∂E ln det

(
PE
(
(V Π)−1 −GΠ

0 (E − ı0)
)
PE
(
PE((V Π)−1 −GΠ

0 (E + ı0))PE
)−1
)

= 2 =m ∂E ln det
(
PE((V Π)−1 −GΠ

0 (E − ı0))PE
)
.

On the other hand, using (5.16) and the cyclicity of the trace, leads to

Tr`2(Zd)

(
(z −H)−1 − (z −H0)−1

)
= TrC|Λ|

(
Π(z −H0)−2Π∗

(
(V Π)−1 −GΠ

0 (z)
)−1
)
.

Since ∂zGΠ
0 (z) = −Π(z −H0)−2Π∗, it follows that

Tr`2(Zd)

(
(z −H)−1 − (z −H0)−1

)
= ∂z TrC|Λ|

(
ln((V Π)−1 −GΠ

0 (z)
))
.

This leads to the identity. 2
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5.9 A Levinson-type theorem
5.16 Theorem Let the assumptions of Theorem 5.12 hold. Further letN = Tr(Ppp) be the number of bound
states of H . Then

1

2π

∫ E+

E−

dE TrL2(Σ,ν)(
◦
TE) + N = 0 . (5.37)

Proof of Theorem 5.16: The number N of eigenvalues is obtained by counting the poles of the resolvent
using the Cauchy formula and a contour integration. The contour is given by two circles, one large coun-
terclockwise oriented circle γ around the spectrum of H and a second small clockwise oriented circle Γ
around the spectrum of H0 (but not touching it). Then

N =

∮
Γ+γ

dz

2πı
Tr`2(Zd)

(
(z −H)−1 − (z −H0)−1

)
. (5.38)

The resolvent identity implies that the contribution of γ vanishes in the limit where its radius goes to infinity.
Then let Γ converge to the concatenation of the two intervals [E− + ı0, E+ + ı0] and [E− − ı0, E+ − ı0].
Since it has been assumed that there is no threshold singularity, the regularity of the Green function at the
band edges implies that the small circle connecting these contours near the band edges have a vanishing
contribution in the contour integral. Thus

N =

∫ E+

E−

dE

2πı
Tr`2(Zd)

(
1

E + ı0−H
− 1

E + ı0−H0

− 1

E − ı0−H
+

1

E − ı0−H0

)
.

The formula for the total time delay, proved in Theorem 5.15, gives

N = − 1

2π

∫ E+

E−

dE TrL2(Σ,ν)(
◦
TE) .

This is the result in the situation considered. 2
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A Spectral decomposition
Recall that the Lebesgue decomposition theorem states every measure µ on the real line can be uniquely
decomposed into an absolutely continuous part w.r.t. the Lebesgue measure on R (this means that sets of
zero Lebesgue measure also have zero µac-measure, by the theorem of Radon-Nikodym this is equivalent to
having a L1-density f such that µac(dE) = f(E)dE holds), a pure-point part µpp (consisting of countable
set of Dirac peaks with summable weights) and a remainder called the singular continuous part µsc:

µ = µac + µpp + µsc .

Moreover, the three measures on the r.h.s. are mutually singular, namely one is supported on a zero measure
set of the others. Let us point out that µpp is readily defined using all atoms of µ. If one then sets µc = µ−µpp,
the main claim of the Lebesgue decomposition is that µc = µac + µsc. But µac is just obtained as the Radon-
Nikodym derivative of µc w.r.t. µc +µLeb (for details see any book on measure theory), and then µsc is simply
the remainder. Furthermore, the mutual singularity implies

L2(µ) = L2(µac) ⊕ L2(µpp) ⊕ L2(µsc) .

Now given a self-adjoint operator H on a Hilbert space H, one introduces the pure point subspace
Hpp ⊂ H as the closure of the span of all eigenvectors of H . ThenHc = (Hpp)

⊥ is the continuous subspace.
Then the absolutely continuous subspace is defined as

Hac = {φ ∈ Hc |µφ is purely absolutely continuous } ,

and finallyHsc = Hc 	Hac.

A.1 Proposition The subspacesHac,Hpp andHsc associated to a bounded selfadjoint operatorH are closed,
mutually orthogonal, invariant under H and

H = Hac ⊕ Hpp ⊕ Hsc . (A.1)

Proof. It just remains to show that Hac is closed. Let (ψn)n≥1 be a sequence in Hac converging to ψ. Then
µψn → µψ weakly. If now N ⊂ R is a set of zero Lebesgue measure, then µψ(N) = limn µψn(N) = 0 so
that ψ ∈ Hac. 2

Now one setsHac = H|Hac and σac(H) = σ(Hac), and similarly σpp(H) and σsc(H) are defined. Obviously
one has

σ(H) = σac(H) ∪ σpp(H) ∪ σsc(H) ,

but this decomposition is in general not disjoint. Also note that if σp(H) denotes the set of eigenvalues of
H (which is hence a countable set because H is separable), then σpp(H) = σp(H) as the spectrum of an
operator such as Hpp = H|Hpp is always closed.

B Morse lemma
We prove a global Morse lemma providing a change of coordinates on the torus for which each critical point
is in the normal form.
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B.1 Lemma Let E : Td → R be a smooth Morse function. Then there is a smooth diffeomorphism
ϕ : Td → Td and a number δ > 0 such that for all critical points k∗ ∈ S∗

E ◦ ϕ(k∗ + k) = E(k∗) +
1

2
〈k|∇2E(0)|k〉 , |k| < δ .

Moreover, ϕ leaves the set S∗ invariant and satisfies ϕ′(k∗) = 1 for all k∗ ∈ S∗.

Proof. This proof follows a standard procedure [Nic]. The idea is to construct ϕ using the inverse of the
flow ϕt at time t = 1 associated to a time-dependent smooth vector field Yt : Td → Rd. This vector field is
first constructed locally at every critical point k∗, which we may choose to be k∗ = 0. Set

Et(k) = (1− t)E(k) + tQ(k) ,

where Q(k) = 1
2
〈k|E ′′(0)|k〉 is the quadratic form associated to the critical point. We first search diffeo-

morphisms ϕt such that E = Et ◦ϕt and ϕt(0) = 0 and attempt to find them locally as flow of a vector fields
Yt defined by Yt ◦ ϕt = ∂tϕt. This field then has to satisfy

0 = ∂t Et ◦ ϕt = Yt(Et) ◦ ϕt − E ◦ ϕt +Q ◦ ϕt ,

where Yt(Et) = 〈Yt|∇〉Et. Hence one needs to find a local solution to the homology equations

Yt(Et) = E −Q , Yt(0) = 0 .

Inversely, once these equations are solved, we find ϕt as the flow of Yt. The construction of Yt is now as
follows. As (E −Q)(0) = 0 and ∇(E −Q)(0) = 0, one has

(E −Q)(k) =

∫ 1

0

ds′
∫ s′

0

ds ∂2
s (E −Q)(sk) =

∫ 1

0

ds′
∫ s′

0

ds 〈k|∇2(E −Q)(sk)|k〉 .

Because the critical point is non-degenerate, the inverse function theorem implies that the map k ∈ Bδ(0) 7→
∇Et(k) is invertible for some δ > 0. Let this inverse be denoted by ξt(∇Et(k)) = k. It satisfies ξt(0) = 0
so that

k =

∫ 1

0

dr ∂rξt(r∇Et(k)) =

∫ 1

0

dr ∇ξt(r∇Et(k))∇Et(k) .

Replacing in the above shows that

Yt(k) =

∫ 1

0

dr

∫ 1

0

ds′
∫ s′

0

ds∇ξt(r∇Et(k))t∇2(E −Q)(sk)|k〉 ,

solves the homology equation. It also satisfies |Yt(k)| ≤ C |k| for some constant C. This construction
provides a smooth vector field in Bδ(k

∗) for every k∗ ∈ S∗ and an adequate δ > 0. It can be smoothly
continued to a vector field Yt which vanishes except in B2δ(k

∗). Let ϕt be the associated flow. Then

E ◦ ϕ−1
1 (k∗ + k) = 〈k|∇2E(k∗)|k〉 , |k| < δ , k∗ ∈ S∗ .

Summing such contributions from all critical points one obtains a smooth vector field Y on Td and its
associated flow ϕ1 at time 1 diagonalizes the Hessians at all critical points. Then ϕ = (ϕ1)−1 is the desired
diffeomorphism. 2

The proof shows that the diffeomorphism ϕ can, moreover, be constructed such that it is given by the
identity on the complement of

⋃
k∗∈S∗ B2δ(k

∗).
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C Boundary values of the Borel transform
Here the Plemelj-Privalov theorem on properties of the Borel transform of a function is proved. Ohter
arguments can be found in the literature, [Mus] and [Kre, Section 7].

C.1 Lemma Let ρ : R→ C be a Hölder continuous function of exponent α ∈ (0, 1] with compact support.
Then, for any β such that 0 < β < α, its Borel transform

Gρ(z) =

∫
R

ρ(e) de

z − e
(C.1)

is holomorphic in C \ supp(ρ) and its boundary value on the real axis is Hölder continuous with exponent
β. If ρ is real-valued, then

Gρ(E ± ı0) = ∓ ı π ρ(E) + −
∫
R

ρ(e) de

E − e
where −

∫
denotes the Cauchy principal value.

Proof: The holomorphy of Gρ outside supp(ρ) is a standard result that will not be proved here. By decom-
posing ρ into its real and imaginary part, if necessary, there is no loss of generality in assuming that ρ is
real-valued. For ε > 0 and E ∈ R, Gρ(E + ıε) is given by

Gρ(E ± ıε) =

∫
R
de

ρ(e)(E − e∓ ıε)
(E − e)2 + ε2

= Rρ(E, ε) ∓ ı Iρ(E, ε) ,

where

Iρ(E, ε) =

∫
R
de

ρ(e)ε

(E − e)2 + ε2
, Rρ(E, ε) =

∫
R
de

ρ(e)(E − e)
(E − e)2 + ε2

. (C.2)

The first term admits πρ(E) as a limit as ε ↓ 0. This is because, using the change of variables e = E + εx
and the Lebesgue dominated convergence theorem, gives

lim
ε↓0

Iρ(E, ε) = lim
ε↓0

∫
R

dx

x2 + 1
ρ(E + εx) = ρ(E)

∫
R

dx

x2 + 1
= π ρ(E) . (C.3)

Similarly, using the change of variable u = e− E and the symmetry u 7→ −u, one obtains

Rρ(E, ε) =

∫ ∞
0

u du

u2 + ε2
(
ρ(E − u)− ρ(E + u)

)
. (C.4)

For all a > 0, the part of the integral corresponding to 0 < a ≤ u is also Hölder continuous of exponent
α w.r.t. E, thanks to Lebesgue’s dominated convergence theorem. In particular, if E is not in the support
of ρ, the integral over u never reaches u = 0 so that Rρ(E) is Hölder continuous outside the support of ρ.
However, if ρ is real valued, Rρ is the restriction to the complement of the support of ρ (in the real line)
of the real part of an holomorphic function and is therefore analytic. On the other hand, since ρ is Hölder
continuous of exponent α and with compact support, it follows that there is a constant K > 0 for which
|ρ(E+δ±u)−ρ(E±u)| ≤ Kδα uniformly w.r.t. E and u. In particular, |ρ(E−u)−ρ(E+u)| ≤ K(2u)α

and

|ρ(E + δ + u)− ρ(E + u)− ρ(E + δ − u) + ρ(E − u)| ≤ 2K min{δα, (2u)α} ≤ 21+α−βKδβuα−β ,

for any 0 < β < α. Using this estimate inside the part of the integral for which u ∈ [0, 1] and thanks to the
dominated convergence theorem, it follows that limε↓0Rρ(E, ε) exists and is Hölder continuous of exponent
β for E ∈ supp(ρ). The last formula also follows from the above. 2
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44, (Birkhäuser, Basel, 2005).

[Din] Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proceedings AMS
124, 591-600 (1996).

[Kat] T. Kato, Perturbation Theory for Linear Operators, (Springer, Berlin, 1966).

[KR] J. Kellendonk, S. Richard, Levinson’s theorem for Schrödinger operators with point interaction: a
topological approach, J. Phys. A 39, 14397-14403 (2006).

[Kre] R. Kress, Linear integral equations, 3rd edition, (Springer-Verlag, Berlin, 2014).

[KKV] A. Komech, E. Kopylova, B. Vainberg On dispersive properties of discrete 2D Schrodinger and
Klein-Gordon equations, J. Funct. Anal. 254, 2227-2254 (2008).

[Kur] S. T. Kuroda, Scattering Theory for Differential Operators I and II, J. Math. Soc. Japan 25, 75-104,
222-234 (1973).

[Lax] P. Lax, Functional analysis, (Wiley, 2002).

[Mus] N. I. Muskhelishvili, Singular integral equations, (Noordhoff, Groningen, 1953).

[New] R. G. Newton, Scattering theory of waves and particles, 2nd Edition, (Springer, New York, 1982).

[Nic] L. I. Nicolaescu, An invitation to Morse theory, (Springer, New York, 2007).

[RS] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. I-IV, (Academic Press, New
York, 1972-1978).

[Sak] T. Sakai, Riemannian Geometry, (AMS, Providence, 1996).

[TO] T. Y. Tsang, T. A. Osborn, The spectral property of time delay, Nucl. Phys. A 247, 43-50 (1975).

[VH] L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal, Phys.
Rev. 89, 1189-1193 (1953).

[Yaf] D. Yafaev, Scattering Theory: Some Old and New Problems, Lect. Notes Math. 1735, (Springer,
Berlin, 2000).

42


