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Overview

Random hopping models

e Pseudogaps and logarithmic singularities in DOS
e Formalism: transfer matrices and Prufer variables
e Hyperbolic critical energies

e Renewal theory and optimal stopping theorem

Topological phase transitions in (generalized) SSH models
e Reduced transfer matrices
¢ Again hyperbolic critical energies

Elliptic critical energies
¢ Perturbation theory for Furstenberg measure at complex energies

Parabolic critical energies
e Band edges of Anderson or random Kronig-Penney model
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Random hopping model (1d discrete Schrodinger)
Random Hamiltonian on ¢2(Z) given by
(HY)n = —thi1¥nit — thbnq J

where 1) = (Yn)nez € (2(Z)
Hypothesis: (t,),z independent positive random variables

Technical simplification: support of distributions of t, is compact
Two cases:

o Iy d thi2 and E(log o) =+ E(log top11) random hopping dimers
e 1, identically distributed, balanced random hopping

Bipartite symmetry:

JHJ = —H . Jn) = (=1)"|n) |

Hence center of band E; = 0 is special
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Integrated density of states (IDOS)

N(E) = I\}Too %I# {eigenvalues of Hy = H1.2(1,_ny < E} J

exists almost surely and Stieltjes functions giving DOS ‘Z,AEf(E)
Numerics for random hopping dimers at N = 9500 and v = 9.7 (later)
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Pseudo-gap at E; = 0 and Lyapunov exponent positive there
Second plot by Birkhoff telescoping of rotation number and Lyapunov
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Balanced random hopping (DOS for N = 16900)
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Results on DOS at E. = 0 of random hopping
Theorem (Holder continuity for hopping dimers)

There exists unique v > 0 obeying E((&£1)”) = 1 if E(log(22!)) > 0
There are C_ < C. such that the IDS satisfies for e sufficiently small

| N(Ec +¢€) — N(Ec) |

€l

C_ <

< C,

Deep pseudo-gap for large v is possible (see numerics above)

Theorem (logarithmic divergence for balanced hopping)
There exists constant C such that

N(E; +¢) — N(Es) — 1 Var(log (1)) (log(e)) ‘ < C|log(e)|"

Dyson prediction (1953), weak form proved by Kotowski, Virag (2017)



Transfer matrices and critical energies
H¢ _ E¢ — tn+1¢n+1 _ —E;—n —tn thn
¢n tln 0 1/’n—1
Two-step SL(2, R) transfer matrices i.i.d. for random hopping dimer:
1
TE _ _Et2n+1 —lon+1 _Et;_n —ln
5 o 0 L0
n+1 2n
bn bp 1
= — (% to ) L E < 01 lé:ﬁ) 4L E2 (t2n bon+1 0)
0 t2:—7—1 " bn bony1 0 0 0

Definition
(i) E; critical energy for random family 7.F <= all 7.Fc commute

v

(ii) Critical energy E; is hyperbolic <= spec(7.5¢) n S' = & for some o
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Random dynamics on Priifer variables
TEc+€ ea6

. < . cos(6)
0 o Ete . ; 0 = .
CTE ey | sin(6)

and the condition ¢¢_, — 65 € (—%, %) fixing the branch

Markov process (05)neny on R induced by SL(2,R)-action

Oscillation theory and rotation number calculation for IDOS

N(Es+€) = N(E) = lim = o—E(fy) = lim - ZEGE — 05

Lyapunov exponent

N
WEot+e) = lim + > E(log(|7,5 ess)))

v
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Hyperoblic action and perturbation by energy

font1
TEC _ top 0 _ Kn O - toni1
n = 0 bon o L 2 w bon
t2n+1 Kn

Fixed points k- = (') and ez . = () and invariant intervals

€ € € € € €
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Energy dependent perturbation generates random shift of order e:

o -1
TEte = — [0 ? 1+e| | +O(e?)
0o — ; 0
Kn 2n+1

For € > 0 to right = fixed points semipermeable = renewal theory
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Probabilistic analysis

Dyson-Schmidt variables x5, = — cot(#5) € R have fixed points 0 and oo
Focus on half-lines (0,00) There set y; = log(x;). Thenfore =0

yg+1 = y,‘,’ + 2 log(kn) J

Balanced random hopping: E(log k) = 0 random walk y5 on R
« effectively hard wall at — log(1), sufficient to arrive at log()
« by CLT roughly log(¢)? time steps needed (see Theorem)
e construction of comparison martingales (upper and lower bound)
e control of error terms depending on ¢
e optional stopping theorem for estimated interarrival times
e elementary renewal theorem connects to rotation number
Random hopping dimer: E(log k) > 0 drift to left/right
e e, attractive, e, _ z repulsive (on average), so passage unlikely
« large deviation regime for crossing (— log(2), log())



Generalized Su-Schrieffer-Heeger (SSH) model

H on (3(Z,C?) satistying J HJ = —H with J|n) = (=1)"(§_7 ) In)
(Hd))n = n+1 ¢n+‘| + an)n + T:d)n,‘] ) d)nE(CZL J

Hypothesis: rank(T,) = 1, so say T, = t,|1)(2L| and set
AUE =V @LE-Va) ')\ _ (G~ G *
A[E = Va)T'f2Ly @L(E—Vo)7'2L))  \Gr™ Gt
Reduced transfer matrices from SL(2,R):

e_ [ (G ) ~(Gy )G o
N (e i I c i (c s R iy A

_ (""6" 2) + O(E)

Kn

Again E; = 0 hyperbolic critical energy, now with x, = G()++tn
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Some background facts on the random SSH model
Prototype of a 1d chiral topological insulator (not designed for)
Randomness: ty = 1+ Awp and V, = 5(m (38) + pw))

Closes gap at Fermi level E; = 0 for A, u sufficiently large

Noncommutative winding number w.r.t. position operator X on (2(Z)
Wind(H) = JETr (Ol JH"[H,X]|0)) € Z

Topological phases pending on parameters A and p (for m > 0 fixed)
Mondragon-Shem et al. (2014) plotted phase diagram using Wind(H)
Anderson localization away from E; (proofs by J. Shapiro 2021)
Bulk-boundary correspondence

Half-space restrictions have chiral surface states (similar to Majorana)

Persists in localization regime with closed gap (Graf-Shapiro 2018)
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Divergence of DOS at topological phase transition
By definition, balanced points make up phase boundary:

P = {(A\p) eR? : y(Ec = 0) = |E log(rn)| = 0}

Theorem
Off P: pseudo-gap at E; = 0
OnP: logarithmic divergence of DOS

With Prodan (2016) and Stoiber (2022):
change of topological invariant (here winding number)
= no dynamical Anderson localization at E; on P
Open questions: quantitative lower bound on transport
(many states, but v(E. + ¢€) rapidly increasing in ¢)
Lyapunov exponents, Furstenberg measure

level statistics, enhenced area law (as Muller, Pastur, Schulte 2020)



Balanced random hopping (DOS for N = 16900)
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Elliptic and parabolic critical energies

Definition

Random family E € R — 7.F in SL(2,R)

(i) E; critical energy < all 7.Fc commute

(i) E; hyperbolic critical energy < spec(7.5¢) n'S' = & for some o
(iii) E; elliptic critical energy <= spec(7.f¢) = S', no Jordan, for all o

(iv) E. parabolic point <= spec(7.F¢) = S' with Jordan blocks

At elliptic E, there exists M with M T.Fe M—' = R, random rotation
Appears in random polymer model

Also: 1d Anderson model H= A+ AV, but in parameter A\ with A\¢ =0
So-called anomalies if n, € {0, 5} for all & (center of band of Anderson)
Parabolic E; at band edges of Anderson and random Kronig-Penney

Analysis of critical energies 15/24



Furstenberg measure
Projective space in R? via Priifer phases e/’

Furstenberg measure 1€ is (unique) invariant measure on S' with

j ue(d0) F(e) = E j pe(dO) F(TE+ . &%) | fe (s
St St

At elliptic E; Furstenberg is weakly Lebesgue, up to errors:

Theorem (Random phase approximation, Pastur-Figotin)
At elliptic critical energy E. and away from anomaly,

€ i dé i
Lu (d6) f(e) = fgﬂme") + o)

and for some computable D > 0

Y(E; +€) = Deé® + O()

v
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Imaginary energy

For quantum transport, add imaginary part id with 6 = 17 > 0 to energy

Thus two-parameter family (¢, §) — 7+ € SL(2,C), e.g. = TEetetid

Dynamics e — ﬁ now on unit vectors in C2, namely CP(1)

Due to sign of §, stereographic projection remains in closed unit disc D
a a-ib —

z = Ne) = n((b)) - 5D

Action becomes M6bius transformation. Furstenberg measure on D:

D

[ midai@ - & [ w2 reom) |
D

Interest in regime of small e and o

Crossover regime for €2 ~ §
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Numerics for 1d Anderson model

Orbit (z7)p=1,.. N iN D with N = 5 - 10% computed from Anderson model
Parameters e = 10~* (disorder strength) and 6 = 1073 so that €? « §
E = 0.52 and initial condition zy = 1. Histogram of radii |z,|2

Tail of distribution merely due to first points

Furstenberg supported in central ball of size O(0)
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More numerics for 1d Anderson model
All as above, except e = 0.1 and § = 10~® so that € » §

20000 (-
15000 -
10000 -

5000 -

. . . . !
0.2 0.4 0.6 0.8 1.0

Main mass close in é-ring of boundary S' = oD
Further note: rotational symmetry (so away from anomaly)
There are orbits arriving at z = 0, but drift to outside due to y(E) > 0
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Yet more numerics for 1d Anderson model
(¢,6) = (0.05,7.5-107%) (0.05,1.2-107%) (0.05,2.5-1079)

Here €2 ~ 4. More precisely, set with D as in random phase approx.

29

A=pz

Above: three non-trivial radial distributions given by

A 2
o) = o 0|~ 7
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Theorem

Suppose that E; not an anomaly and randomness “non-trivial”
For § » €2, the distribution is centered around 0 € D

| neitz) 122 = 0.7

D

For § « €2, the distribution is centered close to oD = S'
Jmé(dz) ZR = 1 + Ok, d5e )
D

For § ~ €% and \ and o), as above, then for he C?([0,1])

f,fé( h(|zP) fdsw h(s) + O(e,e5)
D

Application: lower bound on dynamics for random polymer model

(avoiding large deviation estimate in work with Jitomirskaya, Stolz)




Rough idea of proof for the last claim

Due to invariance of ;° sufficient to control Birkhoff sums:

fwﬁ(dz) a(22) = f/fv%dz) E g(|T5 - 2PP)
D D
- fD Z ‘Zn’

Go back in history once and expand for smooth g (to higher order!):

1 .
EN Z (1z0411?) Z (I12n[?) Z 45|zp|?9' (|12nl?) + O(e, de)

Z

In limit N — oo oscillatory terms disappear and after a lot of algebra:
| n202) (er0)12P) = 0 2) with £y = (A = (1= 8)25)s05
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Make Ansatz:

fﬂ( 9(2%) j dsox(s
D

Then for all smooth g

O(e, 5¢) f ds 0x(S) (£29)(s J ds (£302)(5) g(s) + bit.

Now boundary terms vanish, and £, and L3 singular elliptic
Thus Ker(L3) = span{p,} and Ker(£,) = span{1} fundamental

So claim follows from

h(s) = L£2g + (ﬁ; ds pa(s) h(s)) 1
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Resumé = Overview

Random hopping models

e Pseudogaps and logarithmic singularities in DOS
e Formalism: transfer matrices and Prufer variables
e Hyperbolic critical energies

e Renewal theory and optimal stopping theorem

Topological phase transitions in (generalized) SSH models
e Reduced transfer matrices
¢ Again hyperbolic critical energies

Elliptic critical energies
¢ Perturbation theory for Furstenberg measure at complex energies

Parabolic critical energies
e Band edges of Anderson or random Kronig-Penney model
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