KAPITEL 5

Differentialgleichungssysteme 1. Ordnung: Existenz, Eindeutigkeit, Randverhalten

1. Einführung

(1) Im \mathbb{R}^n verwenden wir (meist) Koordinaten x_1, \ldots, x_n und schreiben

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Für eine reelle Variable verwenden wir meist t.

(2) Ist $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ stetig, so definiert

$$x' = f(t, x)$$

eine Differentialgleichung 1. Ordnung oder ein Differentialgleichungssystem 1. Ordnung. Ist

$$f(t,x) = \begin{pmatrix} f_1(t, x_1, \dots, x_n) \\ f_2(t, x_1, \dots, x_n) \\ \vdots \\ f_n(t, x_1, \dots, x_n) \end{pmatrix},$$

so kann man das Differentialgleichungssystem auch so schreiben:

$$x'_1 = f_1(t, x_1, \dots, x_n)$$

$$x'_2 = f_2(t, x_1, \dots, x_n)$$

$$\vdots$$

$$x'_n = f_n(t, x_1, \dots, x_n)$$

Hängt f nicht von t ab, d.h. hat man nur f = f(x), so spricht man von einem **autonomen** Differentialgleichungssystem.

(3) Eine Lösung der Differentialgleichung (des Differentialgleichungssystems) ist eine auf einem offenen Intervall $I \subseteq \mathbb{R}$ definierte differenzierbare Funktion $\varphi : I \to \mathbb{R}^n$, sodass gilt

$$(t, \varphi(t)) \in D$$
 für alle $t \in I$

und

$$\varphi'(t) = f(t, \varphi(t))$$
 für alle $t \in I$.

(4) Ist $(t_0, x_0) \in D$, so versteht man unter einem **Anfangswertproblem** die Gleichungen

$$x' = f(t, x)$$
 und $x(t_0) = x_0$.

Eine **Lösung des Anfangswertproblems** ist eine auf einem offenen und t_0 enthaltenden Intervall I definierte und differenzierbare Funktion $\varphi: I \to \mathbb{R}^n$ mit

$$(t, \varphi(t)) \in D$$
 für alle $t \in I$, $\varphi'(t) = f(t, \varphi(t))$ für alle $t \in I$ und $\varphi(t_0) = x_0$

wieder unter der Voraussetzung $(t, \varphi(t)) \in D$ für alle $t \in I$.

(5) Es gibt auch andere geläufige Bezeichnungen: Statt x' findet man auch \dot{x} , statt t, x, x_1, \ldots, x_n , auch x, y, y_1, \ldots, y_n .

Datei: al_dgl5.tex. Version vom 17.12.2020

Beispiele:

(1) Im 4. Kapitel haben wir uns mit linearen Differentialgleichungssystemen beschäftigt:

$$f(t,x) = A(t)x + b(t),$$

wo $A: I \to \mathbb{R}^{n \times n}$ und $b: I \to \mathbb{R}^n$ auf einem Intervall definierte und stetige Funktionen sind.

(2) Im 3. Kapitel haben wir lineare Differentialgleichungen höherer Ordnung betrachtet, die sich in ein lineares Differentialgleichungssystem umwandeln lassen.

Beispiel: (Räuber-Beute-Modelle in der Populationsbiologie - die Lotka-Volterra Gleichungen)

- Die Anzahl der Individuen in der Beutepopulation zum Zeitpunkt t werde mit x(t), die Anzahl der Individuen in der Räuberpopulation mit y(t) bezeichnet.
- Gäbe es keine Räuber, so würde die Beutepopulation exponentiell wachsen:

$$x'(t) = ax(t)$$
 mit einer Konstanten $a > 0$.

• Gäbe es keine Beute, so würde die Räuberpopulation exponentiell abnehmen:

$$y'(t) = -by(t)$$
 mit einer Konstanten $b > 0$.

• Beim Zusammentreffen von Räubern und Beute ändert sich die Situation: Je mehr Räuber es gibt, desto weniger wächst die Beutepopulation:

$$x'(t) = (a - cy(t))x(t)$$
 mit einer Konstanten $c > 0$.

Je mehr Beute es gibt, desto mehr wächst die Räuberpopulation:

$$y'(t) = (-b + dx(t))y(t)$$
 mit einer Konstanten $d > 0$.

• Wir erhalten also das Differentialgleichungssystem

$$x' = (a - cy)x$$

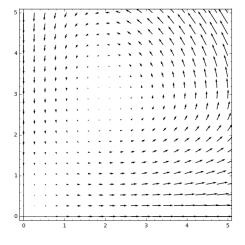
$$y' = (-b + dx)y$$

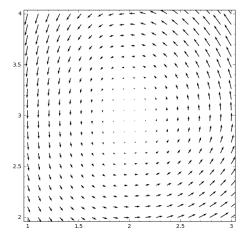
Kennt man zum Zeitpunkt t=0 die Anzahlen x(0) und y(0), so ist die Hoffnung, dass die Funktionen x(t) und y(t) durch das Differentialgleichungssystem bestimmt sind.

 \bullet In der Skizze wurde in jedem Punkt (x, y) der Vektor

$$\begin{pmatrix}
(a-cy)x\\ (-b+dx)y
\end{pmatrix}$$

angehängt. (Werte: $a=3,\,b=2,\,c=1,\,d=1$) Die Pfeile sollten die Richtung der Lösungskurve angeben. Man spricht auch von Richtungsfeld.





2. Lipschitz-Stetigkeit

In der Analysis (Knauf. Analysis 2. S.67) wird eine Abbildung $f: X \to Y$ zwischen metrischen Räumen (X, d_X) und (Y, d_Y) als **Lipschitz-stetig** bezeichnet, wenn eine Zahl $L \in \mathbb{R}_{>0}$ existiert, sodass gilt

$$d_Y(f(x_1), f(x_2)) \le L \cdot d_X(x_1, x_2)$$
 für alle $x_1, x_2 \in X$.

Beispielsweise ist eine Abbildung $f: \mathbb{R}^m \to \mathbb{R}^n$ Lipschitz-stetig, wenn es eine Zahl $L \in \mathbb{R}_{>0}$ gibt mit

$$||f(x) - f(y)|| \le L \cdot ||x - y||$$
 für alle $x, y \in \mathbb{R}^m$,

wobei jeweils die eukldische Norm zur Abstandsmessung verwendet wird

Im Folgenden benötigen wir eine etwas speziellere Bedingung:

DEFINITION. Sei $D \subseteq \mathbb{R}^{n+1}$ offen und $f: D \to \mathbb{R}^n$ eine Funktion (mit f = f(t, x)).

(1) Man nennt f global Lipschitz-stetig bzgl. x, wenn es ein $L \in \mathbb{R}_{\geq 0}$ gibt, sodass

$$||f(t,x) - f(t,y)|| \le L||x - y||$$
 für alle $(t,x), (t,y) \in D$

gilt. (Man sagt auch, f erfüllt eine globale Lipschitz-Bedingung bzgl. x.)

(2) Man nennt f lokal Lipschitz-stetig bzgl. x, wenn es zu jedem $(t_0, x_0) \in D$ eine offene Umgebung $U_{(t_0, x_0)} \subseteq D$ von (t_0, x_0) und ein $L_{(t_0, x_0)} \in \mathbb{R}_{\geq 0}$ gibt, sodass

$$||f(t,x)-f(t,y)|| \le L_{(t_0,x_0)}||x-y||$$
 für alle $(t,x),(t,y) \in U_{(t_0,x_0)}$

gilt. (Man sagt auch, f erfüllt eine lokale Lipschitz-Bedingung bzgl. x.)

Beispiele:

(1) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit f(t, x) = |x| ist wegen

$$|f(t,x) - f(t,y)| = ||x| - |y|| \le |x - y|$$

global Lipschitz-stetig bzgl. x (Dreiecksungleichung).

(2) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit f(t, x) = t|x| ist wegen

$$|f(t,x) - f(t,y)| = |t|x| - t|y| = |t||x| - |y|| \le |t||x - y|$$

offensichtlich lokal Lipschitz-stetig.

(3) Sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definiert durch $f(t, x) = x^2$. Mit

$$|f(t,x) - f(t,y)| = |x^2 - y^2| = |x + y| \cdot |x - y|$$

sieht man, dass f lokal Lipschitz-stetig bzgl. x ist. f ist nicht global Lipschitz-stetig.

(4) Sei $f: \mathbb{R} \times (0, \infty) \to \mathbb{R}$ definiert durch $f(t, x) = \sqrt{x}$. Es ist

$$|f(t,x) - f(t,y)| = |\sqrt{x} - \sqrt{y}| = \left| \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} + \sqrt{y}} \right| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}$$

Für $\delta > 0$ und $x, y \in (\delta, \infty)$ gilt $\sqrt{x} + \sqrt{y} > 2\sqrt{\delta}$, und damit

$$|f(t,x) - f(t,y)| \le \frac{1}{2\sqrt{\delta}} \cdot |x - y| \text{ für alle } x, y \in (\delta, \infty).$$

Da $\delta>0$ beliebig klein gewählt werden kann, sieht man, dass f lokal Lipschitz-stetig bzgl. x ist. Wäre f global Lipschitz-stetig, so gäbe es eine Zahl L>0 mit

$$|f(t,x)-f(t,y)|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}\leq L|x-y|$$
 für alle $x,y\in(0,\infty)$.

Dann würde aber

$$\frac{1}{L} \leq \sqrt{x} + \sqrt{y}$$
 für alle $x,y \in (0,\infty)$ mit $x \neq y$

folgen, was natürlich nicht sein kann, da x und y beliebig nahe an die 0 kommen können.

(5) Sei $I \subseteq \mathbb{R}$ ein offenes Intervall, seien $A: I \to \mathbb{R}^{n \times n}$ und $b: I \to \mathbb{R}^n$ stetig. Wir betrachten

$$f: I \times \mathbb{R}^n \to \mathbb{R} \text{ mit } f(t,x) = A(t)x + b(t).$$

Dann gilt für $t \in I$ und $x, y \in \mathbb{R}^n$

$$||f(t,x) - f(t,y)|| = ||A(t)x - A(t)y|| = ||A(t)(x-y)|| \le ||A(t)|| ||x-y||.$$

Als stetige Funktion ist A auf kompakten Teilintervallen von I beschränkt, woraus sofort die lokale Lipschitz-Stetigkeit von f bzgl. x folgt.

Bemerkung: Ist f = f(t, x) lokal (oder global) Lipschitz-stetig bezüglich x, so muss f noch nicht stetig sein, wie folgendes Beispiel zeigt: Für $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ mit

$$f(t,x) = \mathbf{1}_{\mathbb{Q}}(t) \cdot x = \begin{cases} x & \text{für } t \in \mathbb{Q}, \\ 0 & \text{für } t \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

gilt

$$||f(t,x) - f(t,y)|| = ||\mathbf{1}_{\mathbb{Q}}(t)(x-y)|| \le \mathbf{1}_{\mathbb{Q}}(t)||x-y|| \le ||x-y||,$$

sodass f global Lipschitz-stetig bzgl. x ist. Natürlich ist f nicht stetig.

Der folgende Satz gibt ein nützliches hinreichendes Kriterium um die lokale Lipschitz-Stetigkeit zu zeigen.

SATZ. Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen und $f = (f_1, \dots, f_n)^t : D \to \mathbb{R}^n$ mit $f_i = f_i(t, x_1, \dots, x_n)$. Existieren dann die partiellen Ableitungen $\frac{\partial f_i}{\partial x_i}$ und sind sie stetig, so ist f lokal Lipschitz-stetig bezüglich x.

Beweis:

 \bullet Sei $(t_0,x_0)\in D$ und U eine kompakte Umgebung von (t_0,x_0) in D der Gestalt

$$U = \{(t, x) : |t - t_0| \le \varepsilon, ||x - x_0|| \le \varepsilon\} \subseteq D.$$

Die vorausgesetzte Stetigkeit der partiellen Ableitungen $\frac{\partial f_i}{\partial x_j}$ und die Kompaktheit von U bewirkt, dass eine Zahl K>0 existiert mit

$$\left| \frac{\partial f_i}{\partial x_i}(t,x) \right| \leq K$$
 für alle $(t,x) \in U$ und alle i,j .

• Seien nun $(\widetilde{t}, p), (\widetilde{t}, q) \in U$. Wegen der Gestalt von U ist dann auch die Verbindungsstrecke in U, d.h.

$$(\widetilde{t}, p + t(q - p)) \in U$$
 für alle $t \in [0, 1]$.

• Wir wählen jetzt $i \in \{1, ..., n\}$. Wir betrachten

$$g:[0,1]\to\mathbb{R} \text{ mit } g(t)=f_i(\widetilde{t},p+t(q-p))=f_i(\widetilde{t},p_1+t(q_1-p_1),\ldots,p_n+t(q_n-p_n)).$$

 \boldsymbol{g} ist differenzierbar (nach der Kettenregel):

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_j} (\widetilde{t}, p + t(q - p)) \cdot (q_j - p_j).$$

Der Mittelwertsatz der Differentialrechnung liefert ein $\xi \in (0,1)$ mit

$$\frac{g(1) - g(0)}{1 - 0} = g'(\xi),$$

also

$$f_i(\widetilde{t}, q) - f_i(\widetilde{t}, p) = g'(\xi),$$

und damit

$$|f_{i}(\widetilde{t}, p) - f_{i}(\widetilde{t}, q)| = |g'(\xi)| = \left| \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}} (\widetilde{t}, p + \xi(q - p)) \cdot (q_{j} - p_{j}) \right| \le$$

$$\le \sum_{j=1}^{n} \left| \frac{\partial f_{i}}{\partial x_{j}} (\widetilde{t}, p + \xi(q - p)) \right| |q_{j} - p_{j}| \le \sum_{j=1}^{n} K |p_{j} - q_{j}| =$$

$$= K \sum_{j=1}^{n} |p_{j} - q_{j}| = K ||p - q||_{1} \le K \sqrt{n} ||p - q||_{2} =$$

$$= \sqrt{n} K ||p - q||.$$

• Es folgt

$$||f(\widetilde{t},p) - f(\widetilde{t},q)|| = \sqrt{\sum_{i=1}^{n} |f_i(\widetilde{t},p) - f_i(\widetilde{t},q)|^2} \le \sqrt{\sum_{i=1}^{n} nK^2 ||p - q||^2} = nK||p - q||.$$

Da die letzte Abschätzung für alle $(\widetilde{t}, p), (\widetilde{t}, q) \in U$ gilt, folgt die lokale Lipschitz-Stetigkeit bzgl. x.

Beispiel: Wir betrachten das frühere Beispiel

$$f: \mathbb{R} \times (0, \infty) \to \mathbb{R} \text{ mit } f(t, x) = \sqrt{x}.$$

Dann ist

$$\frac{\partial f}{\partial x}(t,x) = \frac{1}{2\sqrt{x}}$$

stetig auf $\mathbb{R} \times (0, \infty)$, also f lokal Lipschitz-stetig bzgl. x.

Bemerkungen:

(1) Die Voraussetzungen des Satzes implizieren noch nicht die Stetigkeit von f, wie man am Beispiel

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ mit } f(t,x) = \mathbf{1}_{\mathbb{Q}}(t) = \begin{cases} 0 & \text{ für } t \notin \mathbb{Q}, \\ 1 & \text{ für } t \in \mathbb{Q} \end{cases}$$

sehen kann.

(2) Der Satz liefert nur ein hinreichendes Kriterium. So ist der Satz beispielsweise nicht auf die Funktion

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \text{ mit } f(t, x) = |x|$$

anwendbar, da f in (t,0) nicht nach x differenzierbar ist. Aber f ist sogar global Lipschitz-stetig (bzgl. x).

SATZ. Sei $D \subseteq \mathbb{R} \times R^n$ offen und $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. x. Sei $K \subseteq D$ kompakt. Dann ist die Einschränkung $f|_K$ von f auf K global Lipschitz-stetig, d.h. es existiert eine Zahl $L \in \mathbb{R}_{\geq 0}$, sodass

$$||f(t,x) - f(t,y)|| \le L \cdot ||x-y|| \text{ für alle } (t,x), (t,y) \in K$$

gilt.

Beweis: Da f als stetig und K als kompakt vorausgesetzt wurde, existiert eine Zahl M mit

$$||f(t,x)|| \le M$$
 für alle $(t,x) \in K$.

Insbesondere folgt

$$||f(t,x) - f(t,y)|| \le 2M$$
 für alle $(t,x), (t,y) \in K$.

Angenommen, die Einschränkung von f auf K ist nicht global-Lipschitz stetig bzgl. x. Dann existieren für jedes $n \in \mathbb{N}$ Elemente $(t_n, x_n), (t_n, y_n) \in K$ mit

$$||f(t_n, x_n) - f(t_n, x_n)|| > n||x_n - y_n||.$$

(Insbesondere gilt dann $x_n \neq y_n$.) Da K kompakt ist, besitzt (t_n, x_n) eine konvergente Teilfolge, die wir o.E. mit (t_n, x_n) identifizieren können. Sei

$$(t_0, x_0) = \lim_{n \to \infty} (t_n, x_n).$$

Wegen

$$||x_n - y_n|| < ||f(t_n, x_n) - f(t_n, y_n)|| \le 2M$$

konvergiert auch y_n gegen x_0 . Da f lokal Lipschitz-stetig ist, existiert ein $L_{(t_0,x_0)} \in \mathbb{R}_{\geq 0}$ und eine offene Umgebung $U_{(t_0,x_0)}$ von (t_0,x_0) mit

$$||f(t,x)-f(t,y)|| \le L_{(t_0,x_0)}||x-y||$$
 für alle $(t,x),(t,y) \in U_{(t_0,x_0)}$.

Wegen

$$\lim_{n \to \infty} (t_n, x_n) = (t_0, x_n) = \lim_{n \to \infty} (t_n, y_n)$$

existiert ein n_0 mit

$$(t_n, x_n), (t_n, y_n) \in U_{(t_0, x_0)}$$
 für alle $n \ge n_0$.

Es folgt

$$||x_n - y_n|| < ||f(t_n, x_n) - f(t_n, y_n)|| \le L_{(t_0, x_0)} ||x_n - y_n||$$
 für alle $n \ge n_0$,

ein offensichtlicher Widerspruch, da immer $x_n \neq y_n$ gilt. Also muss es eine Zahl L geben mit

$$||f(t,x) - f(t,y)|| \le L||x - y||$$
 für alle $(t,x), (t,y) \in K$.

Dies war zu zeigen. ■

3. Eindeutige Lösbarkeit von Anfangswertproblemen

Wir haben bereits Beispiele für die nichteindeutige Lösbarkeit von Anfangswertproblemen kennengelernt. Wir betrachten ein weiteres Beispiel:

Beispiel: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} \sqrt{x} & \text{für } x \ge 0, \\ 0 & \text{für } x < 0. \end{cases}$$

Das Anfangswertproblem

$$x' = f(x), \quad x(0) = 0$$

hat (neben anderen) die Lösungen $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ mit

$$\varphi(t) = 0 \quad \text{und} \quad \psi(t) = \begin{cases} \left(\frac{t}{2}\right)^2 & \text{für } t \ge 0, \\ 0 & \text{für } t < 0. \end{cases}$$

Die Funktion f ist nicht lokal Lipschitz-stetig, was man beispielsweise am Verhalten von

$$\frac{f(\frac{1}{n}) - f(0)}{\frac{1}{n} - 0} = \sqrt{n} \to \infty \text{ für } n \to \infty$$

sehen kann. Solche Phänomene gibt es nicht, wenn man lokale Lipschitz-Stetigkeit voraussetzt.

SATZ (Eindeutige Lösbarkeit von Anfangswertproblemen). Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. x. Sei $(t_0, x_0) \in D$. Seien

$$\varphi: I_{\varphi} \to \mathbb{R}^n \quad und \quad \psi: I_{\psi} \to \mathbb{R}^n$$

zwei Lösungen des Anfangswertproblems

$$x' = f(t, x), \quad x(t_0) = x_0.$$

(Dabei sollten I_{φ} , I_{ψ} Intervalle sein, die t_0 enthalten.) Dann gilt

$$\varphi(t) = \psi(t) \text{ für alle } t \in I_{\varphi} \cap I_{\psi}.$$

Beweis: Sei $I = I_{\varphi} \cap I_{\psi}$. Wir definieren

$$\sigma: I \to \mathbb{R} \text{ mit } \sigma(t) = \|\varphi(t) - \psi(t)\|^2 = (\varphi(t) - \psi(t)) \cdot (\varphi(t) - \psi(t)).$$

Es gilt

$$\sigma'(t) = 2\left(\varphi(t) - \psi(t)\right) \cdot \left(\varphi'(t) - \psi'(t)\right) = 2\left(\varphi(t) - \psi(t)\right) \cdot \left(f(t, \varphi(t)) - f(t, \psi(t))\right).$$

Es folgt

$$|\sigma'(t)| \le 2\|\varphi(t) - \psi(t)\| \|f(t, \varphi(t)) - f(t, \psi(t))\|.$$

Sei $J \subseteq I$ ein kompaktes Intervall mit $t_0 \in J$. Nun ist

$$\{(t, \varphi(t)) : t \in J\} \cup \{(t, \psi(t)) : t \in J\}$$

eine kompakte Teilmenge von D. Die Einschränkung von f auf diese Teilmenge ist global Lipschitz-stetig, d.h. es gibt eine Zahl $L \in \mathbb{R}_{\geq 0}$ mit

$$||f(t,\varphi(t)) - f(t,\psi(t))|| \le L||\varphi(t) - \psi(t)||$$
 für alle $t \in J$.

Es folgt

$$|\sigma'(t)| \le L \|\varphi(t) - \psi(t)\|^2 = L\sigma(t)$$
 für alle $t \in J$.

Es ist $\sigma(0) = 0$. Aus einem früheren Lemma folgt

$$\sigma(t) = 0$$
 für alle $t \in J$.

Also folgt

$$\psi(t) = \psi(t)$$
 für alle $t \in J$.

Da I durch kompakte, t_0 enthaltende Intervalle überdeckt werden kann, folgt

$$\varphi(t) = \psi(t)$$
 für alle $t \in I$.

Dies beweist die Behauptung.

FOLGERUNG. Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig. Seien

$$\varphi: I_{\varphi} \to \mathbb{R}^n \quad und \quad \psi: I_{\psi} \to \mathbb{R}^n$$

Lösungen der Differentialgleichung

$$x' = f(t, x),$$

wobei I_{φ} und I_{ψ} offene Intervalle sind. Dann sind entweder die Graphen von φ und ψ disjunkt, d.h.

$$\{(t,\varphi(t)):t\in I_{\varphi}\}\cap\{(t,\psi(t)):t\in I_{\psi}\}=\emptyset,$$

oder φ und ψ stimmen so weit möglich überein, d.h.

$$I_{\varphi} \cap I_{\psi} \neq \emptyset$$
 und $\varphi(t) = \psi(t)$ für alle $t \in I_{\varphi} \cap I_{\psi}$.

Beweis: Seien die Graphen von φ und ψ nicht disjunkt. Dann gibt es

$$t_0 \in I_{\varphi} \cap I_{\psi} \text{ mit } \varphi(t) = \psi(t).$$

Also lösen φ und ψ das Anfangswertproblem

$$x' = f(t, x), \quad x(t_0) = \varphi(t_0) = \psi(t_0).$$

Die Behauptung folgt dann aus dem vorangegangenen Satz.

Anwendung: Sei $f : \mathbb{R} \to \mathbb{R}$ stetig und lokal Lipschitz-stetig. x' = f(x) mit $f : \mathbb{R} \to \mathbb{R}$ lokal Lipschitz-stetig. Sind $x_1 < x_2$ mit $f(x_1) = f(x_2) = 0$, so sind

$$\varphi_1(t) = x_1$$
 und $\varphi_2(t) = x_2$

(triviale) Lösungen der Differentialgleichung. Ist nun φ eine Lösung der Differentialgleichung mit $x_1 < \varphi(0) < x_2$, so gilt

$$x_1 < \varphi(t) < x_2$$
 für alle t, für die $\varphi(t)$ definiert ist.

4. Umwandlung der Differentialgleichung in eine Integralgleichung - Picard-Iteration

Bemerkung: Eine Funktion $f: I \to \mathbb{R}^n$ wird gegeben durch n Funktionen $f_i: I \to \mathbb{R}$ mit

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}.$$

Sind die einzelnen Funktionen f_i über das Intervall [a, b] integrierbar, so definiert man

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} \begin{pmatrix} f_{1}(t) \\ \vdots \\ f_{n}(t) \end{pmatrix} dt = \begin{pmatrix} \int_{a}^{b} f_{1}(t)dt \\ \vdots \\ \int_{a}^{b} f_{n}(t)dt \end{pmatrix}.$$

Im Folgenden benötigen wir folgende Abschätzung:

LEMMA. Sei $f:[a,b] \to \mathbb{R}^n$ integrierbar. Dann gilt

$$\|\int_a^b f(t)dt\| \le \|\int_a^b \|f(t)\|dt\|.$$

Beweis: Wir setzen o.E. $a \leq b$ voraus. Wir schreiben

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}, \quad w_i = \int_a^b f_i(t)dt \quad \text{und} \quad w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \int_a^b f(t)dt.$$

Es gilt:

$$||w||^{2} = \sum_{i=1}^{n} w_{i}^{2} = \sum_{i=1}^{n} w_{i} \int_{a}^{b} f_{i}(t)dt = \int_{a}^{b} \left(\sum_{i=1}^{n} w_{i} f_{i}(t)\right) dt =$$

$$= \int_{a}^{b} w \cdot f(t)dt \overset{\text{Cauchy-Schwarz}}{\leq} \int_{a}^{b} ||w|| ||f(t)|| dt = ||w|| \int_{a}^{b} ||f(t)|| dt.$$

Ist w = 0, so ist nichts zu zeigen, andernfalls folgt

$$\|\int_{a}^{b} f(t)dt\| = \|w\| \le \int_{a}^{b} \|f(t)\|dt,$$

die Behauptung.

Wir betrachten ein Anfangswertproblem

$$x' = f(t, x), \quad x(t_0) = x_0.$$

Ist $\varphi: I \to \mathbb{R}^n$ eine Lösung, so gilt

$$\varphi(t) - x_0 = \varphi(t) - \varphi(t_0) = \int_{t_0}^t \varphi'(u) du = \int_{t_0}^t f(u, \varphi(u)) du,$$

also

$$\varphi(t) = x_0 + \int_{t_0}^t f(u, \varphi(u)) du,$$

d.h. φ löst die Integralgleichung

$$x(t) = x_0 + \int_{t_0}^t f(u, x(u)) du.$$

LEMMA. Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ stetig.

(1) $L\ddot{o}st \varphi: I \to \mathbb{R}^n \ das \ Anfangswertproblem$

$$x' = f(t, x), \quad x(t_0) = x_0,$$

so gilt

$$\varphi(t) = x_0 + \int_{t_0}^t f(u, \varphi(u)) du \text{ für alle } t \in I.$$

(2) Sei $I \subseteq \mathbb{R}$ ein t_0 enthaltendes Intervall, $\varphi : I \to \mathbb{R}^n$ stetig mit $(t, \varphi(t)) \in D$ für alle $t \in I$, sodass gilt

$$\varphi(t) = x_0 + \int_{t_0}^t f(u, \varphi(u) du \text{ für alle } t \in I,$$

 $dann\ ist\ arphi\ differenzierbar\ und\ l\"{o}st\ das\ Anfangswertproblem$

$$x' = f(t, x), \quad x(t_0) = x_0.$$

Beweis:

- (1) Den Teil (1) haben wir bereits bewiesen.
- (2) Sei umgekehrt $\varphi: I \to \mathbb{R}$ eine stetige Funktion mit

$$\varphi(t) = x_0 + \int_{t_0}^t f(u, \varphi(u)) du.$$

Dann ist auch $u \mapsto f(u, \varphi(u))$ stetig, also

$$t \mapsto \int_{t_0}^t f(u, \varphi(u)) du$$

differenzierbar mit Ableitung $f(t, \varphi(t))$. Daher ist auch φ differenzierbar mit Ableitung

$$\varphi'(t) = f(t, \varphi(t)).$$

Natürlich gilt $\varphi(t_0) = x_0$.

Idee zur Lösung des Anfangswertproblems x' = f(t, x), $x(t_0) = x_0$: Wir definieren rekursiv eine Funktionenfolge $\varphi_k(t)$ durch

$$\varphi_0(t) = x_0$$

und

$$\varphi_{k+1}(t) = x_0 + \int_{t_0}^t f(u, \varphi_k(u)) du.$$

Dies nennt man auch **Picard-Iteration**. Die Hoffnung ist, dass die Funktionenfolge $(\varphi_k)_{k\geq 0}$ zumindest in der Nähe von $t=t_0$ gegen eine Lösung der Differentialgleichung konvergiert.

Beispiel: Wir betrachten das Anfangswertproblem

$$x' = t^2 + x^2$$
, $x(0) = 0$.

Wir starten mit

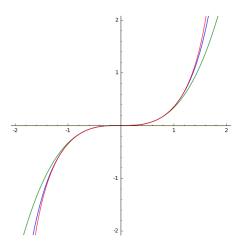
$$\varphi_0(t) = 0$$

und haben die Rekursionsformel

$$\varphi_{k+1}(t) = \int_0^t (u^2 + \varphi_k(u)^2) du.$$

Man findet:

$$\varphi_1(t) = \frac{1}{3}t^3, \quad \varphi_2(t) = \frac{1}{3}t^3 + \frac{1}{63}t^7, \quad \varphi_3(t) = \frac{1}{3}t^3 + \frac{1}{63}t^7 + \frac{2}{2079}t^{11} + \frac{1}{59535}t^{15}.$$



 $(\varphi_0 \text{ ist gelb}, \varphi_1 \text{ grün}, \varphi_2 \text{ blau}, \varphi_3 \text{ rot.})$

Beispiel: Wir betrachten

$$x' = (3-y)x$$
 mit $x_0 = 2$
 $y' = (-2+x)y$ mit $y_0 = 1$

Die Rekursionsformeln lauten dann

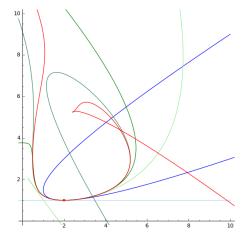
$$x_{i+1}(t) = 2 + \int_0^t (3 - y_i(u)) x_i(u) du,$$

$$y_{i+1}(t) = 1 + \int_0^t (-2 + x_i(u)) y_i(u) du.$$

Man erhält

$$x_1(t) = 2 + 4t$$
, $y_1(t) = 1$, $x_2(t) = 2 + 4t + 4t^2$, $y_2(t) = 1 + 2t^2$, ...

Wir haben hier die Funktionen bis $(x_6(t), y_6(t))$ zeichnen lassen.



Beispiel: Sei $A \in \mathbb{R}^{n \times n}$ und $x_0 \in \mathbb{R}^n$. Wir wollen die Picard-Iteration auf die homogene lineare Differentialgleichung x' = Ax mit Anfangsbedingung $x(0) = x_0$ anwenden, die wir natürlich schon gelöst haben:

$$\varphi_0(t) = x_0,$$

$$\varphi_1(t) = x_0 + \int_0^t A\varphi_0(u)du = x_0 + \int_0^t Ax_0du = x_0 + tAx_0 = (I + tA)x_0,$$

$$\varphi_2(t) = x_0 + \int_0^t A(I + uA)x_0du = x_0 + tAx_0 + \frac{1}{t^2}A^2x_0 = (I + tA + \frac{1}{2}A^2)x_0.$$

Weiter machen

5. Der Satz von Picard-Lindelöf

Für $t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$ und $a, b \in \mathbb{R}_{>0}$ definieren wir

$$Z_{a,b}(t_0, x_0) = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n : |t - t_0| \le a, ||x - x_0|| \le b\}.$$

 $Z_{a,b}(t_0,x_0)$ ist eine kompakte Menge, die zylinderartig aussieht.

SATZ (Picard-Lindelöf, quantitative Version). Gegeben sei $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$, $a, b \in \mathbb{R}_{>0}$, eine stetige **Funktion**

$$f: Z_{a,b}(t_0,x_0) \to \mathbb{R}^n$$

Zahlen $M, L \in \mathbb{R}_{>0}$, sodass gilt:

- $||f(t,x)|| \le M$ für alle $(t,x) \in Z_{a,b}(t_0,x_0)$.
- $||f(t,x_1) f(t,x_2)|| \le L \cdot ||x_1 x_2||$ für alle $(t,x_1), (t,x_2) \in Z_{a,b}(t_0,x_0)$.

Sei

$$\widetilde{a} = \min(a, \frac{b}{M}) \ \text{mit} \ \widetilde{a} = a \ \text{im Fall} \ M = 0.$$

Durch die Vorschrift (Picard-Iteration)

$$\varphi_0(t) = x_0$$
 und $\varphi_{k+1}(t) = x_0 + \int_{t_0}^t f(u, \varphi_k(u)) du$

werden dann rekursiv Funktionen φ_k definiert mit folgenden Eigenschaften:

- (1) φ_k ist auf dem Intervall $[t_0 \widetilde{a}, t_0 + \widetilde{a}]$ definiert.
- $(2) \|\varphi_k(t) x_0\| \le b \text{ für alle } t \in [t_0 \widetilde{a}, t_0 + \widetilde{a}].$
- $(3) \varphi_{k} : [t_{0} \widetilde{a}, t_{0} + \widetilde{a}] \to \mathbb{R}^{n} \text{ ist stetig.}$ $(4) \|\varphi_{k+1}(t) \varphi_{k}(t)\| \leq ML^{k} \frac{|t t_{0}|^{k+1}}{(k+1)!} \text{ für } t \in [t_{0} \widetilde{a}, t_{0} + \widetilde{a}] \text{ und alle } k \geq 0.$
- (5) Die Funktionenfolge (φ_k) konvergiert gleichmäßig gegen eine Funktion $\varphi: [t_0 \widetilde{a}, t_0 + \widetilde{a}] \to \mathbb{R}^n$.
- (6) Die Funktion φ löst das Anfangswertproblem $x' = f(t, x), x(t_0) = x_0.$
- (7) Es gilt

$$\|\varphi(t) - \varphi_k(t)\| \le ML^k \frac{|t - t_0|^{k+1}}{(k+1)!} \le ML^k \frac{\widetilde{a}^{k+1}}{(k+1)!} \text{ für alle } t \in [t_0 - \widetilde{a}, t_0 + \widetilde{a}].$$

Beweis:

(1),(2),(3) Wir beweisen durch Induktion: Für k=0 gelten offensichtlich die Aussagen (1),(2),(3). Wir setzen nun voraus, dass (1),(2),(3) bereits für φ_k gelten. Wegen (2) ist $(t,\varphi_k(t)) \in Z_{a,b}(t_0,x_0)$ für alle $t \in [t_0 - \tilde{a}, t_0 + \tilde{a}]$, sodass $f(t, \varphi_k(t))$ definiert ist. Also ist durch die angegebene Formel auch φ_{k+1} definiert. Mit φ_k und f ist dann auch $t \mapsto f(t, \varphi_k(t))$ stetig, also auch φ_{k+1} . Nun gilt weiter für $t \in [t_0 - \widetilde{a}, t_0 + \widetilde{a}]$

$$\|\varphi_{k+1}(t) - x_0\| = \|\int_{t_0}^t f(u, \varphi_k(u)) du\| \le \|\int_{t_0}^t \|f(u, \varphi_k(u))\| du\| \le \|\int_{t_0}^t M du\| = M|t - t_0| \le M\widetilde{a} \le M \cdot \frac{b}{M} = b,$$

wobei die letzte Abschätzung natürlich auch im Fall M=0 gilt.

(4) Wir beweisen die Aussage durch Induktion. Für k=0 gilt

$$\|\varphi_1(t) - \varphi_0(t)\| = \|\varphi_1(t) - x_0\| = \|\int_{t_0}^t f(u, x_0) du\| \le \|\int_{t_0}^t \|f(u, x_0)\| du \le \|\int_{t_0}^t M du\| = M|t - t_0|,$$

die Behauptung ist also richtig für k=0. Sei nun

$$\|\varphi_{k+1}(t) - \varphi_k(t)\| \le ML^k \frac{|t - t_0|^{k+1}}{(k+1)!}$$

bereits gezeigt. Dann folgt:

$$\begin{aligned} \|\varphi_{k+2}(t) - \varphi_{k+1}(t)\| &= \|\int_{t_0}^t \Big(f(u, \varphi_{k+1}(u)) - f(u, \varphi_k(u)) \Big) du \| \le \\ &\le \|\int_{t_0}^t \|f(u, \varphi_{k+1}(u)) - f(u, \varphi_k(u)) \| du \| \le \\ &\le \|\int_{t_0}^t L \cdot \|\varphi_{k+1}(u) - \varphi_k(u) \| du \| \le \\ &\le \|\int_{t_0}^t L \cdot ML^k \frac{|u - t_0|^{k+1}}{(k+1)!} du \| = ML^{k+1} \frac{|t - t_0|^{k+2}}{(k+2)!}. \end{aligned}$$

Dies beweist die Behauptung

(5),(6) Es ist

$$\varphi_k(t) - x_0 = \varphi_k(t) - \varphi_0(t) = \sum_{i=0}^{k-1} (\varphi_{i+1}(t) - \varphi_i(t)).$$

Wir betrachten die Reihe $\sum_{i=0}^{\infty} (\varphi_{i+1}(t) - \varphi_i(t))$: Es gilt für $t \in [t_0 - \widetilde{a}, t_0 + \widetilde{a}]$

$$\begin{split} \sum_{i=0}^{\infty} \|\varphi_{i+1}(t) - \varphi_{i}(t)\| & \leq & \sum_{i=0}^{\infty} ML^{i} \frac{|t - t_{0}|^{i+1}}{(i+1)!} = \frac{M}{L} \sum_{i=0}^{\infty} \frac{(L|t - t_{0}|)^{i+1}}{(i+1)!} = \\ & = & \frac{M}{L} \sum_{i=1}^{\infty} \frac{(L|t - t_{0}|)^{i}}{i!} = \frac{M}{L} \left(\sum_{i=0}^{\infty} \frac{(L|t - t_{0}|)^{i}}{i!} - 1 \right) = \\ & = & \frac{M}{L} \left(e^{L|t - t_{0}|} - 1 \right) \leq \frac{M}{L} \left(e^{L\tilde{a}} - 1 \right). \end{split}$$

Nach dem Weierstraßschen Konvergenzkriterium konvergiert daher die Reihe $\sum_{i=0}^{\infty} (\varphi_{i+1}(t) - \varphi_i(t))$ gleichmäßig auf dem Intervall $[t_0 - \widetilde{a}, t_0 + \widetilde{a}]$. Dies bedeutet, dass die Folge der Partialsummen, also $\varphi_k(t) - x_0$ und damit auch $\varphi_k(t)$ gleichmäßig auf $[t_0 - \widetilde{a}, t_0 + \widetilde{a}]$ konvergiert. Sei

$$\varphi(t) = \lim_{k \to \infty} \varphi_k(t)$$

die Grenzfunktion. Wegen der gleichmäßigen Konvergenz ist die Grenzwert $\varphi(t)$ ebenfalls stetig und natürlich gilt auch

$$\|\varphi(t) - x_0\| \le b$$
 für alle $t \in [t_0 - \widetilde{a}, t_0 + \widetilde{a}],$

also

$$(t, \varphi(t)) \in Z_{a,b}(t_0, x_0)$$
 für alle $t \in [t_0 - \widetilde{a}, t_0 + \widetilde{a}].$

Daher ist $f(t, \varphi(t))$ für $t \in [t_0 - \widetilde{a}, t_0 + \widetilde{a}]$ definiert. Nun gilt

$$||f(t,\varphi(t)) - f(t,\varphi_k(t))|| \le L||\varphi(t) - \varphi_k(t)||.$$

Die gleichmäßige Konvergenz von $\varphi_k(t)$ impliziert dann auch die gleichmäßige Konvergenz von $f(t, \varphi_k(t))$, sodass man Integration und Limesbildung vertauschen darf:

$$\int_{t_0}^t f(u, \varphi(u)) du = \int_{t_0}^t f(u, \lim_{k \to \infty} \varphi_k(u)) du = \int_{t_0}^t \lim_{k \to \infty} f(u, \varphi_k(u)) du =$$

$$= \lim_{k \to \infty} \int_{t_0}^t f(u, \varphi_k(u)) du = \lim_{k \to \infty} (\varphi_{k+1}(t) - x_0) = \varphi(t) - x_0.$$

Dies zeigt nach unseren Vorüberlegungen, dass $\varphi(t)$ das Anfangswertproblem auf dem Intervall $[t_0 - \tilde{a}, t_0 + \tilde{a}]$ löst. Da f global Lipschitz-stetig ist, ist die Lösung auch eindeutig bestimmt.

(7) Wir beweisen die Aussage durch Induktion. Für k = 0 gilt:

$$\|\varphi(t) - \varphi_0(t)\| = \|\varphi(t) - x_0\| = \|\int_{t_0}^t f(u, \varphi(u)) du\| \le \|\int_{t_0}^t \|f(u, \varphi(u))\| du\| \le \|\int_{t_0}^t M du\| = M|t - t_0|.$$

Es nun $k \ge 0$ und die Aussage bereits für k gezeigt. Es folgt:

$$\begin{aligned} \|\varphi(t) - \varphi_{k+1}(t)\| &= \|\int_{t_0}^t f(u, \varphi(u)) du - \int_{t_0}^t f(u, \varphi_k(u)) du \| = \\ &= \|\int_{t_0}^t (f(u, \varphi(u)) - f(u, \varphi_k(u))) du \| \le \\ &\le \|\int_{t_0}^t \|f(u, \varphi(u)) - f(u, \varphi_k(u)) \| du \| \le \\ &\le \|\int_{t_0}^t L \|\varphi(u) - \varphi_k(u) \| du \| \le \|\int_{t_0}^t L \cdot M L^k \frac{|t - t_0|^{k+1}}{(k+1)!} du \| = \\ &= M L^{k+1} \frac{|t - t_0|^{k+2}}{(k+2)!}. \end{aligned}$$

Dies beweist die Behauptung durch Induktion. Der zweite Teil der Abschätzung mit \widetilde{a} ist wegen $|t-t_0| \leq \widetilde{a}$ dann trivial.

Erstellen!

SATZ (Picard-Lindelöf, qualitative Version). Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitzstetig bzgl. x. Dann besitzt jedes Anfangswertproblem

$$x' = f(t, x), \quad x(t_0) = x_0 \quad mit \quad (t_0, x_0) \in D$$

eine eindeutig bestimmte lokale Lösung, d.h. es gibt ein $\tilde{a} > 0$ und eine Lösung $\varphi : [t_0 - \tilde{a}, t_0 + \tilde{a}] \to \mathbb{R}^n$ des Anfangswertproblems, und diese ist eindeutig bestimmt.

Beweis: Man wähle a, b > 0 mit $Z_{a,b}(t_0, x_0) \subseteq D$. Da f als lokal Lipschitz-stetig bzgl. x vorausgesetzt war, ist die Einschränkung auf die kompakte Menge $Z_{a,b}(t_0, x_0)$ sogar global Lipschitz-stetig bzgl. x, d.h. es existiert ein L > 0 mit

$$||f(t,x_1) - f(t,x_2)|| \le L||x_1 - x_2||$$
 für alle $(t,x_1), (t,x_2) \in Z_{a,b}(t_0,x_0)$.

Da f stetig ist, ist f auf der kompakten Menge $Z_{a,b}(t_0,x_0)$ beschränkt, d.h. es gibt eine Zahl M>0 mit

$$||f(t,x)|| \le M$$
 für alle $(t,x) \in Z_{a,b}(t_0,x_0)$.

Nun kann man die quantitative Version von Picard-Lindelöf anwenden und erhält eine Lösung

$$\varphi: [t_0 - \widetilde{a}, t_0 + \widetilde{a}] \to \mathbb{R}^n$$

des Anfangswertproblems. Dass die Lösung auf diesem Intervall eindeutig bestimmt hat, haben wir bereits früher gesehen. \blacksquare

Wir erwähnen noch eine Folgerung, die wir später für einen Beweis benötigen:

FOLGERUNG. Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. x und $(t_0, x_0) \in D$. Dann gibt es eine Umgebung U von (t_0, x_0) und ein $\delta \in \mathbb{R}_{>0}$, sodass für jedes Paar $(\tau, \xi) \in U$ das Anfangswertproblem

$$x' = f(t, x), \quad x(\tau) = \xi$$

eine Lösung

$$\varphi_{(\tau,\xi)}: [\tau - \delta, \tau + \delta] \to \mathbb{R}^n.$$

besitzt. (Wichtig ist, dass δ unabhängig von (τ, ξ) ist.)

Beweis: Seien $a, b \in \mathbb{R}_{>0}$ mit

$$Z_{a,b}(t_0, x_0) = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n : |t - t_0| \le a, ||x - x_0|| \le b\}.$$

Die Stetigkeit von f impliziert wegen der Kompaktheit von $Z_{a,b}(t_0,x_0)$, dass eine Zahl $M \in \mathbb{R}_{>0}$ existiert mit

$$||f(t,x)|| \le M$$
 für alle $(t,x) \in Z_{a,b}(t_0,x_0)$.

Da f lokal Lipschitz-stetig bzgl. x ist, existiert wegen der Kompaktheit von $Z_{a,b}(t_0,x_0)$ eine Zahl L>0 mit

$$||f(t,x_1) - f(t,x_2)|| \le L \cdot ||x_1 - x_2||$$
 für alle $(t,x_1), (t,x_2) \in Z_{a,b}(t_0,x_0)$.

Sei

$$U = Z_{\frac{a}{2}, \frac{b}{2}}(t_0, x_0) \text{ und } \delta = \min(\frac{a}{2}, \frac{b}{2M}).$$

Sei

$$(\tau,\xi) \in Z_{\frac{a}{2},\frac{b}{2}}(t_0,x_0)$$

beliebig gegeben. Wir wenden die quantitative Version des Satzes von Picard-Lindelöf auf

$$f: Z_{\frac{a}{2}, \frac{b}{2}}(\tau, \xi) \to \mathbb{R}^n$$

an. Dazu bemerken wir zunächst, dass

$$Z_{\frac{a}{2},\frac{b}{2}}(\tau,\xi) \subseteq Z_{a,b}(t_0,x_0)$$

gilt. Insbesondere gilt

$$\|f(t,x)\| \leq M$$
 für alle $(t,x) \in Z_{\frac{a}{2},\frac{b}{2}}(\tau,\xi)$

und

$$||f(t,x_1) - f(t,x_2)|| \le L \cdot ||x_1 - x_2||$$
 für alle $(t,x_1), (t,x_2) \in Z_{\frac{a}{2},\frac{b}{2}}(\tau,\xi)$.

Die Voraussetzungen des Satzes von Picard-Lindelöf sind also erfüllt. Mit

$$\delta = \min(\frac{a}{2}, \frac{b}{2M})$$

erhalten wir eine Lösung

$$\varphi_{(\tau,\xi)}: [\tau - \delta, \tau + \delta] \to \mathbb{R}^n$$

des Anfangswertproblems

$$x' = f(t, x), \quad x(\tau) = \xi,$$

die wegen der lokalen Lipschitz-Stetigkeit eindeutig bestimmt ist. Dies wollten wir zeigen.

Wir erwähnen hier noch einen Satz, der ohne Lipschitz-Stetigkeit auskommt.

SATZ (Peano). Sei $D \subseteq \mathbb{R}^{n+1}$ offen und $f: D \to \mathbb{R}^n$ stetig. Für jedes $(t_0, x_0) \in D$ besitzt dann das Anfangswertproblem

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$

(mindestens) eine lokale Lösung, d.h. es existieren $\alpha = \alpha(t_0, x_0) > 0$, $\beta = \beta(t_0, x_0) > 0$ und eine differenzierbare Funktion $\varphi : [t_0 - \alpha, t_0 + \beta] \to \mathbb{R}^n$ mit

$$(t, \varphi(t)) \in D$$
 und $\dot{\varphi}(t) = f(t, \varphi(t))$ für alle $t \in [t_0 - \delta, t_0 + \delta]$.

Bemerkung: Betrachtet man das Anfangswertproblem

$$xx' = 1, \quad x(0) = 0,$$

so ist klar, dass es keine Lösung hat. Existenzaussagen, die für x' = f(t, x), $x(t_0) = x_0$ gelten, lassen sich also nicht unbedingt verallgemeinern.

6. Globaler Existenz- und Eindeutigkeitssatz

In der zuvor angegebenen Fassung sagt der Satz von Picard-Lindelöf, dass jedes Anfangswertproblem x' = f(t, x), $x(t_0) = x_0$ lokal eindeutig lösbar ist, wenn f stetig und lokal Lipschitz-stetig bzgl. x ist. Nicht klar ist dabei, was global passiert.

LEMMA. Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ stetig. Sind

$$\varphi_1: [t_1, t_0] \to \mathbb{R}^n \quad und \quad \varphi_2: [t_0, t_2] \to \mathbb{R}^n$$

Lösungen der Differentialgleichung x' = f(t, x) und gilt

$$\varphi_1(t_0) = \varphi_2(t_0),$$

so löst auch

$$\varphi: [t_1, t_2] \to \mathbb{R}^n \text{ mit } \varphi(t) = \begin{cases} \varphi_1(t) & \text{ für } t \in [t_1, t_0], \\ \varphi_2(t) & \text{ für } t \in [t_0, t_1] \end{cases}$$

die Differentialgleichung.

Beweis: Zunächst ist φ eine stetige Funktion. Natürlich löst φ die Differentialgleichung in allen Punkten $t \neq t_0$. Nun gilt aber

$$\varphi_1'(t_0) = f(t_0, \varphi_1(t_0)) = f(t_0, \varphi_2(t_0)) = \varphi_2'(t_0),$$

also ist auch φ in t_0 differenzierbar und löst dort die Differentialgleichung.

SATZ (Globaler Existenz- und Eindeutigkeitssatz). Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ sei stetig und lokal Lipschitz-stetig bzgl. x. Sei $(t_0, x_0) \in D$. Dazu existiert ein eindeutig bestimmtes, t_0 enthaltendes, offenes Intervall $(t_-, t_+) \subseteq \mathbb{R}$ mit $-\infty \le t_- < t_0 < t_+ \le \infty$ und folgenden Eigenschaften:

(1) Es existiert auf (t_-, t_+) eine Lösung des Anfangswertproblems x' = f(t, x), $x(t_0) = x_0$, d.h. eine differenzierbare Funktion $\varphi : (t_-, t_+) \to \mathbb{R}^n$, sodass gilt

$$(t, \varphi(t)) \in D$$
 und $\varphi'(t) = f(t, \varphi(t))$ für alle $t \in (t_-, t_+)$ und $\varphi(t_0) = x_0$.

(2) Ist $\psi: J \to \mathbb{R}^n$ eine Lösung des Anfangswertproblems, so gilt $J \subseteq (t_-, t_+)$ und $\psi(t) = \varphi(t)$ für alle $t \in J$.

 (t_-,t_+) wird das maximale Existenz- oder Lösungsintervall genannt, φ die (eindeutig bestimmte), maximale Lösung des Anfangswertproblems. t_- und t_+ nennt man auch Entweichzeiten.

Beweis:

Wir definieren

$$t_{-}=\inf\{t_{1}\in\mathbb{R}: \text{ das Anfangswertproblem hat eine Lösung auf } [t_{1},t_{0}]\}$$

und

 $t_{+} = \sup\{t_{2} \in \mathbb{R} : \text{ das Anfangswertproblem hat eine Lösung auf } [t_{0}, t_{2}]\}.$

 $\bullet\,$ Da das Anfangswertproblem nach dem Satz von Picard-Lindelöf lokal um $t=t_0$ lösbar ist, gilt

$$t_{-} < t_{0} < t_{+}$$
.

• Sei $t_0 < t < t_+$. Dann existiert ein t_2 mit $t < t_2 \le t_+$ und eine Lösung des Anfangswertproblems $\varphi_1 : [t_0, t_2] \to \mathbb{R}^n$. Wir definieren

$$\varphi(t) = \varphi_1(t).$$

Ist $\varphi_2: [t_0, \widetilde{t_2}] \to \mathbb{R}^n$ eine andere Lösung mit $t < \widetilde{t_2} \le t_+$, so liefert der Eindeutigkeitssatz $\varphi_1(t) = \varphi_2(t)$ auf $[t_0, \min(t_2, \widetilde{t_2})]$. Damit ist $\varphi(t)$ eindeutig definiert und erfüllt natürlich die Differentialgleichung.

- Analog können wir φ auf dem Intervall $(t_-, t_0]$ definieren.
- Gäbe es eine Lösung φ auf dem Intervall $[t_0,t_+]$ mit $t_+<\infty$, so wäre $(t_+,\varphi(t_+))$ in D, also erhielte man mit dem Satz von Picard-Lindelöf eine Lösung auf einem Intervall $[t_+-\delta,t_++\delta]$, die natürlich auf $[t_+-\delta,t_+]$ mit der ursprünglichen Lösung übereinstimmt. Damit hätte man eine Lösung auf $[t_0,t_++\delta]$, was der Definition von t_+ widerspricht. Analoges gilt für t_- .

• Sei $\psi: J \to \mathbb{R}^n$ irgendeine Lösung des Anfangswertproblems. Wegen unseres Eindeutigkeitssatzes folgt sofort $\varphi(t) = \psi(t)$ für alle $J \cap (t_-, t_+)$. Wäre $J \not\subseteq (t_-, t_+)$, so erhielte man eine Lösung auf $J \cup (t_-, t_+)$, was der Maximilät widerspräche.

7. Randverhalten

Es gibt im Allgemeinfall keine einfache Formel für das maximale Lösungsintervall der maximalen Lösung. Der folgende Satz macht aber eine wesentliche Aussage dazu.

SATZ (Randverhalten maximaler Lösungen). Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen, $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. $x. \varphi: (t_-, t_+) \to \mathbb{R}^n$ sei die maximale Lösung des Anfangswertproblems

$$x' = f(t, x), \quad x(t_0) = x_0.$$

Wir unterscheiden zwei Fälle:

- (1) Fall $\partial D = \emptyset$, d.h. $D = \mathbb{R} \times \mathbb{R}^n$: Für t_+ gibt es zwei Möglichkeiten:
 - $t_+ = \infty$
 - $t_+ < \infty$. Dann gilt $\lim_{t \uparrow t_+} \|\varphi(t)\| = \infty$.

Analog gibt es für t₋ zwei Möglichkeiten:

- $t_- = -\infty$.
- $t_- > -\infty$. Dann gilt $\lim_{t \downarrow t_-} \|\varphi(t)\| = \infty$.
- (2) Fall $D \neq \mathbb{R} \times \mathbb{R}^n$, d.h. $\partial D \neq \emptyset$: Für t_+ gibt es drei Möglichkeiten:
 - $t_+ = \infty$.
 - $t_+ < \infty$ und $\lim_{t \uparrow t_+} \|\varphi(t)\| = \infty$.
 - $t_+ < \infty$ und $\lim_{t \uparrow t_+} \text{Abstand}((t, \varphi(t)), \partial D) = 0$. (Ist $\widetilde{x} \in \mathbb{R}^n$ und gibt es eine Folge t_n mit $t_n \uparrow t_+$ und $\varphi(t_n) \to \widetilde{x}$, so gilt $(t_+, \widetilde{x}) \in \partial D$.)

Analog gibt es für t_{-} drei Möglichkeiten:

- $t_- = -\infty$.
- $t_- > -\infty$ und $\lim_{t \downarrow t_-} \|\varphi(t)\| = \infty$.
- $t_- > -\infty$ und $\lim_{t \downarrow t_-} Abstand((t, \varphi(t)), \partial D) = 0$.

Beweisskizze: Wir betrachten die maximale Lösung

$$\varphi:(t_-,t_+)\to\mathbb{R}^n$$

des Anfangswertproblems

$$x' = f(t, x), \quad x(t_0) = x_0,$$

wobei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. x sein soll. Wir schauen uns nur den rechten Rand t_+ an.

- (1) Ist $t_{+} = \infty$, so ist die Lösung auf ganz $[t_{0}, \infty)$ definiert. Hier ist nichts zu zeigen.
- (2) Wir betrachten nun den Fall $t_+ < \infty$. Wir wissen bereits, dass φ nicht in t_+ definiert ist. Wir betrachten, wie sich $\varphi(t)$ für $t \to t_+$ verhält.
 - (a) Fall: $\lim_{t\to t_+} \|\varphi(t)\| = \infty$, d.h. für alle $M \ge 0$ gibt es ein $\varepsilon > 0$, sodass gilt

$$\|\varphi(t)\| \geq M$$
 für alle $t \in (t_+ - \varepsilon, t_+)$.

(b) Wenn dies nicht der Fall ist, gibt es ein $M \ge 0$, sodass für alle $k \in \mathbb{N}$ ein $t_k \in (t_+ - \frac{1}{k}, t_+)$ existiert mit

$$\|\varphi(t_k)\| < M.$$

Die Folge $(\varphi(t_k))_{k\geq 1}$ ist beschränkt, besitzt also eine konvergente Teilfolge. O.E. konvergiert die Folge selbst, d.h. es gibt ein $\widetilde{x}\in\mathbb{R}^n$ mit

$$\lim_{k \to \infty} \varphi(t_k) = \widetilde{x}.$$

(i) Angenommen, es wäre $(t_+, \tilde{x}) \in D$. Nach einer Folgerung aus der quantitativen Version des Satzes von Picard-Lindelöf gibt es eine Umgebung U von (t_+, \tilde{x}) in D und ein $\delta > 0$, sodass für jedes Paar $(\tau, \xi) \in U$ das Anfangswertproblem

$$x' = f(t, x), \quad x(\tau) = \xi$$

eine eindeutig bestimmte Lösung

$$\varphi_{(\tau,\xi)}: [\tau - \delta, \tau + \delta] \to \mathbb{R}^n$$

besitzt. O.E. gilt $(t_k, \varphi(t_k)) \in U$. Also gibt es eine Lösung

$$\varphi_k: [t_k - \delta, t_k + \delta] \to \mathbb{R}^n$$

des Anfangswertproblems

$$x' = f(t, x), \quad x(t_k) = \varphi(t_k).$$

Da aber auch $\varphi:(t_-,t_+)\to\mathbb{R}^n$ eine Lösung dieses Anfangswertproblems ist, und zwar sogar die maximale Lösung, folgt

$$[t_k - \delta, t_k + \delta] \subseteq (t_-, t_+),$$
 also insbesondere $t_k + \delta \le t_+.$

Da $\delta>0$ unabhängig von k ist, erhält man für $k\to\infty$ den Widerspruch $t_++\delta\le t_+$. Die Annahme ist also falsch, der Fall $(t_+,\widetilde{x})\in D$ ist unmöglich.

(ii) Falls $(t_+, \widetilde{x}) \not\in D$, so ist der Punkt als Grenzwert von $(t_n, \varphi(t_n))$ im Rand von D, d.h.

$$(t_+, \widetilde{x}) \in \partial D$$
.

Es folgt die Behauptung. ■

Bemerkung: Etwas vereinfacht ausgedrückt kann man sagen, dass maximale Lösungen von Rand zu Rand laufen.

Beispiele: Die folgenden Beispiele zeigen verschiedenes Randverhalten im Fall $t^+ < \infty$.

(1) Das Anfangswertproblem

$$x' = tx^2, \quad x(0) = 1$$

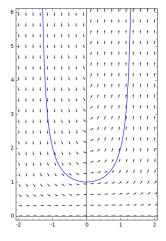
ist auf ganz \mathbb{R}^2 definiert, d.h. $D = \mathbb{R}^2$. Wir hatten die Lösung

$$\varphi(t) = \frac{1}{1 - \frac{1}{2}t^2}$$

mit dem maximalen Definitionsintervall

$$(t_-, t_+) = (-\sqrt{2}, \sqrt{2})$$

gefunden. Hier gilt also $\lim_{t\uparrow t_+} |\varphi(t)| = \infty$.



(2) Das Anfangswertproblem

$$x' = -\frac{1}{x}, \quad x(0) = 1$$

ist definiert für $x \neq 0$, also auf $D = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$. Als Lösung findet man

$$\varphi(t) = \sqrt{1 - 2t}$$

mit dem maximalen Definitionsintervall

$$(t_-, t_+) = (-\infty, \frac{1}{2}).$$

Es gilt

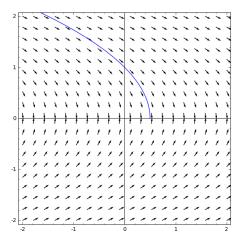
$$\lim_{t\uparrow\frac{1}{2}}(t,\varphi(t))=(\frac{1}{2},0)\in\partial D.$$

 $((\frac{1}{2},0)$ ist ein Randpunkt von D.) Wir drücken es noch anders aus: Es ist $\partial D=\mathbb{R}\times\{0\}$ und

Abstand
$$((t, \varphi(t)), \partial D) = \sqrt{1 - 2t}$$

und

$$\lim_{t\uparrow t_+} \mathsf{Abstand}((t,\varphi(t)),\partial D) = 0.$$



(3) Das Anfangswertproblem

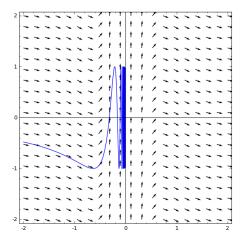
$$x' = -\frac{1}{t^2}\cos(\frac{1}{t}), \quad x(-\frac{1}{\pi}) = 0$$

ist definiert für $t\neq 0,$ also auf $D=(\mathbb{R}\setminus\{0\})\times\mathbb{R}.$ Als Lösung findet man

$$\varphi(t) = \sin(\frac{1}{t})$$

mit dem maximalen Lösungsintervall

$$(t_-, t_+) = (-\infty, 0).$$



Für $t \uparrow t_+$ divergiert $\varphi(t)$; die Häufungspunkte sind (0,c) mit $-1 \le c \le 1$, also Randpunkte von D. Noch etwas genauer: Es ist $\partial D = \{0\} \times \mathbb{R}$ und

Abstand
$$((t, \varphi(t)), \partial D) = |t|$$

und

$$\lim_{t \uparrow t_{+}} \text{Abstand}((t, \varphi(t)), \partial D) = 0.$$

Der folgende Satz liefert ein nützliches Kriterium:

SATZ. Seien $D = (a, b) \times \mathbb{R}^n$ mit $-\infty \le a < b \le \infty$, $f : D \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bezüglich x. Außerdem gebe es stetige Funktionen

$$\alpha, \beta: (a, b) \to \mathbb{R}_{>0},$$

sodass gilt

$$||f(t,x)|| \le \alpha(t)||x|| + \beta(t)$$
 für alle $t \in (a,b)$ und alle $x \in \mathbb{R}^n$.

(Man nennt f in diesem Fall linear beschränkt.) Dann ist für jedes $(t_0, x_0) \in (a, b) \times \mathbb{R}^n$ die maximale Lösung $\varphi : (t_-, t_+) \to \mathbb{R}^n$ des Anfangswertproblems $x' = f(t, x), x(t_0) = x_0$ auf ganz (a, b) definiert, d.h.

$$(t_-, t_+) = (a, b).$$

Beweis:

(1) Wir betrachten zunächst $t \in [t_0, t_+)$. Es gilt

$$\varphi(t) = x_0 + \int_{t_0}^t f(u, \varphi(u)) du,$$

also

$$\|\varphi(t)\| \le \|x_0\| + \int_{t_0}^t \|f(u,\varphi(u))\| du \le \|x_0\| + \int_{t_0}^t (\alpha(u)\|\varphi(u)\| + \beta(u)) du.$$

Wir definieren

$$\lambda : [t_0, t_+) \to \mathbb{R} \text{ mit } \lambda(t) = ||x_0|| + \int_{t_0}^t (\alpha(u)||\varphi(u)|| + \beta(u)) du,$$

sodass insbesondere $\|\varphi(t)\| \leq \lambda(t)$ gilt. Es folgt

$$\lambda'(t) = \alpha(t) \|\varphi(t)\| + \beta(t),$$

und damit

$$\lambda'(t) \le \alpha(t)\lambda(t) + \beta(t).$$

Sei A(t) eine Stammfunktion von $\alpha(t)$. Wir definieren eine neue Funktion $\mu(t)$ durch den Ansatz

$$\lambda(t) = e^{A(t)}\mu(t).$$

Dann gilt:

$$\lambda'(t) \leq \alpha(t)\lambda(t) + \beta(t) \quad \Longleftrightarrow \quad \alpha(t)e^{A(t)}\mu(t) + e^{A(t)}\mu'(t) \leq \alpha(t)e^{A(t)}\mu(t) + \beta(t) \quad \Longleftrightarrow \quad e^{A(t)}\mu'(t) \leq \beta(t) \quad \Longleftrightarrow \quad \mu'(t) \leq e^{-A(t)}\beta(t).$$

Damit folgt

$$\mu(t) = \mu(t_0) + (\mu(t) - \mu(t_0)) = \mu(t_0) + \int_{t_0}^t \mu'(u) du \le$$

$$\le \mu(t_0) + \int_{t_0}^t e^{-A(u)} \beta(u) du,$$

also

$$\lambda(t) \le e^{A(t)} \left(\mu(t_0) + \int_{t_0}^t e^{-A(u)} \beta(u) du \right),$$

und wegen $\|\varphi(t)\| \leq \lambda(t)$

$$\|\varphi(t)\| \le e^{A(t)} \left(\mu(t_0) + \int_{t_0}^t e^{-A(u)} \beta(u) du \right),$$

wobei die rechte Seite auf ganz $[t_0, b)$ definiert ist. Wir wollen zeigen, dass $t_+ = b$ gilt. Wäre $t_+ < b$, so gäbe es zwei Möglichkeiten:

- Fall: Die Lösung $\{(t, \varphi(t)) : t \in [t_0, t_+)\}$ kommt dem Rand beliebig nahe. Dann müsste $b < \infty$ sein. Aber wegen $t_+ < b$ hat die Lösung eine Abstand $\geq b t_+$ vom Rand. Dieser Fall kann also nicht eintreten.
- Fall: $\lim_{t\uparrow t_+} \|\varphi(t)\| = \infty$. Da die rechte Seite unserer Abschätzung aber für alle $t \in [t_0, b)$ definiert ist, kann dieser Fall nicht eintreten.

Es gilt also $t_{+} = b$.

(2) Analog zeigt man $t_{-} = a$.

Beispiel: Betrachten wir das Anfangswertproblem

$$x' = -t^5 x \cos x + e^t, \quad x(0) = 1.$$

Offensichtlich ist $f(t,x) = -t^5x\cos x + e^t$ linear beschränkt. Daher ist die maximale Lösung des Anfangswertproblems auf ganz \mathbb{R} definiert.

Eine Anwendung des letzten Satzes ist folgendes Ergebnis, das wir schon bei den linearen Differentialgleichungen oft verwendet haben.

Folgerung. Sei $I \subseteq \mathbb{R}^n$ offen und $A: I \to \mathbb{R}^{n \times n}$ stetig. Wir betrachten die homogene lineare Differentialgleichung

$$x' = A(t)x$$

und die auf ganz I definierten Lösungen:

$$\mathcal{L} = \{ \varphi : I \to \mathbb{R}^n : \varphi'(t) = A(t)\varphi(t) \}.$$

Dann ist \mathcal{L} ein n-dimensionaler Vektorraum.

Beweis: Wir haben früher gezeigt, dass \mathcal{L} ein Vektorraum der Dimension $\leq n$ ist. Wir müssen noch zeigen, dass die Dimension tatsächlich n ist. Sei $f: I \times \mathbb{R}^n$ definiert durch

$$f(t,x) = A(t)x$$

Natürlich ist f stetig. Wegen

$$||f(t,x_1)-f(t,x_2)|| = ||A(t)(x_1-x_2)|| \le ||A(t)|| ||x_1-x_2||$$
 für alle $x_1,x_2 \in \mathbb{R}^n$

ist f auch lokal Lipschitz-stetig, sodass jedes Anfangswertproblem eine eindeutig bestimmte, maximale Lösung besitzt. Wegen

$$||f(t,x)|| = ||A(t)x|| \le ||A(t)|||x||$$

ist f linear beschränkt, sodass alle maximalen Lösungen auf dem ganzen Definitionsintervall I definiert sind. Seien $e_1, \ldots, e_n \in \mathbb{R}^n$ die kanonischen Einheitsvektoren. Sei $\varphi_i : I \to \mathbb{R}^n$ die Lösung des Anfangswertproblems

$$x' = A(t)x, \quad x(t_0) = e_i.$$

Wir schreiben die Lösungen $\varphi_1, \dots, \varphi_n$ spaltenweise in eine Matrix:

$$\Phi(t) = (\varphi_1(t)| \dots |\varphi_n(t)).$$

Wegen

$$\Phi(t_0) = (\varphi_1(t_0)| \dots |\varphi_n(t_0)) = (e_1| \dots |e_n) = I$$

ist $\Phi(t)$ die Hauptfundamentalmatrix in $t=t_0$. Dies beweist die Behauptung.

Auch der folgende Satz liefert ein nützliches Kriterium:

SATZ. Sei $D_0 \subseteq \mathbb{R}^n$ offen, $f: D_0 \to \mathbb{R}^n$ lokal Lipschitz-stetig und $\varphi: (t_-, t_+) \to \mathbb{R}^n$ die maximale Lösung des Anfangswertproblems

$$x' = f(x), \quad x(0) = x_0.$$

(Man beachte, dass f nicht von t abhängt, dass es sich also um eine autonome Differentialgleichung handelt.) Gibt es dann eine kompakte Teilmenge $K \subseteq D_0$ mit

$$\varphi((t_-, t_+)) \subseteq K$$
,

so gilt schon

$$(t_-, t_+) = \mathbb{R},$$

d.h. die Lösung φ ist auf ganz \mathbb{R} definiert.

Beweis:

(1) Ist $\partial D_0 \neq \emptyset$, so nimmt die stetige Funktion

$$K \to \mathbb{R}, \quad x \mapsto \operatorname{Abstand}(x, \partial D_0)$$

ihr Minimum δ auf der kompakten Menge K an. Dies kann nicht 0 sein, d.h. $\delta > 0$. Dann gilt

Abstand
$$((t, \varphi(t), \partial(\mathbb{R} \times D_0)) \geq \delta$$
.

Es bleiben für das Randverhalten also nur die Möglichkeiten

$$t_{+} = \infty$$

oder

$$t_+ < \infty \text{ und } \lim_{t \uparrow t_+} \|\varphi(t)\| = \infty.$$

Da aber das Bild von φ in einer kompakten Menge enthalten ist, kann der zweite Fall nicht eintreten. Also gilt $t_+ = \infty$ und ganz analog $t_- = -\infty$.

Auch die folgende Eigenschaft ist bei der Untersuchung von Differentialgleichung manchmal hilfreich:

SATZ. Sei $D \subseteq \mathbb{R}^n$ offen und $f: D \to \mathbb{R}^n$ stetig.

(1) Ist $\varphi:[t_0,\infty)\to\mathbb{R}^n$ eine Lösung der Differentialgleichung

$$x' = f(x),$$

sodass $\varphi(t)$ für $t \to \infty$ gegen einen Punkt $p \in D$ konvergiert, d.h.

$$\lim_{t\to\infty}\varphi(t)=p\ mit\ p\in D,$$

so gilt

$$f(p) = 0.$$

(2) Ist $\varphi: (-\infty, t_0] \to \mathbb{R}^n$ eine Lösung der Differentialgleichung

$$x' = f(x),$$

sodass $\varphi(t)$ für $t \to -\infty$ gegen einen Punkt $p \in D$ konvergiert, d.h.

$$\lim_{t \to -\infty} \varphi(t) = p \ mit \ p \in D,$$

so gilt

$$f(p) = 0.$$

(Lokale Lipschitz-Stetigkeit von f wird hier nicht vorausgesetzt.)

Beweis:

(1) (a) Da f in p stetig ist, existiert zu jedem $\varepsilon > 0$ ein $\delta > 0$ mit der Eigenschaft:

$$x \in D \text{ und } ||x - p|| < \delta \implies ||f(x) - f(p)|| < \varepsilon.$$

Da φ für $t \to \infty$ gegen p konvergiert, existiert zu jedem $\delta > 0$ ein t_1 mit

$$t \ge t_1 \implies \|\varphi(t) - p\| < \delta.$$

Zusammengesetzt finden wir zu $\varepsilon > 0$ ein $\delta > 0$, dazu ein t_{ε} mit der Eigenschaft

$$t \ge t_{\varepsilon} \implies ||f(\varphi(t)) - f(p)|| < \varepsilon.$$

(b) Nun gilt für $t \geq t_{\varepsilon}$

$$\begin{split} \|f(p)\|(t-t_{\varepsilon}) &= \|(t-t_{\varepsilon})f(p)\| = \|\int_{t_{\varepsilon}}^{t} f(p)du\| = \\ &= \|\int_{t_{\varepsilon}}^{t} f(\varphi(u))du - \int_{t_{\varepsilon}}^{t} (f(\varphi(u)) - f(p))du\| \le \\ &\le \|\int_{t_{\varepsilon}}^{t} f(\varphi(u))du\| + \int_{t_{\varepsilon}}^{t} \|f(\varphi(u)) - f(p)\|du \le \\ &\le \|\int_{t_{\varepsilon}}^{t} \varphi'(u)du\| + \int_{t_{\varepsilon}}^{t} \varepsilon du = \|\varphi(t) - \varphi(t_{\varepsilon})\| + \varepsilon(t - t_{\varepsilon}) \le \\ &\le \|\varphi(t)\| + \|\varphi(t_{\varepsilon})\| + \varepsilon(t - t_{\varepsilon}). \end{split}$$

Es folgt

$$\|\varphi(t)\| \ge (\|f(p)\| - \varepsilon) (t - t_{\varepsilon}) - \|\varphi(t_{\varepsilon})\|.$$

Wäre $f(p) \neq 0$, so würde man bei Wahl von $\varepsilon < ||f(p)||$ sofort $\lim_{t\to\infty} ||\varphi(t)|| = \infty$ erhalten, was wegen $\varphi(t) \to p$ nicht sein kann. Daher folgt f(p) = 0, wie behauptet.

(2) Definiert man $\psi: [-t_0, \infty)$ durch $\psi(t) = \varphi(-t)$, so gilt

$$\psi'(t) = -\varphi'(-t) = -f(\varphi(-t)) = (-f)(\psi(t))$$

und

$$\lim_{t \to \infty} \psi(t) = p.$$

Wendet man (1) auf ψ und -f an, so folgt -f(p)=0, also f(p)=0, wie behauptet.

Beispiel: (nach F2012/2/4) Wir betrachten das Anfangswertproblem

$$x' = f(x)$$
 mit $f(x) = x(x-2)e^{\cos x}$ und $x(0) = 1$.

• Da $f(x) = x(x-2)e^{\cos x}$ stetig differenzierbar ist, besitzt das Anfangswertproblem nach dem globalen Existenz- und Eindeutigkeitssatz eine eindeutig bestimmte, maximale Lösung

$$\varphi:(t_-,t_+)\to\mathbb{R}.$$

• Die Differentialgleichung x' = f(x) hat die konstanten Lösungen $\varphi_0, \varphi_2 : \mathbb{R} \to \mathbb{R}$ mit

$$\varphi_0(t) = 0$$
 und $\varphi_2(t) = 2$.

Da (0,1) im Graphen von φ , aber nicht in den Graphen von φ_0 und φ_2 liegt, sind die Graphen disjunkt, sodass mit dem Zwischenwertsatz sofort

$$0 < \varphi(t) < 2$$
 für alle $t \in (t_-, t_+)$

folgt.

 \bullet Da φ beschränkt ist, folgt aus dem Satz über das Randverhalten sofort

$$(t_-, t_+) = (-\infty, \infty),$$

weil es keine anderen Möglichkeiten gibt.

• Aus $0 < \varphi(t) < 2$ folgt $f(\varphi(t)) < 0$, also $\varphi'(t) < 0$. Daher ist φ streng monoton fallend. Wegen $0 < \varphi(t) < 2$ existieren daher $x_+ = \lim_{t \to \infty} \varphi(t)$ und $x_- = \lim_{t \to -\infty} \varphi(t)$. Nach einem vorangegangenen Satz folgt $f(x_-) = f(x_+) = 0$. Da φ streng monoton fallend ist, ergibt sich dann

$$\lim_{t\to -\infty} \varphi(t) = 2 \quad \text{ und } \quad \lim_{t\to \infty} \varphi(t) = 0.$$