Finite volume calculation of *K*-theory invariants

Hermann Schulz-Baldes, Erlangen

collaborator:

Terry Loring, Alberquerque

Erlangen January, 2017

Plan of the talk

- Classical topological invariants and index theorem
- Construction of associated Bott operator (matrix)
- Main result: invariant as signature of Bott operator
- Connection to η -invariant
- Elements of proof based on K-theory
- Implementation of symmetries
- Application to topological insulators
- Even dimensional case

Motivating example: higher winding numbers

 \mathbb{T}^d torus of odd dimension d

Given: smooth function $k \in \mathbb{T}^d \mapsto A(k) \in \mathrm{Gl}(N, \mathbb{C})$

Higher winding number (also called odd Chern number):

$$\operatorname{Ch}_{d}(A) = \frac{\left(\frac{1}{2}(d-1)\right)!}{d!} \left(\frac{i}{2\pi}\right)^{\frac{d+1}{2}} \int_{\mathbb{T}^{d}} \operatorname{Tr}\left(\left(A^{-1}\mathbf{d}A\right)^{d}\right)$$

Faithful irrep $\Gamma_1, \ldots, \Gamma_d$ of complex Clifford \mathbb{C}_d on \mathbb{C}^N (possibly given only after augmenting N)

Selfadjoint Dirac operator on $L^2(\mathbb{T}^d, \mathbb{C}^N)$:

$$D = \sum_{j=1}^d \Gamma_j \,\partial_{k_j}$$

Positive spectral (Hardy) projection $\Pi = \chi(D \ge 0)$

Theorem

Viewing A as multiplication operator on $L^{2}(\mathbb{T}^{d}, \mathbb{C}^{N})$, the operator $\Pi A \Pi + (\mathbf{1} - \Pi)$ is Fredholm and:

 $\operatorname{Ch}_d(A) = \operatorname{Ind}(\Pi A \Pi + (\mathbf{1} - \Pi))$

Case d = 1: Fritz Noether 1921 and Gohberg-Krein 1960 Case $d \ge 3$: probably follows from Atiyah-Singer 1960's and 1970's Extension to covariant operators with Prodan 2016

Aim: express $Ch_d(A)$ as signature of a finite dimensional matrix Also extend to situations where no differential calculus available This makes invariants numerically calculable

Extension to local operators on lattice

After Fourier transform $\mathcal{F}: L^2(\mathbb{T}^d, \mathbb{C}^N) \to \ell^2(\mathbb{Z}^d, \mathbb{C}^N)$

$$(\mathcal{F}\psi)(x) = \int_{\mathbb{T}^d} \frac{dk}{(2\pi)^d} e^{-ikx} \psi(k)$$

Dirac $\widehat{D} = \mathcal{F}D\mathcal{F}^* = \sum_{j=1}^d X_j \Gamma_j$ with position operators X_j

 $\widehat{A} = \mathcal{F}A\mathcal{F}^*$ convolution operator

Differentiability satisfied if locality condition holds:

$$\|[\widehat{A}, X_j]\| \leq C \quad \forall j = 1, \dots, d \qquad \Longleftrightarrow \qquad \|[\widehat{A}, D]\| \leq C'$$

From now on only local operators on $\ell^2(\mathbb{Z}, \mathbb{C}^N)$, so let's drop hats **Fact:** If *A* invertible local operator, $\Pi A \Pi + \mathbf{1} - \Pi$ is Fredholm **Fact:** If *A* covariant, index is still given by a Chern number **Aim:** calculate index as signature of finite matrix

Bott operator

For tuning parameter $\kappa > 0$ and invertible local A:

$$B_{\kappa} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix} = \kappa D \otimes \sigma_3 + H$$

where
$$H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$$
. Clearly B_{κ} selfadjoint

D unbounded with discrete spectrum, *A* viewed as perturbation *A* may lead to spectral asymmetry of B_{κ} , but not for $A = \mathbf{1}$ Measured by signature, already on finite volume approximation! A_{ρ} restriction of *A* (Dirichlet b.c.) to $\mathbb{D}_{\rho} = \{x \in \mathbb{Z}^d : |x| \leq \rho\}$

$$\mathcal{B}_{\kappa,
ho} \;=\; egin{pmatrix} \kappa \mathcal{D}_{
ho} & \mathcal{A}_{
ho} \ \mathcal{A}_{
ho}^{*} & -\kappa \mathcal{D}_{
ho} \end{pmatrix}$$

Main Result

Theorem

Let
$$g = ||A^{-1}||^{-1}$$
 be the invertibility gap. Provided that
 $||[D, A]|| \le \frac{g^3}{18 ||A|| \kappa}$ (*)
and

$$\frac{2g}{\kappa} \leq \rho \tag{**}$$

the matrix $B_{\kappa,\rho}$ is invertible and

 $\frac{1}{2}$ Sig $(B_{\kappa,\rho}) =$ Ind $(\Pi A \Pi + (\mathbf{1} - \Pi))$

How to use: form (*) infer κ , then ρ from (**) If A unitary, g = ||A|| = 1 and $\kappa = (18||[D, A]||)^{-1}$ and $\rho = 2/\kappa$ Hence small matrix of size < 100 sufficient! Great for numerics!

Why it can work:

Proposition

If (*) and (**) hold,
$$B^2_{\kappa,
ho} \geq rac{g^2}{2}$$

Proof:

$$egin{array}{rcl} B^2_{\kappa,
ho} &=& egin{pmatrix} A^st
ho A_
ho A^st
ho \\ 0 & A_
ho A^st
ho \end{pmatrix} + \kappa^2 egin{pmatrix} D^2_
ho & 0 \ 0 & D^2_
ho \end{pmatrix} + \kappa egin{pmatrix} 0 & & [D_
ho,A_
ho] \ [D_
ho,A_
ho]^st & 0 \end{pmatrix}$$

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it) Now $A^*A \ge g^2$, but $(A^*A)_\rho \ne A^*_\rho A_\rho$ This issue can be dealt with by tapering argument:

Proposition (Bratelli-Robinson)

For $f : \mathbb{R} \to \mathbb{R}$ with Fourier transform defined without $\sqrt{2\pi}$,

$$\|[f(D), A]\| \leq \|\widehat{f'}\|_1 \|[D, A]\|$$

Lemma

$$\exists \text{ even function } f : \mathbb{R} \to [0,1] \text{ with } f(x) = 0 \text{ for } |x| \ge \rho$$

and $f(x) = 1$ for $|x| \le \frac{\rho}{2}$ such that $\|\widehat{f'}\|_1 = \frac{8}{\rho}$

With this, f = f(D) = f(|D|) and $\mathbf{1}_{\rho} = \chi(|D| \le \rho)$:

$$\begin{aligned} A^*_{\rho}A_{\rho} &= \mathbf{1}_{\rho}A^*\mathbf{1}_{\rho}A\mathbf{1}_{\rho} \geq \mathbf{1}_{\rho}A^*f^2A\mathbf{1}_{\rho} \\ &= \mathbf{1}_{\rho}fA^*Af\mathbf{1}_{\rho} + \mathbf{1}_{\rho}([A^*,f]fA + fA^*[f,A])\mathbf{1}_{\rho} \\ &\geq g^2f^2 + \mathbf{1}_{\rho}([A^*,f]fA + fA^*[f,A])\mathbf{1}_{\rho} \end{aligned}$$

So indeed $A_{\rho}^*A_{\rho}$ positive close to origin Then one can conclude... but TEDIOUS

η -invariant (Atiyah-Patodi-Singer 1977)

Definition

 $B = B^*$ invertible operator on \mathcal{H} with compact resolvent. Then

$$\eta(B) = \operatorname{Tr}(B|B|^{-s-1})|_{s=0} = \frac{1}{\Gamma(\frac{s+1}{2})} \int_0^\infty dt \ t \frac{s-1}{2} \operatorname{Tr}(B \ e^{-tB^2})\Big|_{s=0}$$

provided it exists!

If dim $(\mathcal{H}) < \infty$, then $\eta(B) = \operatorname{Sig}(B)$

Usually existence of η -invariant for ψ -Diffs difficult issue

Proposition

If (*) holds, B_{κ} has well-defined η -invariant

Proof. Integral for large t controlled by gap (Proposition above)

For small *t* appeal to Dyson series (iteration of DuHamel):

$$e^{-tB_{\kappa}^{2}} = e^{-t\Delta} + t \int_{0}^{1} dr \, e^{-(1-r)t\Delta} R e^{-rtB_{\kappa}^{2}}$$

where $B^2_\kappa = \Delta + R$ with

$$\Delta = \kappa^2 \begin{pmatrix} D^2 & 0 \\ 0 & D^2 \end{pmatrix} , \qquad R = \begin{pmatrix} AA^* & \kappa[D,A] \\ \kappa[D,A]^* & A^*A \end{pmatrix}$$

Now replacing $B_{\kappa} = \kappa D \otimes \sigma_3 + H$

$$\operatorname{Tr}(B_{\kappa}e^{-t\Delta}) = \kappa \operatorname{Tr}\left(\begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix} e^{-t\Delta}\right) + \operatorname{Tr}\left(\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} e^{-t\Delta}\right) = 0$$

11

Second term has supplementary factor t

Theorem (follows from Getzler 1993, Carey-Phillips 2004)

Suppose (*) so that B_{κ} has well-defined η -invariant For path $\lambda \in [0, 1] \mapsto B_{\kappa}(\lambda) = \kappa D \otimes \sigma_3 + \lambda H$ of selfadjoints $2 \operatorname{SF}(\lambda \in [0, 1] \mapsto B_{\kappa}(\lambda)) = \eta(B_{\kappa}(1)) - \eta(B_{\kappa}(0)) = \eta(B_{\kappa})$

Consequence: As spectral flow homotopy invariant, so is $\eta(B_{\kappa})$ Using this, **first proof of Main Result** for dimension d = 1: By homotopy invariance sufficient: $A = S^n$ for $n \in \mathbb{Z}$ and S shift Then calculate spectrum of $B_{\kappa}(\lambda)$ explicitly using XS = (X + 1)S:

$$\sigma(B_{\kappa}(\lambda)) = \left\{ \frac{\kappa}{2} \left(n \pm \left((n-2k)^2 + \frac{4\lambda^2}{\kappa^2} \right)^{\frac{1}{2}} \right) : k \in \mathbb{Z} \right\}$$

Now carefully follow eigenvalues to calculate spectral flow

Preparations for *K***-theoretic argument for other** *d*

Unitization $\mathcal{A}^+ = \mathcal{A} \oplus \mathbb{C}$ of C*-algebra \mathcal{A} by

$$(A, t)(B, s) = (AB + As + Bt, ts)$$
, $(A, t)^* = (A^*, \overline{t})$

Natural C*-norm $||(A, t)|| = \max\{||A||, |t|\}$. Unit $\mathbf{1} = (0, 1) \in \mathcal{A}^+$ Exact sequence of C*-algebras $0 \to \mathcal{A} \stackrel{i}{\hookrightarrow} \mathcal{A}^+ \stackrel{\rho}{\to} \mathbb{C} \to 0$ ρ has inverse i'(t) = (0, t), then $s = i' \circ \rho : \mathcal{A}^+ \to \mathcal{A}^+$ scalar part

 $\mathcal{V}_{0}(\mathcal{A}) = \left\{ V \in \bigcup_{n \geq 1} M_{2n}(\mathcal{A}^{+}) : V^{*} = V, \quad V^{2} = \mathbf{1}, \quad s(V) \sim_{0} E_{2n} \right\}$ where homotopic to $E_{2n} = E_{2}^{\oplus^{n}}$ with $E_{2} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Equivalence relation \sim_{0} on $\mathcal{V}_{0}(\mathcal{A})$ by homotopy and $V \sim_{0} \begin{pmatrix} V & 0 \\ 0 & E_{2} \end{pmatrix}$ Then $\mathcal{K}_{0}(\mathcal{A}) = \mathcal{V}_{0}(\mathcal{A}) / \sim_{0}$ abelian group via $[V] + [V'] = [\begin{pmatrix} V & 0 \\ 0 & V' \end{pmatrix}]$ Definition of $K_0(A)$ is equivalent standard one via $V = 2P - \mathbf{1}$:

 $K_0(\mathcal{A}) = \{ [P] - [s(P)] : \text{ projections in some } M_n(\mathcal{A}^+) \}$

For definition of $K_1(\mathcal{A})$ set

$$\mathcal{V}_1(\mathcal{A}) = \left\{ U \in \cup_{n \geq 1} M_n(\mathcal{A}^+) : U^{-1} = U^* \right\}$$

Equivalence relation \sim_1 by homotopy and $[U] = [\begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}]$ Then $K_1(\mathcal{A}) = \mathcal{V}_1(\mathcal{A}) / \sim_1$ with addition $[U] + [U'] = [U \oplus U']$ If \mathcal{A} unital, one can work with $M_n(\mathcal{A})$ instead of $M_n(\mathcal{A}^+)$ in $\mathcal{V}_1(\mathcal{A})$

Example 1: $\mathcal{K}_0(\mathbb{C}) = \mathbb{Z}$ with invariant dim(*P*) **Example 2:** $\mathcal{K}_1(\mathcal{C}(\mathbb{S}^1)) = \mathbb{Z}$ with invariant "winding number"

Index map

Example 3: Calkin's exact sequence over a Hilbert space:

$$0 \rightarrow \mathcal{K} \rightarrow \mathcal{B} \stackrel{\pi}{\rightarrow} \mathcal{Q} = \mathcal{B}/\mathcal{K} \rightarrow 0$$

For Calkin algebra $K_1(\mathcal{Q}) = \mathbb{Z}$ with invariant = index of Fredholm Also $K_0(\mathcal{B}) = K_1(\mathcal{B}) = 0$ and $K_0(\mathcal{K}) = \mathbb{Z}$

Isomorphism $K_1(\mathcal{Q}) \cong K_0(\mathcal{K})$ given by index map (Rordam *et. al.*): Unitary $U = \pi(B) \in \mathcal{V}_1(\mathcal{Q})$, with contraction lift $B \in \mathcal{B}$,

Ind[U]₁ =
$$\begin{bmatrix} 2BB^* - \mathbf{1} & 2B(\mathbf{1} - B^*B)^{\frac{1}{2}} \\ 2(\mathbf{1} - B^*B)^{\frac{1}{2}}B^* & \mathbf{1} - 2B^*B \end{bmatrix}_{0}$$

where for r.h.s. $V \in \mathcal{K}^+$: $V^2 = \mathbf{1}$ and $s(V) \sim_0 E_2$ up to compact

Index map versus index of Fredholm operator

B unitary up to compact $\iff \mathbf{1} - B^*B \in \mathcal{K}$ and $\mathbf{1} - BB^* \in \mathcal{K}$

$$\implies$$
 B Fredholm operator and $U = \pi(B) \in \mathcal{Q}$ unitary

Fedosov formula if $\mathbf{1} - B^*B$ and $\mathbf{1} - BB^*$ are traceclass:

$$Ind(B) = \dim(Ker(B)) - \dim(Ker(B^*)) = Tr(1 - B^*B) - Tr(1 - BB^*) = Tr \begin{pmatrix} BB^* - 1 & B(1 - B^*B)^{\frac{1}{2}} \\ (1 - B^*B)^{\frac{1}{2}}B^* & 1 - B^*B \end{pmatrix} = Tr(\frac{1}{2}(V - 1)) = \frac{1}{2}Sig(V) & \text{if } 1 - B^*B, \ 1 - BB^* \text{ projections} = Tr(\frac{1}{2}(Ind[U] - 1)) = Tr(Ind^{-}[U])$$

if $\mathrm{Ind}^\sim[\mathit{U}]$ is the projection-valued version of index map

Localizing index map for index pairings

Suppose now $U = \pi (\Pi A \Pi + (\mathbf{1} - \Pi)) \in \mathcal{Q}$ as in Main Theorem but first A unitary. Then contraction lift $B = \Pi A \Pi + (\mathbf{1} - \Pi)$ Modify Π and $\mathbf{1} - \Pi$ to p = p(D) smooth and n = n(D) where

$$p(x) = \begin{cases} 0, & x \le -\rho \\ p(x), & |x| \le \rho \\ 1, & x \ge \rho \end{cases}, \quad n(x) = \begin{cases} 1, & x \le -\rho \\ 0, & x \ge -\rho \end{cases}$$

Now $p - \Pi$, $n - (\mathbf{1} - \Pi)$ compact, np = pn = 0 and $n + p|_{\mathbb{D}_{\rho}^{c}} = \mathbf{1}_{\mathbb{D}_{\rho}^{c}}$ With notation $A_{p} = pAp$ acting only on $\ell^{2}(\mathbb{D}_{\rho}) \otimes \mathbb{C}^{N}$:

$$\begin{aligned} \operatorname{Ind}[U] &= \operatorname{Ind}[pAp+n] = \operatorname{Ind}[A_p+n] \\ &= \left[\begin{pmatrix} 2A_pA_p^* - \mathbf{1} & 2A_p(\mathbf{1} - A_p^*A_p)^{\frac{1}{2}} \\ 2(\mathbf{1} - A_p^*A_p)^{\frac{1}{2}}A_p^* & \mathbf{1} - 2A_p^*A_p \end{pmatrix} \oplus \begin{pmatrix} \mathbf{1}_{\mathbb{D}_p^c} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1}_{\mathbb{D}_p^c} \end{pmatrix} \right] \end{aligned}$$

Summand on \mathbb{D}_{ρ}^{c} trivial (as equal to E_{2}). Thus:

$$\operatorname{Ind}[U] = \left[\begin{pmatrix} 2A_{p}A_{p}^{*} - \mathbf{1} & 2A_{p}(\mathbf{1} - A_{p}^{*}A_{p})^{\frac{1}{2}} \\ 2(\mathbf{1} - A_{p}^{*}A_{p})^{\frac{1}{2}}A_{p}^{*} & \mathbf{1} - 2A_{p}^{*}A_{p} \end{pmatrix} \right]$$

Numerical index is signature of this finite-dimensional matrix! Modify to self-adjoint matrix without spoiling invertibility

$$\begin{aligned} \|A_{\rho}A_{\rho}^{*} - p^{4}\| &= \|pAp^{2}A^{*}p - p^{3}AA^{*}p\| \leq \|[p^{2}, A]\| \\ &\leq \frac{C}{\rho}\|[D, A]\| < \frac{1}{4} \end{aligned}$$

by the smoothness of p and for ρ sufficiently large. Similarly

$$\|A_{p}(\mathbf{1}-A_{p}^{*}A_{p})^{\frac{1}{2}}-(\mathbf{1}-p^{4})^{\frac{1}{4}}pAp(\mathbf{1}-p^{4})^{\frac{1}{4}}\| \leq \frac{C}{\rho}\|[D,A]\| < \frac{1}{4}$$

Thus just replace matrix entries without changing signature!

Proposition

$$Ind(\Pi A\Pi + (\mathbf{1} - \Pi)) = Sig\begin{pmatrix} 2p^4 - \mathbf{1} & 2(\mathbf{1} - p^4)^{\frac{1}{4}}pAp(\mathbf{1} - p^4)^{\frac{1}{4}}\\ 2(\mathbf{1} - p^4)^{\frac{1}{4}}pA^*p(\mathbf{1} - p^4)^{\frac{1}{4}} & \mathbf{1} - 2p^4 \end{pmatrix}$$

Last tasks:

1) replace $2p^4 - \mathbf{1}$ by $\kappa D_{
ho}$

2) replace $\sqrt{2}(\mathbf{1} - p^4)^{\frac{1}{4}}p$ by $\mathbf{1}_{\rho}$ indicator on \mathbb{D}_{ρ} . Then $\mathbf{1}_{\rho}A\mathbf{1}_{\rho} = A_{\rho}$ Both follows again by a tapering argument **UUuuuffff**

Implementation of real symmetries

Fix a real structure on complex Hilbert space, denoted by overline

There is irrep $\Gamma_1, \ldots, \Gamma_d$ and real unitary matrix Σ

<i>d</i> mod 8	1	3	5	7
$\Sigma^* \overline{D} \Sigma =$	D	-D	D	-D
$\Sigma^2 =$	1	-1	-1	1
$\Sigma^*\overline\Pi\Sigma =$	П	$1 - \Pi$	П	$1 - \Pi$

For d = 3: $D = X_1\sigma_1 + X_2\sigma_2 + X_3\sigma_3$ and $\Sigma = i\sigma_2$

Furthermore given real unitary S with $[S, \Sigma] = [S, D] = 0$:

<i>j</i> mod 8	2	4	6	8
$S^*\overline{A}S =$	<i>A</i> *	A	A*	A
$S^{2} =$	1	-1	-1	1

Symmetries of $T = \Pi A \Pi + (1 - \Pi)$ such that index pairings are:

$\operatorname{Ind}_{(2)}(T)$	<i>j</i> = 2	<i>j</i> = 4	<i>j</i> = 6	<i>j</i> = 8
d = 1	0	2 🛛	\mathbb{Z}_2	\mathbb{Z}
<i>d</i> = 3	2 2	\mathbb{Z}_2	\mathbb{Z}	0
<i>d</i> = 5	\mathbb{Z}_2	\mathbb{Z}	0	$2\mathbb{Z}$
<i>d</i> = 7	Z	0	$2\mathbb{Z}$	\mathbb{Z}_2

where $\operatorname{Ind}_2(T) = \dim(\operatorname{Ker}(T)) \mod 2 \in \mathbb{Z}_2$

For Bott operator follows $R^* \overline{B_\kappa} R = s B_\kappa$ and $R^2 = s' \mathbf{1}$ with

s = , s' =	<i>j</i> = 2	<i>j</i> = 4	<i>j</i> = 6	<i>j</i> = 8
d = 1	$-1 \ , \ -1$	$1 \;,\; -1$	$-1 \ , \ 1$	1,1
<i>d</i> = 3	1,-1	$-1 \ , \ 1$	1,1	$-1 \ , \ -1$
<i>d</i> = 5	$-1 \ , \ 1$	1,1	$-1 \ , \ -1$	$1 \;,\; -1$
d = 7	1, 1	$-1 \;,\; -1$	$1 \;,\; -1$	$-1 \ , \ 1$

Same pattern!

Thus Ind and Ind_2 can be calculated from Bott operator using:

Proposition

 $B = B^*$ invertible complex matrix. $R = \overline{R}$ real unitary such

$$R^* \overline{B} R = s B, \qquad R^2 = s' \mathbf{1}$$

(i) If s = 1 and s' = 1, then Sig(B) ∈ Z arbitrary
(ii) If s = 1 and s' = -1, then Sig(B) ∈ 2Z arbitrary
(iii) If s = -1 and s' = 1, then Sig(B) = 0, but setting M = R^{1/2} one obtains real antisymmetric matrix iMBM* with invariant sgn(Pf(iMBM*)) ∈ Z₂
(iv) If s = -1 and s' = -1, then Sig(B) = 0

Application to topological insulators

$$B_{\kappa} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix} = \kappa D \otimes \sigma_3 + H \qquad , \qquad H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$$

Data: $H = -J^*HJ$ chiral quantum Hamiltonian where $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Invertibility of H (and hence A) means: H describes insulator Non-trivial higher winding numbers make it a topological insulator Main Theorem allows to efficiently calculate this topology As calculation local, one can determine quantum phase transitions Implementation of physical symmetries on H (like TRS and PHS) lead to symmetries of $A \implies \mathbb{Z}_2$ invariants calculable Now: not every H is chiral & dimension not always even...

Even dimensional pairings

Consider projection P on $\ell^2(\mathbb{Z}^d, \mathbb{C}^{2N})$ with d even Even-dimensional Dirac operator has grading $\Gamma_{d+1} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}$ Dirac phase F is unitary operator in $D|D|^{-1} = \begin{pmatrix} \mathbf{0} & F \\ F^* & \mathbf{0} \end{pmatrix}$ Fredholm operator $PFP + (\mathbf{1} - P)$ has index equal to $Ch_d(P)$ Associated Bott operator

$$B_{\kappa} = \kappa D + (2P - \mathbf{1})\Gamma_{d+1}$$

Theorem

Suppose $\|[P, D]\| < \infty$ and that κ is sufficiently small For ρ sufficiently large,

 $\operatorname{Ind}(PFP + (\mathbf{1} - P)) = \operatorname{Sig}(B_{\kappa,\rho})$

Resumé = Plan of the talk

- Classical topological invariants and index theorem
- Construction of associated Bott operator (matrix)
- Main result: invariant as signature of Bott operator
- Connection to η -invariant
- Elements of proof based on K-theory
- Implementation of symmetries
- Application to topological insulators
- Even dimensional case