Pseudo-gaps of random hopping models (Analysis of critical energies)

Hermann Schulz-Baldes (Erlangen)

One World IAMP Seminar, March 2023

new contributions with: Florian Dorsch, Joris De Moor, Christian Sadel

older papers with: Maxim Drabkin, Lana Jitomirskaya, Werner Kirsch, Günther Stolz

papers on arXiv (one this week)

Overview

Random hopping models

- Pseudogaps and logarithmic singularities in DOS
- Formalism: transfer matrices and Prüfer variables
- Hyperbolic critical energies
- Renewal theory and optimal stopping theorem

Topological phase transitions in (generalized) SSH models

- Reduced transfer matrices
- Again hyperbolic critical energies

Elliptic critical energies

• Perturbation theory for Furstenberg measure at complex energies

Parabolic critical energies

• Band edges of Anderson or random Kronig-Penney model

Random hopping model (1d discrete Schrödinger)

Random Hamiltonian on $\ell^2(\mathbb{Z})$ given by

$$(H\psi)_n = -t_{n+1}\psi_{n+1} - t_n\psi_{n-1}$$

where $\psi = (\psi_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$

Hypothesis: $(t_n)_{n \in \mathbb{Z}}$ independent positive random variables

Technical simplification: support of distributions of t_n is compact

Two cases:

- $t_n \stackrel{d}{=} t_{n+2}$ and $\mathbb{E}(\log t_{2n}) \neq \mathbb{E}(\log t_{2n+1})$ random hopping dimers
- t_n identically distributed, balanced random hopping

Bipartite symmetry:

$$JHJ = -H$$
 , $J|n\rangle = (-1)^n |n\rangle$

Hence center of band $E_c = 0$ is special

Integrated density of states (IDOS)

$$\mathcal{N}(E) = \lim_{N \to \infty} \frac{1}{N} \# \{ \text{eigenvalues of } H_N = H_{\mathbb{1}_{\ell^2(\{1, \dots, N\})}} \leqslant E \}$$

exists almost surely and Stieltjes functions giving DOS $\frac{dN}{dE}(E)$

Numerics for random hopping dimers at N = 9500 and $\nu = 9.7$ (later)

Pseudo-gap at $E_c = 0$ and Lyapunov exponent positive there

Second plot by Birkhoff telescoping of rotation number and Lyapunov

Analysis of critical energies

Balanced random hopping (DOS for N = 16900)

Analysis of critical energies

Results on DOS at $E_c = 0$ of random hopping

Theorem (Hölder continuity for hopping dimers)

There exists unique $\nu > 0$ obeying $\mathbb{E}\left(\left(\frac{t_{2n+1}}{t_{2n}}\right)^{\nu}\right) = 1$ if $\mathbb{E}(\log(\frac{t_{2n+1}}{t_{2n}})) > 0$

There are $C_{-} < C_{+}$ such that the IDS satisfies for ϵ sufficiently small

$$C_{-} \leqslant \frac{|\mathcal{N}(E_{c}+\epsilon) - \mathcal{N}(E_{c})|}{|\epsilon|^{\nu}} \leqslant C_{+}$$

Deep pseudo-gap for large ν is possible (see numerics above)

Theorem (logarithmic divergence for balanced hopping)

There exists constant C such that

$$\left| \mathcal{N}(E_{c} + \epsilon) - \mathcal{N}(E_{c}) - \frac{1}{2} \operatorname{Var}(\log(t_{0})) (\log(\epsilon))^{-2} \right| \leq C |\log(\epsilon)|^{-3}$$

Dyson prediction (1953), weak form proved by Kotowski, Virág (2017)

Transfer matrices and critical energies

$$H\psi = E\psi \qquad \Longleftrightarrow \qquad \begin{pmatrix} t_{n+1}\psi_{n+1} \\ \psi_n \end{pmatrix} = \begin{pmatrix} -E\frac{1}{t_n} & -t_n \\ \frac{1}{t_n} & 0 \end{pmatrix} \begin{pmatrix} t_n\psi_n \\ \psi_{n-1} \end{pmatrix}$$

Two-step $SL(2,\mathbb{R})$ transfer matrices i.i.d. for random hopping dimer:

$$\begin{split} \mathcal{T}_{n}^{E} &= \begin{pmatrix} -E\frac{1}{t_{2n+1}} & -t_{2n+1} \\ \frac{1}{t_{2n+1}} & 0 \end{pmatrix} \begin{pmatrix} -E\frac{1}{t_{2n}} & -t_{2n} \\ \frac{1}{t_{2n}} & 0 \end{pmatrix} \\ &= -\begin{pmatrix} \frac{t_{2n+1}}{t_{2n}} & 0 \\ 0 & \frac{t_{2n}}{t_{2n+1}} \end{pmatrix} + E\begin{pmatrix} 0 & \frac{t_{2n}}{t_{2n+1}} \\ -\frac{1}{t_{2n}t_{2n+1}} & 0 \end{pmatrix} + E^{2} \begin{pmatrix} \frac{1}{t_{2n}t_{2n+1}} & 0 \\ 0 & 0 \end{pmatrix} \end{split}$$

Definition

(i) E_c critical energy for random family $\mathcal{T}_{\sigma}^{E} \iff \text{all } \mathcal{T}_{\sigma}^{E_c}$ commute (ii) Critical energy E_c is hyperbolic $\iff \text{spec}(\mathcal{T}_{\sigma}^{E_c}) \cap \mathbb{S}^1 = \emptyset$ for some σ

Random dynamics on Prüfer variables

$$\boldsymbol{e}_{\boldsymbol{\theta}_{n}^{\epsilon}} = \frac{\mathcal{T}_{n}^{\boldsymbol{E}_{c}+\epsilon} \, \boldsymbol{e}_{\boldsymbol{\theta}_{n-1}^{\epsilon}}}{\|\mathcal{T}_{n}^{\boldsymbol{E}_{c}+\epsilon} \, \boldsymbol{e}_{\boldsymbol{\theta}_{n-1}^{\epsilon}}\|} \qquad , \qquad \boldsymbol{e}_{\boldsymbol{\theta}} = \begin{pmatrix} \cos(\boldsymbol{\theta}) \\ \sin(\boldsymbol{\theta}) \end{pmatrix}$$

and the condition $\theta_{n+1}^{\epsilon} - \theta_n^{\epsilon} \in (-\frac{\pi}{2}, \frac{3\pi}{2})$ fixing the branch

Markov process $(\theta_n^{\epsilon})_{n \in \mathbb{N}}$ on \mathbb{R} induced by $SL(2, \mathbb{R})$ -action

Oscillation theory and rotation number calculation for IDOS

$$\mathcal{N}(E_{c}+\epsilon)-\mathcal{N}(E_{c}) = \lim_{N\to\infty} \frac{1}{N} \frac{1}{2\pi} \mathbb{E}(\theta_{N}^{\epsilon}) = \lim_{N\to\infty} \frac{1}{N} \frac{1}{2\pi} \sum_{n=1}^{N} \mathbb{E}(\theta_{n}^{\epsilon}-\theta_{n-1}^{\epsilon})$$

Lyapunov exponent

$$\gamma(\boldsymbol{E_{c}}+\epsilon) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left(\log(\|\mathcal{T}_{n+1}^{\boldsymbol{E_{c}}+\epsilon}\boldsymbol{e}_{\theta_{n}^{\epsilon}}\|)\right)$$

Hyperoblic action and perturbation by energy

$$\mathcal{T}_{n}^{E_{c}} = -\begin{pmatrix} \frac{t_{2n+1}}{t_{2n}} & \mathbf{0} \\ \mathbf{0} & \frac{t_{2n}}{t_{2n+1}} \end{pmatrix} = -\begin{pmatrix} \kappa_{n} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\kappa_{n}} \end{pmatrix} , \qquad \kappa_{n} = \frac{t_{2n+1}}{t_{2n}}$$

Fixed points $e_{k\pi} = \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}$ and $e_{\frac{\pi}{2}+k\pi} = \begin{pmatrix} 0 \\ \pm 1 \end{pmatrix}$ and invariant intervals

Energy dependent perturbation generates random shift of order ϵ :

$$\mathcal{T}_{n}^{E_{c}+\epsilon} = -\begin{pmatrix} \kappa_{n} & 0\\ 0 & \frac{1}{\kappa_{n}} \end{pmatrix} \begin{bmatrix} \mathbf{1} + \epsilon \begin{pmatrix} 0 & -\mathbf{1}\\ \frac{1}{t_{2n+1}} & 0 \end{pmatrix} + \mathcal{O}(\epsilon^{2}) \end{bmatrix}$$

For $\epsilon > 0$ to right \implies fixed points semipermeable \implies renewal theory

Probabilistic analysis

Dyson-Schmidt variables $x_n^{\epsilon} = -\cot(\theta_n^{\epsilon}) \in \mathbb{R}$ have fixed points 0 and ∞ Focus on half-lines $(0, \infty)$ There set $y_n^{\epsilon} = \log(x_n^{\epsilon})$. Then for $\epsilon = 0$

$$y_{n+1}^0 = y_n^0 + 2 \log(\kappa_n)$$

Balanced random hopping: $\mathbb{E}(\log \kappa_n) = 0$ random walk y_n^{ϵ} on \mathbb{R}

- effectively hard wall at $-\log(\frac{1}{\epsilon})$, sufficient to arrive at $\log(\frac{1}{\epsilon})$
- by CLT roughly $\log(\epsilon)^2$ time steps needed (see Theorem)
- construction of comparison martingales (upper and lower bound)
- \bullet control of error terms depending on ϵ
- optional stopping theorem for estimated interarrival times
- elementary renewal theorem connects to rotation number

Random hopping dimer: $\mathbb{E}(\log \kappa_n) > 0$ drift to left/right

- $e_{k\pi}$ attractive, $e_{k\pi+\frac{\pi}{2}}$ repulsive (on average), so passage unlikely
- large deviation regime for crossing $(-\log(\frac{1}{\epsilon}), \log(\frac{1}{\epsilon}))$

Generalized Su-Schrieffer-Heeger (SSH) model

H on $\ell^2(\mathbb{Z}, \mathbb{C}^{2L})$ satisfying JHJ = -H with $J|n\rangle = (-1)^n \begin{pmatrix} 1_L & 0\\ 0 & -1_L \end{pmatrix} |n\rangle$

$$(H\Phi)_n = T_{n+1}\Phi_{n+1} + V_n\Phi_n + T_n^*\Phi_{n-1} \qquad , \qquad \Phi_n \in \mathbb{C}^{2L}$$

Hypothesis: rank(T_n) = 1, so say $T_n = t_n |1 \times 2L|$ and set

$$\begin{pmatrix} \langle 1 | (E - V_n)^{-1} | 1 \rangle & \langle 2L | (E - V_n)^{-1} | 1 \rangle \\ \langle 1 | (E - V_n)^{-1} | 2L \rangle & \langle 2L | (E - V_n)^{-1} | 2L \rangle \end{pmatrix} = \begin{pmatrix} G_n^{E, -, -} & G_n^{E, -, +} \\ G_n^{E, +, -} & G_n^{E, +, +} \end{pmatrix}$$

Reduced transfer matrices from $SL(2, \mathbb{R})$:

$$\begin{aligned} \mathcal{T}_{n}^{E} &= \begin{pmatrix} (G_{n}^{E,-,+})^{-1} & -(G_{n}^{E,-,+})^{-1}G_{n}^{E,-,-} \\ G_{n}^{E,+,+}(G_{n}^{E,-,+})^{-1} & G_{n}^{E,+,-} - G_{n}^{E,+,+}(G_{n}^{E,-,+})^{-1}G_{n}^{E,-,-} \end{pmatrix} \begin{pmatrix} \frac{1}{t_{n}} & 0 \\ 0 & \overline{t_{n}} \end{pmatrix} \\ &= \begin{pmatrix} \kappa_{n} & 0 \\ 0 & \frac{1}{\kappa_{n}} \end{pmatrix} + \mathcal{O}(E) \end{aligned}$$

Again $E_c = 0$ hyperbolic critical energy, now with $\kappa_n = \frac{1}{G_0^{0,-,+} t_n}$

Some background facts on the random SSH model

Prototype of a 1*d* chiral topological insulator (not designed for) Randomness: $t_n = 1 + \lambda \omega_n$ and $V_n = \frac{1}{2}(m \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \mu \omega'_n)$ Closes gap at Fermi level $E_c = 0$ for λ , μ sufficiently large

Noncommutative winding number w.r.t. position operator X on $\ell^2(\mathbb{Z})$

Wind(
$$H$$
) = $\frac{1}{2} \mathbb{E} \operatorname{Tr} \left(\langle 0 | J H^{-1} [H, X] | 0 \rangle \right) \in \mathbb{Z}$

Topological phases pending on parameters λ and μ (for m > 0 fixed) Mondragon-Shem *et al.* (2014) plotted phase diagram using Wind(H) Anderson localization away from E_c (proofs by J. Shapiro 2021)

Bulk-boundary correspondence

Half-space restrictions have chiral surface states (similar to Majorana) Persists in localization regime with closed gap (Graf-Shapiro 2018)

Divergence of DOS at topological phase transition

By definition, balanced points make up phase boundary:

$$\mathcal{P} = \{ (\lambda, \mu) \in \mathbb{R}^2 : \gamma(\mathbf{E}_{\mathbf{c}} = \mathbf{0}) = |\mathbb{E} \log(\kappa_n)| = \mathbf{0} \}$$

Theorem

Off \mathcal{P} : pseudo-gap at $E_c = 0$

On \mathcal{P} : logarithmic divergence of DOS

With Prodan (2016) and Stoiber (2022):

change of topological invariant (here winding number)

 \implies no dynamical Anderson localization at E_c on \mathcal{P}

Open questions: quantitative lower bound on transport (many states, but $\gamma(E_c + \epsilon)$ rapidly increasing in ϵ) Lyapunov exponents, Furstenberg measure level statistics, enhenced area law (as Müller, Pastur, Schulte 2020)

Balanced random hopping (DOS for N = 16900)

Analysis of critical energies

Elliptic and parabolic critical energies

Definition

Random family $\boldsymbol{E} \in \mathbb{R} \mapsto \mathcal{T}_{\sigma}^{\boldsymbol{E}}$ in $SL(2, \mathbb{R})$

(i) E_c critical energy \iff all $\mathcal{T}_{\sigma}^{E_c}$ commute

(ii) E_c hyperbolic critical energy $\iff \operatorname{spec}(\mathcal{T}_{\sigma}^{E_c}) \cap \mathbb{S}^1 = \emptyset$ for some σ

(iii) E_c elliptic critical energy $\iff \operatorname{spec}(\mathcal{T}_{\sigma}^{E_c}) \subset \mathbb{S}^1$, no Jordan, for all σ

(iv) E_c parabolic point $\iff \operatorname{spec}(\mathcal{T}_{\sigma}^{E_c}) \subset \mathbb{S}^1$ with Jordan blocks

At elliptic E_c there exists M with $M \mathcal{T}_{\sigma}^{E_c} M^{-1} = R_{\eta_{\sigma}}$ random rotation Appears in random polymer model

Also: 1*d* Anderson model $H = \Delta + \lambda V_{dis}$, but in parameter λ with $\lambda_c = 0$ So-called anomalies if $\eta_{\sigma} \in \{0, \frac{\pi}{2}\}$ for all σ (center of band of Anderson) Parabolic E_c at band edges of Anderson and random Kronig-Penney

Furstenberg measure

Projective space in \mathbb{R}^2 via Prüfer phases $e^{i\theta_n^{\epsilon}}$

Furstenberg measure μ^ϵ is (unique) invariant measure on \mathbb{S}^1 with

$$\int_{\mathbb{S}^1} \mu^{\epsilon}(\boldsymbol{d}\theta) f(\boldsymbol{e}^{\boldsymbol{i}\theta}) = \mathbb{E} \int_{\mathbb{S}^1} \mu^{\epsilon}(\boldsymbol{d}\theta) f(\mathcal{T}_{\sigma}^{\boldsymbol{E}_{\sigma}+\epsilon} \cdot \boldsymbol{e}^{\boldsymbol{i}\theta}) \quad , \quad f \in \boldsymbol{C}(\mathbb{S}^1)$$

At elliptic E_c Furstenberg is weakly Lebesgue, up to errors:

Theorem (Random phase approximation, Pastur-Figotin) At elliptic critical energy E_c and away from anomaly,

$$\int_{\mathbb{S}^1} \mu^{\epsilon}(\boldsymbol{d}\theta) f(\boldsymbol{e}^{i\theta}) = \int_{\mathbb{S}^1} \frac{\boldsymbol{d}\theta}{2\pi} f(\boldsymbol{e}^{i\theta}) + \mathcal{O}(\epsilon^2)$$

and for some computable $\mathcal{D} > 0$

$$\gamma(\boldsymbol{E_{c}}+\epsilon) = \mathcal{D}\epsilon^{2} + \mathcal{O}(\epsilon^{3})$$

Imaginary energy

For quantum transport, add imaginary part $i\delta$ with $\delta = \frac{1}{T} > 0$ to energy Thus two-parameter family $(\epsilon, \delta) \mapsto \mathcal{T}_{\sigma}^{\epsilon, \delta} \in SL(2, \mathbb{C}), \quad e.g. = \mathcal{T}_{\sigma}^{E_{c}+\epsilon+i\delta}$ Dynamics $e \mapsto \frac{\mathcal{T} e}{\|\mathcal{T} e\|}$ now on unit vectors in \mathbb{C}^{2} , namely $\mathbb{C}P(1)$

Due to sign of δ , stereographic projection remains in closed unit disc $\overline{\mathbb{D}}$

$$z = \Pi(e) = \Pi(\begin{pmatrix} a \\ b \end{pmatrix}) = \frac{a - ib}{a + ib} \in \overline{\mathbb{D}}$$

Action becomes Möbius transformation. Furstenberg measure on $\overline{\mathbb{D}}$:

$$\int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(dz) f(z) = \mathbb{E} \int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(dz) f(\mathcal{T}^{\epsilon,\delta}_{\sigma} \cdot z) \quad , \quad f \in \mathcal{C}(\overline{\mathbb{D}})$$

Interest in regime of small ϵ and δ

Crossover regime for $\epsilon^2 \approx \delta$

Numerics for 1d Anderson model

Orbit $(z_n)_{n=1,...,N}$ in $\overline{\mathbb{D}}$ with $N = 5 \cdot 10^3$ computed from Anderson model

Parameters $\epsilon = 10^{-4}$ (disorder strength) and $\delta = 10^{-3}$ so that $\epsilon^2 \ll \delta$

E = 0.52 and initial condition $z_0 = 1$. Histogram of radii $|z_n|^2$

Tail of distribution merely due to first points

Furstenberg supported in central ball of size $\mathcal{O}(\delta)$

More numerics for 1*d* Anderson model

All as above, except $\epsilon = 0.1$ and $\delta = 10^{-5}$ so that $\epsilon^2 \gg \delta$

Main mass close in δ -ring of boundary $\mathbb{S}^1 = \partial \overline{\mathbb{D}}$

Further note: rotational symmetry (so away from anomaly)

There *are* orbits arriving at z = 0, but drift to outside due to $\gamma(E) > 0$

Here $\epsilon^2 \approx \delta$. More precisely, set with \mathcal{D} as in random phase approx.

$$\lambda = \frac{2}{\mathcal{D}} \frac{\delta}{\epsilon^2}$$

Above: three non-trivial radial distributions given by

$$\varrho_{\lambda}(|z|^2) = \frac{\lambda}{(1-|z|^2)^2} \exp\left[-\frac{\lambda |z|^2}{1-|z|^2}\right]$$

Theorem

Suppose that E_c not an anomaly and randomness "non-trivial" For $\delta \gg \epsilon^2$, the distribution is centered around $0 \in \mathbb{D}$

$$\int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathsf{d} z) |z|^2 = \mathcal{O}(\delta,\epsilon,\epsilon^2\delta^{-1})$$

For $\delta \ll \epsilon^2$, the distribution is centered close to $\partial \mathbb{D} = \mathbb{S}^1$

$$\int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathrm{d} z) |z|^2 = 1 + \mathcal{O}(\epsilon^{\frac{1}{2}}, \delta^{\frac{1}{2}}\epsilon^{-1})$$

For $\delta \approx \epsilon^2$ and λ and ϱ_{λ} as above, then for $h \in C^2([0,1])$

$$\int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathrm{d} z) h(|z|^2) = \int_0^1 \mathrm{d} s \,\varrho_\lambda(s) h(s) + \mathcal{O}(\epsilon,\epsilon^{-1}\delta)$$

Application: lower bound on dynamics for random polymer model (avoiding large deviation estimate in work with Jitomirskaya, Stolz)

Analysis of critical energies

Rough idea of proof for the last claim

Due to invariance of $\mu^{\epsilon,\delta}$ sufficient to control Birkhoff sums:

$$\begin{split} \int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathrm{d}z) \ g(|z|^2) \ &= \ \int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathrm{d}z) \ \mathbb{E} \ g\big(|\mathcal{T}_{\sigma}^{\epsilon,\delta} \cdot z|^2\big) \\ &= \ \int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathrm{d}z) \ \mathbb{E} \ \frac{1}{N} \sum_{n=0}^{N-1} \ g\big(|z_n|^2\big) \end{split}$$

Go back in history once and expand for smooth g (to higher order!):

$$\mathbb{E}\frac{1}{N}\sum_{n=0}^{N-1}g(|z_{n+1}|^2) = \mathbb{E}\frac{1}{N}\sum_{n=0}^{N-1}g(|z_n|^2) - \mathbb{E}\frac{1}{N}\sum_{n=0}^{N-1}4\delta|z_n|^2g'(|z_n|^2) + \mathcal{O}(\epsilon,\delta\epsilon)$$

In limit $N \rightarrow \infty$ oscillatory terms disappear and after a lot of algebra:

$$\int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathsf{d} z) \left(\mathcal{L}_{\lambda} g\right)(|z|^{2}) = \mathcal{O}(\epsilon, \frac{\delta}{\epsilon}) \quad \text{with} \quad \mathcal{L}_{\lambda} = \left(\lambda - (1-s)^{2} \partial_{s}\right) s \partial_{s}$$

Make Ansatz:

$$\int_{\overline{\mathbb{D}}} \mu^{\epsilon,\delta}(\mathrm{d} z) \ g(|z|^2) \ = \ \int_0^1 \mathrm{d} s \, \varrho_\lambda(s) \, g(s)$$

Then for all smooth g

$$\mathcal{O}(\epsilon,\delta\epsilon) = \int_0^1 \mathrm{d}\boldsymbol{s} \, \varrho_\lambda(\boldsymbol{s}) \, (\mathcal{L}_\lambda \boldsymbol{g})(\boldsymbol{s}) = \int_0^1 \mathrm{d}\boldsymbol{s} \, (\mathcal{L}^*_\lambda \varrho_\lambda)(\boldsymbol{s}) \, \boldsymbol{g}(\boldsymbol{s}) + \mathrm{b.t.}$$

Now boundary terms vanish, and \mathcal{L}_{λ} and \mathcal{L}_{λ}^* singular elliptic Thus $\operatorname{Ker}(\mathcal{L}_{\lambda}^*) = \operatorname{span}\{\rho_{\lambda}\}$ and $\operatorname{Ker}(\mathcal{L}_{\lambda}) = \operatorname{span}\{1\}$ fundamental So claim follows from

$$h(s) = \mathcal{L}_{\lambda}g + \Big(\int_{0}^{1} ds \,
ho_{\lambda}(s) \, h(s)\Big) \, 1$$

Resumé = Overview

Random hopping models

- Pseudogaps and logarithmic singularities in DOS
- Formalism: transfer matrices and Prüfer variables
- Hyperbolic critical energies
- Renewal theory and optimal stopping theorem

Topological phase transitions in (generalized) SSH models

- Reduced transfer matrices
- Again hyperbolic critical energies

Elliptic critical energies

• Perturbation theory for Furstenberg measure at complex energies

Parabolic critical energies

• Band edges of Anderson or random Kronig-Penney model