Finite volume calculation of K-theory invariants

Hermann Schulz-Baldes, Erlangen
collaborator:
Terry Loring, Alberquerque

Erlangen January, 2017

Plan of the talk

- Classical topological invariants and index theorem
- Construction of associated Bott operator (matrix)
- Main result: invariant as signature of Bott operator
- Connection to η-invariant
- Elements of proof based on K-theory
- Implementation of symmetries
- Application to topological insulators
- Even dimensional case

Motivating example: higher winding numbers

\mathbb{T}^{d} torus of odd dimension d
Given: smooth function $k \in \mathbb{T}^{d} \mapsto A(k) \in \operatorname{Gl}(N, \mathbb{C})$
Higher winding number (also called odd Chern number):

$$
\mathrm{Ch}_{d}(A)=\frac{\left(\frac{1}{2}(d-1)\right)!}{d!}\left(\frac{i}{2 \pi}\right)^{\frac{d+1}{2}} \int_{\mathbb{T}^{d}} \operatorname{Tr}\left(\left(A^{-1} \mathbf{d} A\right)^{d}\right)
$$

Faithful irrep $\Gamma_{1}, \ldots, \Gamma_{d}$ of complex Clifford \mathbb{C}_{d} on \mathbb{C}^{N}
(possibly given only after augmenting N)
Selfadjoint Dirac operator on $L^{2}\left(\mathbb{T}^{d}, \mathbb{C}^{N}\right)$:

$$
D=\sum_{j=1}^{d} \Gamma_{j} \partial_{k_{j}}
$$

Positive spectral (Hardy) projection $\Pi=\chi(D \geq 0)$

Theorem

Viewing A as multiplication operator on $L^{2}\left(\mathbb{T}^{d}, \mathbb{C}^{N}\right)$, the operator $\Pi А П+(\mathbf{1}-\Pi)$ is Fredholm and:

$$
\mathrm{Ch}_{d}(A)=\operatorname{Ind}(\Pi A \Pi+(1-\Pi))
$$

Case $d=1$: Fritz Noether 1921 and Gohberg-Krein 1960
Case $d \geq 3$: probably follows from Atiyah-Singer 1960's and 1970's
Extension to covariant operators with Prodan 2016
Aim: express $\mathrm{Ch}_{d}(A)$ as signature of a finite dimensional matrix Also extend to situations where no differential calculus available This makes invariants numerically calculable

Extension to local operators on lattice

After Fourier transform $\mathcal{F}: L^{2}\left(\mathbb{T}^{d}, \mathbb{C}^{N}\right) \rightarrow \ell^{2}\left(\mathbb{Z}^{d}, \mathbb{C}^{N}\right)$

$$
(\mathcal{F} \psi)(x)=\int_{\mathbb{T}^{d}} \frac{d k}{(2 \pi)^{d}} e^{-i k x} \psi(k)
$$

Dirac $\widehat{D}=\mathcal{F} D \mathcal{F}^{*}=\sum_{j=1}^{d} X_{j} \Gamma_{j}$ with position operators X_{j}
$\widehat{A}=\mathcal{F A F}^{*}$ convolution operator
Differentiability satisfied if locality condition holds:

$$
\left\|\left[\widehat{A}, X_{j}\right]\right\| \leq C \forall j=1, \ldots, d \quad \Longleftrightarrow \quad\|[\widehat{A}, D]\| \leq C^{\prime}
$$

From now on only local operators on $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{N}\right)$, so let's drop hats
Fact: If A invertible local operator, $П А П+\mathbf{1}-\Pi$ is Fredholm
Fact: If A covariant, index is still given by a Chern number
Aim: calculate index as signature of finite matrix

Bott operator

For tuning parameter $\kappa>0$ and invertible local A :

$$
B_{\kappa}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right)=\kappa D \otimes \sigma_{3}+H
$$

where $H=\left(\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right)$. Clearly B_{κ} selfadjoint
D unbounded with discrete spectrum, A viewed as perturbation
A may lead to spectral asymmetry of B_{κ}, but not for $A=\mathbf{1}$
Measured by signature, already on finite volume approximation!
A_{ρ} restriction of A (Dirichlet b.c.) to $\mathbb{D}_{\rho}=\left\{x \in \mathbb{Z}^{d}:|x| \leq \rho\right\}$

$$
B_{\kappa, \rho}=\left(\begin{array}{cc}
\kappa D_{\rho} & A_{\rho} \\
A_{\rho}^{*} & -\kappa D_{\rho}
\end{array}\right)
$$

Main Result

Theorem

Let $g=\left\|A^{-1}\right\|^{-1}$ be the invertibility gap. Provided that

$$
\begin{equation*}
\|[D, A]\| \leq \frac{g^{3}}{18\|A\| \kappa} \tag{}
\end{equation*}
$$

and

$$
\frac{2 g}{\kappa} \leq \rho
$$

the matrix $B_{\kappa, \rho}$ is invertible and

$$
\frac{1}{2} \operatorname{Sig}\left(B_{\kappa, \rho}\right)=\operatorname{Ind}(\Pi A \Pi+(1-\Pi))
$$

How to use: form $\left(^{*}\right)$ infer κ, then ρ from $\left({ }^{* *}\right)$
If A unitary, $g=\|A\|=1$ and $\kappa=(18\|[D, A]\|)^{-1}$ and $\rho=2 / \kappa$ Hence small matrix of size ≤ 100 sufficient! Great for numerics!

Why it can work:

Proposition

If (*) and (**) hold,

$$
B_{\kappa, \rho}^{2} \geq \frac{g^{2}}{2}
$$

Proof:
$B_{\kappa, \rho}^{2}=\left(\begin{array}{cc}A_{\rho}^{*} A_{\rho} & 0 \\ 0 & A_{\rho} A_{\rho}^{*}\end{array}\right)+\kappa^{2}\left(\begin{array}{cc}D_{\rho}^{2} & 0 \\ 0 & D_{\rho}^{2}\end{array}\right)+\kappa\left(\begin{array}{cc}0 & {\left[D_{\rho}, A_{\rho}\right]} \\ {\left[D_{\rho}, A_{\rho}\right]^{*}} & 0\end{array}\right)$
Last term is a perturbation controlled by (*)
First two terms positive (indeed: close to origin and away from it)
Now $A^{*} A \geq g^{2}$, but $\left(A^{*} A\right)_{\rho} \neq A_{\rho}^{*} A_{\rho}$
This issue can be dealt with by tapering argument:

Proposition (Bratelli-Robinson)

For $f: \mathbb{R} \rightarrow \mathbb{R}$ with Fourier transform defined without $\sqrt{2 \pi}$,

$$
\|[f(D), A]\| \leq\left\|\widehat{f^{\prime}}\right\|_{1}\|[D, A]\|
$$

Lemma

\exists even function $f: \mathbb{R} \rightarrow[0,1]$ with $f(x)=0$ for $|x| \geq \rho$ and $f(x)=1$ for $|x| \leq \frac{\rho}{2}$ such that $\left\|\widehat{f}^{\prime}\right\|_{1}=\frac{8}{\rho}$

With this, $f=f(D)=f(|D|)$ and $\mathbf{1}_{\rho}=\chi(|D| \leq \rho)$:

$$
\begin{aligned}
A_{\rho}^{*} A_{\rho} & =\mathbf{1}_{\rho} A^{*} \mathbf{1}_{\rho} A \mathbf{1}_{\rho} \geq \mathbf{1}_{\rho} A^{*} f^{2} A \mathbf{1}_{\rho} \\
& =\mathbf{1}_{\rho} f A^{*} A f \mathbf{1}_{\rho}+\mathbf{1}_{\rho}\left(\left[A^{*}, f\right] f A+f A^{*}[f, A]\right) \mathbf{1}_{\rho} \\
& \geq g^{2} f^{2}+\mathbf{1}_{\rho}\left(\left[A^{*}, f\right] f A+f A^{*}[f, A]\right) \mathbf{1}_{\rho}
\end{aligned}
$$

So indeed $A_{\rho}^{*} A_{\rho}$ positive close to origin Then one can conclude... but TEDIOUS

η-invariant (Atiyah-Patodi-Singer 1977)

Definition

$B=B^{*}$ invertible operator on \mathcal{H} with compact resolvent. Then
$\eta(B)=\left.\operatorname{Tr}\left(B|B|^{-s-1}\right)\right|_{s=0}=\left.\frac{1}{\Gamma\left(\frac{s+1}{2}\right)} \int_{0}^{\infty} d t t^{\frac{s-1}{2}} \operatorname{Tr}\left(B e^{-t B^{2}}\right)\right|_{s=0}$
provided it exists!
If $\operatorname{dim}(\mathcal{H})<\infty$, then $\eta(B)=\operatorname{Sig}(B)$
Usually existence of η-invariant for ψ-Diffs difficult issue

Proposition

If $\left(^{*}\right)$ holds, B_{κ} has well-defined η-invariant
Proof. Integral for large t controlled by gap (Proposition above)

For small t appeal to Dyson series (iteration of DuHamel):

$$
e^{-t B_{\kappa}^{2}}=e^{-t \Delta}+t \int_{0}^{1} d r e^{-(1-r) t \Delta} R e^{-r t B_{\kappa}^{2}}
$$

where $B_{\kappa}^{2}=\Delta+R$ with

$$
\Delta=\kappa^{2}\left(\begin{array}{cc}
D^{2} & 0 \\
0 & D^{2}
\end{array}\right) \quad, \quad R=\left(\begin{array}{cc}
A A^{*} & \kappa[D, A] \\
\kappa[D, A]^{*} & A^{*} A
\end{array}\right)
$$

Now replacing $B_{\kappa}=\kappa D \otimes \sigma_{3}+H$

$$
\operatorname{Tr}\left(B_{\kappa} e^{-t \Delta}\right)=\kappa \operatorname{Tr}\left(\left(\begin{array}{cc}
D & 0 \\
0 & -D
\end{array}\right) e^{-t \Delta}\right)+\operatorname{Tr}\left(\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right) e^{-t \Delta}\right)=0
$$

Second term has supplementary factor t

Theorem (follows from Getzler 1993, Carey-Phillips 2004)

Suppose $\left(^{*}\right)$ so that B_{κ} has well-defined η-invariant
For path $\lambda \in[0,1] \mapsto B_{\kappa}(\lambda)=\kappa D \otimes \sigma_{3}+\lambda H$ of selfadjoints

$$
2 \operatorname{SF}\left(\lambda \in[0,1] \mapsto B_{\kappa}(\lambda)\right)=\eta\left(B_{\kappa}(1)\right)-\eta\left(B_{\kappa}(0)\right)=\eta\left(B_{\kappa}\right)
$$

Consequence: As spectral flow homotopy invariant, so is $\eta\left(B_{\kappa}\right)$ Using this, first proof of Main Result for dimension $d=1$:

By homotopy invariance sufficient: $A=S^{n}$ for $n \in \mathbb{Z}$ and S shift Then calculate spectrum of $B_{\kappa}(\lambda)$ explicity using $X S=(X+1) S$:

$$
\sigma\left(B_{\kappa}(\lambda)\right)=\left\{\frac{\kappa}{2}\left(n \pm\left((n-2 k)^{2}+\frac{4 \lambda^{2}}{\kappa^{2}}\right)^{\frac{1}{2}}\right): k \in \mathbb{Z}\right\}
$$

Now carefully follow eigenvalues to calculate spectral flow

Preparations for K-theoretic argument for other d

Unitization $\mathcal{A}^{+}=\mathcal{A} \oplus \mathbb{C}$ of C^{*}-algebra \mathcal{A} by

$$
(A, t)(B, s)=(A B+A s+B t, t s) \quad, \quad(A, t)^{*}=\left(A^{*}, \bar{t}\right)
$$

Natural C^{*}-norm $\|(A, t)\|=\max \{\|A\|,|t|\}$. Unit $\mathbf{1}=(0,1) \in \mathcal{A}^{+}$
Exact sequence of C^{*}-algebras $0 \rightarrow \mathcal{A} \stackrel{i}{\hookrightarrow} \mathcal{A}^{+} \xrightarrow{\rho} \mathbb{C} \rightarrow 0$
ρ has inverse $i^{\prime}(t)=(0, t)$, then $s=i^{\prime} \circ \rho: \mathcal{A}^{+} \rightarrow \mathcal{A}^{+}$scalar part
$\mathcal{V}_{0}(\mathcal{A})=\left\{V \in \cup_{n \geq 1} M_{2 n}\left(\mathcal{A}^{+}\right): V^{*}=V, \quad V^{2}=1, s(V) \sim_{0} E_{2 n}\right\}$ where homotopic to $E_{2 n}=E_{2}^{\oplus^{n}}$ with $E_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -\mathbf{1}\end{array}\right)$
Equivalence relation \sim_{0} on $\mathcal{V}_{0}(\mathcal{A})$ by homotopy and $V \sim_{0}\left(\begin{array}{cc}V & 0 \\ 0 & E_{2}\end{array}\right)$
Then $K_{0}(\mathcal{A})=\mathcal{V}_{0}(\mathcal{A}) / \sim_{0}$ abelian group via $[V]+\left[V^{\prime}\right]=\left[\left(\begin{array}{cc}V & 0 \\ 0 & V^{\prime}\end{array}\right]\right]$

Definition of $K_{0}(\mathcal{A})$ is equivalent standard one via $V=2 P-\mathbf{1}$:

$$
K_{0}(\mathcal{A})=\left\{[P]-[s(P)]: \text { projections in some } M_{n}\left(\mathcal{A}^{+}\right)\right\}
$$

For definition of $K_{1}(\mathcal{A})$ set

$$
\mathcal{V}_{1}(\mathcal{A})=\left\{U \in \cup_{n \geq 1} M_{n}\left(\mathcal{A}^{+}\right): U^{-1}=U^{*}\right\}
$$

Equivalence relation \sim_{1} by homotopy and $\left.[U]=\left[\begin{array}{ll}U & 0 \\ 0 & 1\end{array}\right)\right]$
Then $K_{1}(\mathcal{A})=\mathcal{V}_{1}(\mathcal{A}) / \sim_{1}$ with addition $[U]+\left[U^{\prime}\right]=\left[U \oplus U^{\prime}\right]$
If \mathcal{A} unital, one can work with $M_{n}(\mathcal{A})$ instead of $M_{n}\left(\mathcal{A}^{+}\right)$in $\mathcal{V}_{1}(\mathcal{A})$
Example 1: $K_{0}(\mathbb{C})=\mathbb{Z}$ with invariant $\operatorname{dim}(P)$
Example 2: $K_{1}\left(C\left(\mathbb{S}^{1}\right)\right)=\mathbb{Z}$ with invariant " winding number"

Index map

Example 3: Calkin's exact sequence over a Hilbert space:

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{B} \xrightarrow{\pi} \mathcal{Q}=\mathcal{B} / \mathcal{K} \rightarrow 0
$$

For Calkin algebra $K_{1}(\mathcal{Q})=\mathbb{Z}$ with invariant $=$ index of Fredholm
Also $K_{0}(\mathcal{B})=K_{1}(\mathcal{B})=0$ and $K_{0}(\mathcal{K})=\mathbb{Z}$
Isomorphism $K_{1}(\mathcal{Q}) \cong K_{0}(\mathcal{K})$ given by index map (Rordam et. al.):
Unitary $U=\pi(B) \in \mathcal{V}_{1}(\mathcal{Q})$, with contraction lift $B \in \mathcal{B}$,

$$
\operatorname{Ind}[U]_{1}=\left[\left(\begin{array}{cc}
2 B B^{*}-\mathbf{1} & 2 B\left(\mathbf{1}-B^{*} B\right)^{\frac{1}{2}} \\
2\left(\mathbf{1}-B^{*} B\right)^{\frac{1}{2}} B^{*} & \mathbf{1}-2 B^{*} B
\end{array}\right)\right]_{0}
$$

where for r.h.s. $V \in \mathcal{K}^{+}: V^{2}=\mathbf{1}$ and $s(V) \sim_{0} E_{2}$ up to compact

Index map versus index of Fredholm operator

B unitary up to compact $\Longleftrightarrow \mathbf{1}-B^{*} B \in \mathcal{K}$ and $\mathbf{1}-B B^{*} \in \mathcal{K}$
$\Longrightarrow B$ Fredholm operator and $U=\pi(B) \in \mathcal{Q}$ unitary
Fedosov formula if $\mathbf{1}-B^{*} B$ and $\mathbf{1}-B B^{*}$ are traceclass:

$$
\begin{aligned}
\operatorname{Ind}(B) & =\operatorname{dim}(\operatorname{Ker}(B))-\operatorname{dim}\left(\operatorname{Ker}\left(B^{*}\right)\right) \\
& =\operatorname{Tr}\left(\mathbf{1}-B^{*} B\right)-\operatorname{Tr}\left(\mathbf{1}-B B^{*}\right) \\
& =\operatorname{Tr}\left(\begin{array}{cc}
B B^{*}-\mathbf{1} & B\left(\mathbf{1}-B^{*} B\right)^{\frac{1}{2}} \\
\left(\mathbf{1}-B^{*} B\right)^{\frac{1}{2}} B^{*} & \mathbf{1}-B^{*} B
\end{array}\right) \\
& =\operatorname{Tr}\left(\frac{1}{2}(V-\mathbf{1})\right) \\
& =\frac{1}{2} \operatorname{Sig}(V) \\
& =\operatorname{Tr}\left(\frac{1}{2}(\operatorname{Ind}[U]-\mathbf{1})\right) \\
& =\operatorname{Tr}(\operatorname{Ind} \sim[U])
\end{aligned}
$$

if $\operatorname{Ind}^{\sim}[U]$ is the projection-valued version of index map

Localizing index map for index pairings

Suppose now $U=\pi(\Pi A \Pi+(\mathbf{1}-\Pi)) \in \mathcal{Q}$ as in Main Theorem but first A unitary. Then contraction lift $B=\Pi A \Pi+(1-\Pi)$
Modify Π and $\mathbf{1}-\Pi$ to $p=p(D)$ smooth and $n=n(D)$ where

$$
p(x)=\left\{\begin{array}{cc}
0, & x \leq-\rho \\
p(x), & |x| \leq \rho \\
1, & x \geq \rho
\end{array} \quad, \quad n(x)=\left\{\begin{array}{cc}
1, & x \leq-\rho \\
0, & x \geq-\rho
\end{array}\right.\right.
$$

Now $p-\Pi, n-(\mathbf{1}-\Pi)$ compact, $n p=p n=0$ and $n+\left.p\right|_{\mathbb{D}_{\rho}^{c}}=\mathbf{1}_{\mathbb{D}_{\rho}^{c}}$
With notation $A_{p}=p A p$ acting only on $\ell^{2}\left(\mathbb{D}_{\rho}\right) \otimes \mathbb{C}^{N}$:

$$
\operatorname{Ind}[U]=\operatorname{Ind}[p A p+n]=\operatorname{Ind}\left[A_{p}+n\right]
$$

$$
=\left[\left(\begin{array}{cc}
2 A_{p} A_{p}^{*}-\mathbf{1} & 2 A_{p}\left(\mathbf{1}-A_{p}^{*} A_{p}\right)^{\frac{1}{2}} \\
2\left(\mathbf{1}-A_{p}^{*} A_{p}\right)^{\frac{1}{2}} A_{p}^{*} & \mathbf{1}-2 A_{p}^{*} A_{p}
\end{array}\right) \oplus\left(\begin{array}{cc}
\mathbf{1}_{\mathbb{D}_{\rho}^{c}} & 0 \\
0 & -\mathbf{1}_{\mathbb{D}_{\rho}^{c}}
\end{array}\right)\right]
$$

Summand on \mathbb{D}_{ρ}^{c} trivial (as equal to E_{2}). Thus:

$$
\operatorname{Ind}[U]=\left[\left(\begin{array}{cc}
2 A_{p} A_{p}^{*}-\mathbf{1} & 2 A_{p}\left(\mathbf{1}-A_{p}^{*} A_{p}\right)^{\frac{1}{2}} \\
2\left(\mathbf{1}-A_{p}^{*} A_{p}\right)^{\frac{1}{2}} A_{p}^{*} & \mathbf{1}-2 A_{p}^{*} A_{p}
\end{array}\right)\right]
$$

Numerical index is signature of this finite-dimensional matrix!
Modify to self-adjoint matrix without spoiling invertibility

$$
\begin{aligned}
\left\|A_{p} A_{p}^{*}-p^{4}\right\| & =\left\|p A p^{2} A^{*} p-p^{3} A A^{*} p\right\| \leq\left\|\left[p^{2}, A\right]\right\| \\
& \leq \frac{C}{\rho}\|[D, A]\|<\frac{1}{4}
\end{aligned}
$$

by the smoothness of p and for ρ sufficiently large. Similarly
$\left\|A_{p}\left(\mathbf{1}-A_{p}^{*} A_{p}\right)^{\frac{1}{2}}-\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}} p A p\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}}\right\| \leq \frac{C}{\rho}\|[D, A]\|<\frac{1}{4}$
Thus just replace matrix entries without changing signature!

Proposition

If $\left({ }^{*}\right)$ and (**) hold,

$$
\begin{aligned}
& \operatorname{Ind}(\Pi A \Pi+(\mathbf{1}-\Pi)) \\
& \quad=\operatorname{Sig}\left(\begin{array}{cc}
2 p^{4}-\mathbf{1} & 2\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}} p A p\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}} \\
2\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}} p A^{*} p\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}} & \mathbf{1}-2 p^{4}
\end{array}\right)
\end{aligned}
$$

Last tasks:

1) replace $2 p^{4}-\mathbf{1}$ by κD_{ρ}
2) replace $\sqrt{2}\left(\mathbf{1}-p^{4}\right)^{\frac{1}{4}} p$ by $\mathbf{1}_{\rho}$ indicator on \mathbb{D}_{ρ}. Then $\mathbf{1}_{\rho} A \mathbf{1}_{\rho}=A_{\rho}$

Both follows again by a tapering argument

Implementation of real symmetries

Fix a real structure on complex Hilbert space, denoted by overline There is irrep $\Gamma_{1}, \ldots, \Gamma_{d}$ and real unitary matrix Σ

$d \bmod 8$	1	3	5	7
$\Sigma^{*} \bar{D} \Sigma=$	D	$-D$	D	$-D$
$\Sigma^{2}=$	$\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$\mathbf{1}$
$\Sigma^{*} \bar{\Pi} \Sigma=$	Π	$\mathbf{1}-\Pi$	Π	$\mathbf{1}-\Pi$

For $d=3: D=X_{1} \sigma_{1}+X_{2} \sigma_{2}+X_{3} \sigma_{3}$ and $\Sigma=i \sigma_{2}$
Furthermore given real unitary S with $[S, \Sigma]=[S, D]=0$:

$j \bmod 8$	2	4	6	8
$S^{*} \bar{A} S=$	A^{*}	A	A^{*}	A
$S^{2}=$	$\mathbf{1}$	$\mathbf{- 1}$	$\mathbf{- 1}$	$\mathbf{1}$

Symmetries of $T=\Pi A \Pi+(\mathbf{1}-\Pi)$ such that index pairings are:

$\operatorname{Ind}_{(2)}(T)$	$j=2$	$j=4$	$j=6$	$j=8$
$d=1$	0	$2 \mathbb{Z}$	\mathbb{Z}_{2}	\mathbb{Z}
$d=3$	$2 \mathbb{Z}$	\mathbb{Z}_{2}	\mathbb{Z}	0
$d=5$	\mathbb{Z}_{2}	\mathbb{Z}	0	$2 \mathbb{Z}$
$d=7$	\mathbb{Z}	0	$2 \mathbb{Z}$	\mathbb{Z}_{2}

where $\operatorname{Ind}_{2}(T)=\operatorname{dim}(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_{2}$
For Bott operator follows $R^{*} \overline{B_{\kappa}} R=s B_{\kappa}$ and $R^{2}=s^{\prime} 1$ with

$s=, s^{\prime}=$	$j=2$	$j=4$	$j=6$	$j=8$
$d=1$	$-1,-1$	$1,-1$	$-1,1$	1,1
$d=3$	$1,-1$	$-1,1$	1,1	$-1,-1$
$d=5$	$-1,1$	1,1	$-1,-1$	$1,-1$
$d=7$	1,1	$-1,-1$	$1,-1$	$-1,1$

Same pattern!

Thus Ind and Ind_{2} can be calculated from Bott operator using:

Proposition

$B=B^{*}$ invertible complex matrix. $R=\bar{R}$ real unitary such

$$
R^{*} \bar{B} R=s B, \quad R^{2}=s^{\prime} 1
$$

(i) If $s=1$ and $s^{\prime}=1$, then $\operatorname{Sig}(B) \in \mathbb{Z}$ arbitrary
(ii) If $s=1$ and $s^{\prime}=-1$, then $\operatorname{Sig}(B) \in 2 \mathbb{Z}$ arbitrary
(iii) If $s=-1$ and $s^{\prime}=1$, then $\operatorname{Sig}(B)=0$, but setting $M=R^{\frac{1}{2}}$ one obtains real antisymmetric matrix iMBM^{*} with invariant $\operatorname{sgn}\left(\operatorname{Pf}\left(i M B M^{*}\right)\right) \in \mathbb{Z}_{2}$
(iv) If $s=-1$ and $s^{\prime}=-1$, then $\operatorname{Sig}(B)=0$

Application to topological insulators

$B_{\kappa}=\left(\begin{array}{cc}\kappa D & A \\ A^{*} & -\kappa D\end{array}\right)=\kappa D \otimes \sigma_{3}+H \quad, \quad H=\left(\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right)$
Data: $H=-J^{*} H J$ chiral quantum Hamiltonian where $J=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Invertibility of H (and hence A) means: H describes insulator
Non-trivial higher winding numbers make it a topological insulator Main Theorem allows to efficiently calculate this topology

As calculation local, one can determine quantum phase transitions Implementation of physical symmetries on H (like TRS and PHS) lead to symmetries of $A \Longrightarrow \mathbb{Z}_{2}$ invariants calculable Now: not every H is chiral \& dimension not always even...

Even dimensional pairings

Consider projection P on $\ell^{2}\left(\mathbb{Z}^{d}, \mathbb{C}^{2 N}\right)$ with d even
Even-dimensional Dirac operator has grading $\Gamma_{d+1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Dirac phase F is unitary operator in $D|D|^{-1}=\left(\begin{array}{cc}0 & F \\ F^{*} 0\end{array}\right)$
Fredholm operator PFP $+(\mathbf{1}-P)$ has index equal to $\mathrm{Ch}_{d}(P)$
Associated Bott operator

$$
B_{\kappa}=\kappa D+(2 P-1) \Gamma_{d+1}
$$

Theorem

Suppose $\|[P, D]\|<\infty$ and that κ is sufficiently small For ρ sufficiently large,

$$
\operatorname{Ind}(P F P+(\mathbf{1}-P))=\operatorname{Sig}\left(B_{\kappa, \rho}\right)
$$

Resumé $=$ Plan of the talk

- Classical topological invariants and index theorem
- Construction of associated Bott operator (matrix)
- Main result: invariant as signature of Bott operator
- Connection to η-invariant
- Elements of proof based on K-theory
- Implementation of symmetries
- Application to topological insulators
- Even dimensional case

