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Abstract

This Master’s thesis investigates new exact sequences of C∗-algebras for use in the bulk-
boundary correspondence of solid state systems. The approach constructs half-space
algebras using crossed products with dual actions and thereby generalizes the smoothed
Toeplitz extension. By using weakly continuous actions and semifinite von Neumann
algebras, this allows to extend bulk-boundary correspondence to elements with weaker
regularity properties than before, which we call quasicontinuous in analogy to the
classical case of Toeplitz operators on the torus.

We extend an index theorem by Lesch to Toeplitz operators with quasicontinuous
symbols, which allows the computation of Breuer-Fredholm indices through the non-
commutative winding number form. After generalizing the classical Besov spaces to
the non-commutative case, we prove an analogue of Peller’s trace class criterion for
Hankel operators in our setting.

Using this constructive criterion we can then apply the formalism to the bulk-boundary
correspondence of quasicontinuous elements over the disordered non-commutative
torus. We use the index theorem to show that a chirally symmetric Hamilton operator
with non-trivial winding numbers exhibits boundary states when restricted to a half-
space. This extends known results for Hamilton operators with spectral gaps to the
weaker assumption of a mobility- or pseudogap.
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1 Introduction

1 Introduction

The use of non-commutative geometry and operator K-theory has recently allowed
much progress in the classification of topological quantum systems. This success is
based on the identification of physically measurable topological invariants as index
pairings over certain observable algebras, which shows a stability under perturbations
that would be difficult to infer from the explicit formulas alone [37] [35]. Another
strong point is a form of algebraic bulk-boundary correspondence, that allows to
relate the topological invariants of a system with a boundary to those of an infinite,
translationally invariant "bulk" system [36]. The idea is to link projections in the
bulk, such as the Fermi-projection of a Hamilton operator, to unitary elements in
some boundary algebra and vice versa using the connecting maps of K-theory. As the
numerical topological invariants are given by pairings of cyclic cohomology and the
K-groups of certain observable algebras, they posses stable homotopy invariance, i.e.
to show numerical equalities one may deform projections and unitaries to find pairs
for which one or both sides of an equation can be evaluated more easily.

The bulk-boundary correspondence takes place in an exact sequence of C∗-algebras

0→ Ed → Âd →Ad → 0,

where Ad describes operators in the bulk of a d-dimensional material and Ed operators
supported on the boundary. The elements of the half-space-algebra Âd describe ob-
servables on a semi-infinite system and can be split linearly into restrictions of bulk
operators and a boundary term

â = PaP∗ + e (1.1)

with P the projection to a half-space in some Hilbert space representation and e ∈ Ed .
Typically, the bulk algebra for a spatially homogeneous system is modeled as a crossed
product

Ad =Ad−1 o G

with G = Z for system with discrete degrees of freedom (i.e. on a lattice) and G = R
for continuous systems [36] [23]. The corresponding boundary algebra is then given
by some kind of stabilization such as Ed ' Ad−1 ⊗K to describe operators of lower
effective dimension.

In this work we pursue a more general approach, where we relate the exact sequences
to Toeplitz operators on flows. The idea is to consider a flow α : R×A→A on the bulk
algebra, that is in some representation generated by a self-adjoint operator D chosen
such that the projection to the half-space is given by

P := χR+(D).

This approach to half-spaces in the commutative case was apparently pioneered by
Coburn and Douglas [14]. Morally, the half-space algebra is then the C∗-algebra
generated by the Toeplitz operators

Â := C∗(PAP),
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1 Introduction

but there are some subtleties involved, especially concerning whether Â admits a
splitting of the form (1.1) with some boundary algebra E . If α is a strongly continuous
automorphic action, it is more natural to consider a smoothed version of this construc-
tion, which leads to an exact sequence for Toeplitz operators on the flow, that is also
viable for bulk-boundary correspondence.

After recalling the necessary preliminaries, we review this so-called (smoothed) Toeplitz
extension for a one-parameter flow, which was introduced by [25] [21]. These exten-
sions give exact sequences with boundary algebras modeled as crossed products of
the form AoR or AoT. We investigate the relations of those extensions with the
discrete Toeplitz and the Wiener-Hopf-extensions, which are more commonly used for
bulk-boundary correspondence.

For some applications strong continuity of α is too restrictive. Assume that we have a
bulk-boundary exact sequence based on such a strongly continuous action

0→ E → Â→A→ 0.

We are interested in classifying projections and unitary operators derived from Hamilton
operators h, ĥ in A and Â, respectively. An example is the Fermi projection p := χR+(h)
that encodes the even topological invariants of the system, but it is usually not in A
unless h has a spectral gap around 0. Moreover, the orbit of p under α then can also
fail to be norm-continuous such that one has to weaken the continuity requirements if
one wants to choose a larger bulk algebra that contains p. For this reason we consider
the von Neumann algebras generated by A and E

L∞(A) =A′′, L∞(E) = E ′′ = L∞(A)oα R

with E , Â ⊂ L∞(E). We then construct new exact sequences based on the now weakly
continuous action α. Given a finite trace τ on L∞(A) there is a canonical semifinite
dual trace τ̂ on L∞(E). The boundary observables are then conveniently given by the
ideal Kτ̂ of the τ̂-compact operators, which vanish at infinity in some sense.

If we have a subalgebra B ⊂ L∞(A) such that

[P, b] ∈ Kτ̂, ∀b ∈ B,

then the algebra generated by the Toeplitz operators T (B) = C∗(PBP) forms an exact
sequence with the compact operators

0 Kτ̂ T (B) +Kτ̂ B 0,

where the middle term splits as a linear space into B ⊕Kτ̂. An element a ∈ L∞(A)
that satisfies the condition [P, a] ∈ Kτ̂ will be called quasicontinuous in analogy to a
characterization for the Toeplitz operators on the torus with discontinuous symbols [7].

This construction automatically links the exact sequences with the theory of Breuer-
Fredholm indices [11], i.e. the bulk-boundary exact sequence can be embedded into
the Calkin-extension

0 Kτ̂ L∞(E) L∞(E)/Kτ̂ 0

3



1 Introduction

and the connecting maps of K-theory relate the Breuer index of a Toeplitz operator

Ta = PaP ∈ T (B)

with topological properties of its symbol a ∈ B. For the smoothed Toeplitz extension
there is an index theorem by Lesch [25], which we extend to our more general setting.
To be precise, we show that for certain Toeplitz operators the index can be computed in
terms of their symbol as for the classical Toeplitz operators, i.e. by the non-commutative
generalization of the winding number. This will then be interpreted in terms of K-
theory and cyclic cohomology such that we can take advantage of the stable homotopy
invariance.

For the construction of exact sequences we have to require that elements of the bulk
algebra have τ-compact commutators with the half-space restriction map P and for the
numerical bulk-boundary correspondence we further need them to be trace class with
respect to τ̂. The analogous problem in the commutative theory is the question, when
a Hankel operator with symbol in L∞(T) is contained in the Schatten-von Neumann
class S p. It was completely solved by Peller [31] in terms of the Besov spaces on the
torus. Those Besov spaces are classical function spaces related to the fractional Sobolev
spaces and are defined in terms of dyadic decompositions with certain smooth Fourier
multipliers [43]. We provide a novel definition of Besov spaces for flows on a non-
commutative von Neumann algebra and show that Peller’s criterion for the commutator
[P, a], a ∈ L∞(A), to be trace class also holds in the non-commutative case.

In the final part, we apply the formalism to concrete models in solid state physics. To
be precise, we consider Hamilton operators with a chiral symmetry, i.e. they can be
written in the form

h=
�

0 a
a∗ 0

�

,

with the off-diagonal term a ∈A. We assume that h has no eigenvalue at 0 or even has
a spectral gap around 0 such that one can assign to the Hamiltonian a unitary phase
u = a

|a| , that encodes the chiral topological invariants of the system under consideration.
The restriction to a half-space

ĥ= PhP

can still have a non-trivial kernel and the chiral symmetry implies that the projection
onto the kernel must be diagonal

PKer ĥ =
�

p+ 0
0 p−

�

with a pair of projections p+, p− ∈ Kτ̂.

We show that (under certain regularity conditions imposed on h and u) the K-theoretical
index map links the bulk and boundary invariants via

Ind[u]1 = [p+]0 − [p−]0 (1.2)

with the right hand side in K0(B) for some quasicontinuous bulk algebra B and

τ̂(p+)− τ̂(p−) =Wind(u) (1.3)
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2 K-theory and Cyclic cohomology

i.e. the left hand side, which is related to the density of the boundary states, can be
computed in terms of some non-commutative winding number of the bulk unitary
u. This is well-known if h has a spectral gap [36] and our analysis allows to extend
the result to situations, where h has no spectral gap, but satisfies certain regularity
assumptions.

The main problem in this setting is that if a is not invertible the phase u can only be
computed by measurable functional calculus and is therefore not necessarily included
in the bulk algebra. As an example, for periodic operators on a lattice a common choice
would be A = CoZd = C(Td) such that u = a

|a| is contained in A if and only if a is
invertible, i.e. h has a spectral gap around 0. However, even without a gap, u will
often still be quasicontinuous and using the formalism developed in this work, one may
find a larger bulk algebra B ⊂ L∞(A) and construct a bulk-boundary exact sequence
for which (1.2) and (1.3) hold. We map out sufficient conditions for this in the cases,
where h has a mobility gap (i.e. the states around zero are exponentially localized)
or is a periodic operator with a pseudogap (i.e. the Fourier transform of a has only
finitely many zeroes).

2 K-theory and Cyclic cohomology

K-theory

This section contains standard material assembled for the convenience of the reader,
mostly drawing on [5] and [40].

Definition 2.1. A local C∗-algebra A is a pre-C∗-algebra that is closed under the holo-
morphic functional calculus of its closure, i.e. for a ∈ A and f a function holomorphic on
a neighborhood of σ(a) with f (0) = 0, we have f (a) ∈ A.

If A is a local C∗-algebra with completion Ā, the matrix algebra Mn(A) with the natural
C∗-norm is also a local C∗-algebra with completion Mn(Ā).

For a local C∗- algebra (whether unital or not) we denote by A+ = A⊕C the unitization
with the multiplication

(a+λ1+)(b+µ1+) = ab+µa+λb+λµ1+

and the usual C∗-norm.

A projection p ∈ A is an element with p∗ = p = p2. We write P(A) for the set of
projections of A and set

Pn(A) := P(Mn(A)).

The natural inclusion Mn(A) ,→ Mn+m(A), a 7→ a⊕ 0m also embeds Pn(A) into Pn+m(A).
In this sense we consider the union

P∞(A) :=
⋃

n∈N
Pn(A)

5



2 K-theory and Cyclic cohomology

where we identify elements that differ only by dimension of the fiber, i.e. p = p⊕ 0n.

The set P∞(A) is a semigroup with the addition

p⊕ q =
�

p 0
0 q

�

for p, q ∈ P∞(A) and we write
p ∼0 q

if one of the following equivalent conditions is fulfilled for some n ∈ N:

1. p = uu∗ and q = u∗u for some partial isometry u ∈ Mn(A+).

2. p = uqu∗ for some unitary element u ∈ Mn(A+).

3. There is a continuous path in Mn(A) connecting p and q.

These conditions are equivalent, because we may consider p as a matrix of arbitrary
dimension.

The equivalence classes V (A) := P∞(A)/ ∼0 form an abelian semigroup, since p⊕ q
and q⊕ p are homotopic. The Grothendieck group associated to V (A) is denoted K00(A)
and its elements are written as formal differences

[p]0 − [q]0

with some p, q ∈ V (A) subject to the equivalence relation

[p1]0 − [q1]0 = [p2]0 − [q2]0
⇐⇒ ∃r ∈ V (A) : [p1]0 ⊕ [q2]0 ⊕ [r]0 = [p2]0 ⊕ [q2]0 ⊕ [r]0.

Given a homomorphism φ : A→ B of local C∗-algebras, we have an induced morphism

φ∗ : K00(A)→ K00(B), φ∗([p]0 − [q]0) := [φ(p)]0 − [φ(q)]0,

where the extension of φ to Mn(A+) is denoted by the same symbol.

The projection to the scalar part s : A+ → C, s(a + λ1+) = λ induces a surjective
homomorphism s∗ : K00(A+)→ K00(C) and we define the K0-group by

K0(A) = ker(s∗) ⊂ K00(A
+).

If A is already unital, we can identify K0(A)' K00(A) as then K00(A+) = K00(A)⊕K00(C)
and s∗ strips away the second factor.

Any element of K0(A) can be written in the form

[e]0 − [s(e)]0

with some e ∈ P∞(A+) and the group operation in this standard picture is given by

([e1]0 − [s(e1)]0)⊕ ([e2]0 − [s(e2)]0) = [e1 ⊕ e2]0 − [s(e1 ⊕ e2)]0.
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2 K-theory and Cyclic cohomology

The group K0(A) classifies the stable equivalency classes of projections over A; in
particular we have

K0(A)' K0(Mn(A))' K0(K⊗ A)

with K the algebra of compact operators on `2(N).

For A unital define the unitary n× n-matrices

Un(A) := {u ∈ Mn(A) : uu∗ = 1n = u∗u}

and denote the connected component of the identity by Un(A)0. There is the natural
embedding in,n+m : Un(A) ,→ Un+m(A), u 7→ u⊕ 1m that also maps Un(A)0 into Un+m(A)0.
Define

U∞(A) :=
⋃

n∈N
Un(A)

where we identify elements u, v with in,k(u) = v (more properly, we consider the
inductive limit of (Un(A))n∈N with the morphisms (in,k)n,k∈N

n<k
).

For u, v ∈ Un(A) write u ∼1 v if there is some k ∈ N such that there is a continuous
path in Un+k(A) connecting in,n+k(u) and in,n+k(v). This equivalence relation extends to
U∞(A) with the equivalence class of the identity given by

[1]1 =
⋂

n∈N
Un(A)0.

For a local C∗-algebra A, whether unital or not, define

K1(A) := U∞(A
+)/∼1

The elements of K1(A) can be written as equivalence classes [u]1, u ∈ Un(A+)with u∼1 v
and form an abelian group with the multiplication defined through representatives
u, v ∈ Un(A+) by

[u]1 ⊕ [v]1 =
��

u 0
0 v

��

1

=
��

uv 0
0 1+n

��

1

= [uv]1 = [vu]1.

If A is already unital, we have an isomorphism

K1(A)' U∞(A)/∼1

induced by replacing 1+ with 1 component-wise, i.e.

ũ ∈ Un(A
+) 7→ ũ+ s(ũ)(1− 1+) ∈ Un(A),

such that we may instead consider matrices with coefficients in A.

Any homomorphism of local C∗-algebras φ : A→ B induces a group homomorphism

φ∗ : K1(A)→ K1(B), φ∗([u]1) = [φ(u)]1.

7



2 K-theory and Cyclic cohomology

The group K1(A) classifies stable homotopy classes of unitary elements over A and ,as
for K0, we have

K1(A) = K1(Mn(A)) = K1(K⊗ A).

The most important property of the K-groups is the six-term exact sequence. Let A
be a local C∗-algebra and J a closed two-sided ideal in A, i.e. there is the short exact
sequence

0 J A A/J 0.i π

To this sequence corresponds the long exact sequence of the K-groups

K0(J) K0(A) K0(A/J)

K1(A/J) K1(A) K1(J)

i∗ π∗

ExpInd

π∗ i∗

with the connecting morphisms Ind and Exp defined as follows:

For any [u]1 ∈ K1(A/J),u ∈ Un( (A/J)+) we can find some v ∈ U2n(A+) with

π(v) =
�

u 0
0 u∗

�

∈ U2n( (A/J)
+)

and set

Ind([u]1) :=
�

v
�

1+n 0
0 0n

�

v∗
�

0

−
��

1+n 0
0 0n

��

0

∈ K1(J
+).

For any [p]0 − [s(p)]0 ∈ K0(A/J) with p ∈ Pn( (A/J)+) we can find a self-adjoint lift
p̂ ∈ Mn(A+) and set

Exp([p]0 − [s(p)]0) := [e−i2πp̂]1 ∈ K1(J)

with functional calculus in Mn(A+). It is a standard result that these maps do not
depend on the representatives and the lifts used.

The index and exponential maps are natural in the following sense [40]:

Proposition 2.1. If we have a commutative diagram of local C∗-algebras

0 J A A/J 0

0 J ′ A′ A′/J ′ 0

γ α β

with exact rows, then the diagrams

K0(A/J) K1(J)

K0(A′/J ′) K1(J ′)

β∗

Exp

γ∗

Exp′

8



2 K-theory and Cyclic cohomology

and
K1(A/J) K0(J)

K1(A′/J ′) K0(J ′)

β∗

Ind

γ∗

Ind′

are also commutative.

If A and A/J are unital, we adopt the following convention to simplify the connecting
maps:

We identify K0(A) ' K00(A) and K1(A) ' U∞(A)/ ∼1 and likewise for A/J such that
we can consider matrices with entries in A respectively A/J . It is then convenient to
also identify 1+ from the unitization J+ with the unit 1 of A so that we can formally
eliminate the unitization from all expressions.

An important special case of the index map is the following

Proposition 2.2. Let

0 J A A/J 0π

be an exact sequence of C∗-algebras with A and A/J unital. If the unitary u ∈ Un(A/J)
lifts to a partial isometry û ∈ Mn(A), π(û) = u then

Ind([u]1) = [1n − û∗û]0 − [1n − ûû∗]0.

Proof. Under the identifications above, the corresponding lift of u⊕ u∗ is given by

v =
�

û 1n − ûû∗

1n − û∗û û∗

�

such that

Ind([u]1) =
�

v
�

1n 0
0 0n

�

v∗
�

0

−
��

1n 0
0 0n

��

0

=
��

ûû∗ 0
0 1n − û∗û

��

−
��

1n 0
0 0n

��

0

and this is equivalent to the image written above.

C∗-algebras often don’t contain many partial isometries but if a unitary element lifts
to a contraction we can at least provide an explicit formula for the index map [40,
Proposition 9.2.2]:

Proposition 2.3. Let

0 J A A/J 0π

be an exact sequence of C∗-algebras with A and A/J unital. If the unitary u ∈ Un(A/J)
lifts to a contraction a ∈ Mn(A), i.e. ‖a‖ ≤ 1 and π(a) = u, we have

Ind([u]1) =
�

v
�

1n 0
0 0n

�

v∗
�

0

−
��

1n 0
0 0n

��

0

.

with the unitary

v =

�

a
p

1n − aa∗

−
p

1n − a∗a a∗

�

∈ U2n(A)

9



2 K-theory and Cyclic cohomology

Cyclic Cohomology

We recall some facts about cyclic cocycles and their pairings with K-theory, condensed
from [16] and [17].

Definition 2.2. A cyclic n-cocycle on an algebra A is an (n + 1)-linear functional φ :
An+1→ C such that for all a0, ..an+1 ∈ A one has

1.
φ(a0, a1, ..., an) = (−1)nφ(a1, ..., an, a0)

2.

bφ(a0, ..., an+1) :=
n
∑

j=0

(−1) jφ(a0, ..., a ja j+1, .., an+1)

+ (−1)n+1φ(an+1a0, ..., an) = 0

Any cyclic n-cocycle can be written as a trace on the universal differential algebra
Ωn(A)' A+ ⊗ A⊗n, which allows a canonical extension to a cyclic n-cocycle φ#Trk over
Mk(A+) such that

(φ#Trk)(a0, a1, ..., an) = (φ#Trk)(a0 − s(a0), a1 − s(a1), ..., an − s(an))

and

(φ#Trm+k)(a0 ⊕ b0, ..., an ⊕ bn) = (φ#Trm)(a0, a1, ..., an) + (φ#Trk)(b0, b1, ..., bn).

Let A be a local C∗-algebra. In this work the most important property of cyclic cocycles
is that they naturally pair with K-groups:

Theorem 2.1. For φ a cyclic 2n-cocycle over A there is the group homomorphism

〈φ, ·〉 : K0(A)→ C

defined by
〈φ, [e]0 − [s(e)]0〉= (φ#Trk)(e, e, ..., e) (2.1)

for [e]0 − [s(e)]0 ∈ K0(A) and e ∈ Pk(A+).

For φ a cyclic (2n+ 1)-cocycle over A there is the group homomorphism

〈φ, ·〉 : K1(A)→ C

defined by
〈φ, [u]1〉= (φ#Trk)(u, u∗, u, ..., u, u∗) (2.2)

for [u]1 ∈ K1(A) and u ∈ Uk(A+).

10



3 Crossed products of C∗- and von Neumann-Algebras

Since this implies that the right hand sides of the pairings do not depend on the
representatives, this gives us a convenient way to show numerical identities that would
be difficult to prove by direct computation.

The cocycles usually involve unbounded traces or derivatives such that they will usually
only be defined on some smooth subalgebra A that is dense with respect to the C∗-norm.

Proposition 2.4. [15] If A is a local C∗-algebra and A its norm-closure, the maps
i∗ : K j(A)→ K j(A) induced by the inclusion i : A→ A are isomorphisms. Any element of
K0(A) can be represented by a projection matrix over A+ and every element of K1(A) by a
unitary matrix over A+.

In this way the pairing with cyclic cocycles over A extends to pairings with K j(A).

3 Crossed products of C∗- and von Neumann-Algebras

C∗-dynamical systems

As alluded to in the introduction, many algebras in the applications can be written as
crossed products with Zd or Rd as a consequence of a discrete or continuous transla-
tional symmetry. Those crossed products have a dual action that can be used to define a
non-commutative differential calculus. Furthermore, we will later construct boundary
algebras as a crossed product with a one-parameter subgroup of this dual group.

Definition 3.1. A C∗-dynamical system is a triple (A, G,α) consisting of a C∗-algebra A, a
locally compact group G and a strongly continuous action α : G→ Aut(A), i.e. t 7→ αt(a)
is norm-continuous for each a ∈ A.

A covariant representation of a C∗-dynamical system is a pair (π, U) with π a non-
degenerate representation of A on a Hilbert space H and U a strongly continuous unitary
representation of G on H such that

π(αg(a)) = U(g)π(a)U(g)∗, ∀a ∈ A, g ∈ G.

For simplicity we will only consider abelian groups and therefore write the group
operation as addition. A dynamical system determines a unique crossed product
algebra that contains A and G as multipliers and for which any covariant representation
extends to a ∗-representation.

A convenient definition for crossed products is given by [38]

Definition 3.2. A crossed product for the dynamical system (A, G,α) is a C∗-algebra
B with a homomorphism iA : A → M(B) and a strictly continuous homomorphism
iG : G→ U(M(B)) such that

1. iA(αs(a)) = iG(s)iA(a)iG(s)∗, ∀a ∈ A, g ∈ G

11



3 Crossed products of C∗- and von Neumann-Algebras

2. If (π, U) is a covariant representation, there is a unique non-degenerate representa-
tion π× U with π= (π× U) ◦ iA and U = (π× U) ◦ iG.

3. iG extends to a representation of Cc(G) via Riemann-integration and products of
the form iA(a)iG( f ), a ∈ A, f ∈ Cc(G) are dense in B.

These universal properties determine an algebra Aoα G uniquely up to isomorphism
(as one can always map the generators of one crossed product to those of another). In
particular iA and iG must be injective due to non-degeneracy.

For functions f , g ∈ Cc(G, A) define the operations

( f ∗ g)(s) =

∫

G

f (t)αs(g(t − s))dt

( f ∗)(s) = αs( f (−s)∗),
(3.1)

where we consider integration with respect to a Haar measure of G. Properties 1 and
3 imply that Cc(G, A) with this multiplication and involution is a dense subalgebra of
Aoα G.

Any covariant representation (π, U) on some Hilbert space H can be integrated to a
representation π× U of the crossed product on H by defining densely for f ∈ Cc(G, A):

(π× U)( f ) :=

∫

G

π( f (s))U(s)ds (3.2)

Assuming A ⊂ B(H) for some Hilbert space H we define a covariant representation
(π,λ) on L2(G, H) by

(π(a)ξ)(s) =α−1
s (a)ξ(s)

(λ(t)ξ)(s) =ξ(s− t)
(3.3)

The integrated representation corresponding to (π,λ) is faithful if G is amenable (as
all abelian groups are) and is called the regular representation [6] . The operator norm
on L2(G, H) defines the C∗-norm on Aoα G. In this sense the crossed product can be
considered the C∗-completion of the convolution algebra Cc(G, A).

Definition 3.3. On a crossed product AoαG we define a dual action α̂ : Ĝ→ Aut(AoαG)
of the dual group Ĝ by

α̂γ(iA(a)iG( f )) = iA(a)iG(〈γ, ·〉 f ), γ ∈ Ĝ, a ∈ A, f ∈ Cc(G),

where 〈γ, s〉 is the dual pairing of Ĝ and G.

This action defines a group of automorphisms (which follows largely from the unique-
ness of the crossed product) and is strongly continuous. Therefore one can construct
the crossed product Aoα G oα̂ Ĝ leading to the periodicity result:

Theorem 3.1 (Takai duality). The second crossed product Aoα G oα̂ Ĝ is isomorphic to
A⊗K(L2(G)). The isomorphism can be chosen in such a way that the second dual action
ˆ̂α acts as α ⊗ AdρG, with ρG the regular representation of G on L2(G), i.e. acting by
translation.
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3 Crossed products of C∗- and von Neumann-Algebras

W ∗-dynamical systems

A von Neumann algebra M is a C∗-algebra that is (as a Banach space) isomorphic to
the dual space of a Banach space M∗, its pre-dual. When considering actions on von
Neumann algebras, strong continuity is usually too strong to be useful, which means
that we have to weaken the continuity requirements.

Assuming that M acts on a Hilbert space H, there are several possible choices as we
recall:

Definition 3.4. A net xβ in M converges to 0

1. σ-weakly if and only if φ(xβ)→ 0 for all φ ∈ M∗

2. σ-strongly if and only if φ(x∗
β

xβ)→ 0 for all φ ∈ M∗

3. weakly if and only if 〈v, xβw〉 → 0 for all v, w ∈ H

4. strongly if and only if xβ v→ 0 for all v ∈ H.

Since all of these topologies coincide on the unitary group of M and any element of M
can be written as a linear combination of four unitaries, they define the same notion of
weak continuity for automorphisms [29]:

Definition 3.5. A W ∗-dynamical system is a triple (M , G,α) consisting of a von Neumann
algebra M, a locally compact group G and a weakly continuous action α : G→ Aut(M),
i.e. the map

t 7→ αt(a)

is continuous with respect to any and therefore all of the topologies in Definition 3.4.

A covariant representation of a W ∗-dynamical system is a pair (π, U) with π a non-
degenerate normal (i.e. σ-weakly continuous) representation of M on a Hilbert space H
and U a strongly continuous unitary representation of G on H, such that

π(αs(a)) = U(s)π(a)U(s)∗, ∀a ∈ M , g ∈ G.

Without loss of generality we consider M to be acting on a Hilbert space H. If there is
a strongly continuous unitary representation of G on H that satisfies

UsMU∗s = M , ∀s ∈ G,

then
αs(x) := Us xU∗s

defines a weakly continuous action [42]. A general W ∗-dynamical system (M , G,α)
can always be written in this form by considering the regular representation (π,λ) on
L2(G, H) defined for all a ∈ M , t ∈ G by

(π(a)ξ)(s) =α−1
s (a)ξ(s)

(λ(t)ξ)(s) =ξ(s− t).
(3.4)

13



3 Crossed products of C∗- and von Neumann-Algebras

It can be shown [42] that the following definition does not depend on the choice of
Hilbert space representation.

Definition 3.6. The crossed product M oα G corresponding to a W ∗-dynamical system
(M , G,α) is the smallest von Neumann algebra in B(L2(G, H)) containing π(M) and
λ(G).

If (A, G,α) is a C∗-dynamical system with a non-degenerate covariant representation
π× U , then π(A)′′ is a von Neumann algebra on which we have a weakly continuous
G-action defined by

α̃t(π(a)) = U(t)π(a)U(t)∗, ∀t ∈ G.

The W ∗-dynamical system (π(A)′′, G, α̃) can be considered the W ∗-completion of the
dynamical system. One can then show

π(A)′′ oα̃ G = (π× U)(Aoα G)′′

i.e. that C∗- and W ∗-crossed products are compatible.

Definition 3.7. Define a unitary representation σ of Ĝ on L2(H, M) by

(σ(γ)ξ)(s) = 〈γ, s〉ξ(s), ξ ∈ L2(G, H)

Then the dual action α̂ : Ĝ→ Aut(M oα G) on the W ∗-crossed product M oα G is given by

α̂γ(m) = µ(γ)x µ(γ)
∗, x ∈ M oα G.

The dual action also defines a W ∗-dynamical system (M oα G, Ĝ, α̂) and

Theorem 3.2 (Takesaki duality [42]). The second crossed product M oα G oα̂ Ĝ is
isomorphic to M ⊗B(L2(G)), with the second dual action ˆ̂α again acting as α⊗ AdρG.

Crossed products for one-parameter groups

In this section let G = T= R/Z= [0, 1]/∼ or G = R. Let (A, G,α) be a C∗-dynamical
system. If we identify Aoα G with the image of its regular representation π× U on a
Hilbert space L2(G, H), there is a convenient alternative description (see e.g. [25]):

Denote by D the self-adjoint, densely defined generator of U(t) such that

U(t) = ei2πDt

as operators on L2(G, H). Since ei2πDt is just left translation along the base space G,
the generator D is the derivative

(Dξ)(t) =
i

2π
(∂tξ)(t).

14



3 Crossed products of C∗- and von Neumann-Algebras

The spectrum of D is given by σ(D) = Z respectively σ(D) = R and can therefore be
identified with the dual group Ĝ.

Hence, the generators of Aoα G can be written for a ∈ A, t ∈ G, f ∈ Cc(G)

iA(a) =π(a)

iG(t) =ei2πDt

iA(a)iG( f ) =π(a)(F f )(D)
(3.5)

with the last line a consequence of continuous functional calculus with the Fourier
transform F : Cc(G) → C0(Ĝ). We can therefore describe Aoα G as the C∗-algebra
generated by polynomials in

{π(a) f̂ (D) : a ∈ A, f̂ ∈ C0(Ĝ)}.

If we take instead the representation of Aoα G as convolution operators generated by
f ∈ Cc(G, A), the integrated form of the representation can be written

(π× U)( f ) =

∫

G

π( f (t))ei2πDtdt,

which is consistent with the multiplication laws (3.1).

Given a different covariant representation (ψ, V ) with

V (t) = ei2πD̃t

the integrated representation ψ× V is given by

(ψ× V )( f ) =

∫

G

ψ( f (t))ei2πD̃tdt

and therefore ψ× V can be equivalently defined on the generators by the relation

π(a) f̂ (D) 7→ψ(a) f̂ (D̃).

For a W ∗-dynamical system (M , G,α) there is an analogous description of the regular
representation on L2(G, H). The crossed product M oα G is the weak closure of the
∗-algebraic span of

{π(a) f̂ (D) : a ∈ M , f̂ ∈ B(Ĝ)},

with B(Ĝ) the bounded Borel-measurable functions (the set clearly contains the gen-
erators π(M) and λ(G)). A general element of M oα G cannot be represented as a
convolution, however, for a function f : G→ M the integral

∫

G

π( f (t))ei2πDtdt

defines an element of M oα G if it exists in the weak sense.
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4 Traces and non-commutative Lp-spaces

4 Traces and non-commutative Lp-spaces

4.1 Traces on C*- and von Neumann algebras

In this section we recall basic facts about traces on C∗- and von Neumann algebras based
on [18] and construct a dual trace on crossed product algebras using the approach
of [25] [32]. Let A be a C∗-algebra and denote by A+ its positive cone. If A is not
already unital, then let Ã be its unitization.

Definition 4.1. A weight φ on A is a function φ : A+→ [0,∞], such that

1. φ(λx) = λφ(x),∀x ∈ A+,λ ∈ [0,∞)

2. φ(x + y) = φ(x) +φ(y),∀x , y ∈ A+

A weight φ is called

• a trace, if in addition φ(uxu−1) = φ(x) for all x ∈ A and unitaries u ∈ Ã.

• faithful, if φ(x) = 0 implies x = 0 for all positive x ∈ A+.

• finite, if φ(x)<∞,∀x ∈ A+.

• lower semi-continuous, if φ(x)≤ lim infφ(xn) for xn→ x in A+.

A weight φ on a von Neumann algebra N is called semifinite, if for all x ∈ N+

φ(x) = sup{φ(y)|y ∈ N+, y ≤ x ,φ(y)<∞}

and it is called normal if for any increasing net (xλ)λ∈Λ with supremum in N

φ(sup xλ) = supφ(xλ).

For a weight φ on A we denote by Aφ+ the set of all positive elements a ∈ A+ such that
φ(a) <∞ and call φ densely defined if Aφ+ is dense in A+. The linear span of Aφ+ is
denoted Aφ and forms a ∗-subalgebra of A. Any weight φ extends to a linear functional
on Aφ which will be denoted by the same letter. We define

Aφ2 = {a ∈ A|φ(a∗a)<∞},

which is a left ideal of A containing Aφ and a two-sided ideal if φ is a trace. Note that
for x , y ∈ Aφ2 we have

τ(x y) = τ(y x),

since any element of A can be written as a linear combination of four unitary elements
in Ã.

For extending traces on C∗-algebras to their von Neumann closure and semidirect
products we use an approach similar to the one in [32] and described in the following.
The main tool one uses for the construction of traces are Hilbert algebras.
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4 Traces and non-commutative Lp-spaces

Definition 4.2. Let U be a ∗-algebra over C with a scalar product (x |y) which makes
it into a pre-Hilbert space whose completion we denote by H. Then U is called a Hilbert
algebra, if

1. (x |y) = (y∗|x∗),∀x , y ∈ U

2. (x y|z) = (y|x∗z),∀x , y, z ∈ U

3. For each x ∈ U the maps ux : U → U , y 7→ x y and vx : U → U , y 7→ y x are
continuous.

4. The set of all products x y is total in U.

The maps ux ,vx can be continued uniquely to operators on H and an element a ∈ H is
called bounded if there is a bounded operator ua ∈ L(H) such that ua x = vx a for all
x ∈ U .

The algebraic rules can be motivated by the fact that for a C∗-algebra with a (densely
defined) trace τ the image under the (unbounded) GNS-representation πτ defines a
Hilbert algebra with the usual scalar product (πτ(x)|πτ(y)) = τ(x∗ y).

The main result that we use is

Theorem 4.1. [18] Let U be a Hilbert algebra, H its completion and N the von Neumann
algebra generated by the bounded elements of H. We define a weight for S ∈ N+ through

φ(S) =

¨

(a|a) if
p

S = Ua for some bounded a ∈ H
∞ otherwise.

(4.1)

Then φ is a faithful, semifinite normal trace on H such that

Nφ
2 = {x ∈ N |φ(x∗x)<∞}= {x ∈ N |x = Ua for some bounded a ∈ H}.

Moreover
φ(U∗a Ub) = (a|b)

by polarization.

We use this theorem to extend traces on C∗-algebras to the von Neumann algebras that
they generate:

Proposition 4.1. Let (A, G,α) be a C∗-dynamical system and τ be a finite, faithful and
continuous trace on A. If τ is α-invariant, i.e.

τ(αt(x)) = τ(x), ∀x ∈ A, t ∈ G,

then A embeds covariantly into a von Neumann algebra L∞(A) such that (L∞(A), G, α̃)
is a W ∗-dynamical system with a finite, faithful and normal trace on L∞(A) extending τ
and invariant under α̃.
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4 Traces and non-commutative Lp-spaces

Proof. Define a scalar product on Aτ2 through

(a|b) := τ(a∗b),

which makes Aτ2 into a Hilbert algebra. Clearly, the completion of Aτ2 coincides with
the GNS-representation (πτ, Hτ) of A, which is faithful since τ is faithful. We put
L∞(A) = πτ(A)′′ = πτ(Aτ2)

′′ which coincides with the von Neumann algebra generated
by the bounded elements of Hτ. Therefore Theorem 4.1 allows to extend τ to L∞(A) in
the way described. The extension of the trace is again finite as τ(x)≤ ‖x‖τ(1)<∞
for all x ∈ L∞(A).

The action α restricts to Aτ2 and the maps αs : Aτ2 → Aτ2 are isometries and therefore
extend to unitary operators Us on Hτ. As s 7→ αs is strongly continuous and τ is finite,
s 7→ αs is strongly continuous as a map on Hτ since

‖a−αs(a)‖2
Hτ
= τ((a−αs(a))

∗(a−αs(a)))≤ ‖a−αs(a)‖2τ(1).

We can therefore extend the action α to L∞(A) through

α̃s(a) := UsaU∗s ,

which is also weakly continuous since it is already defined through a covariant rep-
resentation. As α̃ preserves the scalar product of Hτ, the extension of τ is also α̃-
invariant.

We apply a similar construction to define a dual trace on the crossed product Aoα G.

Proposition 4.2. Let (A, G,α) be a C∗-dynamical system with a finite, faithful α-invariant
trace τ. The crossed product L∞(A)oα G has a semifinite, faithful normal trace τ̂ that is
left invariant by the dual action α̂.

Proof. Consider the regular representation π× U on L2(G, Hτ). We define for f , g ∈
Cc(G, Aτ2) a scalar product through

( f |g)G = τ(( f ∗g)(0)) =
∫

G

dsτ( f (s)∗g(s)) (4.2)

with the integral with respect to a Haar-measure on G.

This makes Cc(G, Aτ2) into a Hilbert algebra and the Hilbert space completion of its
image under π× U is given by L2(G, Hτ). Theorem 4.1 then defines a trace τ̂ on the
von Neumann algebra generated by the bounded elements of L2(G, Hτ), which we
denote by L∞(Aoα G).

As the Hilbert algebra is defined through the regular representation of the crossed
product, we have the obvious inclusion L∞(A)oα G ⊂ L∞(Aoα G) and indeed one can
show that the two algebras are equal [42, Theorem 5.12].

The dual action α̂ acts on f ∈ Cc(G, Aτ2) as

(α̂γ f )(s) = 〈γ, f (s)〉

and the scalar product ( f |g)G is α̂-invariant on a dense subset, hence this also holds
for the dual trace τ̂.
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4 Traces and non-commutative Lp-spaces

The dual trace depends on the choice of Haar measure, i.e. it is only determined up to
a multiplicative constant that we won’t fix at this point.

In order to compute the trace of an element f ∈ L∞(A oα G) we have to find a
factorization f = h∗g with g, h ∈ L2(G, Hτ)∩ L∞(Aoα G), which then implies

τ̂( f ) = (g|h).

If G is a one-parameter group this can be done canonically [25]:

Proposition 4.3. Let G = T or G = R, (A, G,α) and τ as above. Then we have for the
generators of the crossed product

τ̂(π(a) f (D)) = τ(a) ·
∫

Ĝ

f (x)dx (4.3)

for a ∈ L∞(A)τ, f ∈ L1(Ĝ) and a Haar measure on the right hand side that is fixed by
the normalization of (4.2).

Proof. We may write f = gh with g, h ∈ L2(Ĝ)which gives us the factorization a f (D) =
(ag(D))h(D) =: a∗1a2. As vectors in L2(G, Hτ) we have the representations

a∗1(s) = π(αs(a))F(g)(s)

and
a2(s) = F(h)(s).

One can now evaluate the scalar product

τ̂(π(a) f (D)) = (a1|a2) =

∫

G

dsτ(αs(a)F(g)(s)F(h)(s))

=

∫

G

dsτ(αs(a))F(g)(s)F(h)(s))

= τ(a)

∫

Ĝ

dx g(x)h(x) = τ(a)

∫

Ĝ

f (x)dx ,

where we used α-invariance of the trace and the Plancherel theorem.

In this picture α̂ generates translations α̂γ( f (D)) = f (D+ γ) such that the invariance
of the trace becomes obvious.

4.2 Non-commutative Lp-spaces

In the previous section we already introduced von Neumann algebras of the form L∞(A)
and their representation spaces Hτ can be interpreted as corresponding L2-spaces. In
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this section we outline the more general theory of non-commutative Lp-spaces based
on the review [33].

Let M be a von Neumann algebra with a normal semifinite faithful trace. We write
L∞(M) = M for convenience and assume that M acts on a Hilbert space H.

For an element x ∈ M define the support projection

supp(x) = inf{e ∈ P(M)| xe = x}.

The positive elements with finite support are denoted

S+ := {x ∈ M+ : τ(supp x)<∞}∈ M . (4.4)

and let S be the linear span of S+. As τ is semifinite and normal, any projection is the
increasing strong limit of τ-finite projections and as projections generate M , the set S
is weakly dense in M .

Note that x ∈ S implies |x |p ∈ S+ and hence

‖x‖p := τ(|x |p)1/p

defines a norm on S for 1≤ p <∞. The non-commutative Lp-space is defined as the
completion of S in the p-norm and is denoted Lp(M) .

A (possibly unbounded) operator x on H is called affiliated to M if the partial isometry u
of its polar decomposition x = u |x | is contained in M as well as all spectral projections
of |x |. It is further called τ-measurable if there is a spectral projection pλ = χ(λ,∞)(|x |)
with τ(pλ) <∞. The space of τ-measurable operators is denoted L0(M) and there
is a unique extension of τ to L0(M)+. The Lp-spaces can be realized as subspaces of
L0(M), i.e. in particular every Cauchy sequence in Lp(M)∩M converges to a densely
defined operator on H.

The Hölder-inequality holds in the non-commutative case in the form

x ∈ Lp(M), y ∈ Lq(M) =⇒ x y ∈ L r(M)

and
‖x y‖r ≤ ‖x‖p‖y‖q,

where as usual 1/r = 1/p+ 1/q, 0< r, p, q ≤∞.

This allows us to make sense of products involving factors in Lp-spaces and the density
of Lp(M)∩M implies that the cyclicity of the trace extends to

τ(x y) = τ(y x), ∀x ∈ Lp(M), y ∈ Lq(M).

For 1≤ p <∞ one still has the natural duality

Lp(M)∗ = Lq(M),

i.e. Lp(M) is reflexive for 1< p <∞ and L1(M) is the pre-dual M∗ of M . The Hilbert
space L2(M) coincides with the representation space associated to the semifinite
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4 Traces and non-commutative Lp-spaces

faithful normal trace τ and hence the representation by left multiplication is faithful
and normal.

Many other results especially concerning convexity and interpolation also generalize
to the non-commutative case.

We prove a small lemma that will help with showing convergence in L1:

Lemma 4.1. i) Let (an)n∈N be a sequence in M. Then an converges in the strong topology
of M on H if and only if it converges in the strong topology of M on L2(M).

ii) Let (an)n∈N be a sequence in M ∩ L1(M) that converges in the L1-norm to some
a ∈ L∞ ∩ L1(M) and is uniformly bounded in L∞(M). Then a = s- limn→∞ an.

Proof. i) A strongly convergent sequence is bounded and therefore also σ-strongly
convergent, as the strong and σ-strong topologies coincide on bounded sets. The
representation of M on L2(M) is normal and hence σ-strongly continuous, i.e. an

converges in the σ-strong topology of B(L2(M)) and because it is bounded, also in the
strong topology of B(L2(M)). Exchanging the roles of H and L2(M) shows the other
direction.

ii) By i) it is sufficient to show strong convergence on L2(M) and as there is a uniform
bound on the operator norm, it is enough to show

an x → ax

for x in the dense subset M ∩ L2(M). We have

‖(a− an)x‖2
2 = ‖((a− an)x)

∗(a− an)x‖1 ≤ ‖(a− an)x‖‖a− an‖1 ‖x‖

which converges to zero as an is uniformly bounded.

The first statement also holds if one replaces strong with weak convergence and the
second if one replaces L1 with L2 with the obvious modifications of the argument.

4.3 Compact and Breuer-Fredholm operators

We outline the theory of Breuer-Fredholm operators with respect to semifinite von
Neumann algebras, which originated from [11] and was extended to real-valued indices
by [32]. A more recent review of the theory can be found in [4].

A projection p ∈ M is called finite if it is in L1(M) and we denote by Fτ the smallest
algebraic ideal of M that contains the finite projections. Its norm-closure Kτ is the
ideal of the so-called τ-compact elements. While Kτ is always a C∗-algebra, it is not
necessarily separable.

Another well-known characterization of Kτ is given by [25]

Kτ = M ∩ Lp(M),∀1≤ p <∞
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with the closure in operator norm. One of the inclusions can be seen from the fact
that the set on the right hand side contains all finite projections and is an algebraic
ideal in M , hence it contains the generator Fτ. For the other inclusion we just need to
consider operator norm-convergent approximation through spectral projections, which
themselves are finite by majorization.

There is a nice result concerning projections in K (we will drop the subscript τ for the
remainder of the section):

Proposition 4.4. [22]

• Let p ∈ K be a projection. Then p is already finite, i.e. in F .

• The algebra F is closed under the holomorphic functional calculus of its closure K.
Hence it is a local C∗-algebra and the inclusion into K induces an isomorphism

i∗ : K0(F)→ K0(K)

Since τ defines a 0-cycle on F , we therefore have an induced homomorphism

τ∗ = 〈τ, ·〉 : K0(F)→ C

that extends to K0(K)' K0(F).

The Calkin-algebra is defined as Q := M/K and is also a C∗-algebra. An element T ∈ M
is called τ-Fredholm (or Breuer-Fredholm with respect to Kτ) if its image

T +K ∈ M/K

is invertible in the Calkin-algebra.

For any T ∈ M denote by NT the projection onto the kernel of T and by RT the projection
onto the closure of the range of T . Both of these projections are elements of M since
they can be written as strong limits and there are the convenient expressions

NT = sup{E ∈ P(M) : T E = 0}
RT = inf{E ∈ P(M) : ET = T}.

(4.5)

There is the following generalization of Atkinson’s theorem:

Theorem 4.2. [32] T ∈ M is τ-Fredholm if and only if there exists a projection E ∈ K
such that

1. NT ∈ K

2. range(1− E) ⊂ range(T )

The second condition implies 1 − RT ≤ E ∈ K and is strictly stronger than this, as
τ-Fredholm elements in general need not have a closed range. As an easy consequence
we also have

NT ∗ = 1− RT ∈ K.
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To a Fredholm element T we can associate two indices: The K0-index

Ind(T ) = [NT ]0 − [NT ∗]0 ∈ K0(K)

and the numerical index

τ-Ind(T ) = τ(NT )−τ(NT ∗) = τ∗(Ind(T )) ∈ R.

The K0-index is closely related to the index map Ind : K1(Q)→ K0(K) corresponding
to the extension

0→ K→ M →Q→ 0. (4.6)

Consider the polar decomposition

T = U |T |

with U ∈ M the unique partial isometry that satisfies this formula and for which

1− U∗U = NT

1− UU∗ = NT ∗ .

The image U +K is a unitary element of Q and since it lifts to the partial isometry U
we have by Proposition 2.2

Ind([U +K]1) = [1− U∗U]0 − [1− UU∗]0 = [NT ]0 − [NT ∗]0 = Ind(T ).

If T is Breuer-Fredholm and k ∈ K then T + k clearly is also Breuer-Fredholm and with
the same K-theoretical index and therefore with the same τ-index.

We close this section with a useful criterion and formula, which is certainly known
but for which a proof in this exact setting was not readily available in the literature.
The case n= 1,m= 1 can be found in [25] and for the general case we reproduce the
argument from [19].

Theorem 4.3 (Fedosov-Calderon formula). Let T ∈ M such that

(1− T T ∗)n ∈ L1(M)

and
(1− T ∗T )n ∈ L1(M)

for some n ∈ N \ {0}. Then T is τ-Fredholm and

τ-Ind(T ) = τ((1− T ∗T )m)−τ((1− T T ∗)m) (4.7)

for all m≥ n.
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Proof. Trace class and bounded implies compact and therefore

((1− T T ∗)n)∗ (1− T T ∗)n = (|1− T T ∗|2)n ∈ K.

As K is closed under functional calculus |1− T T ∗| ∈ K and since K is an ideal, polar
decomposition implies 1− T T ∗ ∈ K. Hence T ∗ is an inverse for T up to compacts and
therefore T is Fredholm.

Consider now again the polar decomposition

T = U |T |

with U ∈ N unique partial isometry with

UU∗ = RT = 1− NT ∗ , U∗U = RT ∗ = 1− NT

Clearly
τ-Ind(T ) = τ(1− U∗U)−τ(1− UU∗).

Writing a = 1− T T ∗ as a matrix with respect to the decomposition 1= RT + NT ∗ , we
get using the relation between U and T and the support conditions

a =
�

RT aRT RT aNT ∗

NT ∗aRT NT ∗aNT ∗

�

=
�

U(1− |T |2)U∗ 0
0 1− UU∗

�

.

Noting that |T |U∗U = |T |= U∗U |T | this implies

(1− T T ∗)n = U(1− |T |2)nU∗ + 1− UU∗.

The same relation shows that

U∗U(1− |T |2)n = U∗U − 1+ (1− |T |2)n = U∗U − 1+ (1− T ∗T )n,

since U∗U only acts nontrivially on the constant term.

Using cyclicity of the trace then gives

τ((1− T ∗T )n)−τ((1− T T ∗)n)

= τ((1− T ∗T )n)−τ(1− UU∗)−τ(U(1− |T |2)nU∗)

= τ((1− T ∗T )n)−τ(1− UU∗)−τ(U∗U(1− |T |2)n)
= τ(1− U∗U)−τ(1− UU∗) = τ-Ind(T )

5 Flows, Generators and Derivations

This section presents some material about R-actions on Banach spaces based on [8],
[10], with an emphasis on C∗- and von Neumann algebras. Any such action defines
some notion of a derivative, which gives a derivation in the algebraic case.
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5 Flows, Generators and Derivations

Definition 5.1. Let X be a Banach space and α : G×X → X an action of a locally compact
group G, that acts on X as a group of isometries, i.e. αg : X → X is a linear isometry for
each g and α : G→ L(X ) is a homomorphism.

Such an action is called strongly continuous if g 7→ αg(x) is norm-continuous for each
x ∈ X .

If X is a von Neumann algebra, we call the automorphic action α weakly continuous if
(X , G,α) is a W ∗-dynamical system.

For G = R the generator δ of a group of isometries defined as

δ(a) = lim
t→0

αt(a)− a
t

on the subspace

D(δ) = {a ∈ X : lim
t→0

αt(a)− a
t

exists}.

In the von Neumann case with a weakly continuous action we instead ask for the
weaker notion

φ(δ(a)) = lim
t→0
φ

�

αt(a)− a
t

�

, ∀φ ∈ M∗

and define D(δ) accordingly. If X is a Banach-∗-algebra and αg(a)∗ = αg(a∗), the
generator is a ∗-derivation, i.e. we have

δ(ab) = δ(a)b+ aδ(b)
δ(a∗) = δ(a)∗

for all a, b ∈ D(δ).

For α : R → Aut(X ) a strongly continuous action on a Banach space or a weakly
continuous action on a von Neumann algebra denote the generator by δ and define
the subspaces of differentiable elements

Xn := {x ∈ X : x ∈ D(δn)}

X∞ :=
⋂

n>0

Xn.

It is known [9], [8]

Proposition 5.1. If α is strongly continuous, then X∞ and thus Xn are norm-dense in X .

If α is weakly continuous, then X∞ and thus Xn are weakly dense in X .

The main argument is that for f ∈ C∞c (R) and x ∈ X the element

α f (x) :=

∫

R
αt(x) f (t)dg
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5 Flows, Generators and Derivations

is smooth with respect to the action, where we interpret the integral in the strong
respectively weak sense.

Let us now consider the special case that α is a weakly continuous R-action on a
von Neumann algebra M . We assume that there is a normal semifinite faithful trace
on τ that is left invariant under α. As α acts isometrically, the action extends from
L∞ ∩ Lp(M) to a group of isometries on Lp(M).

There is the technical result

Proposition 5.2. [26, Lemma 13.4] The action α : G × Lp(M) → Lp(M) is strongly
continuous with respect to the Lp-norm for 1≤ p <∞.

In particular, this implies that the smooth elements with respect to the action are dense
in Lp(M) and hence also the Sobolev spaces

Ws,k(M) := {x ∈ Ls(M) : δn x ∈ Ls(M), ∀0≤ n≤ k}

are dense in Lp(M).

Proposition 5.3. Let M = L∞(M) be as above. Let B be a C∗-subalgebra of L∞(M). If
for some p ∈ [1,∞) the spaceB := B ∩Wp,1(M) is norm-dense in B, thenB is a local
C∗-subalgebra of B.

Proof. We first note that by a simple computation the Leibniz rule holds for a, b ∈
L∞(M)∩Wp,1(M), i.e.

aδ(b) +δ(a)b = lim
t→0

αt(ab)− ab
t

in Lp(M). Hence B is an algebra and one checks that it is a Banach-∗-algebra with
respect to the norm ‖·‖+‖·‖p,1. The only property that is not obvious is completeness.
For a Cauchy-sequence (an)n∈N inB we have

an→ a ∈ B
an→ b ∈ Lp(M)

δ(an)→ c ∈ Lp(M)

Clearly |an|p → |a|p in operator norm as a consequence of continuous functional
calculus. As the trace τ is semifinite and normal, it is σ-weakly lower semicontinuous
and hence ‖a‖p = τ(|a|p)≤ lim infτ(|an|p) = ‖b‖p showing a ∈ Lp(M). Both a and b
define bounded functionals on Lq(M),p−1 + q−1 = 1 via

φa := τ(a·), φb := τ(b·)

and for x ∈ S (as defined in (4.4)) we have

|φa(x)−φb(x)|= lim
n→∞
|φa(x)−φan

(x)|

= lim
n→∞
|τ((a− an)x)|≤ lim

n→∞
‖an − a‖‖x‖1 = 0.
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5 Flows, Generators and Derivations

As φa and φb coincide on a dense subspace (σ-weakly dense for p = 1), we get a = b
since φ· is just the embedding Lp ,→ (Lq)∗. The equality c = δ(b) follows from the fact
that δ : Wp,1(M)→ Lp(M) is bounded linear and hence continuous with respect to the
Sobolev norm.

We need to show thatB is local, i.e. closed under the holomorphic functional calculus
of its closure B. For this we first note that the embedding i :B → B is a homomorphism
and continuous with respect to the Banach algebra norm onB . Hence it follows for
all a ∈B that σB(a) ⊆ σB(a). We will now show that the spectra are actually equal.
As it is the more complicated case, we assume that B andB have no unit.

Recall that the resolvent set of an element a in a non-unital Banach algebra is given by
the set of all λ ∈ C \ {0}, for which a/λ has a quasi-inverse b that satisfies [28]

aλ−1 + b− abλ−1 = 0= aλ−1 + b− baλ−1.

It is therefore sufficient to show that if a ∈B has a quasi-inverse b ∈ B, then already
b ∈ B . Since B is dense in B and the set of quasi-invertible elements is open, we
can always translate the problem to a neighborhood of the neutral element 0 of the
quasi-multiplication. Hence we may assume ‖a‖B < 1 such that the quasi-inverse b is
given by the B-norm convergent series

b = −
∞
∑

k=1

ak.

Now note that

‖ak‖B = ‖ak‖B + ‖ak‖p + ‖δ(ak)‖p ≤ ‖a‖k−1
B

�

‖a‖B + ‖a‖p + k‖δ(a)‖p

�

,

from which we conclude that the sum also converges in B-norm. Hence we have
σB(a) = σB(a) for all a ∈B .

As the holomorphic functional calculus in a Banach algebra is unique, it commutes
with the embedding

i( f (a)) = f (i(a))

for all a ∈B and f holomorphic on a neighbourhood of σB(a) = σB(a) with f (0) = 0.
Therefore B is stable under the calculus in B. The unital case follows by an almost
identical argument.

This proof can be adapted for various similar algebras; in particular we note that if
one ignores the parts about the Sobolev-spaces, we have that B ∩ L1(M) dense in B
implies that the set of τ-finite elements of B is closed under holomorphic functional
calculus and therefore a local C∗-subalgebra of B.

The Winding number

Let M be a von Neumann algebra with a normal semifinite faithful trace τ together
with an R-action α and denote the associated derivation as δ. We assume that the
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6 Toeplitz extensions for one-parameter group actions

action leaves τ invariant, which implies τ(δa) = 0 for all a ∈ W1,1(M). Let B be a
C∗-subalgebra of M such thatB = B ∩W1,1(M) is norm-dense in B, i.e. it satisfies the
conditions of Proposition 5.3.

OnB we define the 1-cycle

η(a, b) := iτ(aδ(b))

and we check explicitly that it is a cyclic cocycle. For cyclicity we have

η(a, b) = iτ(aδ(b) +δ(a)b)− iτ(δ(a)b) = iτ(δ(ab))− iτ(δ(a)b) = −η(b, a).

For the boundary property we note that

(bη)(a, b, c) = η(ab, c)−η(a, bc) +η(ca, b)
= τ(abδ(c))−τ(aδ(b)c + abδ(c)) +τ(caδ(b)) = 0

by the cyclicity of τ.

The canonical extension of η to Mn(B+) is given by

(η#Trn)(a, b) = τ(Trn((a− s(a))δ(b− s(b)))

where s : Mn(B+)→ Mn(C) is again the scalar part and δ acts component-wise.

As η is an odd cocycle, it pairs with K1(B)' K1(B) via

〈η, [u]1〉= η(u, u∗) ∈ C.

IfB is already unital, it is usual to consider unitary matrices u ∈ Mn(B) with coeffi-
cients inB instead ofB+. We may of course reinterpret those as u−1n+1+n such that
the pairing is given by

〈η, [u− 1n + 1+n ]1〉= η(u− 1n, u∗ − 1n).

The map defined by 〈η, ·〉 is called the Winding number form and we denote it by
Wind : K1(B)→ C, since it generalizes the classical form

u ∈ C1(S1) 7→ i

∫

S1

udu∗ ∈ Z.

Its interpretation as a homomorphism on K1(B) automatically gives us the usual homo-
topy and additivity properties.

6 Toeplitz extensions for one-parameter group actions

In this section we present some facts about the Toeplitz extension for a one-parameter
group action. In the case of an R-action this coincides with the smoothed Toeplitz
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6 Toeplitz extensions for one-parameter group actions

extension introduced by [21], which we slightly generalize to periodic actions. This
section has two purposes: one is to motivate the construction of the more general
exact sequences of the next section, the other is to appeal to the similarities to the
usual bulk-boundary exact sequences modeled after the Wiener-Hopf-extension or the
discrete Toeplitz extension. As we will see in the applications, the advantage of the
one-parameter-Toeplitz extension is that it can naturally describe a larger variety of
boundary algebras (e.g. systems on a semi-infinite lattice with a boundary that is not
axis-parallel).

As a general assumption for this section let A be a unital C∗-algebra and A⊂ B(H) for
some separable Hilbert space H. For G = R or G = T let α be a strongly continuous
G-action on A.

Recall from Section 3 that the crossed product Aoα G is faithfully represented on
L2(G, H) with the regular representation π×λ. With the generator D of t 7→ λ(t) we
had

C := Aoα G = C∗
�

π(a) f (D) : a ∈ A, f ∈ C0(Ĝ)
	

,

the smallest C∗-algebra in B(L2(G, H)) containing the set on the right hand side, i.e.
algebraic closure followed by norm completion in B(L2(G, H)).

Definition 6.1. We define the (smoothed) Toeplitz extension T associated to (A, G,α) as

T := C∗
�

π(a) f (D) : a ∈ A, f ∈ C0,∗(Ĝ)
	

⊂ B(L2(G, H)),

where C0,∗(R) respectively C0,∗(Z) denote the continuous functions that vanish at −∞
and admit a finite limit at +∞.

The adjective "smoothed" is deserved only in the case G = R since this construction
then has to be contrasted with the extension generated by the Toeplitz operators
χR+(D)π(a)χR+(D), which in general will not be contained in C .

For a trivial action α the smoothed Toeplitz extension is not very interesting for our
purposes. The relevant examples to keep in mind with respect to the applications
are homogeneous observable algebras modeled as crossed products A = B o Zd or
A= BoRd and to take for α a restriction of the dual action to a one-parameter subgroup.
In special cases Takai duality then allows to rewrite e.g. C = Aoα T ' K⊗ B oZd−1

such that one gets a "boundary" algebra modeled after a lower-dimensional space.

Let h ∈ C(Ĝ) be a "switch" function, i.e. a smooth, monotonously increasing function
that for some ε > 0 satisfies

h(t) =

¨

0 if t ≤ 0

1 if t > ε.

We write P = h(D), which smoothly approximates the projection χR+(D) respectively
can be chosen equal to the projection χZ+(D).

The following lemma is well-known in the case of G = R (see e.g. [21] or [25]).
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6 Toeplitz extensions for one-parameter group actions

Lemma 6.1. Let a ∈ A. Then [P ,π(a)] ∈ C and hence C is a two-sided ideal in T .
Further, the element π(a)P is in C if and only if a = 0.

Proof. For the first part it is enough to show that [P ,π(a)] ∈ Aoα G for a ∈ C∞(A),
the dense subset of smooth elements with respect to α. Let hn→ h be a sequence of
smooth functions with compact support, that converges to h pointwise, i.e. hn(D)→P
strongly. One computes using the multiplication law

[hn(D),π(a)] =

∫

G

fn(t)e
i2πDtdt

with
fn(t) = (αt(a)− a)(Fhn)(t).

Noting that

(Fhn)(t) =
(Fh′n)(t)

i t
respectively

(Fhn)(t) =
(F∆hn)(t)
1+ ei2πt

with the forward difference ∆hn(x) = hn(x + 1)− hn(x), we find that for n→∞ we
have convergence to

[h(D),π(a)] =

∫

G

αt(a)− a
it

(Fh′)(t)ei2πDtdt

respectively

[h(D),π(a)] =

∫

G

αt(a)− a
1+ ei t

(F∆h)(t)ei2πDtdt,

which defines elements in Aoα G as they have smooth kernels that decay at infinity.

This shows that C is an ideal in T , as for the generators we have e.g.

h(D)(π(a) f (D)) = [h(D),π(a)] f (D) +π(a) (h(D) f (D)) ∈ Aoα G

for all a ∈ A, f ∈ C0(Ĝ), h ∈ C0,∗(Ĝ).

The last part can be shown directly using Fourier analysis but, since we will later need
a more general statement, we skip the proof for now.

The statement about the commutators shows that we can write every element of T
uniquely in the form π(a)P + c with a ∈ A and c ∈ Aoα G and thus

Proposition 6.1. The map q : T → A defined through the equality

q(π(a)P +C ) = a

is a surjective homomorphism and hence there is the exact sequence

0→C ,→T
q
→ A→ 0. (6.1)
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6 Toeplitz extensions for one-parameter group actions

We now turn our attention towards the connecting maps in K-theory. In the case G = R
we write them as

ExpT : K0(A)→ K1(Aoα R)

and
IndT : K0(A)→ K1(Aoα R).

It is well-known that K j(A) ' K1− j(Aoα R) with natural isomorphisms given by the
Connes-Thom-maps

∂ αj : K j(A)→ K1− j(Aoα R),

which are the inverse maps to the connecting maps of the Wiener-Hopf-extension

0→ C0(R, A)oλ⊗α R→ C0,∗(R, A)oλ⊗α R→ Aoα R→ 0

with λ the left-translation on C0,∗(R) [39].

In fact [21] proves that the smoothed Toeplitz extension can be considered the KK-
inverse of the Wiener-Hopf-extension. As a consequence one has

Theorem 6.1. Let G = R. Then the connecting maps IndT and ExpT of the smoothed
Toeplitz extension are the inverses of the connecting maps of the Wiener-Hopf-extension
corresponding to (A,α,R). This also means that they coincide with the Connes-Thom-
isomorphisms ∂ α0 ,∂ α1 .

There is no similar isomorphism in the case G = T. However, the a dual action α̂
is a Z-action for which one has the well-known Pimsner-Voiculescu sequence. Write
B = Aoα Z, β = α̂ and consider the discrete Toeplitz extension for Z-actions

0→ C0(Z, B)oλ⊗β Z→ C0,∗(Z, B)oλ⊗β Z→ B oβ Z→ 0

with λ the left-translation action on C0,∗(Z). The six-term exact sequence associated to
this extension is called the Pimsner-Voiculescu sequence [5]. As the K-groups of the
factors are isomorphic to either those of B or B oβ Z, it facilitates the computation of
K j(B oα Z) and is equivalent to

K0(B) K0(B) K0(B oβ Z)

K1(B oβ Z) K1(B) K1(B).

id−β∗

ExpInd

id−β∗

As a consequence of Takai duality we have

K j(B oβ Z) = K j(Aoα Toα̂ Z)' K j(A⊗K) = K j(A)

and therefore the sequence may be written as

K0(Aoα T) K0(Aoα T) K0(A)

K1(A) K1(Aoα T) K1(Aoα T).

id−α̂∗

ExpInd

id−α̂∗

(6.2)
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6 Toeplitz extensions for one-parameter group actions

In fact the connecting maps are identical to those of the one-parameter-Toeplitz exten-
sion, which one might hope to prove by connecting the two sequences in a commutative
diagram. However, the explicit forms of those embeddings would likely be complicated
as they would involve Takai duality. We will therefore argue in a more indirect fashion.

First note that the T-action α can be considered an R-action with αt+1 := αt . As we
will see below, there is a surjective homomorphism q : Aoα R → Aoα T and as an
intermediate result in the proof of the Pimsner-Voiculescu-sequence, [5] shows that the
connecting maps of (6.2) can be expressed with the Connes-Thom-isomorphisms as

Exp : K0(A)→ K1(Aoα T), Exp= q∗ ◦ ∂ α0
and

Ind : K1(A)→ K0(Aoα T), Ind= q∗ ◦ ∂ α1 .

We can consider the smoothed Toeplitz extension for α as either a T- or R-action and
will denote them by TT and TR, defined on L2(T, H) and L2(R, H) using the covariant
representations (πT,λT) and (πR,λR) respectively.

Let ψ ∈ L2(R, H). Then for z ∈ Z, t ∈ (0, 1] the periodicity αt+1 = αt gives

(πR(a)ψ)(z + t) = α−1
z+t(a)ψ(z + t) = α−1

t (a)ψ(z + t)

and for y ∈ Z, r ∈ (0, 1]

(λR(y + r)ψ)(z + t) =ψ(z − y + t − r).

With p : L2(R, H)→ L2(T, H) the restriction to the interval [0,1] one sees from the
formulas above that p intertwines the generators of CR and CT, i.e.

p ◦πR(a) = πT(a) ◦ p

p ◦λR(y + r) = λT(r) ◦ p.

The latter relation shows

p ◦ f (D) = f (D̃) ◦ p, ∀ f ∈ C0(R).

with D, D̃ the generators of the R respectively T-actions.

Hence, p densely defines a morphism on the generators that implements the surjection
q : Aoα R → Aoα T. For a switch function h ∈ C0,∗(R) as above there is a switch
function h̃ ∈ C0,∗(Z) such that

p ◦ h(D) = h̃(D̃) ◦ p.

As the generators of TR can be written uniquely as πR(a)(h(D)+ g(D)) with g ∈ C0(R)
this implies that the spatial morphism defined through p extends to q : TR→TT and
that the diagram

0 CR TR A 0

0 CT TT A 0

q q
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7 Exact sequences for weakly continuous actions

commutes. The naturalness of the connecting maps then gives

IndT = q∗ ◦ IndR

and
ExpT = q∗ ◦ ExpR.

We conclude using Theorem 6.1:

Proposition 6.2. Let G = T. Denote the connecting maps of the one-parameter Toeplitz
extension (6.1) by ExpG and IndG and those of (6.2) by Exp and Ind. Then we have the
commutative diagrams

K0(A) K1(Aoα R)

K0(A) K1(Aoα T)

i∗
Exp

ExpR

q∗

ExpT

and

K1(A) K0(Aoα R)

K1(A) K0(Aoα T)

i∗
Ind

IndR

q∗

IndT

where one identifies K j(A)' K j(Aoα Toα̂ Z)' K j(A⊗K).

These relations and Takai duality make it possible to prove for the (smoothed) one-
parameter Toeplitz extension duality theorems for the Chern-cocycles similar to [36]
by applying existing methods for the Toeplitz extension of (Aoα T)oα̂ Z or the Wiener-
Hopf-extension of (Aoα R)oα̂ R respectively. Even though there are numerous results
in the literature along these lines, none seem to be applicable directly. However, we
note that it seems possible to extend the proofs in [23] or [24] to also cover those
cases. This would then complete the bulk-boundary correspondence for the smoothed
Toeplitz extension. We will not pursue this further in this work, but rather study less
regular extensions in the following, for which such a reduction is not possible.

7 Exact sequences for weakly continuous actions

In this section we use the general assumption that A is a unital C∗-algebra with a strongly
continuous G-action α, G = R or G = T, and an α-invariant faithful continuous finite
trace τ. Let (π,λ) be the regular representation of A on a Hilbert space L2(G, H). As
in section 4.1 we may construct the von Neumann algebras L∞(A) and L∞(Aoα G)
with induced weakly continuous actions α and invariant traces τ respectively τ̂. To
shorten the notation we write

E := Aoα G

and denote the Lp-spaces as Lp(A) and Lp(E).
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7 Exact sequences for weakly continuous actions

In our applications A will be an algebra of observables describing solid state systems
with an infinite spatial extent, while E will model semi-infinite systems that are located
on the boundary of a system whose bulk is described by A.

For the classification of topological invariants in physics it will be useful to consider
elements, that are not in the continuous subalgebra A but rather in the von Neumann
algebra L∞(A). The goal would be to relate projections and unitary elements of L∞(A)
to counterparts in L∞(E) using the connecting maps of K-theory. However, the full von
Neumann algebras are too large for this purpose since those have trivial K-groups. We
will have to resort to using suitable subalgebras that ideally also allow us to densely
define certain cocycles.

We note that a similar problem is well-studied in the case of the commutative algebras
A = C(T) respectively L∞(A) = L∞(T). In this case there are index theorems for
Toeplitz operators with symbols in QC(T) (quasicontinuous functions on the torus),
PC(T) (piecewise-continuous functions) and other commutative algebras on the torus
(see [7] for a review).

In order to take advantage of Breuer-Fredholm theories, it will be convenient to consider
extensions of subalgebras of L∞(A) with subalgebras of the τ̂-compact operators
Kτ̂ ⊂ L∞(E). Therefore, we define the quasicontinuous extension of A in analogy with
the commutative case

QA := {a ∈ L∞(A) : [π(a), P] ∈ Kτ̂},

whereπ is extended to the embeddingπ : L∞(A)→ L∞(E) and P = χ(0,∞)(D) ∈ L∞(E)
is the spectral projection of the generator D of U(t). It is easy to see that QA is a ∗-
algebra and closed since Kτ̂ is a norm-closed ideal. We also note that in the classical case
A= C(T) the algebra QA allows an intrinsic characterization (bounded functions with
vanishing mean oscillation), which can probably be generalized to the non-commuative
case but won’t be needed for this work.

Since the dual trace is α-invariant and π is α-covariant, the action restricts to QA but it
usually will not be strongly continuous. In the classical case A= C(T), for example,
with α acting as translation, the orbit of an element f ∈ L∞(T) is norm-continuous if
and only if f is a continuous function in the usual sense. As there are quasicontinuous
functions that are not continuous, this condition must fail for some elements of QA.
Therefore, we also cannot use the (smoothed) Toeplitz extension to construct an exact
sequence involving QA. However, we will show in this section that the sequence

0→ Kτ̂→ π(QA)P +Kτ̂
q
→QA→ 0

is exact based on properties of the dual trace.

There is also the problem that QA is likely too large for the numerical bulk-boundary
correspondence, since it is not clear whether W1,1(A) is dense in QA and that the
generalized winding number defines a pairing with K1(QA). It will therefore be more
convenient to work with smaller, separable algebras.

For any subalgebra B ⊂ L∞(A) we may still define the Toeplitz algebra

T (B) := C∗(π(B)P),
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and the commutator ideal

C (B) := T (B) · C∗([π(B), P]) · T (B),

where C∗(·) denotes the smallest C∗-subalgebra of L∞(E) that contains the respective
elements. In particular, C (B) is the smallest ideal in T (B) containing the commutators
with P. As shown by [25] these algebras form an exact sequence for B = A, i.e.
T (A)/C (B)' A, but the arguments partly rely on the strong continuity of α (for the
commutative case the same has been known since at least [14]). We now show that
the sequence is also exact in the more general case if we restrict to B ⊆QA and later
give constructive criteria for this condition.

The following lemma shows that the compact operators in some sense vanish at infinity:

Lemma 7.1. Let e ∈ Kτ̂ and Pn := χ(n,n+1](D). Then

lim
n→∞

τ̂(Pne∗ePn) = 0.

Proof. First note that the expression makes sense, since e is bounded and Pn is τ̂-
summable. For e ∈ L∞(E)∩ L2(E) we have using Pythagoras

‖e‖2
2= τ̂(e

∗e) = τ̂

�

∑

n∈Z

Pne∗ePn

�

=
∑

n∈Z

τ̂(Pne∗ePn)

and therefore the sequence not only converges to zero but is also summable. Because
this set is dense in Kτ̂ we just have to show that the property is preserved by limits.
Let (ek)k∈N be a sequence in L∞(E)∩ L2(E) that converges to e ∈ Kτ̂ in operator norm.
Let δ > 0 and choose k0 such that

‖e− ek‖< δ

for all k ≥ k0 and n0 such that

τ̂(Pne∗k0
ek0

Pn)< δ

for all n≥ n0. Then

τ̂(Pne∗ePn) = τ̂(Pne∗k0
ek0

Pn) + τ̂(Pne∗k0
(e− ek0

)Pn) + τ̂(Pn(e− ek0
)∗ePn)

≤δ+ τ̂(Pn)(‖ek0
‖‖e− ek0

‖+ ‖e‖‖e− ek0
‖)≤ δ(1+ τ̂(P0)(‖ek0

‖+ ‖e‖))

since τ̂(Pn) = τ̂(P0).

As ‖ek‖ is uniformly bounded, choosing δ small enough shows convergence to zero.

Corollary 7.1. For a ∈ L∞(A) we have π(a)P ∈ Kτ̂ if and only if a = 0.

Proof. We have

τ̂(PnPπ(a∗)π(a)PPn) = τ̂(Pnπ(a
∗a)Pn) = τ(a

∗a)τ̂(P0)

which is constant in n and since τ is faithful the expression vanishes if and only if
a = 0.
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7 Exact sequences for weakly continuous actions

Proposition 7.1. Let B be a unital C∗-subalgebra of QA and let C be a C∗-algebra with

[π(B), P] ⊆ C ⊆ Kτ̂.

Then we have for
T (B, C) := C∗(π(B)P + C)

and
C (B, C) := T (B, C) · C · T (B, C)

the exact sequence
0→C (B, C)→T (B, C)

q
→ B→ 0 (7.1)

with the symbol map q densely defined by

q(π(b)P + c) = b, ∀b ∈ B, c ∈ C .

Proof. First note that T = B ⊕C as a linear space since

(π(a1)P + c1)(π(a2)P + c2) ∈ π(a)π(b)P +C

(π(a)P + c)∗ ∈ π(a)∗P +C

and because π(a)P is never in Kτ̂ and thus never in C . Hence we can write any
element of T (B, C) uniquely as π(b)P + c. Therefore, q is well-defined and as Kτ̂ is
an ideal, it is easy to see that it is a ∗-morphism and surjective with kernel C .

Since PT (B, C)P is a closed subalgebra, we also have

Corollary 7.2. Let B,C be as above and define the genuine Toeplitz algebra

T̂ (B, C) := PT (B, C)P

and write the restriction of q as

q̂ : T̂ (B, C)→ B, q(Pπ(b)P + c) = b.

Then
Ĉ (B, C) := ker q̂ = (ker q)∩ T̂ (B, C) = PC (B, C)P

is a C∗-algebra and the sequence

0→ Ĉ (B, C)→ T̂ (B, C)
q
→ B→ 0 (7.2)

is exact.

The genuine Toeplitz extension T̂ (B, C) is more closely aligned with the usual definition
of Toeplitz algebras on half-spaces as in e.g. [14]. In contrast to T (B, C) it does
not contain the commutators [π(b), P] but only the semi-commutators of the form
Pπ(a)π(b)P − Pπ(a)Pπ(b)P. However, it has the advantage that T̂ (B, C) is unital
with the unit P, which simplifies some arguments.
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8 The Breuer-index of a Toeplitz operator

As an application we have the exact sequences

0→ Kτ̂→ π(QA)P +Kτ̂→QA→ 0

and
0→ PKτ̂P → Pπ(QA)P + PKτ̂P →QA→ 0

which show that we may consider QA a subalgebra of the Calkin-algebra.

To be precise, we have in general

Proposition 7.2. The following diagram has exact rows and commutes

0 Ĉ (B, C) T̂ (B, C) B 0

0 Kτ̂ L∞(E) L∞(E)/Kτ̂ 0

i i j

where
j : B→ L∞(E)/Kτ̂, a 7→ Pπ(a)P +Kτ̂

is an embedding of C∗-algebras.

Hence the diagram

K1(B) K0(Ĉ (B, C))

K1(L∞(E)/Kτ̂) K0(Kτ̂)

j∗

Ind

Ind

commutes.

Proof. The diagram obviously commutes so we just have to check the claim about j.
The map j is linear and a homomorphism since e.g.

Pπ(a)Pπ(b)P +Kτ̂ = Pπ(ab)P + P[π(a), P]π(b)P +Kτ̂ = Pπ(ab)P +Kτ̂

by definition of QA. It is injective by Corollary 7.1.

Hence, any extension encodes at least the Breuer-Fredholm index.

Another special case of Proposition 7.1 is the (smoothed) Toeplitz extension as AoαG ⊂
Kτ̂. To see this, just note that for a ∈ A and f ∈ L1(Ĝ) we have π(a) f (D) ∈ L∞(Aoα
G)∩ L1(Aoα G) and those elements span a dense subalgebra of Aoα G.

8 The Breuer-index of a Toeplitz operator

In this section we again use the general assumptions and notation of section 7 and
additionally require that we have two algebras B,C that satisfy the conditions of
Proposition 7.1.
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8 The Breuer-index of a Toeplitz operator

To an element a ∈ B we may associate the Toeplitz operator with symbol a

Ta = Pπ(a)P ∈ T̂ (B, C).

We will show that the Breuer-Index of some Toeplitz operators can be computed in
terms of their symbol but we first need a technical lemma:

Lemma 8.1. Let a ∈ L1(E) and write Pk,r := χ(kr,(k+1)r](D) for k ∈ Z and r > 0.

We have
a =

∑

k∈Z

Pk,r a

with the sum converging in L1(E) and thus

τ̂(a) =
∑

k∈Z

τ̂(Pk,r a).

Proof. Assume first a ∈ L∞(E) ∩ L1(E) and set P(n) =
∑k=n

k=−n Pk,r . Clearly we have
P(n)↗ 1 and

0≤ a∗P(n)a ≤ a∗P(m)a ≤ a∗a

for n< m. As the square root is operator monotone,

n 7→
p

a∗P(n)a

forms a monotone sequence. This shows

lim
n
‖P(n)a‖1 = sup

n
τ̂
�p

a∗P(n)a
�

≤ τ̂(|a|) = ‖a‖1 (8.1)

as the trace is normal. As the sequence is monotone and bounded, P(n)a is a Cauchy-
sequence in L1(E) and Lemma 4.1 shows that it converges strongly to its L1-limit,
which must then coincide with s- limn→∞ P(n)a = a.

For general a ∈ L1(E) approximate with b ∈ L∞(E)∩ L1(E) such that ‖a− b‖1< ε/3
to get

‖P(n)a− a‖1≤ ‖b− a‖1+‖P(n)b− b‖1+‖P(n)a− P(n)b‖1< ε/3+ ε/3+ ε/3

for n large enough.

Since the error term converges to zero, the second equality is obvious.

The same argument holds for other approximate units.

Proposition 8.1. Let u ∈ L∞(A)∩W1,1(A) be unitary with [π(u), P] ∈ L1(E). Then

τ̂-Ind(Tu) =
iN
2π
τ(u∗δu)

with the index taken with respect to the von Neumann algebra P L∞(E)P,

N = τ̂(χ(0,1](D))

and δ the derivation associated to α, where we regard a T-action as periodic R-action
with αt+1 = αt .
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8 The Breuer-index of a Toeplitz operator

Proof. Note first that P is the unit of P L∞(E)P and

P − TuT ∗u = P[π(u), P][π(u∗), P] ∈ L1(E).

Therefore Tu is Fredholm by Proposition 4.3 with n= 1.

Writing S = 1−2P =: sgn(D), we get using equation (4.7) and the cyclicity of the trace

τ̂-Ind(Tu) = τ̂(TuT ∗u − T ∗u Tu)

= −
1
4
τ̂(P[S,π(u)][S,π(u∗)]− P[S,π(u∗)][S,π(u)])

=
1
8
τ̂(S[S,π(u)][S,π(u∗)]− S[S,π(u∗)][S,π(u)])

where the right hand sides are trace class since the commutators are in L∞ ∩ L1(E).

It is enough to consider the first term by writing a = π(u) and b = π(u∗) and because
of its trace class properties, we may introduce partitions of unity 1=

∑

k∈Z Pk,r , with
Pk,r := χ(kr,(k+1)r](D). The dual action α̂ leaves the trace invariant and we have

α̂r x(a) = a, α̂r x(Pk,r) = Pk−x ,r .

We rewrite the first term

τ̂(
∑

n∈Z

SPn,r[S, a][S, b]) =
∑

n∈Z

τ̂(SPn,r[S, a][S, b]Pn,r)

=
∑

n,m∈Z

τ̂(SPn,r[S, a]Pm,r[S, b]Pn,r)

= −
∑

n,m∈Z

τ̂(sgn(n)(sgn(n)− sgn(m))2Pn,r aPm,r bPn,r)

= −
∑

n,m∈Z

τ̂(sgn(n)(sgn(n)− sgn(m))2P0,r aPm−n,r bP0,r)

= −4
∑

k∈Z

τ̂(kP0,r aPk,r bP0,r)

where we used cyclicity to insert a further partition of unity, the α̂-invariance, then
changed variables k = m− n and computed the sum over the free index

∑

n∈Z

sgn(n)(sgn(n)− sgn(k+ n))2 = 4k

with sgn(0) := 1 for this whole computation.

Now we have

τ̂

�

∑

k

kP0,r aPk,r bP0,r

�

=
1
r

�

τ̂(P0,r a[D, b]P0,r)− τ̂(P0,r a fr(D)bP0,r)
�

with the function
fr = id− rbid/rc
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8 The Breuer-index of a Toeplitz operator

that expresses the difference between D and the approximation
∑

k rkPk,r .

For G = T we have σ(D) = Z, such that for r = 1 the error term becomes identically
zero. In the case G = R one estimates

�

�

�

�

1
r
τ̂(P0,r a fr(D)bP0,r)

�

�

�

�

≤
1
r
τ̂(P0,r) · ‖a‖‖b‖ sup

x∈(0,1]
| fr(x)|

and since the first factor is equal to N and the supremum tends to 0 as r → 0, the error
term vanishes in the limit.

For the first term we get in either case from (4.3)

1
r
τ̂(P0,r a[D, b]P0,r) =

−i
2π
τ(uδu∗)

1
r
τ̂(P0,r) =

−iN
2π

τ(uδu∗)

as the definitions of π and D imply

[D,π(u∗)] =
−i
2π
π(δ(u∗)).

We therefore conclude

τ̂(S[S, a][S, b]) = 4
iN
2π
τ(uδu∗)

and the Leibniz formula combined with the α-invariance of the trace give us

τ(uδu∗) = −τ(u∗δu)

such that

τ̂(S[S, a][S, b])− τ̂(S[S, b][S, a]) = 8
iN
2π
τ(uδu∗).

Substituting back gives the result.

The multiplicative constant originates from the normalizations of D and the dual trace
and may change in the applications.

We will now interpret this result as a pairing between cyclic cohomology and K-theory.
Let u ∈ Un(B) be a unitary element defining a class [u]1 ∈ K1(B). We want to compute
an image under the index map Ind : K1(B)→ K0(Ĉ (B, C)) for the sequence (7.2).

Note that û := Tu ∈ Mn( ˆT (B, C)) is a lift of u to a contraction ‖Tu‖ ≤ 1. Hence we may
compute the index as in Proposition 2.3:

As P is the unit of T̂ (B, C) we have the unitary lift

v =

�

û (P − ûû∗)1/2

−(P − û∗û)1/2 û∗

�

such that

Ind[u]1 =
�

v
�

P 0
0 0

�

v∗
�

0

− [P]0 =
��

ûû∗ û(P − û∗û)1/2

(P − û∗û)1/2û∗ P − û∗û

��

0

− [P]0, (8.2)
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8 The Breuer-index of a Toeplitz operator

where we identify the unit of Ĉ (B, C)+ with P.

We want to pair K0(Ĉ (B, C)) with the dual trace τ̂, however, this can only be done if
every class in K0(Ĉ ) can be represented by projections in the unitization of L1(E). Hence
we need to assume from now on that Ĉ (B, C)∩L1(E) is dense in Ĉ (B, C)with respect to
the C∗-norm. As remarked under Proposition 5.3, this shows that K0(Ĉ (B, C)∩L1(E))'
K0(Ĉ (B, C)) and with the isomorphism induced by the embedding map.

The dual trace τ̂ obviously defines a 0-cycle on Mn(Ĉ ∩ L1(E)) and therefore the pairing
with a projection p ∈ Mn((Ĉ ∩ L1(E))+) is given by the extension

〈τ̂, p〉= τ̂n(p− s(p)),

where τ̂n = τ̂⊗ Trn and s(p) is the scalar part of p, i.e. p− s(p) ∈ Mn(L1(E)).

Proposition 8.2. Assume that Ĉ (B, C)∩ L1(E) is dense in Ĉ (B, C).

Let u ∈ L∞(A) be unitary and [π(u), P] ∈ L1(Aoα G). We then have

τ̂∗(Ind[u]1) = τ̂-Ind(Tu)

with the index taken with respect to the von Neumann algebra P L∞(E)P.

Proof. We may write P − û∗û = c∗c with c = P[π(u), P] ∈ L1(E)∩ L∞(E) which shows
that

P − û∗û, P − ûû∗, (P − û∗û)
1
2 ∈ Ĉ (B, C)∩ L1(E).

Considering P − vv∗ from the image of the index map (8.2), it is then easy to see that

s(P − vv∗) = s

��

ûû∗ û(P − û∗û)
1
2

(P − û∗û)
1
2 û∗ P − û∗û

��

= s

��

ûû∗ − P û(P − û∗û)
1
2

(P − û∗û)
1
2 û∗ P − û∗û

�

+
�

P 0
0 0

�

�

=
�

P 0
0 0

�

since the scalar part is just the part proportional to P and û∗û ∈ P + Ĉ (B, C).

Therefore

〈τ̂, Ind[u]1〉= τ̂2

��

ûû∗ − P û(P − û∗û)
1
2

(P − û∗û)
1
2 û∗ P − û∗û

��

= τ̂(P − û∗û)− τ̂(P − ûû∗)

and the last expression coincides with the index by Proposition 4.3.

Since Mn(A)o G = Mn(Ao G), the result also holds if one takes a general u ∈ Un(A)
with the index taken with respect to Mn(P L∞(E)P).

We may therefore write up the results of this section as
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9 Besov spaces for flows

Theorem 8.1. Let B,C be algebras satisfying the conditions of Proposition 7.1 and assume
that Ĉ (B, C)∩ L1(E) is dense.

If [u]1 ∈ K1(B) is represented by a unitary u ∈ Un(B) with [π(u), P] ∈ Mn(L1(E)) and
u ∈W1,1(A) then

〈τ̂, Ind[u]1〉=
iN
2π
τ(uδu∗) = τ̂-Ind(Tu).

If we further assume that W1,1(A)∩ B is dense, we can write this as

〈τ̂, Ind([u]1 ) 〉=
N
2π

Wind([u]1),

with the Winding number form associated to δ.

Similar results have been obtained in the past for various different conditions and
settings. The most prominent version is the Gohberg-Krein theorem for Toeplitz
operators with symbols in C(T). A similar formula for the non-commutative case was
shown by Connes [15] for crossed products AoαR using the Connes-Thom-isomorphism.
This was later interpreted in terms of the smoothed Toeplitz extension and Breuer-
Fredholm index in [25] and extended to the semifinite case in [32]. All these approaches
require smooth elements, i.e. u ∈ C2(A) or better (and possibly additional summability
conditions). In this sense, our index theorem is a strict generalization of the one by
Lesch. Newer works such as [12], [44], [2] extend these results and interpret them
in terms of semifinite spectral triples and spectral flow. However, those approaches
using unbounded spectral triples usually require that δu defines a bounded operator,
such that there is also a spectral triple over the bulk algebra. This condition fails
in our envisioned applications where δu ∈ L1(E) is genuinely unbounded (though
these problems can probably be solved through some kind of regularization). The
cyclic cohomology approach works more easily with the relaxed regularity, as e.g. the
winding number form defines a cyclic cocycle irrespective of whether the derivative δu
is bounded or not. In contrast, unbounded spectral triples require the manipulation
of (in our case unbounded) commutators like [D, u], which may induce the need to
regularize the Dirac operator D to apply standard results like the local index formula.
Therefore, the Winding number Wind([u]1) can not necessarily be interpreted as an
index but always as the pairing between a cyclic cocycle and K1(B).

9 Besov spaces for flows

Given the results of the previous section, we want to know a sufficient condition for

[π(a), P] ∈ L1(Aoα G)

given an element a ∈ L∞(A) that is computable purely in terms of the algebra L∞(A).

Commutators of this form are closely related to Hankel operators and it is known that
in the classical case a Hankel operator with symbol in L∞(T) is in the Schatten-ideal S p
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9 Besov spaces for flows

if and only if the symbol is in the classical Besov space B1/p
p,p (T) [31]. In this section we

partially extend this result to a non-commutative generalization of the Besov spaces.

We will first vaguely recall the definition of the classical vector-valued Besov spaces
over R [30] (the spaces on the torus are defined analogously) and fill in the details later
when discussing the non-commutative case. Let E be a Banach space and consider the
Banach space Lp(R, E)with the usual p-norm. A function f ∈ L2∩Lp(R, E) has a Fourier
transform F f ∈ L2(R, E), which allows the definition of so-called Fourier-multipliers
φ : R→ C through

φ ∗ f := F∗Mult(φ)F f

and which extends to a mapφ∗· : Lp(R, E)→ Lp(R, E) if the functionφ is well-behaved.

There are smooth partitions of unity (Wk)k∈Z, Wk : R→ R that satisfy
∑

k∈Z

Wk(x) = x , ∀x ∈ R \ {0}

and certain other properties such that they form a so-called dyadic decomposition of R.
The vector-valued Besov space Bs

p,q(R, E) with 0< s ≤ 1, 1≤ p, q ≤∞ is then defined
as

Bs
p,q(R, E) := {a ∈ Lp(R, E) :

∑

k∈Z

2qsk‖Wk ∗ a‖q
p <∞}.

The Besov spaces are similar to the fractional Sobolev spaces with regard to smoothness
but are better behaved with respect to Fourier multipliers and approximation with
analytic functions.

As the classical Besov spaces are defined primarily in terms of Fourier multipliers with
certain properties, we first have to generalize this concept to the non-commutative case.
In this section let M be a von Neumann algebra with a weakly continuous action α of
a one-parameter-group G = R or G = T and let τ be a normal and finite α-invariant
trace on M .

For a T-action α we may define for an element a ∈ Lp(M) the Fourier coefficients

φx(a) :=

∫

T
αt(a)e

i2πx tdt, x ∈ Z,

which are also in Lp(M) because α is isometric. Many analogues of results for vector-
valued Fourier series also hold for this definition of Fourier coefficients, including
convergence in the Lp-norm for 1 < p <∞ (the ideas of [13] developed for the
non-commutative torus mostly carry over to this more general situation).

However, it is not as simple to define Fourier coefficients with respect to an R-action,
since the above integrals cannot exist due to isometry. A possible approach would be
through approximations using the spectral subspaces introduced by Arveson [3] for
abelian automorphism groups. However, since we will deal with analytic properties,
it is more convenient to use the spectral decomposition on the Hilbert space L2(M)
instead.
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9 Besov spaces for flows

Recall that the induced action of α on the Hilbert space L2(M) is strongly continuous
and therefore generated by an unbounded self-adjoint operator T with

αt(a) = ei2πT t a, a ∈ L2(M).

Indeed, up to a factor T coincides with the derivation δ = −i[D, ·] induced by α on M
but acts on a different space. The spectral decomposition of T gives a direct integral
decomposition

L2(M) =

∫ ⊕

σ(T )

Hλµ(dλ) (9.1)

with Hilbert spaces Hλ and a Borel-measure µ on σ(T ). As we assume that τ is a finite
trace, we have M ⊂ L2(M) and hence every a ∈ M has a "Fourier"- decomposition

a =

∫ ⊕

σ(T )

aλµ(dλ),

with aλ a section of the field of Hilbert spaces (Hλ)λ∈σ(T ). Note that this is a decompo-
sition of a as a vector in the Hilbert space L2(M) and not as a linear operator, i.e. the
decomposition is not compatible with multiplication. Furthermore, it is only defined
uniquely up to null sets with respect to µ and we will call the µ-a.s. support of aλ the
Fourier spectrum of a (which coincides with the Arveson spectrum of a as introduced
in [3]).

Definition 9.1. We will call a Fourier multiplier any µ-measurable function m : R→ C.
The action of m on an element a ∈ L2(M) is defined by

m ∗ a :=

∫ ⊕

σ(T )

m(λ)aλµ(dλ),

whenever the right hand side defines an element of L2(M). A multiplier m is called
Lp-bounded if this linear map extends to a bounded map Lp(M)→ Lp(M).

By definition we have m ∗ a = m(T )a by functional calculus if this is well-defined and

αt(a) =

∫ ⊕

σ(T )

ei2πλt aλµ(dλ).

In general it is difficult to decide whether a Fourier multiplier is bounded, however,
there is the following useful criterion that also holds in the non-commutative version:

Proposition 9.1. Let m be the Fourier transform of a bounded function Òm ∈ L1(R). Then
m is an Lp-bounded Fourier multiplier for any 1≤ p ≤∞.

Proof. For a ∈ L2(M) we have

m ∗ a =

∫ ⊕

σ(T )

m(λ)aλµ(dλ) =

∫ ⊕

σ(T )

�∫

R
Òm(t)ei2πtλdt

�

aλµ(dλ) =

∫

R
Òm(t)αt(a)dt

(9.2)
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9 Besov spaces for flows

Hence, for any a ∈ L2(M)∩ Lp(M) we find that

‖m ∗ a‖p ≤ ‖Òm‖1‖a‖p.

The Besov norm is defined in terms of a dyadic decomposition with smooth Fourier
multipliers, for which we now give one out of several possible definitions.

Let φ be a Schwartz function on R that satisfies the following properties:

supp(φ) ⊂ [−2,−2−1]∪ [2−1, 2]

φ > 0 on (−2,−2−1)∪ (2−1, 2)
∑

k∈Z

φ(2−k x) = 1, ∀x ∈ R \ {0}
(9.3)

If ψ is any smooth positive function with support exactly in (−2,−2−1)∪ (2−1, 2), we
can rescale it to also fulfill the third condition by setting

φ(x) :=

�

∑

k∈Z

ψ(2−k x)

�−1

ψ(x).

Hence there are many possible φ that satisfy these conditions.

For any such φ we have a so-called dyadic decomposition (Wk)k∈Z, Wk := φ(2−k·),
which by Proposition 9.1 consists of Lp-bounded multipliers for all p ≥ 1.

We can now define the Besov spaces as in the classical case [43] by replacing the usual
notion of Fourier multipliers with our non-commutative version. Furthermore, this
construction can be seen as a generalization of [13], which studies Fourier multipliers
and Besov spaces on the non-commutative torus.

Definition 9.2. Letφ, Wk be as above. The Besov space Bs
p,q with 0< s ≤ 1, 1≤ p, q ≤∞

is defined as
Bs

p,q := {a ∈ Lp(M) :
∑

k∈Z

2qsk‖Wk ∗ a‖q
p <∞}

One can argue that, as in the classical case, this definition does not depend on the
choice of φ, but for this work we just assume that some admissible function has been
fixed once and for all.

For the von Neumann algebras L∞(T) and L∞(R) with the integral trace and α acting
by translation, the definitions of Fourier multipliers and Besov spaces can be seen to be
equivalent to the classical notions (for the latter we have to drop the assumption that
the trace is finite which is irrelevant for the definition).

We also note that the main difference to the classical vector-valued Besov spaces is not
really the lack of commutativity (since multiplication is not required at all) but rather
that the non-commutative versions do not admit evaluations at points, i.e. they are no
function spaces in general.
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9 Besov spaces for flows

Proposition 9.2. The Besov space Bs
p,q is a Banach space with the norm

‖a‖Bs
p,q

:= ‖a‖p +

�

∑

k∈Z

2qsk‖Wk ∗ a‖q
p

�1/q

.

Proof. We will just show completeness. If (an)n∈N is a Cauchy-sequence in Bs
p,q-norm,

then we have in p-norm an→ a for some a ∈ Lp(M) and the second term
�

2skWk ∗ a
�

k∈N

can be seen to converge in the sequence space `q(Z; Lp(M)). We therefore also have
pointwise convergence, such that for any k ∈ Z

Wk ∗ an
n→∞
→ bk

in p-norm for some bk in Lp(M). As the application of a bounded multiplier is continu-
ous, we conclude Wk ∗ a = bk for all k ∈ Z and therefore a ∈ Bs

p,q.

We will now give sufficient conditions for the commutator [P,π(a)] ∈ M oα G to be in
L1(M oα G) with respect to the dual trace, where π is the canonical embedding of M
in M oα G and P = χ(0,∞](D).

For convenience we won’t work with the commutator directly:

Definition 9.3. Denote by

Ha := Pπ(a)(1− P) ∈ L∞(M oα G)

the Hankel operator with symbol a ∈ L∞(M).

Since
[P,π(a)] = Ha − (Ha∗)

∗,

it is enough to show trace class properties for Hankel operators.

The proof presented here for p = 1 is based on a variation of the one in [31] for
the classical vector-valued case. The main technical difference is that we cannot use
the singular value decomposition for trace class operators in a general von Neumann
algebra and therefore use the spectral decomposition for self-adjoint elements instead.

Lemma 9.1. Let a ∈ L1(M) ∩ M and assume that a is supported only on the spectral
subspace of T corresponding to the interval (−n, n)∩σ(T ). Then

‖Ha‖1 ≤ C(n+ 1)‖a‖1

with a constant C that does not depend on a and n.
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9 Besov spaces for flows

Proof. Note that a∗ also fulfills the spectral condition as the Fourier spectrum is just
mirrored by the involution (this can be seen by applying formula (9.2) to functions m
with compact support). By splitting into a = 2−1(a+ a∗) + 2−1(a− a∗) it is therefore
enough to prove the statement for a = a∗ self-adjoint.

Expanding the element h(D)π(a)g(D) with h, g ∈ L1(Ĝ) in terms of the multiplication
law (3.1) one finds that

h(D)π(a)g(D) =

∫

G

f (t)ei2πDt

with the convolution kernel f : G→ M given by

f (s) =

∫

G

(Fh)(t)(F g)(s− t)αt(a)dt

=

∫

G

(Fh)(t)(F g)(s− t)

∫ ⊕

σ(T )

ei2πλt aλµ(dλ)dt

= N

∫

Ĝ

�

∫ ⊕

σ(T )

h(λ− z)g(z)aλµ(dλ)

�

e−i2πzsdz

where N is some constant introduced by the convolution theorem.

Denoting PI := χI(D) it therefore follows that

P(0,n]π(a)P[−n,0) = P(0,m]π(a)P[−m,0]

for all m > n due to the spectral condition. As P(0,m] converges to P strongly by
functional calculus and is uniformly bounded, we conclude that

Ha = P(0,n]π(a)P[−n,0).

Since a is self-adjoint, it has a spectral decomposition and we may approximate it with
commuting spectral projections E j ∈ L∞(M) given by

E j = χ
�

(2 j − 1)
‖a‖

2k+ 1
≤ a < (2 j + 1)

‖a‖
2k+ 1

�

such that with

ν j = j
‖a‖
k

we have

a =
k
∑

i=−k

νi Ei + Rk

with a remainder Rk that can be made arbitrarily small in both operator- and L1-norm
(since we assume that τ is finite).
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9 Besov spaces for flows

For any b ∈ L2(M) we have using the formula (4.3) for the dual trace

‖P(0,n]π(b)‖2
2 = τ̂(P(0,n]π(b

∗b)P[0,n])
= τ̂(P(0,n]π(b

∗b)) = τ̂(P(0,n]) ·τ(b∗b)
≤ C(n+ 1)‖b‖2

2

with a constant that depends only on the normalization of the dual measure.

It follows using the Cauchy-Schwarz inequality

‖P(0,n]π(a)P[−n,0)‖1 ≤ ‖P(0,n]

k
∑

i=1

νiπ(Ei)P[−n,0)‖1 + ‖Rk‖‖P(0,n]‖1

≤
k
∑

i=1

|νi| ‖P(0,n]π(Ei)P[−n,0)‖1 + C‖Rk‖(n+ 1)

≤
k
∑

i=1

|νi| ‖P(0,n]π(Ei)‖2‖π(Ei)P[−n,0)‖2 + C‖Rk‖(n+ 1)

≤C(n+ 1)
k
∑

i=1

|νi| ‖Ei‖2
2 + C‖Rk‖(n+ 1)

=C(n+ 1)
k
∑

i=1

|νi|τ(Ei) + C‖Rk‖(n+ 1)

=C(n+ 1)τ

�

k
∑

i=1

|νi| Ei

�

+ C‖Rk‖(n+ 1)

and the last expression converges to C(n+ 1)‖a‖1 as the approximation is refined.

Proposition 9.3. For all a ∈ M ∩ B1
1,1

Ha ∈ L1(M oα G)

Proof. The function fW := 1−
∑

k∈NWk with the pointwise sum is smooth and its support
is contained in [−2, 2], i.e. it is also a bounded Fourier multiplier. As fW +

∑

k∈NWk = 1
pointwise,

a =fW ∗ a+
∑

k∈N

Wk ∗ a

converges strongly by functional calculus with T . Then

Ha = H
fW∗a +

∑

k∈N

HWk∗a

also converges strongly, as π is a normal representation.

Noting the support conditions of the Wk and therefore of the Fourier spectra of the
Wk ∗ a, Lemma 9.1 implies

∑

k∈N

‖HWk∗a‖1≤ 2C
∑

k∈N

2k‖Wk ∗ a‖1≤ 2C‖a‖B1
1,1

.
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Hence the sum H
fW∗a+

∑

k∈NHWk∗a converges in L1(M oα G) and its limit must coincide
with its strong limit Ha by Lemma 4.1.

Using the fact that for a self-adjoint we have

[P,π(a)] = Ha − (Ha)
∗

and otherwise again splitting into real and imaginary parts we conclude

Corollary 9.1. Under the same conditions as the Proposition we have

[P,π(a)] ∈ L1(M oα G).

Until now we have not shown that the Besov spaces are non-empty. The following
proposition gives easy sufficient conditions:

Proposition 9.4. If a ∈ M has Fourier spectrum contained in a set of the form [−r,−ε)∪
{0} ∪ (ε, r] with r,ε > 0, then a ∈ Bs

p,q for all 0< s ≤ 1, 1≤ p, q <∞.

Proof. The series defining the Besov norm has only finitely many non-vanishing terms,
which themselves are finite.

10 Applications

10.1 The disordered non-commutative torus

In this section we apply the index theorem to algebras of operators on the so-called
disordered non-commutative torus. More information and proofs concerning the spaces
introduced in this section can be found in [36] and [34].

Many solid state systems can be described by periodic operators (i.e. convolutions) or
almost periodic operators (for systems in an irrational magnetic field) on a lattice Zd .
Both cases can be accommodated algebraically with the (non-)commutative torus.

Definition 10.1. Let θ = (θi j) ∈ Rd×d be an anti-symmetric matrix.

The non-commutative torus Td
θ

is defined as the universal C∗-algebra generated by d
unitary generators u1, ...,ud that satisfy the commutation relations

uiu j = eiθi, j u jui.

Alternatively one may construct Td
θ

as an iterated crossed product

Td
θ
= (Coα1

Z)oα2
Z...oαd

Z
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with the strongly continuous Z-actions

αk : Z×Tk
θ(k)
→ Tk

θ(k)

defined on the generators as

αk(x , ui) = (uk)
xui(u

∗
k)

x , x ∈ Z.

The matrix θ consists of the magnetic field strengths and for θ = 0 the action is trivial
such that

Td
θ=0 = CoZ

d ' C(Td).

We also want to describe systems with random disorder, i.e. the convolution kernels
may depend on the location on the lattice but only through ergodic random variables,
such that the system is homogeneous at large scales. For simplicity we consider only
product measures.

Definition 10.2. Let (Ω0,P0) be a probability space with the Borel-σ-algebra, with Ω0 a
compact topological space and P0 a probability measure with full support on Ω0 . The
total disorder space is the product

Ω= ΩZ
d

0

with the product measure P.

On the disorder space Ω there is the ergodic P-invariant action

T : Zd ×Ω→ Ω, (Tx(ω))y =ωy−x , x , y ∈ Z.

Definition 10.3. Let B = (Bi j) ∈ Rd×d be an anti-symmetric matrix and (Ω,P).

The disordered non-commutative torusTd
θ ,Ω is defined as the universal C∗-algebra generated

by d unitary generators u1, ...,ud and the continuous functions C(Ω) together with the
commutation relations

uiu j = eiBi, j u jui

f u j = u j( f ◦ Te j
) ∀ f ∈ C(Ω).

Denoting for x ∈ Zd the monomial

ux = ux1
1 ux2

2 ...uxd
d

the (disordered) non-commutative torus may be considered the completion of the
algebra spanned by the formal Fourier series

a =
∑

x∈Zd

axux

with only finitely many non-vanishing coefficients ax ∈ C or ax ∈ C(Ω).
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On Td
θ ,Ω we have the strongly continuous Td-action

ρk(a) :=
∑

x∈Zd

ei2πk·x axux

which is dual to the twisted Zd action and allows us to make explicit the Fourier
coefficients

ψx(a) :=

∫

Td

ρk(a(u
x)∗)dk

where one integrates with respect to the normalized Haar-measure of the torus. The
Fourier coefficients lie in the fixed-point-algebra, which is isomorphic to C respectively
C(Ω). The coefficient maps allow us to write any element as a formal sum

a =
∑

x∈Zd

ψx(a)u
x

even if this expression does not necessarily converge in the C∗-norm (it does however
converge in an average sense).

Using the Fourier coefficients we define the finite continuous faithful trace

τ : Td
θ ,Ω→ C, τ(a) =

∫

Ω

P(dω)ψ0(a,ω).

As ψ0 is invariant under ρ, the trace is also ρ-invariant.

We consider Hilbert space representations of Td
θ ,Ω [36]:

Proposition 10.1. Denote the standard basis of L2(Zd) in Dirac notation by

|x〉, x ∈ Zd ,

for y ∈ Zd define the shift operator as

Sy |x〉= |x + y〉

and define the unbounded position operators X = (X1, ..., Xd) by

X j|x〉= x j|x〉.

For θ+ the lower triangular part of θ we have a family (πω)ω∈Ω of ∗-representations of
Td
θ ,Ω defined on the generators by

πω(u j) = ei〈e j |θ+|X 〉S j

and
πω( f ) =

∑

x∈Zd

f (Txω)|x〉〈x |.
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The representations are non-degenerate and faithful for P-almost all ω ∈ Ω and are
covariant with respect to ρ with the strongly continuous unitary representation U of Td

defined by
U(k) := e2πik·X

such that
U(k)πω(a)U(k)

∗ = πω(ρk(a)).

For fixed ω the representation πω is almost surely faithful as we assume that the
probability measure is ergodic with respect to translations. A family of operators
(Aω)ω∈Ω with Aω = πω(a) for some element a ∈ Td

θ ,Ω is usually called an ergodic family
of operators.

The ergodicity implies a self-averaging property

τ(a) =

∫

Ω

P(dω)〈0|πω(a)|0〉= lim
L→∞

1
(2L)d

∑

x∈Zd

‖x‖∞<L

〈x |πω(a)|x〉

for almost every ω ∈ Ω, i.e. τ is the trace per unit volume.

The Hilbert space L2(Td
θ ,Ω) will be the completion of Td

θ ,Ω under the L2-norm

τ(a∗b) =

∫

Ω

P(dω)
∑

x∈Zd

a∗x(ω)bx(ω)

and is isometrically isomorphic to L2(Zd ×Ω) with the isomorphism given by

a ∈ Td
θ ,Ω 7→

∫ ⊕

Ω

P(dω)πω(a)|0〉 ∈ L2(Zd ×Ω),

i.e. the GNS-representation constructed from τ is equivalent to

πτ =

∫ ⊕

Ω

P(dω)πω.

Hence we can define L∞(Td
θ ,Ω) using this representation, set

L∞(Td
θ ,Ω) = (πτ(T

d
θ ,Ω))

′′

as in the constructions of Proposition 4.1 and ρ extends to a weakly continuous
action. The Fourier coefficient mapsψx extend to L∞(Td

θ ,Ω) such that we can still write
elements of L∞(Td

θ ,Ω) as formal trigonometric series. Since the Fourier coefficients of
a can be recovered from π(a) by using the matrix elements

(ψx(a))(ω) = eφ(θ ,x)〈0|πω(a)|x〉

with φ(θ , x) some phase factor, the Fourier series at least exists in the weak topology.
The trace τ extends to a ρ-invariant finite normal trace that is again given by the
expectation value of ψ0.

In the following we usually identify Td
θ ,Ω and L∞(Td

θ ,Ω) with their respective images
under the faithful representation πτ.
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10.2 Half-spaces

Given a unit vector ξ ∈ Sd−1 we may define the R-action

α : R×Td
θ ,Ω→ T

d
θ ,Ω, αt(a) := ρξ·t(a).

By construction the action defines a strongly continuous group of automorphisms that
extends to a weakly continuous group of automorphisms of L∞(Td

θ ,Ω) and the generator
of α in L2(Td ×Ω) is given by

Dξ = ξ · X

with X the position operator.

Denote by Γξ := ξ ·Zd the discrete subgroup of R that coincides with the point spectrum
of ξ · X . The components of ξ are rationally dependent (i.e. ξ is a scalar multiple of a
vector in Qd) if and only if the closure Γξ is discrete in R, otherwise Γξ is dense in R.

In the rationally dependent case we have Γξ = ΛξZ, with Λξ the smallest positive
element of Γξ. The action has the minimal period Λ−1

ξ
and therefore restricts to a

T-action. In either case, since the trace τ is ρ-invariant, it is also α-invariant and we
can proceed in constructing the crossed products as above:

The crossed product Td
θ ,Ω oα G with G = R (or G = T where applicable) is defined by

its regular representation π×λ on the Hilbert space L2(G, L2(Zd ×Ω)) and is given by
the C∗-algebraic span of the products

π(a) f (D)

with the representations on L2(Zd ×Ω) defined by

π(a) f (D) 7→ πτ(a) f (Dξ), ∀a ∈ Td
θ ,Ω, f ∈ C0(Ĝ).

An element â ∈ Td
θ ,Ω oα G can still be considered a covariant family â = (âω)ω∈Ω with

âω = (πω × U)(â) in the integrated representation as the covariant representation
factors πτ × U =

∫ ⊕
Ω
P(dω)πω × U .

Note that f (Dξ) = f (ξ · X ) is a multiplication operator that only depends on the
displacement in the direction ξ relative to some arbitrary reference point. In particular
Πξ := χR+(ξ·X ) is the restriction to the half-space of all x ∈ Zd with ξ·x > 0. Hence the
crossed product can be used to describe restrictions of elements of Td

θ ,Ω to half-spaces,
i.e. physical systems with a boundary.

However, the representation of Td
θ ,Ω oα R on L2(Zd ×Ω) can only be faithful if Γξ is

dense or if Γξ is discrete and G = T. For if σ(Dξ) = Γξ is discrete, all elements f (D)
with supp( f )∩ Γξ = ; will be mapped to zero. This is the main reason why we covered
both cases G = R and G = T in this work.

We also note that for rationally independent ξ it would be in some ways more natural
to consider crossed products with the dual group of Γξ with the discrete topology
instead of R. However, this would eventually lead to the same von Neumann algebras
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as for the R-action, since L2(R)' L2(Γ̂ξ) and the generator D would have σ(D) = R
anyways, so we may work with the continuous versions instead.

The construction of section 4.1 then gives us the crossed products L∞(Td
θ ,Ω oα G) with

a dual trace that is densely defined by

τ̂(π(a) f (D)) = τ(a)

∫

Ĝ

f (x)µ(dx)

for some Haar measure µ on Ĝ. We fix the normalization such that for G = R we have

τ̂( f (D)) =

∫

R
f (x)dx

and for G = T
τ̂( f (D)) = Λξ

∑

k∈Z

f (Λξk).

Recall that up to now it was understood that the action is rescaled to be 1-periodic.
We now use a different convention and indicate the changes when necessary. For the
physical interpretation it is more convenient to choose σ(D) = ΛξZ such that the
spectrum of D labels the orthogonal distances of lattice points from the hyperplane
ξ ·Rd = 0. The idea is that τ̂( f (Dξ)) for a slowly varying function f ∈ C0(R) should
give approximately the same value for all ξ ∈ Sd−1.

Another motivation for the normalization is

Proposition 10.2. Assume ξ rationally dependent with Λξ as above. Define the cubes

Cn = {x ∈ Zd : −nΛξ ≤ ξ · x ≤ nΛξ, ‖x − (ξ · x)ξ‖∞ ≤ n}

and the trace per unit area

T̂ (âω) = lim
n→∞

1
(2n)d−1

∑

x∈Cn

〈x |âω|x〉

for â ∈ Td
θ ,Ω oα T.

Then for almost all ω ∈ Ω we have

τ̂(â) = T̂ (âω).

Proof. We check the formula on the generators π(a) f (D):

T̂ (πω(a) f (ξ · X )) = lim
n→∞

1
(2n)d−1

∑

x∈Cn

f (ξ · x)〈x |πω(a)|x〉

We rewrite the sum with the slices Sk := {x ∈ Zd |ξ · x = kΛξ}:

∑

x∈Cn

f (ξ · x)〈x |πω(a)|x〉=
n
∑

k=−n

∑

x∈Sk∩Cn

f (kΛξ)〈x |πω(a)|x〉.
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Asymptotically in n each Sk ∩ Cn contains approximately the same number of elements
independent of k and thus

|Sk ∩ Cn| ∼
|C |n

2n+ 1
∼
Λξ(2n+ 1)d

2n+ 1
= Λξ(2n)d−1.

The self-averaging property applied to each Sk separately then gives P-almost surely

T̂ (πω(a) f (ξ · X )) =
∑

k∈Z

Λξ f (kΛξ)τ(a).

One would expect that a similar formula also holds for irrational ξ but the combinatorics
seem fairly complicated.

In the following we will always denote the angular parameter as ξ and keep the
dependence of α and τ̂ on ξ implicit. We set G = T if ξ is rationally dependent and
G = R if otherwise.

10.3 Summability

In order to check the summability criteria we have to consider the Fourier decomposition
with respect to α. The action of α on some a =

∑

x∈Zd axux is given by

αt(a) =
∑

x∈Zd

ei2πt(ξ·x)axux

and therefore its generator on L2(Zd ×Ω) ' L2(Td
θ ,Ω) is given by the multiplication

operator T = ξ · X or more explicitly

Ta =
∑

x∈Zd

(ξ · x)axux

which generates the Fourier decomposition as in (9.1). Due to our choice of represen-
tation T happens to coincide with Dξ but we prefer to keep the notation consistent
with Section 9. The position basis provides an orthonormal basis for T and we define

Eλ := {x ∈ Zd |ξ · x = λ}

and denote Vλ = L2(Eλ ×Ω). The spectral decomposition is thus given by

L2(Td
θ ,Ω) =

⊕

λ∈σ(T )
Vλ

with only countably many non-vanishing summands.

The action of a Fourier multiplier m : R→ C is therefore given by

m ∗ a =
∑

λ∈σ(T )

∑

x∈Eλ

m(λ)axux =
∑

x∈Zd

m(ξ · x)axux .
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The Fourier spectrum is hence given by all λ ∈ σ(T ) for which there is an x ∈ Eλ with
ax 6= 0. By Proposition 9.4 any element with only finitely many Fourier coefficients
(sometimes called finite hopping range) is contained in any Besov space Bs

p,q(T
d
θ ,Ω).

Writing out the Besov norm gives

‖a‖Bs
p,q
= ‖a‖p +

 

∑

k∈Z











∑

x∈Zd

2qskWk(ξ · x)axux











q

p

!1/q

and we now establish sufficient conditions for elements with rapidly decaying Fourier
coefficients:

Proposition 10.3. For a =
∑

x∈Zd axux ∈ L∞(Td
θ ,Ω) one has

‖a‖B1
1,1
≤
∑

x∈Zd

(2+ 6|x |)
∫

Ω

P(dω)|ax(ω)|.

Proof. By [36, 3.3.5] we have for any a ∈ L∞(Td
θ ,Ω) the estimate

‖a‖1 ≤ 2
∑

x∈Zd

∫

Ω

P(dω)|ax(ω)|. (10.1)

We apply this to the Besov norm to get

‖Wk ∗ a‖1 ≤ 2
∑

±λ∈(2k−1,2k+1)

∑

x∈Eλ

|Wk(λ)|
∫

Ω

P(dω)|ax(ω)|

≤ 2
∑

±λ∈(2k−1,2k+1)

∑

x∈Eλ

∫

Ω

P(dω)|ax(ω)|

where the sum again only has countably many non-vanishing terms. Since any λ ∈
R \ {0} is contained in the support of at most two (consecutive) of the Wk, we estimate

∑

k∈Z

2k‖Wk ∗ a‖1 ≤ 2
∑

k∈Z

2k
∑

±λ∈(2k−1,2k+1)

∑

x∈Eλ

∫

Ω

P(dω)|ax(ω)|

= 2
∑

λ∈σ(T )\{0}

∑

x∈Eλ

(2dlog2(|λ|)e−1 + 2dlog2(|λ|)e)
∫

Ω

P(dω)|ax(ω)|

≤ 2
∑

λ∈σ(T )\{0}

∑

x∈Eλ

(|λ|+ 2|λ|)
∫

Ω

P(dω)|ax(ω)|

=
∑

λ∈σ(T )\{0}

∑

x∈Eλ

6|ξ · x |
∫

Ω

P(dω)|ax(ω)|

≤ 6
∑

x∈Zd

|x |
∫

Ω

P(dω)|ax(ω)|
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where we just changed the order of summation and hence

‖a‖B1
1,1
= ‖a‖1 +

∑

k∈Z

2k‖Wk ∗ a‖1 ≤
∑

x∈Zd

(2+ 6|x |)
∫

Ω

P(dω)|ax(ω)|.

Corollary 10.1. Let a =
∑

x∈Zd axux ∈ L∞(Td
θ ,Ω) and assume that a decays exponentially,

i.e. there exist A,γ > 0 such that
∫

Ω

P(dω)|ax(ω)|< Ae−γ|x |.

Then we have a ∈ B1
1,1.

For periodic systems we can give a much better characterization that shows that the
Besov norm can be finite even if the Fourier coefficients only have a slow polynomial
decay. For the rest of this section we therefore assume θ = 0, Ω = {∗}. We then
have Td

θ
= C(Td) and L∞(Td

θ
) = L∞(Td) as well as Lp(Td

θ
) = Lp(Td), where all

isomorphisms are induced by the Fourier transform

a =
∑

x∈Zd

axux 7→ a ∈ Lp(Td), a(k) =
∑

x∈Zd

ax ei2πx ·k.

That this is an isomorphism is clear for C(Td) because of the density of trigonometric
polynomials and it extends to an isomorphism of the von Neumann algebras. Since
the map preserves the trace, i.e.

τ(a) =ψ0(a) =

∫

Td

ρk(a)dk =

∫

Td

a(k)dk,

it defines an isometric isomorphism of the Lp-spaces. The actions ρ and α become
translations on Td

ρq(a)(k) = a(k− q), αt(a)(k) = a(k− ξt)

and the Fourier coefficients coincide with the classical ones. For any a ∈ Lp(Td)
consider the function

fa : R→ Lp(Td), φa(t) := αt(a) = a(· − ξt).

If α is periodic (i.e. ξ is rationally dependent) fa is periodic with the period given by
Λ−1
ξ

. The key insight is that we may then write fa as a function of T and the Fourier
coefficients with respect to α coincide with the Lp(Td)-valued Fourier coefficients of fa.
Therefore also the Fourier multipliers become classical Fourier multipliers on the torus
and the Besov-norms coincide with those of the classical vector-valued Besov spaces.

Unfortunately, the analogous construction fails for the non-periodic case because fa(t)
then is almost-periodic and therefore not integrable with respect to t. The following
proposition must therefore restrict to the periodic case.
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Proposition 10.4. If Γξ is discrete, the Besov spaces with respect to α isometrically embed
into the vector-valued Besov spaces Bs

p,q(T, Lp(Td)).

Hence we have so-called characterization by differences:

The norm ‖a‖Bs
p,q

equivalent to the norm

‖a‖p +

�

∫

[0,1]

‖αt(a) +α−t(a)− 2a‖q
p

t1+sq
dt

�1/q

.

Proof. The embedding as defined above is given by

a 7→ f : T→ Lp(Td), f (t) := αt(a)

and we will check that it is an isometry. As σ(T ) = ΛξZ we write

f (t) =
∑

n∈Z

fnei2πnΛξ t

with
fn =

∑

x∈EnΛξ

axux .

Now compute the action of Wk on f

(Wk ∗ f )(t) =
∑

n∈Z

Wk(nΛξ) fnei2πnΛξ t =
∑

n∈Z

Wk(nΛξ)
∑

x∈EnΛξ

axux ei2πnΛξ t

=
∑

n∈Z

Wk(nΛξ)αt





∑

x∈EnΛξ

axux



= αt





∑

n∈Z

Wk(nΛξ)
∑

x∈EnΛξ

axux





= αt(Wk ∗ a)

and hence

‖Wk ∗ f ‖Lp(T,Lp(Td )) =

�∫

T
‖αt(Wk ∗ a)‖p

pdt

�1/p

= ‖Wk ∗ a‖p

since α is an isometry and we choose the torus to have unit volume. This clearly shows
that the mapping between the Besov spaces is isometric.

The classical Besov norm for functions f : T→ Lp(Td) is equivalent to (see [43] for
the scalar case and [30] for comments on the vector-valued case)

‖ f ‖Lp(T,Lp(Td )) +

�

∫

[0,1]

‖ f (·+ t) + f (· − t)− 2 f ‖q
p

t1+sq
dt

�1/q

and substituting f = α·(a) the fact that α is an isometry gives the result.
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It seems plausible that the equivalence of norms also holds for ξ rationally independent
since the formula does not depend directly on ξ. In fact it may be possible to show it
directly for the non-commutative Besov spaces without a detour to the classical versions,
since the characterization by differences can be proven using only the properties of
certain Fourier multipliers (as is done in [13] for the non-commutative torus, though
in a somewhat different setting).

We now have a convenient criterion that only requires us to estimate the integral of a
function on Td . In particular this shows that being in B1

1,1 is not much stronger than
Sobolev-W1,1(Td)-differentiability and therefore does not require rapid decay of the
Fourier coefficients.

Let us now quickly comment on the non-commutative Sobolev-spaces. On the non-
commutative torus it is usual to consider the Sobolev-spaces with respect to ρ, i.e
we choose d independent generators of ρ respectively derivations ∂1, ...,∂d such that
formally

∂ j

∑

x∈Zd

axux = i
∑

x∈Zd

x jaxux

with the corresponding Sobolev spaces given by

Ws,k(Td
θ ,Ω) = {a ∈ Ls(Td

θ ,Ω) :
∑

1≤|β |≤k

‖∂ β1
1 ..∂ βd

d a‖s}

= {a ∈ Ls(Td
θ ,Ω) :

∑

1≤|β |≤k











∑

x∈Zd

xβ1
1 ..xβd

d axux











s

<∞}.

We define the derivation associated to α as

δ(a) = lim
t→0

αt(a)− a
t

= i2π
∑

x∈Zd

(ξ · x)axux = 2π
∑

j

ξ j∂ ja.

Applying this to an element a =
∑

x axux , one finds that the Sobolev norm with respect
to α is equivalent to

‖a‖s,k ∼
∑

0≤n≤k

‖δna‖s =
∑

0≤n≤k











∑

x∈Zd

(ξ · x)naxux











s

Ostensibly, being in Ws,k(Td
θ ,Ω) implies membership of the Sobolev space for α indepen-

dent of ξ. Furthermore we have for all a ∈W1,1(Td
θ ,Ω):

Windξ([u]1) := iτ(uδu∗) = 2πi
∑

ξ jτ(u∂ ju
∗) =: 2π

∑

ξ jWind j([u]1)

with Wind j the winding number form for the derivation δ j. Exponential decay of the
Fourier coefficients clearly implies Sobolev for any combination of parameters. For
periodic models we can use the Fourier Transformation to reduce to the usual notions
of differentiability on the torus, i.e. ∂ j becomes an ordinary partial derivative.

We further note that all results above generalize to elements with a matrix fiber if we
take the trace τ⊗Trn on Mn(Td

θ ,Ω) and the respective Schatten norms on the Lp-spaces.
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10.4 The index map for chiral Hamiltonians

We consider a system described by a self-adjoint Hamilton operator h ∈ M2N(Td
θ ,Ω),

h= h∗ with a chiral symmetry, i.e.

JhJ = −h, J =
�

1N 0
0 −1N

�

which is equivalent to

h=
�

0 a
a∗ 0

�

with some a ∈ MN (Td
θ ,Ω). A chiral symmetry in solid state physics usually arises from a

sublattice symmetry (e.g. on a bipartite lattice). We also note that the bulk-boundary
correspondence for such Hamiltonians has been treated in [36] under the assumptions
of a spectral gap and axis-parallel boundaries.

An important consequence of the chiral symmetry is

f (h) = J f (−h)J (10.2)

for all bounded Borel-functions f . This further simplifies if f is symmetric or anti-
symmetric.

We now consider the polar decomposition h = |h|sgn(h). Since sgn is an odd function,
the chiral symmetry allows us to conclude that sgn(h) is also chiral and therefore
off-diagonal

sgn(h) =
�

0 u
u∗ 0

�

∈ M2N (L
∞(Td

θ ,Ω))

with some u ∈ MN (L∞(Td
θ ,Ω)). Since sgn(x)2 = 1−χ{0}(x) we have

u∗u⊕ uu∗ = 1− Pker h,

which shows that u is a partial isometry whose initial and final projection form an
orthogonal decomposition of the range of h.

To simplify the notation we assume in the following that the matrix fiber has dimension
N = 1, though it is understood that nothing depends on this. Furthermore, we usually
will not distinguish between spaces X and M2(X ) if the dimension is either irrelevant
or clear from the context.

For the rest of this section we will make the following regularity assumptions:

Assumption 10.1. 1. h =
�

0 a
a∗ 0

�

with a ∈ Td
θ ,Ω that has only finitely many non-

vanishing Fourier coefficients (i.e. finite hopping range).

2. 0 is not an eigenvalue of πτ(h) (but possibly 0 ∈ σ(h)), i.e. 0 is almost surely not
an eigenvalue of πω(h).
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3. By item 2 the partial isometry u ∈ L∞(Td
θ ,Ω) of the polar decomposition of a is

unitary and we assume it is in B1
1,1(T

d
θ ,Ω) and W1,1(Td

θ ,Ω)

Consider the C∗-algebra

B := C∗(1, a, u) ⊂ L∞(Td
θ ,Ω),

i.e. the smallest C∗-algebra containing the finite algebraic combinations of a,u and the
unit 1. Under the natural inclusion one has h ∈ M2(B) and sgn(h) ∈ M2(B).

Since both a and u are in B1
1,1, their commutators with P = χR+(D) lie in L1(Td

θ ,Ωoα G)
by Corollary 9.1. Because L∞ ∩ L1(Td

θ ,Ω oα G) is an ideal, the Leibniz-rule of the
commutator shows that

[π(b), P] ∈ L1(Td
θ ,Ω oα G)

for any element b ∈ B in the finite algebraic span of a and u. Hence, any element in
the norm closure B has a compact commutator, that is B ⊂QTd

θ ,Ω, the quasicontinuous
extension of Td

θ ,Ω. By Proposition 7.1 we therefore have at least the two commuting
exact sequences

0 Ĉ (B, C) T̂ (B, C) B 0

0 K̂τ̂ T̂ (B,Kτ̂) B 0

i i

where
C := C∗([π(B), P]) = C∗([π(a), P], [π(u), P]) ⊂ L∞(Td

θ ,Ω)oα G

is the smallest C∗-algebra containing the commutators of P with π(B), K̂τ̂ := PKτ̂P
are the half-sided compact elements and Ĉ , T̂ are defined as in Corollary 7.2.

The index map allows us to relate the class [u]1 ∈ K1(B) to some [p]0 − [q]0 ∈
K0(Ĉ (B, C)) or [p]0 − [q]0 ∈ K0(K̂τ̂) and since the conditions of Theorem 8.1 are
fulfilled, we have in either case the numerical equality

〈τ̂, Ind([u]1 ) 〉=
1

2π
Wind([u]1) =

∑

j

ξ jWindξ([u]1).

The normalization is clear for G = R but we changed the convention for G = T: Since
the action is now Λ−1

ξ
-periodic instead of 1-periodic, the relation between the generator

D of the crossed product and δ incurs an additional factor of Λ−1
ξ

that is then canceled
by our choice of normalization for the dual trace.

Consider the restriction of h to the half-space

ĥ := Pπ(h)P ∈ M2(T̂ (B, C)),

which clearly also satisfies ĥ∗ = ĥ and JĥJ = −h. It follows as above that the partial
isometry of the polar decomposition of ĥ is given by

sgn(ĥ) =
�

0 û
û∗ 0

�

∈ M2

�

L∞(Td
θ ,Ω oα G)

�
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with a partial isometry û ∈ L∞(Td
θ ,Ω oα G) satisfying

û∗û⊕ ûû∗ = 1− Pker ĥ =
�

p+ 0
0 p−

�

.

Moreover, since ĥ2 is diagonal and â := Pπ(a)P = |â| û is a polar decomposition we
have

p+ = PKer (ââ∗) = PKer |â| = 1− û∗û
p− = PKer (â∗ â) = PKer |â∗| = 1− ûû∗.

(10.3)

Contrary to h, the restriction ĥ can have a non-trivial kernel and we would like to show

τ̂(J Pker ĥ) = τ̂N (p+ − p−) =
∑

j

ξ jWindξ([u]1).

Given the above, a sufficient condition for this is that p+, p− ∈ Kτ̂, such that [p+]0−[p−]0
defines a class in K0(Kτ̂) and coincides with the image of the index map.

We will first check this for the case where the bulk Hamiltonian h is invertible. The idea
is to lift the unitary u to the partial isometry of a polar decomposition and then use
Proposition 2.2 to compute the index map. Since polar decomposition is not available
in a general C∗-algebra we remind that one can embed B into the Calkin-algebra using
Proposition 7.2:

Proposition 10.5. Let h, u be as above, but assume further that 0 /∈ σ(h), i.e. h is
invertible, and let ĥ = Pπ(h)P + k with k ∈ M2

�

K̂τ̂
�

chirally symmetric JkJ = −k. Then
ĥ is Breuer-Fredholm and

Ind([u]1) = [p+]0 − [p−]0.

Proof. We have
ĥ+Kτ̂ = Pπ(h)P +Kτ̂ = j(h)

with j : B → M2

�

L∞(Td
θ ,Ω oα G)/Kτ̂

�

r the embedding from Proposition 7.2 and

therefore ĥ is invertible in the Calkin-algebra. Since ĥ is Breuer-Fredholm and chirally
symmetric, the partial isometry of its polar decomposition is given by

sgn(ĥ) =
�

0 û
û∗ 0

�

with û a partial isometry whose image in the Calkin-algebra is unitary. As û is a lift of
u we have using (10.3)

Ind([u]1) = [P − û∗û]0 − [P − ûû∗]0 = [Pker (â)]0 − [Pker (â∗)]0 = [p+]0 − [p−]0

and, as remarked above, the index map does not depend on the exact sequence that is
used.
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If h is not invertible, the problem of relating the kernel of ĥ to the index map becomes
much harder. Without any further assumptions we can at least state

Proposition 10.6. Let h, u be as above. There is a norm-continuous path of chiral
Hamiltonians (ĥt)t∈R+ ∈ M2(T̂ (B, C)) such that ĥ0 = Pπ(h)P and ĥt is Breuer-Fredholm
for t > 0. We therefore have

Ind([u]1) = [pt,+]0 − [pt,−]0

with pt,+, pt,− the decomposition of Pker (ĥt )
as above.

Proof. Write S = sgn(π(h)) and set

ht := h+ tS = (|h|+ t)S = |h+ tS|S

with the last equality holding because

(h+ tS)2 = h2 + 2hS + t2 = |h|2 + 2t|h|+ t2 = (|h|+ t)2.

Clearly ht is invertible for t > 0 and hence

ĥt := Pπ(ht)P

has the required properties.

This shows that if Windξ([u]1) 6= 0, the half-space Hamiltonian ĥ is arbitrarily close to a
gapped, chirally symmetric Hamiltonian that has a non-trivial kernel. That property is
manifestly stable under chirally symmetric boundary terms (i.e. compact perturbations).
Unfortunately, it is not clear if this allows us to conclude anything about the unmodified
Hamiltonian.

We will therefore need an additional analytical property:

Definition 10.4. A self-adjoint operator h ∈ L∞(Td
θ ,Ω) defines an integrated density of

states (IDOS)-measure
µT (I) := τ(χI(T )),

for all intervals I ⊂ R such that τ( f (|T |)) =
∫

σ(h) f (E)µT (dE) for all positive measurable
functions f .

We say that h has small density of states at zero if there is some δ > 0 such that µT is
absolutely continuous on the interval (−δ,δ) with a density function ρ and constants
A, s > 0 such that

ρ(|ε|)≤ A |ε|s .

Much is known about the IDOS of ergodic Schrödinger operators, e.g. in the absence
of a magnetic field the absolute continuity of the density of states measure follows
for all periodic Hamiltonians or for disordered models under mild conditions on the
random convolution kernels.
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If h is chirally symmetric and has an absolutely continuous density of states measure,
then the same holds for h2. For any symmetric function f (E) = f (−E) we have
f (h) = f (|h|) and hence for 0≤ a ≤ b we get

χ(−b,−a)(h) +χ(a,b)(h) = χ(a2,b2)(h
2).

The chiral symmetry gives us Jχ(−b,−a)(h)J = χ(a,b)(h) (see (10.2)) and hence

τ(χ(−b,−a)(h)) = τ(χ(a,b)(h)).

Therefore the transformation formula allows us to recover the density of states from
that of h2

ρh(E) = |E|ρh2(E2)

with ρh2 the density of µh2 . Thus a chirally symmetric Hamiltonian will usually have a
small density of states at zero, since ρh2 can have at most an integrable singularity.

The property shows that h is invertible in some sense:

Proposition 10.7. Assume that h has small density of states at zero. Since 0 is not an
eigenvalue of h, the inverse h−1 at least exists as an unbounded, densely defined operator
affiliated to L∞(Td

θ ,Ω).

We have h−1 ∈ L1(Td
θ ,Ω) and









1
h
−

1
h+ z









1

≤ Cγ|Im z|s +O(|Im z|)

uniformly for z ∈ C \σ(h) small enough with |Re z|< γ|Im z| for any γ > 0.

Proof. Write

h=

∫

σ(h)

λdEλ

such that

h−1 =

∫

σ(h)

λ−1dEλ

with its usual domain given by unbounded functional calculus. By the density of states
condition we have

τ(|h−1|)≤ 2
‖h‖ −δ
δ

+

∫

(−δ,δ)

1
|λ|
ρ(λ)dλ <∞

and therefore h−1 exists as an L1-convergent Riemann-Stieltjes integral.

For the second assertion we consider

τ

��

�

�

�

1
h
−

1
h+ z

�

�

�

�

�

=

∫

σ(h)\(−δ,δ)

�

�

�

�

1
λ
−

1
λ+ z

�

�

�

�

τ(dEλ) +

∫

(−δ,δ)

�

�

�

�

1
λ
−

1
λ+ z

�

�

�

�

ρ(λ)dλ
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The first term is analytic in z and can be bounded O(|z|) using the first derivative, so
we focus on the second one.

We first treat the case z = i x where we write

1
λ
−

1
λ+ z

=
x2

λ(x2 +λ2)
+

i x
x2 +λ2

such that
∫

(−δ,δ)

dλ

�

�

�

�

1
λ
−

1
λ+ z

�

�

�

�

ρ(λ)≤
∫

(−δ,δ)

dλA

�

�

�

�

λs−1 x2

x2 +λ2

�

�

�

�

+ A
�

�

�λs x
x2 +λ2

�

�

� .

Splitting into positive and negative parts to get rid of the modulus and making the
substitution t = λ2/δ2, this can be written in terms of the hypergeometric function

F(a, b, c; z) =
Γ (c)

Γ (b)Γ (b− c)

∫ 1

0

t b−1(1− t)c−b−1(1− tz)−adt

such that
∫

(−δ,δ)

dλ

�

�

�

�

λs α

β2 +λ2

�

�

�

�

= const
|α|
β2

F
�

1,
1+ s

2
, 1+

1+ s
2

;−
δ2

β2

�

with a constant that only depends on s and δ.

For x → 0 one has the asymptotics

F
�

a, b, c;−
1
x

�

∼ C1 x a + C2 x b +O(x1+a + x1+b)

which can be derived by using a transformation formula that maps the singularity to a
neighborhood of zero [1, 15.3.7] and the series expansion of F(a, b, c; z) around z = 0.

We therefore have
∫

(−δ,δ)

dλ

�

�

�

�

λs α

β2 +λ2

�

�

�

�

∼ C̃1 |α|+ C̃2 |α| |β |
s−1 +O(|β |

3+s
2 + |β |2)

and substituting the respective values for α,β and s shows the claim in the special case.
For general z = y + i x we take

�

�

�

�

1
λ
−

1
λ+ z

�

�

�

�

≤
�

�

�

�

1
λ
−

1
λ+ i x

�

�

�

�

+

�

�

�

�

1
λ+ i x

−
1

λ+ z

�

�

�

�

and bound the latter term
�

�

�

�

1
λ+ i x

−
1

λ+ z

�

�

�

�

=

�

�

�

�

−
y x2 + y2λ+ yλ2

(x2 +λ2)(x2 + (y +λ)2)
+ i
�

−
x

x2 +λ2
+

x
x2 + (y +λ)2

�

�

�

�

�

≤
�

�

�

y
x2 +λ2

�

�

�+

�

�

�

�

y2

λ(y +λ)2

�

�

�

�

+

�

�

�

�

y
(y +λ)2

�

�

�

�

+
�

�

�

x
x2 +λ2

�

�

�+

�

�

�

�

x
(y +λ)2

�

�

�

�
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where the first equality is just an identical rewriting. The first and fourth terms can
be integrated as above to get asymptotics in the form ym x s−m+k which can be made
uniform in x by posing a condition |y| ≤ γ |x |.

The integrals of the remaining terms can be rewritten analogously
∫

(−δ,δ)

dλ

�

�

�

�

λs α

(β +λ)2

�

�

�

�

= const
|α|
β2

F
�

2, 1+ s, 2+ s;−
δ

β

�

∼ C̃1 |α|+C̃2 |α| |β |
s−1+O(|β |).

We conclude

τ

��

�

�

�

1
h
−

1
h+ z

�

�

�

�

�

≤ Cβ |Im z|s +O(|Im z|).

This bound lets us control the divergence of the resolvent 1
h+z at zero well enough to

use functional calculus with functions that are not continuous at zero.

Proposition 10.8. Let h be as in the general assumptions 10.1 and with small density of
states at zero.

Set
ĥ= Pπ(h)P + k

with k ∈ K̂τ̂ a finite hopping range boundary term, i.e. there is some P[−n,n] = χ[−n,n](D)
with kP[−n,n] = k. Then

sgn(ĥ) = Pπ(sgn(h))P + c

with c ∈ K̂τ̂ ∩ L2(Td
θ ,Ω)oα G.

Proof. We begin with the following resolvent identity

P

ĥ+ Pz
= Pπ

�

1
h+ z

�

P +
P

ĥ+ Pz
(Pπ(h)(1− P) + k)π

�

1
h+ z

�

P

where P
ĥ+Pz

denotes the inverse in P L∞P (this identity can be seen by writing P
ĥ+Pz
−

Pπ
�

1
h+z

�

=: R and multiplying out). On the right hand side we recognize the Hankel
operator Hh = Pπ(h)(1− P), which also has a finite range and hence we introduce

V = (Pπ(h)(1− P) + k)

for which there is some m ∈ N with V P[−m,m] = V . In total we have

P

ĥ+ Pz
− Pπ

�

1
h+ z

�

P =
P

ĥ+ Pz
V P[−m,m]π

�

1
h+ z

�

P

with a τ̂-trace class element on the right-hand side








P[−m,m]π

�

1
h+ z

�









1

=


P[−m,m]





1









1
h+ z









1

.
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Im z

Re z
ε

σ(ĥ)

Cε

Figure 1: The contour for integration. It scales in such a way that the semicircles stay
inside their respective quarter-planes as the two singular points move closer to the
spectrum.

The strategy (inspired by the proof of [34, Proposition 3.31]) is now to approximate
the sign function with holomorphic functional calculus such that we can apply our
resolvent estimate. Note that pointwise sgnε(x) := tanh(x/ε)→ sgn(x) and therefore
sgnε(ĥ)→ sgn(ĥ) strongly.

We choose for tanh(x/ε) a contour Cε that surrounds σ(ĥ) at a distance larger δ > 0
except for two keyholes close to 0 such as to avoid the poles of tanh(x/ε) at ±iεπ2 .

Then we have

cε := sgnε(ĥ)− Pπ(sgnε(h))P =
1

2πi

∫

Cε

dz tanh(z/ε)
P

Pz − ĥ
V P[−m,m]π

�

1
z − h

�

P.

The integrand is analytic in the Banach algebra L1 ∩ L∞(Td
θ ,Ωoα G) at any point z ∈ Cε

and hence we may consider the integral equivalently in the strong L1-sense, i.e. as an
L1-convergent Riemann integral.

Write f (z) := 1
z−h −

1
h and note that f is analytic in the Banach space L1(Td

θ ,Ω) at

any z /∈ σ(ĥ). The map a 7→ 1

‖P[−m,m]‖1

P[−m,m]π(a) extends to an isometry L1(Td
θ ,Ω)→

L1(Td
θ ,Ω)oα G, hence P[−m,m]π( f (z)) is analytic in L1(Td

θ ,Ω oα G).

Therefore we may write

cε =
1

2πi

∫

Cε

dz tanh(z/ε)
P

Pz − ĥ
V P[−m,m]

�

π

�

1
h

�

+ f (z)
�

P

= sgnε(ĥ)V P[−m,m]π

�

1
h

�

P +
1

i2π

∫

Cε

dz tanh(z/ε)
P

Pz − ĥ
V P[−m,m] f (z)P.
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The first term is bounded in L1-norm by








sgnε(ĥ)V P[−m,m]π

�

1
h

�

P









1

≤ ‖V‖


P[−m,m]





1









1
h









1

.

We now consider the second term. The keyholes are included in the cone |Re z| ≤ |Im z|
and hence by Proposition 10.8 we may choose δ so small that



P[−m,m] f (z)




1 =


P[−m,m]





1 ‖ f (z)‖1 ≤ C |Im z|s +O(|Im z|) (10.4)

for some s > 0 and all z ∈ Cε ∩ Bδ(0) uniformly in ε. Away from the spectrum the
integral can be bounded with the standard resolvent estimates









P

ĥ− Pz









≤
1

dist (z,σ(ĥ)
≤

1
|Im z|

and the length of the curve:










∫

Cε\(Cε∩Bδ(0))

dz tanh(z/ε)
P

Pz − ĥ
V P[−m,m] f (z)P











1

≤|Cε \ (Cε ∩ Bδ(0))| sup
z∈Cε
|tanh(z/ε)|

1
δ
‖V‖



P[−m,m]





1

�







1
h









1

+
1
δ

�

.

For the keyholes we use the estimate (10.4)










∫

Cε∩Bδ(0)

dz tanh(z/ε)
P

Pz − ĥ
V P[−m,m] f (z)P











1

≤
∫

Cε∩Bδ(0)

|dz| |tanh(z/ε)| ‖V‖


P[−m,m]





1

�

1
|Im z|1−s

+O(1)
�

.

As the singularity is integrable even for ε→ 0 and tanh(z/ε)→ sgn(Re z) pointwise,
the integral is uniformly bounded in ε.

Therefore the sequence of norms ‖cε‖1 is bounded by some constant C̃ but we have
not shown that cε it is a Cauchy-sequence. Instead we conclude a weaker but sufficient
result:

For a fixed x ∈ L1(Td
θ ,Ω oα G) the map a ∈ L∞(Td

θ ,Ω oα G) 7→ τ̂(ax) is σ-weakly con-
tinuous and hence strongly continuous on the unit ball [18]. Consider the functionals
on L1(Td

θ ,Ω oα G) defined by

φ̂ := τ̂(sgn(ĥ)·)

and
φ := τ̂(Pπ(sgn(h))P·).

For the difference we have

(φ̂ −φ)(x) = lim
ε→0
τ̂(cε x)≤

p

2C̃ ‖x‖2
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for all x ∈ L1(Td
θ ,Ω oα G) ∩ L2(Td

θ ,Ω oα G), where we used strong convergence, the
Cauchy-Schwarz inequality and bounded ‖cε‖2

2 ≤ ‖cε‖ ‖cε‖1. Hence, the difference
defines a bounded functional on L2 and by duality we have

(φ̂ −φ)(x) = τ̂(ba)

with some b ∈ L2(Td
θ ,Ω oα G). Clearly, b = sgn(ĥ)− Pπ(sgn(h))P since the functionals

coincide on a dense subset of L2. The conclusion sgn(ĥ) − Pπ(sgn(h))P ∈ Kτ̂ then
follows from

Kτ̂ = L∞ ∩ L2.

Corollary 10.2. Assume the same conditions as the Proposition and additionally that the

boundary term k is chirally symmetric, i.e. ĥ=
�

0 â
â∗ 0

�

for some a ∈ T̂ (B,Kτ̂).

We then have
Ind([u]1) = [p+]0 − [p−]0

with

PKer(ĥ) =:
�

p+ 0
0 p−

�

.

By the index theorem we conclude

τ̂(J PKer ĥ) =Windξ([u]1).

Proof. The proposition shows that the partial isometry sgn(ĥ) from the polar decompo-
sition of ĥ is in M2(T̂ (B,Kτ̂))). By the chiral symmetry we have

sgn(ĥ) =
�

0 û
û∗ 0

�

with some partial isometry û ∈ T̂ (B,Kτ̂). The Proposition shows

q(sgn(ĥ)) = sgn(h)

and hence û lifts u to a partial isometry. As seen by (10.3), we then have

Ind([u]1) = [P − û∗û]0 − [P − ûû∗]0 = [p+]0 − [p−]0

We finally remark that K-theory was apparently not necessary to prove the main result
of this section; Breuer-Fredholm theory would have been enough since the τ̂-index is
invariant under compact perturbations. This is simply a result of the coincidence that
our boundary cocycle of interest, τ̂, is densely defined on Kτ̂ such that we can take this
largest possible extension. In general, however, we would want to extend the formalism
to bulk-boundary correspondence of higher Chern numbers which one needs e.g. to
discuss edge states for the Quantum Hall systems. It is then the case that the boundary
cocycles, also involve the derivations ∂1, ...,∂d which are not densely defined on Kτ̂. We
then cannot argue using arbitrary compact perturbations of Breuer-Fredholm operators
anymore but using the index/exponential map will still be a viable approach.
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10.5 Examples

Gapped systems

A topological insulator with a chiral symmetry is described by a chirally symmetric
Hamiltonian

h=
�

0 a
a∗ 0

�

∈ M2N (Td
θ ,Ω)

with a ∈ MN(Td
θ ,Ω) having a finite hopping range. We assume that h has a spectral

gap at zero, i.e. there is some δ > 0 with σ(h) ∩ (−δ,δ) = ;. The well-known
Combes-Thomas-estimate implies that the Fermi unitary u is exponentially localized
(see e.g. [36])

∫

Ω

P(dω)|φx(u)| ≤ Ae−β |x |

which implies u ∈ B1
1,1(T

d
θ ,Ω)∩W1,1(Td

θ ,Ω) and therefore all requirements of Assumption
10.1 are satisfied.

Furthermore the half-space operator

ĥ= Pπ(h)P

is Breuer-Fredholm with the pseudo-inverse Pπ(h−1)P.

Therefore Proposition 10.5 implies

Proposition 10.9. Let h, u satisfy the Assumption (10.1) and assume further that h is
invertible. For arbitrary ξ ∈ Sd−1 let

ĥ= Pπ(h)P + k ∈ M2N

�

L∞(Tθ ,Ω)oα G
�

with a chirally symmetric compact boundary term k ∈ M2N

�

K̂τ̂
�

.

Then we have
τ̂(J PKer ĥ) =Windξ([u]1) =

∑

k

ξkWindk([u]1).

In particular ĥ has boundary states at zero energy whose density is at least |Windξ([u]1)|.

This result is stable under perturbations in two senses: For one, we may add an arbitrary
chirally symmetric compact perturbation to the half-space Hamiltonian, since this does
not change its Breuer-Fredholm-index and the pair of kernel projections still is an
image of the index map. It is also stable under a norm-continuous homotopy of the
bulk Hamiltonian t 7→ ht , h0 = h as long as all the conditions (10.1) are satisfied for
ht , ut , the gap remains open and the path t 7→ ut is norm-continuous (i.e. the K1-class
of u is unchanged by the homotopy).

We also note that this result slightly sharpens the one obtained by [36], which uses
a continuous approximation of the Kernel projection and therefore does not directly
imply non-triviality of the kernel of ĥ.
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Mobility gap

In the mobility gap regime the bulk Hamiltonian h does not have a spectral gap at zero
but still satisfies an exponential localization condition:

Definition 10.5. h is called exponentially localized in the spectral interval (−δ,δ), if for
any s ∈ (0, 1) there are As,βs > 0 such that

∫

Ω

P(dω)
∑

x∈Zd

|〈0|(hω − E ± iε)−1|x〉|s ≤ Ase
−βs|x | (10.5)

holds uniformly for all E ∈ (−δ,δ) and ε→ 0.

Such a phase would be expected to arise from a periodic Hamiltonian with a spectral
gap when subjected to strong chiral disorder terms that cause the gap to close.

Exponential localization implies that u is exponentially summable (see [36]) and
therefore in W1,1 and B1

1,1 and therefore we can apply Corollary 10.2 to get

Proposition 10.10. Let h, u satisfy the Assumption (10.1) and assume that h is expo-
nentially localized for some δ > 0 and has a small density of states at 0. For arbitrary
ξ ∈ Sd−1 let

ĥ= Pπ(h)P + k ∈ M2N

�

L∞(Tθ ,Ω)oα G
�

with a chirally symmetric, finite range boundary term k ∈ M2N

�

K̂τ̂
�

.

Then we have
τ̂(J PKer ĥ) =Windξ([u]1) =

∑

j

ξ jWind j([u]1).

In particular ĥ has boundary states at zero energy whose density is at least |Windξ([u]1)|.

This result is, however, of a rather tentative nature, since bounds such as (10.5) have
not been established for any concrete examples. We note that a similar bulk-boundary
correspondence [20] and also localization bounds [41] have recently been obtained
for one-dimensional chiral chains through the use of hard analysis.

Pseudogap state

One application that in many ways motivated this work are periodic chiral systems in a
pseudogap state, i.e. systems in which 0 is in the bulk spectrum but is only a band-
touching point and therefore the density of states vanishes polynomially. As a concrete
example we consider the discrete laplacian on the honeycomb lattice, which is often
used as a first order approximation to graphene. After fixing two triangular sublattices
of the honeycomb lattice and mapping them to Z2, a possible parametrisation is

h :=
�

0 1+ u1 + u∗1u2

1+ u∗1 + u∗2u1 0

�
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where the off-diagonals are the three nearest-neighbor-hopping terms. For vanishing
magnetic field we Fourier transform to get

h : T2→ M2(C), hk =

�

0 1+ ei2πk1 + ei2π(k2−k1)

1+ e−i2πk1 + e−i2π(k2−k1) 0

�

(10.6)

and indeed the matrix vanishes at the Dirac points k± = (
3±1

6 , 0). At momenta close to
these Dirac points the physical dispersion relation takes the form

E(k± + q)≈ |l± · q|

and therefore vanishes linearly. This condition will be strong enough for our form of
bulk-boundary correspondence.

The Fourier transform of the Fermi unitary is given by

u(k) =
1+ ei2πk1 + ei2πk2

|1+ ei2πk1 + ei2πk2 |

and is manifestly not continuous at the Dirac points. This is directly related to the
topology of the Hamiltonian since indeed u(k) has winding numbers ±1 around the
Dirac points, which could not be possible if it were a smooth function.

We now establish regularity for this type of periodic Hamilton operator. For simplicity
we restrict to the two-dimensional case.

Proposition 10.11. Let a : T2→ C a trigonometric polynomial that has finitely many
zeroes k(1), ..., k(n) such that

a(k(p) + q) = l(p)1 q1 + il(p)2 q2 +O(q2) (10.7)

in the vicinity of the zeroes. Then u := a
|a| ∈ B1

1,1(T
2) ∩W1,1(T2). Furthermore the

Hamiltonian

h=
�

0 a
a∗ 0

�

has a small density of states at 0.

Proof. For the Besov norm we have to bound
∫

[0,1]3

|u(k+ ξt) + u(k− ξt)− 2u(k)|
t2

d2kdt

and since the region of integration is compact it is enough to show that the integrand
is locally integrable everywhere. For t > 0 and k not a zero of a this is clear since then
u is continuous and bounded at (t, k) with

|u(k+ ξt) + u(k− ξt)− 2u(k)|
t2

≤
4
t2

.

72



10 Applications

B

A

e1

e2

(a)

(b)

(c)

Figure 2: a) The choice of basis vectors for the honeycomb lattice. Terminating the
lattice parallel to e1 gives so-called armchair boundary conditions and parallel to e2-
direction gives zigzag or bearded edges. b) The band structure of the Hamiltonian
(10.6), i.e. the spectrum of h(k) as a function of the momenta. c) The density of states
vanishes linearly at the band-touching points.

73



10 Applications

For t = 0 and k not a zero, u is smooth therefore the directional derivative

lim
t→0

u(k+ ξt) + u(k− ξt)− 2u(k)
t2

= u′′(k)

is locally bounded and continuous.

Hence, we only have to consider the case t = 0 and k = k(p) a zero of a. In this situation
we change to spherical coordinates around k(p):

k1 − k(p)1 = r sin(θ ) sin(φ) =: x1(r,θ ,φ)

k2 − k(p)2 = r sin(θ ) cos(φ) =: x2(r,θ ,φ)
t = r cos(θ )

On a neighborhood of (t, k(p)) this transforms the integral to

∫ π

0

∫ 2π

0

∫ ε

0

1
cos2(θ )

|u(x + r cos(θ )ξ) + u(x − r cos(θ )ξ)− 2u(x)| sin(θ )drdθdφ.

The integrand is bounded away from θ± = ±
π
2 , so we just have to check for potential

singularities on those two lines. Expanding to order O(θ 2) we get

lim
θ→θ±

1
cos2(θ )

(u(x + r cos(θ )ξ) + u(x − r cos(θ )ξ)− 2u(x))

= u(r sin(φ), r cos(φ)) + r2u′′(r sin(φ), r cos(φ))

with u′′ the directional derivative in the direction ξ.

Using the asymptotics (10.7) we have for r → 0

u(r sin(φ), r cos(φ))∼ l(p)1 sin(φ) + il(p)2 cos(φ)

u′(r sin(φ), r cos(φ))∼
G(φ)

r

u′′(r sin(φ), r cos(φ))∼
H(φ)

r2

with smooth and bounded functions H, G. Hence, the transformed integrand is bounded
on a neighborhood of 0 and therefore the original integrand is locally integrable. The
same asymptotics also give us u ∈W1,1(T2) (in fact one has the inclusion B1

1,1 ⊂W1,1

for the classical function spaces).

For the claim about the density of states note that only the parts of h close to the zeroes
k(1), ..., k(n) contribute to the density of states at zero and h2 has the form

h2(k(p) + k) = id2 ⊗
�
�

l(p)1

�2
k2

1 +
�

l(p)2

�2
k2

2 +O(k3)
�

.

Hence |h| is approximately linear and therefore the density of states tends to a linear
function close to 0.
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It is reasonable to expect that the conclusion of the Proposition also holds in higher
dimension since Dirac type singularities then have even better integrability.

Proposition 10.12. Assume a vanishing magnetic field and let h =
�

0 a
a∗ 0

�

with a as

in the proposition above.

For ξ ∈ S1 rationally dependent let

ĥ= Pπ(h)P + k ∈ M2N

�

L∞(T0,Ω)oα T
�

with a chirally symmetric, finite range boundary term k ∈ M2N

�

K̂τ̂
�

.

Then we have
τ̂(J PKer ĥ) =Windξ([u]1) =

∑

k

ξkWindk([u]1).

In particular ĥ has boundary states at zero energy whose density is at least |Windξ([u]1)|.

As an example we revisit the Hamiltonian of the honeycomb-lattice

h(k) =

�

0 a(k)
a(k) 0

�

with the off-diagonal term

a(k) = 1+ ei2πk1 + ei2π(k2−k1)

giving the Fermi unitary

u(k) =
1+ ei2πk1 + ei2π(k2−k1)

|1+ ei2πk1 + ei2π(k2−k1)|

with Dirac points at (k1, k2) = (
3±1

6 , 0). We compute the winding numbers

τ(u∂k1
u∗) =

∫

[0,1]

dk2

∫

[0,1]

dk1u(k)∂k1
u∗(k).

Indeed, the integral for fixed k2 is just the winding number along one slice and the
homotopy invariance implies that it must be locally constant in k2, i.e. the value
of the inner integral can only change at the discontinuities of u. For k2 =

1
2 we get

a(k1, k2) = 1+ 2i sin(2πk1) which has no winding as all points lie on a complex line.
Hence the winding number is identically zero for all k2

τ(u∂k1
u∗) = 0.

For the other direction we have two regions between the Dirac points, one is composed
of 1

3 < k1 <
2
3 and the other contains the rest. For the latter region the winding number
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again vanishes as can be seen by substituting k1 = 0. The other region has winding
number 1 since u(1

2 , k2) = −ei2πk2 . Hence

τ(u∂k2
u∗) =

∫

[0,1]

dk1χ( 1
3 , 2

3 )
(k1) =

1
3

.

We consider restrictions to half-spaces of the form ξ1 x1 + ξ2 x2 ≥ 0 for x ∈ Z2. The
components ξ1 and ξ2 are rationally dependent if and only if the separating line
contains more than one lattice point of the same sublattice. The extreme cases ξ= e1

and ξ= e2 are called armchair and zigzag boundaries respectively (see Figure 10.5).
It is well-known that the half-space restriction exhibits a zero energy edge state for
zigzag but not for armchair boundary conditions [27].

Our index theorem for a chiral half-space restriction ĥ allows the easy computation for
all angles simultaneously

τ̂
�

J PKer ĥ

�

=
1
3
ξ2,

i.e. unless we cut the honeycomb-lattice exactly through the line x2 = 0 we necessarily
get a non-vanishing edge-state at zero energy. Notably this result also holds for
rough boundaries, i.e. with random finite range boundary terms, as long as the chiral
symmetry is preserved.

76



References

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formu-
las, graphs, and mathematical tables. Washington, D.C: U.S. Dept. of Commerce,
National Bureau of Standards, 1972.

[2] A. Andersson. The noncommutative Gohberg–Krein theorem. PhD thesis, University
of Wollongong, 2015.

[3] W. Arveson. On groups of automorphisms of operator algebras. Journal of
Functional Analysis, 15(217-243), 1974.

[4] M. T. Benameur, A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, and K. P.
Wojciechowski. An analytic approach to spectral flow in von neumann algebras.
In Analysis, Geometry And Topology Of Elliptic Operators: Papers in Honor of
Krzysztof P Wojciechowski, pages 297–352. World Scientific, 2006.

[5] B. Blackadar. K-Theory for Operator Algebras. Springer New York, 1986.

[6] B. Blackadar. Operator Algebras. Springer Berlin Heidelberg, 2006.

[7] Albrecht Böttcher and Sergei M. Grudsky. Toeplitz operators with discontinuous
symbols: Phenomena beyond piecewise continuity. In A. Böttcher and I. Gohberg,
editors, Singular Integral Operators and Related Topics, pages 55–118, Basel, 1996.
Birkhäuser Basel.

[8] O. Bratteli. Derivations, Dissipations and Group Actions on C*-algebras. Springer
Berlin Heidelberg, 1986.

[9] O. Bratteli and W. Derek. Unbounded derivations of von neumann algebras.
Annales de l’I.H.P. Physique théorique, 25(2):139–164, 1976.

[10] O. Bratteli and D. Robinson. Operator Algebras and Quantum Statistical Mechanics
1. Theoretical and Mathematical Physics. Springer Berlin Heidelberg, 1987.

[11] Manfred Breuer. Theory of fredholm operators and vector bundles relative to a
von neumann algebra. Rocky Mountain Journal of Mathematics, 3(3):383–430,
1973.

[12] A. Carey and F. Sukochev. Dixmier traces and some applications in noncommuta-
tive geometry. Russian Math. Surveys, 61:1039–1099, 2006.

[13] Z. Chen, Q. Xu, and Z. Yin. Harmonic analysis on quantum tori. Commun. Math.
Phys., 322:755–805, 2013.

[14] L. Coburn and R. Douglas. C*-algebras of operators on a half-space. Publications
Mathématiques de l’IHÉS, 40, 1971.

[15] A. Connes. An analogue of the thom isomorphism for crossed products of a c∗
algebra by an action of r. Advances in Mathematics, 39(1):31–55, 1981.

77



References

[16] A. Connes. Cyclic cohomology and the transverse fundamental class of a foliation.
In Geometric methods in operator algebras (Kyoto, 1983), volume 123 of Pitman
Res. Notes Math. Ser., pages 52–144. Longman Higher Education, 1983.

[17] A. Connes. Noncommutative geometry. Academic Press, Inc., 1994.

[18] J. Dixmier. Von Neumann Algebras. North-Holland Pub. Co., 1981.

[19] E.Prodan and H. Schulz-Baldes. Generalized connes–chern characters in kk-
theory with an application to weak invariants of topological insulators. Reviews
in Mathematical Physics, 28(10):1650024, 2016.

[20] Gian Michele Graf and Jacob Shapiro. The bulk-edge correspondence for disor-
dered chiral chains. Communications in Mathematical Physics, 2018.

[21] R. Ji. On the smoothed toeplitz extensions and k-theory. Proceedings of the
American Mathematical Society, 109(1):31, may 1990.

[22] J. Kaad, R. Nest, and A. Rennie. Kk-theory and spectral flow in von neumann
algebras. Journal of K-Theory, 10(2):241–277, 2012.

[23] J. Kellendonk, T. Richter, and H. Schulz-Baldes. Edge current channels and chern
numbers in the integer quantum hall effect. Reviews in Mathematical Physics,
14(1):87–119, 2002.

[24] J. Kellendonk and H. Schulz-Baldes. Boundary maps for c*-crossed products with
with an application to the quantum hall effect. Commun.Math.Phys., 249:611–637,
2004.

[25] M. Lesch. On the index of the infinitesimal generator of a flow. J. Operator Theory,
25:73–92, 1991.

[26] T. Masuda. Lp-spaces for von neumann algebra with reference to a faithful normal
semifinite weight. Publ. RIMS, Kyoto Univ., 19:673–727, 1983.

[27] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dresselhaus.
Edge state in graphene ribbons: Nanometer size effect and edge shape depen-
dence. Phys. Rev. B, 54:17954–17961, Dec 1996.

[28] Theodore W. Palmer. Banach Algebras and the General Theory of *-Algebras, vol-
ume 1 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 1994.

[29] Gert Kjaergard Pedersen. C-Algebras and Their Automorphism Groups (London
Mathematical Society Monographs). Academic Pr, 1979.

[30] A. Pelczynski and M. Wojciechowski. Molecular decompositions and embed-
ding theorems for vector-valued sobolev spaces with gradient norm. Studia
Mathematica, 107(1):61–100, 1993.

78



References

[31] V. Peller. Hankel Operators and Their Applications. Springer Monographs in
Mathematics. Springer New York, 2003.

[32] J. Phillips and I. Raeburn. An index theorem for toeplitz operators with noncom-
mutative symbol space. J. Funct. Anal., 120(2):239–263, 1994.

[33] G. Pisier and Q. Xu. In Handbook of the geometry of Banach spaces, volume
Vol. 2, chapter Non-commutative Lp-spaces, page 1459–1517. North-Holland,
Amsterdam, 2003.

[34] E. Prodan. A Computational Non-commutative Geometry Program for Disordered
Topological Insulators. Springer International Publishing, 2017.

[35] E. Prodan, B. Leung, and J. Bellissard. The non-commutative nth-chern number
(n¾ 1). Journal of Physics A: Mathematical and Theoretical, 46(48):485202, 2013.

[36] E. Prodan and H. Schulz-Baldes. Bulk and Boundary Invariants for Complex
Topological Insulators. Springer International Publishing, 2016.

[37] E. Prodan and H. Schulz-Baldes. Non-commutative odd chern numbers and
topological phases of disordered chiral systems. Journal of Functional Analysis,
271(5):1150–1176, 2016.

[38] I. Raeburn. On crossed products and takai duality. Proceedings of the Edinburgh
Mathematical Society, 31:321–330, 1988.

[39] M. Rieffel. Connes’ analogue for crossed products of the thom isomorphism.
Contemporary Mathematics, 19:143–154, 1982.

[40] M. Rørdam, F. Larsen, and N. Laustsen. An Introduction to K-theory for C*-algebras.
Cambridge University Press, 2000.

[41] J. Shapiro. Topology and Localization: Mathematical Aspects of Electrons in Strong-
lyDisordered Media. PhD thesis, ETH Zurich, 2018.

[42] M. Takesaki. Duality for crossed products and the structure of von neumann
algebras of type iii. Acta Math., 131:249–310, 1973.

[43] H. Triebel. Theory of Function Spaces. Birkhäuser Basel, 1983.

[44] C. Wahl. Index theory for actions of compact lie groups on c*-algebras. J. operator
theory, page 217–242, 2010.

79



References

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen
der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden,
als solche kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegt wurde.

Erlangen, den 19. September, 2018

80


	Introduction
	K-theory and Cyclic cohomology
	Crossed products of C*- and von Neumann-Algebras
	Traces and non-commutative Lp-spaces
	Traces on C*- and von Neumann algebras
	Non-commutative Lp-spaces
	Compact and Breuer-Fredholm operators

	Flows, Generators and Derivations
	Toeplitz extensions for one-parameter group actions
	Exact sequences for weakly continuous actions
	The Breuer-index of a Toeplitz operator
	Besov spaces for flows
	Applications
	The disordered non-commutative torus
	Half-spaces
	Summability
	The index map for chiral Hamiltonians
	Examples


