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Finite volume calculation of K -theory invariants

Plan of the talk

• Classical topological invariants and index theorem

• Construction of associated Bott operator (matrix)

• Main result: invariant as signature of Bott operator

• Connection to η-invariant

• Elements of proof based on K -theory

• Implementation of symmetries

• Application to topological insulators

• Even dimensional case
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Motivating example: higher winding numbers

Td torus of odd dimension d

Given: smooth function k ∈ Td 7→ A(k) ∈ Gl(N,C)

Higher winding number (also called odd Chern number):

Chd(A) =
( 1

2 (d − 1))!

d!

(
i

2π

) d+1
2
∫
Td

Tr
((

A−1dA
)d)

Faithful irrep Γ1, . . . , Γd of complex Clifford Cd on CN

(possibly given only after augmenting N)

Selfadjoint Dirac operator on L2(Td ,CN):

D =
d∑

j=1

Γj ∂kj

Positive spectral (Hardy) projection Π = χ(D ≥ 0)



Finite volume calculation of K -theory invariants

Theorem

Viewing A as multiplication operator on L2(Td ,CN), the operator

ΠAΠ + (1− Π) is Fredholm and:

Chd(A) = Ind
(
ΠAΠ + (1− Π)

)
Case d = 1: Fritz Noether 1921 and Gohberg-Krein 1960

Case d ≥ 3: probably follows from Atiyah-Singer 1960’s and 1970’s

Extension to covariant operators with Prodan 2016

Aim: express Chd(A) as signature of a finite dimensional matrix

Also extend to situations where no differential calculus available

This makes invariants numerically calculable
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Extension to local operators on lattice

After Fourier transform F : L2(Td ,CN)→ `2(Zd ,CN)

(Fψ)(x) =

∫
Td

dk
(2π)d

e−ikx ψ(k)

Dirac D̂ = FDF∗ =
∑d

j=1 XjΓj with position operators Xj

Â = FAF∗ convolution operator

Differentiability satisfied if locality condition holds:

‖[Â,Xj ]‖ ≤ C ∀ j = 1, . . . , d ⇐⇒ ‖[Â,D]‖ ≤ C ′

From now on only local operators on `2(Z,CN), so let’s drop hats

Fact: If A invertible local operator, ΠAΠ + 1− Π is Fredholm

Fact: If A covariant, index is still given by a Chern number

Aim: calculate index as signature of finite matrix
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Bott operator

For tuning parameter κ > 0 and invertible local A:

Bκ =

(
κD A

A∗ −κD

)
= κD ⊗ σ3 + H

where H =

(
0 A

A∗ 0

)
. Clearly Bκ selfadjoint

D unbounded with discrete spectrum, A viewed as perturbation

A may lead to spectral asymmetry of Bκ, but not for A = 1

Measured by signature, already on finite volume approximation!

Aρ restriction of A (Dirichlet b.c.) to Dρ = {x ∈ Zd : |x | ≤ ρ}

Bκ,ρ =

(
κDρ Aρ

A∗ρ −κDρ

)
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Main Result

Theorem

Let g = ‖A−1‖−1 be the invertibility gap. Provided that

‖[D,A]‖ ≤ g3

18 ‖A‖κ
(*)

and

2 g

κ
≤ ρ (**)

the matrix Bκ,ρ is invertible and

1
2 Sig(Bκ,ρ) = Ind

(
ΠAΠ + (1− Π)

)
How to use: form (*) infer κ, then ρ from (**)

If A unitary, g = ‖A‖ = 1 and κ = (18‖[D,A]‖)−1 and ρ = 2/κ

Hence small matrix of size ≤ 100 sufficient! Great for numerics!
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Why it can work:

Proposition

If (*) and (**) hold,

B2
κ,ρ ≥

g2

2

Proof:

B2
κ,ρ =

(
A∗ρAρ 0

0 AρA
∗
ρ

)
+κ2

(
D2
ρ 0

0 D2
ρ

)
+κ

(
0 [Dρ,Aρ]

[Dρ,Aρ]∗ 0

)

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)

Now A∗A ≥ g2, but (A∗A)ρ 6= A∗ρAρ

This issue can be dealt with by tapering argument:



Finite volume calculation of K -theory invariants

Proposition (Bratelli-Robinson)

For f : R→ R with Fourier transform defined without
√

2π,

‖[f (D),A]‖ ≤ ‖f̂ ′‖1 ‖[D,A]‖

Lemma

∃ even function f : R→ [0, 1] with f (x) = 0 for |x | ≥ ρ
and f (x) = 1 for |x | ≤ ρ

2 such that ‖f̂ ′‖1 = 8
ρ

With this, f = f (D) = f (|D|) and 1ρ = χ(|D| ≤ ρ):

A∗ρAρ = 1ρA
∗1ρA1ρ ≥ 1ρA

∗f 2A1ρ

= 1ρfA
∗Af 1ρ + 1ρ

(
[A∗, f ]fA + fA∗[f ,A]

)
1ρ

≥ g2 f 2 + 1ρ
(
[A∗, f ]fA + fA∗[f ,A]

)
1ρ

So indeed A∗ρAρ positive close to origin

Then one can conclude... but TEDIOUS 2
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η-invariant (Atiyah-Patodi-Singer 1977)

Definition

B = B∗ invertible operator on H with compact resolvent. Then

η(B) = Tr(B|B|−s−1)|s=0 =
1

Γ( s+1
2 )

∫ ∞
0

dt t
s−1

2 Tr(B e−tB
2
)
∣∣∣
s=0

provided it exists!

If dim(H) <∞, then η(B) = Sig(B)

Usually existence of η-invariant for ψ-Diffs difficult issue

Proposition

If (*) holds, Bκ has well-defined η-invariant

Proof. Integral for large t controlled by gap (Proposition above)
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For small t appeal to Dyson series (iteration of DuHamel):

e−tB
2
κ = e−t∆ + t

∫ 1

0
dr e−(1−r)t∆Re−rtB

2
κ

where B2
κ = ∆ + R with

∆ = κ2

(
D2 0

0 D2

)
, R =

(
AA∗ κ[D,A]

κ[D,A]∗ A∗A

)

Now replacing Bκ = κD ⊗ σ3 + H

Tr(Bκe
−t∆) = κTr

((
D 0

0 −D

)
e−t∆

)
+Tr

((
0 A

A∗ 0

)
e−t∆

)
= 0

Second term has supplementary factor t 2
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Theorem (follows from Getzler 1993, Carey-Phillips 2004)

Suppose (*) so that Bκ has well-defined η-invariant

For path λ ∈ [0, 1] 7→ Bκ(λ) = κD ⊗ σ3 + λH of selfadjoints

2 SF
(
λ ∈ [0, 1] 7→ Bκ(λ)

)
= η(Bκ(1)) − η(Bκ(0)) = η(Bκ)

Consequence: As spectral flow homotopy invariant, so is η(Bκ)

Using this, first proof of Main Result for dimension d = 1:

By homotopy invariance sufficient: A = Sn for n ∈ Z and S shift

Then calculate spectrum of Bκ(λ) explicity using XS = (X + 1)S :

σ(Bκ(λ)) =

{
κ
2

(
n ±

(
(n − 2k)2 + 4λ2

κ2

) 1
2
)

: k ∈ Z
}

Now carefully follow eigenvalues to calculate spectral flow 2
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Preparations for K -theoretic argument for other d

Unitization A+ = A⊕ C of C∗-algebra A by

(A, t)(B, s) = (AB + As + Bt, ts) , (A, t)∗ = (A∗, t)

Natural C∗-norm ‖(A, t)‖ = max{‖A‖, |t|}. Unit 1 = (0, 1) ∈ A+

Exact sequence of C∗-algebras 0→ A i
↪→ A+ ρ→ C→ 0

ρ has inverse i ′(t) = (0, t), then s = i ′ ◦ ρ : A+ → A+ scalar part

V0(A) =
{
V ∈ ∪n≥1M2n(A+) : V ∗ = V , V 2 = 1 , s(V ) ∼0 E2n

}
where homotopic to E2n = E⊕

n

2 with E2 =
(1 0

0 −1

)
Equivalence relation ∼0 on V0(A) by homotopy and V ∼0

(V 0
0 E2

)
Then K0(A) = V0(A)/ ∼0 abelian group via [V ] + [V ′] = [

(V 0
0 V ′

)
]
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Definition of K0(A) is equivalent standard one via V = 2P − 1:

K0(A) = {[P]− [s(P)] : projections in some Mn(A+)}

For definition of K1(A) set

V1(A) =
{
U ∈ ∪n≥1Mn(A+) : U−1 = U∗

}
Equivalence relation ∼1 by homotopy and [U] = [

(U 0
0 1

)
]

Then K1(A) = V1(A)/ ∼1 with addition [U] + [U ′] = [U ⊕ U ′]

If A unital, one can work with Mn(A) instead of Mn(A+) in V1(A)

Example 1: K0(C) = Z with invariant dim(P)

Example 2: K1(C (S1)) = Z with invariant ”winding number”
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Index map

Example 3: Calkin’s exact sequence over a Hilbert space:

0 → K → B π→ Q = B/K → 0

For Calkin algebra K1(Q) = Z with invariant = index of Fredholm

Also K0(B) = K1(B) = 0 and K0(K) = Z

Isomorphism K1(Q) ∼= K0(K) given by index map (Rordam et. al.):

Unitary U = π(B) ∈ V1(Q), with contraction lift B ∈ B,

Ind[U]1 =

[(
2BB∗ − 1 2B(1− B∗B)

1
2

2(1− B∗B)
1
2B∗ 1− 2B∗B

)]
0

where for r.h.s. V ∈ K+: V 2 = 1 and s(V ) ∼0 E2 up to compact
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Index map versus index of Fredholm operator

B unitary up to compact ⇐⇒ 1− B∗B ∈ K and 1− BB∗ ∈ K

=⇒ B Fredholm operator and U = π(B) ∈ Q unitary

Fedosov formula if 1− B∗B and 1− BB∗ are traceclass:

Ind(B) = dim(Ker(B)) − dim(Ker(B∗))

= Tr(1− B∗B) − Tr(1− BB∗)

= Tr

(
BB∗ − 1 B(1− B∗B)

1
2

(1− B∗B)
1
2B∗ 1− B∗B

)
= Tr

(
1
2 (V − 1)

)
= 1

2 Sig(V ) if 1− B∗B, 1− BB∗ projections

= Tr
(

1
2 (Ind[U]− 1)

)
= Tr

(
Ind∼[U]

)
if Ind∼[U] is the projection-valued version of index map
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Localizing index map for index pairings

Suppose now U = π
(
ΠAΠ + (1− Π)

)
∈ Q as in Main Theorem

but first A unitary. Then contraction lift B = ΠAΠ + (1− Π)

Modify Π and 1− Π to p = p(D) smooth and n = n(D) where

p(x) =


0 , x ≤ −ρ

p(x) , |x | ≤ ρ
1 , x ≥ ρ

, n(x) =

{
1 , x ≤ −ρ
0 , x ≥ −ρ

Now p−Π, n− (1−Π) compact, np = pn = 0 and n+ p|Dc
ρ

= 1Dc
ρ

With notation Ap = pAp acting only on `2(Dρ)⊗ CN :

Ind[U] = Ind[pAp + n] = Ind[Ap + n]

=

[(
2ApA

∗
p − 1 2Ap(1− A∗pAp)

1
2

2(1− A∗pAp)
1
2A∗p 1− 2A∗pAp

)
⊕

(
1Dc

ρ
0

0 −1Dc
ρ

)]
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Summand on Dc
ρ trivial (as equal to E2). Thus:

Ind[U] =

[(
2ApA

∗
p − 1 2Ap(1− A∗pAp)

1
2

2(1− A∗pAp)
1
2A∗p 1− 2A∗pAp

)]

Numerical index is signature of this finite-dimensional matrix!

Modify to self-adjoint matrix without spoiling invertibility

‖ApA
∗
p − p4‖ = ‖pAp2A∗p − p3AA∗p‖ ≤ ‖[p2,A]‖

≤ C

ρ
‖[D,A]‖ < 1

4

by the smoothness of p and for ρ sufficiently large. Similarly

‖Ap(1− A∗pAp)
1
2 − (1− p4)

1
4 pAp(1− p4)

1
4 ‖ ≤ C

ρ
‖[D,A]‖ < 1

4

Thus just replace matrix entries without changing signature!
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Proposition

If (*) and (**) hold,

Ind
(
ΠAΠ + (1− Π)

)
= Sig

(
2p4 − 1 2(1− p4)

1
4 pAp(1− p4)

1
4

2(1− p4)
1
4 pA∗p(1− p4)

1
4 1− 2p4

)

Last tasks:

1) replace 2p4 − 1 by κDρ

2) replace
√

2(1− p4)
1
4 p by 1ρ indicator on Dρ. Then 1ρA1ρ = Aρ

Both follows again by a tapering argument UUuuuffff



Finite volume calculation of K -theory invariants

Implementation of real symmetries

Fix a real structure on complex Hilbert space, denoted by overline

There is irrep Γ1, . . . , Γd and real unitary matrix Σ

d mod 8 1 3 5 7

Σ∗D Σ = D −D D −D
Σ2 = 1 −1 −1 1

Σ∗Π Σ = Π 1− Π Π 1− Π

For d = 3: D = X1σ1 + X2σ2 + X3σ3 and Σ = iσ2

Furthermore given real unitary S with [S ,Σ] = [S ,D] = 0:

j mod 8 2 4 6 8

S∗ AS = A∗ A A∗ A

S2 = 1 −1 −1 1
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Symmetries of T = ΠAΠ + (1− Π) such that index pairings are:

Ind(2)(T ) j = 2 j = 4 j = 6 j = 8

d = 1 0 2Z Z2 Z
d = 3 2Z Z2 Z 0

d = 5 Z2 Z 0 2Z
d = 7 Z 0 2Z Z2

where Ind2(T ) = dim(Ker(T ))mod 2 ∈ Z2

For Bott operator follows R∗ Bκ R = s Bκ and R2 = s ′1 with

s = , s ′ = j = 2 j = 4 j = 6 j = 8

d = 1 −1 , −1 1 , −1 −1 , 1 1 , 1

d = 3 1 , −1 −1 , 1 1 , 1 −1 , −1

d = 5 −1 , 1 1 , 1 −1 , −1 1 , −1

d = 7 1 , 1 −1 , −1 1 , −1 −1 , 1
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Same pattern!

Thus Ind and Ind2 can be calculated from Bott operator using:

Proposition

B = B∗ invertible complex matrix. R = R real unitary such

R∗ B R = s B , R2 = s ′ 1

(i) If s = 1 and s ′ = 1, then Sig(B) ∈ Z arbitrary

(ii) If s = 1 and s ′ = −1, then Sig(B) ∈ 2Z arbitrary

(iii) If s = −1 and s ′ = 1, then Sig(B) = 0, but setting M = R
1
2

one obtains real antisymmetric matrix iMBM∗ with

invariant sgn(Pf(iMBM∗)) ∈ Z2

(iv) If s = −1 and s ′ = −1, then Sig(B) = 0
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Application to topological insulators

Bκ =

(
κD A

A∗ −κD

)
= κD ⊗ σ3 + H , H =

(
0 A

A∗ 0

)

Data: H = −J∗HJ chiral quantum Hamiltonian where J =
( 1 0

0 −1

)
Invertibility of H (and hence A) means: H describes insulator

Non-trivial higher winding numbers make it a topological insulator

Main Theorem allows to efficiently calculate this topology

As calculation local, one can determine quantum phase transitions

Implementation of physical symmetries on H (like TRS and PHS)

lead to symmetries of A =⇒ Z2 invariants calculable

Now: not every H is chiral & dimension not always even...



Finite volume calculation of K -theory invariants

Even dimensional pairings

Consider projection P on `2(Zd ,C2N) with d even

Even-dimensional Dirac operator has grading Γd+1 =
( 1 0

0 −1

)
Dirac phase F is unitary operator in D|D|−1 =

(0 F
F∗ 0

)
Fredholm operator PFP + (1− P) has index equal to Chd(P)

Associated Bott operator

Bκ = κD + (2P − 1)Γd+1

Theorem

Suppose ‖[P,D]‖ <∞ and that κ is sufficiently small

For ρ sufficiently large,

Ind
(
PFP + (1− P)

)
= Sig(Bκ,ρ)
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Resumé = Plan of the talk

• Classical topological invariants and index theorem

• Construction of associated Bott operator (matrix)

• Main result: invariant as signature of Bott operator

• Connection to η-invariant

• Elements of proof based on K -theory

• Implementation of symmetries

• Application to topological insulators

• Even dimensional case


