Null-controllability of the heat equation on unbounded domains

Michela Egidi

based on joint works with I. Veselić, A. Seelmann

Oberseminar Angewandte Mathematik
Friedrich-Alexander-Universität Erlangen-Nürnberg

14th January 2020
Statement of the problem

Let \(\Omega \subset \mathbb{R}^d \) be an open domain, \(\omega \subset \Omega \) be a measurable subset, \(\Delta \) be the Laplacian on \(\Omega \) with boundary conditions if \(\partial \Omega \neq \emptyset \), \(T > 0 \), \(u_0 \in L^2(\Omega) \), \(v \in L^2((0, T), L^2(\Omega)) \).

We consider the controlled heat equation:

\[
\frac{\partial}{\partial t} u(t) - \Delta u(t) = \chi_\omega v(t) \quad 0 < t \leq T
\]

\(u(0) = u_0 \)

where \(\chi_\omega \) is the characteristic function of \(\omega \).

Question 1

Null-controllability: Given \(u_0 \in L^2(\Omega) \) there exists a function \(v \in L^2((0, T), L^2(\Omega)) \) such that the (mild) solution of system (1) is zero at final time \(T \), i.e. \(u(T) \equiv 0 \)?

Question 2

Control cost's bound: If the answer to 1) is positive, can we found a “good” bound for \(C_T := \sup_{\|u_0\|_{L^2(\Omega)} = 1} \inf \{\|v\|_{L^2((0, T), L^2(\Omega))} : v \text{ makes the sol. of (1) zero at time } T \} \)?
Statement of the problem

Let

- $\Omega \subset \mathbb{R}^d (d \geq 1)$ be an open domain,
Statement of the problem

Let
- $\Omega \subset \mathbb{R}^d$ ($d \geq 1$) be an open domain,
- $\omega \subset \Omega$ be a measurable subset,
Statement of the problem

Let
- $\Omega \subset \mathbb{R}^d$ ($d \geq 1$) be an open domain,
- $\omega \subset \Omega$ be a measurable subset,
- Δ be the Laplacian on Ω with boundary conditions if $\partial \Omega \neq \emptyset$,
Statement of the problem

Let

- $\Omega \subset \mathbb{R}^d \ (d \geq 1)$ be an open domain,
- $\omega \subset \Omega$ be a measurable subset,
- Δ be the Laplacian on Ω with boundary conditions if $\partial \Omega \neq \emptyset$,
- $T > 0$,
Statement of the problem

Let

- $\Omega \subset \mathbb{R}^d \ (d \geq 1)$ be an open domain,
- $\omega \subset \Omega$ be a measurable subset,
- Δ be the Laplacian on Ω with boundary conditions if $\partial\Omega \neq \emptyset$,
- $T > 0$,
- $u_0 \in L^2(\Omega)$, $v \in L^2((0, T), L^2(\Omega))$.

We consider the controlled heat equation:

$$\begin{cases}
 \partial_t u(t) - \Delta u(t) = \chi_\omega v(t) & 0 < t \leq T \\
 u(0) = u_0 &
\end{cases}$$

where χ_ω is the characteristic function of ω.

Question 1

Null-controllability: Given $u_0 \in L^2(\Omega)$ there exists a function $v \in L^2((0, T), L^2(\Omega))$ such that the (mild) solution of system (1) is zero at final time T, i.e. $u(T) \equiv 0$?

Question 2

Control cost's bound: If the answer to 1) is positive, can we found a "good" bound for $C_T := \sup_{\|u_0\|_{L^2(\Omega)} = 1} \inf \{\|v\|_{L^2((0, T), L^2(\Omega))} : v \text{ makes the sol. of (1) zero at time } T\}$?
Statement of the problem

Let

- $\Omega \subset \mathbb{R}^d$ ($d \geq 1$) be an open domain,
- $\omega \subset \Omega$ be a measurable subset,
- Δ be the Laplacian on Ω with boundary conditions if $\partial \Omega \neq \emptyset$,
- $T > 0$,
- $u_0 \in L^2(\Omega)$, $v \in L^2((0, T), L^2(\Omega))$.

We consider the *controlled heat equation*:

$$
\begin{cases}
\partial_t u(t) - \Delta u(t) = \chi_\omega v(t) & 0 < t \leq T \\
u(0) = u_0
\end{cases}
$$

(1)

where χ_ω is the characteristic function of ω.

Question 1 Null-controllability: Given $u_0 \in L^2(\Omega)$ there exists a function $v \in L^2((0, T), L^2(\Omega))$ such that the (mild) solution of system (1) is zero at final time T, i.e.

$u(T) \equiv 0$?

Question 2 Control cost's bound: If the answer to 1) is positive, can we found a "good" bound for $C_T := \sup_{\|u_0\|_{L^2(\Omega)} = 1} \inf \{ \|v\|_{L^2((0, T), L^2(\Omega))} : v \text{ makes the sol. of (1) zero at time } T \}$?
Statement of the problem

Let
- $\Omega \subset \mathbb{R}^d$ ($d \geq 1$) be an open domain,
- $\omega \subset \Omega$ be a measurable subset,
- Δ be the Laplacian on Ω with boundary conditions if $\partial \Omega \neq \emptyset$,
- $T > 0$,
- $u_0 \in L^2(\Omega)$, $v \in L^2((0, T), L^2(\Omega))$.

We consider the controlled heat equation:

$$\begin{cases}
\partial_t u(t) - \Delta u(t) = \chi_\omega v(t) & 0 < t \leq T \\
u(0) = u_0
\end{cases}$$

(1)

where χ_ω is the characteristic function of ω.

Question

1. **Null-controllability:** Given $u_0 \in L^2(\Omega)$ there exists a function $v \in L^2((0, T), L^2(\Omega))$ such that the (mild) solution of system (1) is zero at final time T, i.e. $u(T) \equiv 0$?
Statement of the problem

Let

- \(\Omega \subset \mathbb{R}^d \ (d \geq 1) \) be an open domain,
- \(\omega \subset \Omega \) be a measurable subset,
- \(\Delta \) be the Laplacian on \(\Omega \) with boundary conditions if \(\partial \Omega \neq \emptyset \),
- \(T > 0 \),
- \(u_0 \in L^2(\Omega) \), \(v \in L^2((0, T), L^2(\Omega)) \).

We consider the controlled heat equation:

\[
\begin{align*}
\frac{\partial}{\partial t} u(t) - \Delta u(t) &= \chi_\omega v(t) \quad 0 < t \leq T \\
u(0) &= u_0
\end{align*}
\]

(1)

where \(\chi_\omega \) is the characteristic function of \(\omega \).

Question

1. **Null-controllability**: Given \(u_0 \in L^2(\Omega) \) there exists a function \(v \in L^2((0, T), L^2(\Omega)) \) such that the (mild) solution of system (1) is zero at final time \(T \), i.e. \(u(T) \equiv 0 \)?

2. **Control cost’s bound**: If the answer to 1) is positive, can we found a ”good” bound for

\[
C_T := \sup_{\| u_0 \|_{L^2(\Omega)} = 1} \inf \{ \| v \|_{L^2((0, T), L^2(\Omega))} : v \text{ makes the sol. of (1) zero at time } T \}
\]
Our scope

The general scope is to answer the initial question for unbounded domains in \mathbb{R}^d obtaining an answer in dependence of geometric properties of the subset ω.
Our scope

The general scope is to answer the initial question for unbounded domains in \mathbb{R}^d obtaining an answer in dependence of geometric properties of the subset ω. We will treat the case of Ω being \mathbb{R}^d, the infinite strip $(0, L)^{d-1} \times \mathbb{R}$, and unbounded domains with reflection symmetry.
Sufficient and necessary conditions for null-controllability

Theorem (J.-M. Coron '07, Tucsnack-Weiss '09): The controlled heat equation is null-controllable in time $T > 0$ if and only if the corresponding observability inequality is satisfied, i.e. $\exists C_{\text{obs}} > 0: \|e^{T \Delta} f\|_{L^2(\Omega)} \leq C_{\text{obs}} \int_0^T \|e^{t \Delta} f\|_{L^2(\omega)} \, dt \forall f \in L^2(\Omega)$.

Moreover, $C_T \leq \sqrt{C_{\text{obs}}}$.

Proposition (Beauchard, Pravda-Starov '17): Let $\Omega \subset \mathbb{R}^d$ and $\omega \subset \Omega$ as before, let $(\pi_E)_{E \in \mathbb{N}}$ be the family of spectral projections of $-\Delta$ up to value E. Assume $\exists c > 0: \|\pi_E f\|_{L^2(\Omega)} \leq e^{c \sqrt{E}} \|\pi_E f\|_{L^2(\omega)} \forall f \in L^2(\Omega) \forall E \in \mathbb{N}$ then $\exists C(c) > 1: \|e^{T \Delta} f\|_{L^2(\Omega)} \leq C e^{C/c} \int_0^T \|e^{t \Delta} f\|_{L^2(\omega)} \, dt \forall T > 0 \forall f \in L^2(\Omega)$.

M. Egidi
Heat equation on unbounded domains
14th January 2020 4 / 13
Sufficient and necessary conditions for null-controllability

- **Theorem (J.-M. Coron '07, Tucsnack-Weiss '09):** The controlled heat equation is null-controllable in time $T > 0$ if and only if the corresponding *observability inequality* is satisfied, i.e.

 $$\exists C_{\text{obs}} > 0 : \|e^{T\Delta}f\|_{L^2(\Omega)}^2 \leq C_{\text{obs}} \int_0^T \|e^{t\Delta}f\|_{L^2(\omega)}^2 \, dt \quad \forall f \in L^2(\Omega).$$

Moreover, $C_T \leq \sqrt{C_{\text{obs}}}$.

- **Proposition (Beauchard, Pravda-Starov '17):** Let $\Omega \subset \mathbb{R}^d$ and $\omega \subset \Omega$ as before, let $(\pi_{E})_{E \in \mathbb{N}}$ be the family of spectral projections of $-\Delta$ up to value E. Assume $\exists c > 0 : \|\pi_{E}f\|_{L^2(\Omega)} \leq e^{c\sqrt{E}}\|\pi_{E}f\|_{L^2(\omega)} \quad \forall f \in L^2(\Omega)$

 then $\exists C(c) > 1 : \|e^{T\Delta}f\|_{L^2(\Omega)} \leq Ce^{C/c} \int_0^T \|e^{t\Delta}f\|_{L^2(\omega)}^2 \, dt \quad \forall f \in L^2(\Omega)$.

Sufficient and necessary conditions for null-controllability

Theorem (J.-M. Coron '07, Tucsnack-Weiss '09): The controlled heat equation is null-controllable in time $T > 0$ if and only if the corresponding observability inequality is satisfied, i.e.

$$\exists C_{obs} > 0 : \|e^{T\Delta} f\|_{L^2(\Omega)}^2 \leq C_{obs} \int_0^T \|e^{t\Delta} f\|_{L^2(\omega)}^2 \, dt \quad \forall f \in L^2(\Omega).$$

Moreover, $C_T \leq \sqrt{C_{obs}}$.

Proposition (Beauchard, Pravda-Starov '17): Let $\Omega \subset \mathbb{R}^d$ and $\omega \subset \Omega$ as before, let $(\pi_E)_{E \in \mathbb{N}}$ be the family of spectral projections of $-\Delta$ up to value E. Assume

$$\exists c > 0 : \|\pi_E f\|_{L^2(\Omega)} \leq e^{c\sqrt{E}} \|\pi_E f\|_{L^2(\omega)} \quad \forall f \in L^2(\Omega) \quad \forall E \in \mathbb{N}$$

then

$$\exists C(c) > 1 : \|e^{T\Delta} f\|_{L^2(\Omega)} \leq C e^{C/T} \int_0^T \|e^{t\Delta} f\|_{L^2(\omega)} \, dt \quad \forall T > 0 \quad \forall f \in L^2(\Omega).$$
Let \(\cdot \mid \cdot \) denote the Lebesgue measure on \(\mathbb{R}^d \). Let \(S \subset \mathbb{R}^d \) be measurable. We say that \(S \) is thick if there exist \(\gamma \in (0, 1] \) and \(a = (a_1, \ldots, a_d) \in (0, \infty)^d \) such that
\[
|S \cap (x + [0, a_1] \times \cdots \times [0, a_d])| \geq \gamma d \prod_{j=1}^d a_j \quad \forall x \in \mathbb{R}^d.
\]
(2) We also refer to \(S \) as \((\gamma, a) \)-thick. Example: a periodic arrangement of balls is a thick set.
Let $|\cdot|$ denote the Lebesgue measure on \mathbb{R}^d. Let $S \subset \mathbb{R}^d$ be measurable. We say that S is thick if there exist $\gamma \in (0, 1]$ and $a = (a_1, \ldots, a_d) \in (0, \infty)^d$ such that $|S \cap (x + [0, a_1] \times \ldots \times [0, a_d])| \geq \gamma d \prod_{j=1}^d a_j \quad \forall x \in \mathbb{R}^d$.

(2)

We also refer to S as (γ, a)-thick. Example: a periodic arrangement of balls is a thick set.
Thick sets

Let \(|\cdot|\) denote the Lebesgue measure on \(\mathbb{R}^d\). Let \(S \subset \mathbb{R}^d\) be measurable.

We say that \(S\) is *thick* if there exist \(\gamma \in (0, 1]\) and \(a = (a_1, \ldots, a_d) \in (0, \infty)^d\) such that

\[
|S \cap (x + [0, a_1] \times \ldots \times [0, a_d])| \geq \gamma \prod_{j=1}^{d} a_j \quad \forall x \in \mathbb{R}^d. \quad (2)
\]
Let $|\cdot|$ denote the Lebesgue measure on \mathbb{R}^d. Let $S \subset \mathbb{R}^d$ be measurable.

We say that S is thick if there exist $\gamma \in (0, 1]$ and $a = (a_1, \ldots, a_d) \in (0, \infty)^d$ such that

$$|S \cap (x + [0, a_1] \times \ldots \times [0, a_d])| \geq \gamma \prod_{j=1}^{d} a_j \quad \forall x \in \mathbb{R}^d. \quad (2)$$

We also refer to S as (γ, a)-thick.
Let $|\cdot|$ denote the Lebesgue measure on \mathbb{R}^d. Let $S \subset \mathbb{R}^d$ be measurable. We say that S is thick if there exist $\gamma \in (0, 1]$ and $a = (a_1, \ldots, a_d) \in (0, \infty)^d$ such that

$$|S \cap (x + [0, a_1] \times \ldots \times [0, a_d])| \geq \gamma \prod_{j=1}^{d} a_j \quad \forall x \in \mathbb{R}^d.$$ \hspace{1cm} (2)

- We also refer to S as (γ, a)-thick.
- Example: a periodic arrangement of balls is a thick set.
Previously known: Let $\omega \subset \mathbb{R}^d$ be an open subset.

(Miller '04) A necessary condition for null-controllability is $\sup_{x \in \mathbb{R}^d}(x, \omega) < \infty$.

(Miller '05) A sufficient condition for null controllability is that ω satisfies $\exists r, \delta > 0 \text{ s.t. } \forall y \in \mathbb{R}^n \exists x \in \omega: B(x, r) \subset \omega,$ and $\|y - x\| < \delta$.

Theorem 1 (E.-Veselic '18) Let $\Omega = \mathbb{R}^d$ and $T > 0$. The following statements are equivalent:

(i) The set ω is thick;

(ii) The controlled heat equation is null-controllable in any time $T > 0$.

In particular, if ω is (γ, a)-thick, the control cost satisfies $C_T \leq C_1 / 2 \exp(C_1/2T)$, $C_1 = (K_d \gamma K(d + \|a\|_1))$, where $K > 0$ is a universal constant.
The \mathbb{R}^d case

Previously known: Let $\omega \subset \mathbb{R}^d$ be an open subset.

- (Miller ’04) A necessary condition for null-controllability is $\sup_{x \in \mathbb{R}^d} d(x, \omega) < \infty$.

Theorem 1 (E.-Veselic ’18)

Let $\Omega = \mathbb{R}^d$ and $T > 0$. The following statements are equivalent:

(i) The set ω is thick;

(ii) The controlled heat equation is null-controllable in any time $T > 0$.

In particular, if ω is (γ, a)-thick, the control cost satisfies

$$C_T \leq C_1 \left(\frac{1}{2} \right) \exp \left(C_1^2 T \right),$$

where $K > 0$ is a universal constant.
The \mathbb{R}^d case

Previously known: Let $\omega \subset \mathbb{R}^d$ be an open subset.

- (Miller ’04) A necessary condition for null-controllability is $\sup_{x \in \mathbb{R}^d} d(x, \omega) < \infty$.
- (Miller ’05) A sufficient condition for null controllability is that ω satisfies
 \[\exists r, \delta > 0 \text{ s.t. } \forall y \in \mathbb{R}^n \exists x \in \omega : B(x, r) \subset \omega, \text{ and } ||y - x|| < \delta. \]
The \mathbb{R}^d case

Previously known: Let $\omega \subset \mathbb{R}^d$ be an open subset.

- (Miller '04) A necessary condition for null-controllability is $\sup_{x \in \mathbb{R}^d} d(x, \omega) < \infty$.
- (Miller '05) A sufficient condition for null controllability is that ω satisfies
 \[
 \exists r, \delta > 0 \text{ s.t. } \forall y \in \mathbb{R}^n \exists x \in \omega : \text{ } B(x, r) \subset \omega, \text{ and } \|y - x\| < \delta.
 \]

Theorem 1 (E.-Veselic '18)

Let $\Omega = \mathbb{R}^d$ and $T > 0$. The following statements are equivalent:

(i) The set ω is thick;

(ii) The controlled heat equation is null-controllable in any time $T > 0$.

The \mathbb{R}^d case

Previously known: Let $\omega \subset \mathbb{R}^d$ be an open subset.

- (Miller '04) A necessary condition for null-controllability is $\sup_{x \in \mathbb{R}^d} d(x, \omega) < \infty$.
- (Miller '05) A sufficient condition for null controllability is that ω satisfies

$$\exists r, \delta > 0 \text{ s.t. } \forall y \in \mathbb{R}^n \exists x \in \omega : B(x, r) \subset \omega, \text{ and } \|y - x\| < \delta.$$

Theorem 1 (E.-Veselic '18)

Let $\Omega = \mathbb{R}^d$ and $T > 0$. The following statements are equivalent:

(i) The set ω is thick;
(ii) The controlled heat equation is null-controllable in any time $T > 0$.

In particular, if ω is (γ, a)-thick, the control cost satisfies

$$C_T \leq C_1^{1/2} \exp \left(\frac{C_1}{2T} \right), \quad C_1 = \left(\frac{K^d}{\gamma} \right)^{K(d + \|a\|_1)},$$

where $K > 0$ is a universal constant.
Proof of "thickness ⇒ null-controllability"

Recall: we need to prove \(\| \pi_E f \|_{L^2(\mathbb{R}^d)} \leq e^{c\sqrt{E}} \| \pi_E f \|_{L^2(\omega)} \forall E \in \mathbb{N}, \forall f \in L^2(\mathbb{R}^d). \)
Proof of "thickness ⇒ null-controllability"

Recall: we need to prove $\|\pi_E f\|_{L^2(\mathbb{R}^d)} \leq e^{c\sqrt{E}} \|\pi_E f\|_{L^2(\omega)}$ $\forall E \in \mathbb{N}$, $\forall f \in L^2(\mathbb{R}^d)$. This follows from

Proposition 1 (Kovrijkine ’01)

Let $g \in L^2(\mathbb{R}^d)$ such that $\text{supp} \hat{g} \subset J$, for J a parallelepiped in \mathbb{R}^d with sides parallel to coordinate axes and of length b_1, \ldots, b_d. Set $b = (b_1, \ldots, b_d)$. Let ω be a (γ, a)-thick set, then

$$\|g\|_{L^2(\mathbb{R}^d)} \leq \left(\frac{K^d}{\gamma}\right)^{K(a \cdot b + d)} \|g\|_{L^2(\omega)}$$

where $K > 0$ is a universal constant where $a \cdot b = \sum_{j=1}^d a_j b_j$.
Proof of "thickness \Rightarrow null-controllability"

Recall: we need to prove $\|\pi_E f\|_{L^2(\mathbb{R}^d)} \leq e^{c\sqrt{E}} \|\pi_E f\|_{L^2(\omega)}$ $\forall E \in \mathbb{N}$, $\forall f \in L^2(\mathbb{R}^d)$.

This follows from

Proposition 1 (Kovrijkine '01)

Let $g \in L^2(\mathbb{R}^d)$ such that $\text{supp} \, \hat{g} \subset J$, for J a parallelepiped in \mathbb{R}^d with sides parallel to coordinate axes and of length b_1, \ldots, b_d. Set $b = (b_1, \ldots, b_d)$. Let ω be a (γ, a)-thick set, then

$$\|g\|_{L^2(\mathbb{R}^d)} \leq \left(\frac{K^d}{\gamma}\right)^{K(a \cdot b + d)} \|g\|_{L^2(\omega)}$$

where $K > 0$ is a universal constant where $a \cdot b = \sum_{j=1}^{d} a_j b_j$.

Indeed: for any $E \in \mathbb{N}$, $\pi_E : L^2(\mathbb{R}^d) \to \{ f \in L^2(\mathbb{R}^d) : \text{supp} \, \hat{f} \subset B(0, \sqrt{E})\}$.
Proof of ”thickness ⇒ null-controllability”

Recall: we need to prove \(\| \pi_E f \|_{L^2(\mathbb{R}^d)} \leq e^{c\sqrt{E}} \| \pi_E f \|_{L^2(\omega)} \) \(\forall E \in \mathbb{N}, \forall f \in L^2(\mathbb{R}^d) \).

This follows from

Proposition 1 (Kovrijkine ’01)

Let \(g \in L^2(\mathbb{R}^d) \) such that \(\text{supp} \hat{g} \subset J \), for \(J \) a parallelepiped in \(\mathbb{R}^d \) with sides parallel to coordinate axes and of length \(b_1, \ldots, b_d \). Set \(b = (b_1, \ldots, b_d) \). Let \(\omega \) be a \((\gamma, a)\)-thick set, then

\[
\| g \|_{L^2(\mathbb{R}^d)} \leq \left(\frac{K^d}{\gamma} \right)^{K(a \cdot b + d)} \| g \|_{L^2(\omega)}
\]

where \(K > 0 \) is a universal constant where \(a \cdot b = \sum_{j=1}^{d} a_j b_j \).

Indeed: for any \(E \in \mathbb{N}, \pi_E : L^2(\mathbb{R}^d) \to \{ f \in L^2(\mathbb{R}^d) : \text{supp} \hat{f} \subset B(0, \sqrt{E}) \} \).

Hence for any \(f \in L^2(\mathbb{R}^d), \text{supp} \pi_E f \subset [-\sqrt{E}, \sqrt{E}]^d \) and Prop 1 applies to \(g = \pi_E f \).
Proof of "null-controllability \Rightarrow thickness"

Proof by contradiction: we assume that ω is not thick and we construct a sequence $(g_k)_{k \in \mathbb{N}}$ of functions in $L^2(\mathbb{R}^d)$ for which the observability inequality

$$\|e^{T \Delta} g_k\|_{L^2(\mathbb{R}^d)} \leq C_{\text{obs}} \int_0^T \|e^{t \Delta} g_k\|_{L^2(\omega)}^2 dt$$

does not hold.

Since ω is not thick, for all $k \in \mathbb{N}$ there exists a point $\xi_k \in \mathbb{R}^d$ such that

$$|\omega \cap (\xi_k + [0, 2k])| < \frac{1}{k}.$$ Then there exist points $x_k \in \mathbb{R}^d$ such that

$$|\omega \cap B(x_k, k)| < \frac{1}{k}.$$

Set $g_k(x) := \exp\left(-\frac{\|x-x_k\|^2}{2}\right)$.

Show that

$$\|e^{T \Delta} g_k\|_{L^2(\mathbb{R}^d)} \geq C > 0$$

for all k, but

$$\int_0^T \|e^{t \Delta} g_k\|_{L^2(\omega)}^2 dt \to k \to \infty 0.$$
Proof of "null-controllability ⇒ thickness"

Proof by contradiction: we assume that ω is not thick and we construct a sequence $(g_k)_{k \in \mathbb{N}}$ of functions in $L^2(\mathbb{R}^d)$ for which the observability inequality

$$\|e^{T\Delta} g_k\|_{L^2(\mathbb{R}^d)}^2 \leq C_{obs} \int_0^T \|e^{t\Delta} g_k\|_{L^2(\omega)}^2 \, dt$$

does not hold.
Proof of ”null-controllability ⇒ thickness”

Proof by contradiction: we assume that ω is not thick and we construct a sequence $(g_k)_{k \in \mathbb{N}}$ of functions in $L^2(\mathbb{R}^d)$ for which the observability inequality

$$\|e^{T\Delta} g_k\|_{L^2(\mathbb{R}^d)}^2 \leq C_{obs} \int_0^T \|e^{t\Delta} g_k\|_{L^2(\omega)}^2 \, dt$$

does not hold.

- Since ω is not thick, for all $k \in \mathbb{N}$ there exists a point $\xi_k \in \mathbb{R}^d$ such that $|\omega \cap (\xi_k + [0, 2k]^d)| < \frac{1}{k}$. Then there exist points $x_k \in \mathbb{R}^d$ such that $|\omega \cap B(x_k, k)| < \frac{1}{k}$.
Proof of "null-controllability ⇒ thickness"

Proof by contradiction: we assume that ω is not thick and we construct a sequence $(g_k)_{k \in \mathbb{N}}$ of functions in $L^2(\mathbb{R}^d)$ for which the observability inequality

$$\| e^{T\Delta} g_k \|_{L^2(\mathbb{R}^d)}^2 \leq C_{obs} \int_0^T \| e^{t\Delta} g_k \|_{L^2(\omega)}^2 \, dt$$

does not hold.

- Since ω is not thick, for all $k \in \mathbb{N}$ there exists a point $\xi_k \in \mathbb{R}^d$ such that $|\omega \cap (\xi_k + [0, 2k]^d)| < \frac{1}{k}$. Then there exist points $x_k \in \mathbb{R}^d$ such that $|\omega \cap B(x_k, k)| < \frac{1}{k}$.
- Set $g_k(x) := \exp(-\frac{\|x-x_k\|^2}{2})$.

Proof by contradiction: we assume that ω is not thick and we construct a sequence $(g_k)_{k \in \mathbb{N}}$ of functions in $L^2(\mathbb{R}^d)$ for which the observability inequality
\[\| e^{t\Delta} g_k \|_{L^2(\mathbb{R}^d)}^2 \leq C_{\text{obs}} \int_0^T \| e^{t\Delta} g_k \|_{L^2(\omega)}^2 \, dt \]
does not hold.

- Since ω is not thick, for all $k \in \mathbb{N}$ there exists a point $\xi_k \in \mathbb{R}^d$ such that $|\omega \cap (\xi_k + [0, 2k]^d)| < \frac{1}{k}$. Then there exist points $x_k \in \mathbb{R}^d$ such that $|\omega \cap B(x_k, k)| < \frac{1}{k}$.
- Set $g_k(x) := \exp(-\frac{|x-x_k|^2}{2})$.
- Show that $\| e^{t\Delta} g_k \|_{L^2(\mathbb{R}^d)} \geq C > 0$ for all k, but $\int_0^T \| e^{t\Delta} g_k \|_{L^2(\omega)}^2 \, dt \to_{k \to \infty} 0$.
The case of an infinite strip

Let \(L > 0 \), \(d \geq 2 \), \(\Omega = (0, L)^d - 1 \times \mathbb{R}^d \) and impose Dirichlet or Neumann boundary conditions on \(\partial \Omega \). The following statements are equivalent:

(i) The measurable set \(\omega \subset \Omega \) satisfies the condition: there exist \(\gamma \in (0, 1] \) and \(a \in \mathbb{R}^d \) such that \(|\omega \cap P| \geq \gamma |P| \) for all \(P \subset \Omega \) parallelepipeds with sides of length \(a_1, \ldots, a_d \) and parallel to coordinate axes.

(ii) The controlled heat equation on \(\Omega \) is null-controllable in any time \(T > 0 \).

If \(\omega \) satisfies (i) with parameters \(\gamma \) and \(a \), then the control cost satisfies the bound

\[
C_T \leq C_1 / 2^{2} \exp (C_2^2 T),
\]

where \(C_2 = (2 K^d \gamma) \frac{1}{2} \sqrt{2 K (d + \|a\|_1)} \), for \(K > 0 \) a universal constant.

The control cost is independent of the width of the strip.
The case of an infinite strip

Theorem 2 (E. ’18)

Let $L > 0$, $d \geq 2$, $\Omega = (0, L)^{d-1} \times \mathbb{R}$ and impose Dirichlet or Neumann boundary conditions on $\partial \Omega$. The following statements are equivalent:

(i) The measurable set $\omega \subset \Omega$ satisfies the condition: there exist $\gamma \in (0, 1]$ and $a \in \mathbb{R}_+^d$ such that $|\omega \cap P| \geq \gamma |P|$ for all $P \subset \Omega$ parallelepips with sides of length a_1, \ldots, a_d and parallel to coordinate axes.

(ii) The controlled heat equation on Ω is null-controllable in any time $T > 0$.

If ω satisfies (i) with parameters γ and a, then the control cost satisfies the bound $C_T \leq C_1/2^2 \exp(C_2^2T)$, $C_2 = (2K^d)\gamma^{1/2} \sqrt{2K(d + \|a\|_1)}$, for $K > 0$ a universal constant.

The control cost is independent of the width of the strip.
The case of an infinite strip

Theorem 2 (E. '18)

Let $L > 0$, $d \geq 2$, $\Omega = (0, L)^{d-1} \times \mathbb{R}$ and impose Dirichlet or Neumann boundary conditions on $\partial \Omega$. The following statements are equivalent:

(i) The measurable set $\omega \subset \Omega$ satisfies the condition: there exist $\gamma \in (0, 1]$ and $a \in \mathbb{R}^d_+$ such that $|\omega \cap P| \geq \gamma |P|$ for all $P \subset \Omega$ parallelepipeds with sides of length a_1, \ldots, a_d and parallel to coordinate axes.

(ii) The controlled heat equation on Ω is null-controllable in any time $T > 0$.

If ω satisfies (i) with parameters γ and a, then the control cost satisfies the bound

$$C_T \leq C_2^{1/2} \exp \left(\frac{C_2}{2T} \right), \quad C_2 = \left(\frac{(2K)^d}{\gamma} \right)^{12\sqrt{2}K(d+\|a\|_1)},$$

for $K > 0$ a universal constant.
The case of an infinite strip

Theorem 2 (E. ’18)

Let \(L > 0, \ d \geq 2, \ \Omega = (0, L)^{d-1} \times \mathbb{R} \) and impose Dirichlet or Neumann boundary conditions on \(\partial \Omega \). The following statements are equivalent:

(i) The measurable set \(\omega \subset \Omega \) satisfies the condition: there exist \(\gamma \in (0,1] \) and \(a \in \mathbb{R}_+^d \) such that \(|\omega \cap P| \geq \gamma |P| \) for all \(P \subset \Omega \) parallelepipeds with sides of length \(a_1, \ldots, a_d \) and parallel to coordinate axes.

(ii) The controlled heat equation on \(\Omega \) is null-controllable in any time \(T > 0 \).

If \(\omega \) satisfies (i) with parameters \(\gamma \) and \(a \), then the control cost satisfies the bound

\[
C_T \leq C_2^{1/2} \exp \left(\frac{C_2}{2T} \right), \quad C_2 = \left(\frac{(2K)^d}{\gamma} \right)^{12\sqrt{2}K(d+\|a\|_1)} ,
\]

for \(K > 0 \) a universal constant.

- The control cost is independent of the width of the strip.
Sketch of proof of Theorem 2

(i) \Rightarrow (ii): Using the cartesian structure of Ω we develop a Kovrijkine-type inequality for functions $f \in L^2(\Omega)$ such that $f(x_1, \cdot)$ has Fourier coefficients contained in a compact set and $f(\cdot, x_2)$ has compactly supported Fourier transform. From here we derive the desired spectral inequality using the tensor structure of the Laplacian on Ω.

(ii) \Rightarrow (i) follows by contradiction with the same strategy as before. This time, the negation of the condition on ω gives points $x_k \in \Omega$ such that $|\omega \cap Q_k| < L^{d-1}/k$, for Q_k parallelepipeds centred at x_k with sides of length (L, \ldots, L, k). Then we choose $g_k(t) = e^{t \Delta K_\Omega(1, \cdot, x_k)}$, where K_Ω denotes the heat kernel on Ω, and show that the $L^2(\Omega)$-norm of $g_k(T)$ remains bounded away from zero, while the $L^2((0, T), L^2(\omega))$-norm of g_k tends to zero as k grows.
(i) ⇒ (ii): Using the cartesian structure of Ω we develop an Kovrijkine-type inequality for functions $f \in L^2(\Omega)$ such that $f(x_1, \cdot)$ has Fourier coefficients contained in a compact set and $f(\cdot, x_2)$ has compactly supported Fourier transform. From here we derive the desired spectral inequality using the tensor structure of the Laplacian on Ω.

(ii) ⇒ (i) follows by contradiction with the same strategy as before. This time, the negation of the condition on ω gives points $x_k \in \Omega$ such that $|\omega \cap Q_k| < L^d - 1/k$, for Q_k parallelepipeds centred at x_k with sides of length (L, \ldots, L, k). Then we choose $g_k(t) = e^{t \Delta K_\Omega(1, \cdot, x_k)}$, where K_Ω denotes the heat kernel on Ω, and show that the $L^2(\Omega)$-norm of $g_k(T)$ remains bounded away from zero, while the $L^2((0, T), L^2(\omega))$-norm of g_k tends to zero as k grows.
(i) \Rightarrow (ii): Using the cartesian structure of Ω we develop an Kovrijkine-type inequality for functions $f \in L^2(\Omega)$ such that $f(x_1, \cdot)$ has Fourier coefficients contained in a compact set and $f(\cdot, x_2)$ has compactly supported Fourier transform. From here we derive the desired spectral inequality using the tensor structure of the Laplacian on Ω.

(ii) \Rightarrow (i) follows by contradiction with the same strategy as before. This time, the negation of the condition on ω gives points $x_k \in \Omega$ such that $|\omega \cap Q_k| < L^{d-1}/k$, for Q_k parallelepipeds centred at x_k with sides of length (L, \ldots, L, k). Then we choose $g_k(t) = e^{t\Delta}K_{\Omega}(1, \cdot, x_k)$, where K_{Ω} denotes the heat kernel on Ω, and show that the $L^2(\Omega)$-norm of $g_k(T)$ remains bounded away from zero, while the $L^2((0, T), L^2(\omega))$-norm of g_k tends to zero as k grows.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset$, $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1})$, $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate. Then $\tilde{\Omega} = \Omega \cup \tilde{M}(\Omega) \cup \Gamma$.

Theorem 3 (E.-Seelmann '19)
If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

Ω and $\tilde{\Omega}$ do not need to be unbounded. It is possible to consider domains symmetric with respect to any hyperplane. The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

$$
\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset,
$$

$$
\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1}),
$$

$\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Then $\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma$.

Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup M(\omega)$.

Theorem 3 (E.-Seelmann '19)

If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

Ω and $\tilde{\Omega}$ do not need to be unbounded.

It is possible to consider domains symmetric with respect to any hyperplane. The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.

The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset$,

Then $\tilde{\Omega} = \Omega \cup \mathcal{M}(\Omega) \cup \Gamma$.

Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup \mathcal{M}(\omega)$.

Theorem 3 (E.-Seelmann '19)
If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

Ω and $\tilde{\Omega}$ do not need to be unbounded.
It is possible to consider domains symmetric with respect to any hyperplane.
The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset,$
- $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1}),$
- $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Then $\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma.$

Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup M(\omega).

Theorem 3 (E.-Seelmann '19)

If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0,$ then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from $\omega,$ and its control cost does not exceed $C.$

Ω and $\tilde{\Omega}$ do not need to be unbounded. It is possible to consider domains symmetric with respect to any hyperplane. The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset$,
- $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1})$,
- $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Theorem 3 (E.-Seelmann ‘19)

If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

Ω and $\tilde{\Omega}$ do not need to be unbounded. It is possible to consider domains symmetric with respect to any hyperplane. The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset$,
- $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1})$,
- $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Then $\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma$.

Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup M(\omega)$.

Theorem 3 (E.-Seelmann '19)

If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

Ω and $\tilde{\Omega}$ do not need to be unbounded. It is possible to consider domains symmetric with respect to any hyperplane. The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.
The case of (unbounded) domains with a reflection symmetry

Let \(\Omega \subset (0, \infty) \times \mathbb{R}^{d-1} \) for which there exists an open set \(\tilde{\Omega} \subset \mathbb{R}^d \) such that

- \(\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset \),
- \(\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1}) \),
- \(\tilde{\Omega} \) is symmetric with respect to the reflection \(M \) with respect to the first coordinate.

Then \(\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma \). Let \(\omega \subset \Omega \) and let \(\tilde{\omega} = \omega \cup M(\omega) \).
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset$,
- $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1})$,
- $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Then $\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma$. Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup M(\omega)$.

Theorem 3 (E.-Seelmann '19)

*If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.***
The case of (unbounded) domains with a reflection symmetry

Let \(\Omega \subset (0, \infty) \times \mathbb{R}^{d-1} \) for which there exists an open set \(\tilde{\Omega} \subset \mathbb{R}^d \) such that

- \(\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset \),
- \(\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1}) \),
- \(\tilde{\Omega} \) is symmetric with respect to the reflection \(M \) with respect to the first coordinate.

Then \(\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma \). Let \(\omega \subset \Omega \) and let \(\tilde{\omega} = \omega \cup M(\omega) \).

Theorem 3 (E.-Seelmann '19)

If the controlled heat equation on \(\tilde{\Omega} \) is null-controllable in time \(T > 0 \) from the set \(\tilde{\omega} \) with control cost bounded by \(C > 0 \), then also the controlled heat equation on \(\Omega \) is null-controllable in time \(T > 0 \) from \(\omega \), and its control cost does not exceed \(C \).

- \(\Omega \) and \(\tilde{\Omega} \) do not need to be unbounded.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap (\{0\} \times \mathbb{R}^{d-1}) \neq \emptyset$,
- $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1})$,
- $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Then $\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma$. Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup M(\omega)$.

Theorem 3 (E.-Seelmann '19)

If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

- Ω and $\tilde{\Omega}$ do not need to be unbounded.
- It is possible to consider domains symmetric with respect to any hyperplane.
The case of (unbounded) domains with a reflection symmetry

Let $\Omega \subset (0, \infty) \times \mathbb{R}^{d-1}$ for which there exists an open set $\tilde{\Omega} \subset \mathbb{R}^d$ such that

- $\Gamma := \tilde{\Omega} \cap \{0\} \times \mathbb{R}^{d-1} \neq \emptyset$,
- $\Omega = \tilde{\Omega} \cap ((0, \infty) \times \mathbb{R}^{d-1})$,
- $\tilde{\Omega}$ is symmetric with respect to the reflection M with respect to the first coordinate.

Then $\tilde{\Omega} = \Omega \cup M(\Omega) \cup \Gamma$. Let $\omega \subset \Omega$ and let $\tilde{\omega} = \omega \cup M(\omega)$.

Theorem 3 (E.-Seelmann '19)

If the controlled heat equation on $\tilde{\Omega}$ is null-controllable in time $T > 0$ from the set $\tilde{\omega}$ with control cost bounded by $C > 0$, then also the controlled heat equation on Ω is null-controllable in time $T > 0$ from ω, and its control cost does not exceed C.

- Ω and $\tilde{\Omega}$ do not need to be unbounded.
- It is possible to consider domains symmetric with respect to any hyperplane.
- The theorem is also valid for divergence-type operators plus potentials, as long as the matrix coefficients and the potential are compatible with the symmetry.
Let $f \in L^2(\Omega)$ and set $X_f = f \oplus (-f)$ for Dirichlet boundary conditions and $X_f = f \oplus f$ for Neumann boundary conditions.

To prove the theorem (in this simple case) it is enough to notice that $f \in L^2(\Omega)$, then $X_f \in L^2(\tilde{\Omega}) = L^2(\Omega) \oplus L^2(M(\Omega))$, $f \in D(-\Delta_\Omega)$ then $X_f \in D(-\Delta_{\tilde{\Omega}})$, $X(-\Delta_{\Omega} f) = -\Delta_{\tilde{\Omega}} (X_f)$ and $e^{t\Delta_{\tilde{\Omega}}} X_f = X e^{t\Delta_{\Omega}} f$.

Therefore, since the observability estimate holds for the larger systems, we have

$$\|e^{t\Delta_{\Omega}} f\|_{L^2(\Omega)}^2 = \frac{1}{2} \|X e^{t\Delta_{\Omega}} f\|_{L^2(\tilde{\Omega})}^2 = \frac{1}{2} \|X e^{t\Delta_{\tilde{\Omega}}} f\|_{L^2(\tilde{\Omega})}^2 \leq \frac{1}{2} C_{\text{obs}} \int_0^T \|e^{t\Delta_{\tilde{\Omega}}} X_f\|_{L^2(\tilde{\Omega})}^2 dt = \frac{1}{2} C_{\text{obs}} \int_0^T \|X e^{t\Delta_{\Omega}} f\|_{L^2(\tilde{\Omega})}^2 dt,$$

which proves the claim.

Corollary 4 (E.-Seelmann '19)

Let Ω be the half-space, the positive orthant or a sector of angle $\pi/2^n$, $n \geq 2$, and let $S \subset \mathbb{R}^d$ be a (γ, a)-thick set. Set $\omega = S \cap \Omega$, then the controlled heat equation on Ω is null-controllable from ω in any time $T > 0$.

M. Egidi
Heat equation on unbounded domains
14th January 2020
12 / 13
Let $f \in L^2(\Omega)$ and set $Xf = f \oplus (-f)$ for Dirichlet boundary conditions and $Xf = f \oplus f$ for Neumann boundary conditions.
Let \(f \in L^2(\Omega) \) and set \(Xf = f \oplus (-f) \) for Dirichlet boundary conditions and \(Xf = f \oplus f \) for Neumann boundary conditions.

To prove the theorem (in this simple case) it is enough to notice that

\[
\| e^{t \Delta_\Omega} f \|_{L^2(\Omega)}^2 = \| e^{t \Delta_{\tilde\Omega}} Xf \|_{L^2(\tilde\Omega)}^2 = \| e^{t \Delta_\Omega} f \|_{L^2(\omega)}^2 \leq C_{\text{obs}} \int_0^T \| e^{t \Delta_\Omega} f \|_{L^2(\omega)}^2 \, dt,
\]

which proves the claim.

Corollary 4 (E.-Seelmann '19)

Let \(\Omega \) be the half-space, the positive orthant or a sector of angle \(\frac{\pi}{2n} \), \(n \geq 2 \), and let \(S \subset \mathbb{R}^d \) be a \((\gamma, a)\)-thick set. Set \(\omega = S \cap \Omega \), then the controlled heat equation on \(\Omega \) is null-controllable from \(\omega \) in any time \(T > 0 \).
Let $f \in L^2(\Omega)$ and set $Xf = f \oplus (-f)$ for Dirichlet boundary conditions and $Xf = f \oplus f$ for Neumann boundary conditions.

To prove the theorem (in this simple case) it is enough to notice that

- $f \in L^2(\Omega)$, then $Xf \in L^2(\tilde{\Omega}) = L^2(\Omega) \oplus L^2(M(\Omega))$,

Corollary 4 (E.-Seelmann '19)

Let Ω be the half-space, the positive orthant or a sector of angle $\pi/2$, $n \geq 2$, and let $S \subset \mathbb{R}^d$ be a $\gamma(a)$-thick set. Set $\omega = S \cap \Omega$, then the controlled heat equation on Ω is null-controllable from ω in any time $T > 0$.
Let $f \in L^2(\Omega)$ and set $Xf = f \oplus (-f)$ for Dirichlet boundary conditions and $Xf = f \oplus f$ for Neumann boundary conditions.

To prove the theorem (in this simple case) it is enough to notice that

- $f \in L^2(\Omega)$, then $Xf \in L^2(\tilde{\Omega}) = L^2(\Omega) \oplus L^2(M(\Omega))$,
- $f \in \mathcal{D}(-\Delta_\Omega)$ then $Xf \in \mathcal{D}(-\Delta_{\tilde{\Omega}})$,
Let \(f \in L^2(\Omega) \) and set \(Xf = f \oplus (-f) \) for Dirichlet boundary conditions and \(Xf = f \oplus f \) for Neumann boundary conditions.

To prove the theorem (in this simple case) it is enough to notice that

- \(f \in L^2(\Omega) \), then \(Xf \in L^2(\tilde{\Omega}) = L^2(\Omega) \oplus L^2(M(\Omega)) \),
- \(f \in \mathcal{D}(-\Delta_\Omega) \) then \(Xf \in \mathcal{D}(-\Delta_{\tilde{\Omega}}) \),
- \(X(-\Delta_\Omega f) = -\Delta_{\tilde{\Omega}}(Xf) \) and \(e^{t\Delta_{\tilde{\Omega}}} Xf = X e^{t\Delta_\Omega} f \).

Therefore, since the observability estimate holds for the larger systems, we have

\[
\| e^{t\Delta_\Omega} f \|_{L^2(\Omega)}^2 = \frac{1}{2} \| X e^{t\Delta_\Omega} f \|_{L^2(\tilde{\Omega})}^2 = \frac{1}{2} \| e^{t\Delta_{\tilde{\Omega}}} Xf \|_{L^2(\tilde{\Omega})}^2 \leq \frac{1}{2} C_{obs} \int_0^T \| e^{t\Delta_{\tilde{\Omega}}} Xf \|_{L^2(\tilde{\omega})}^2 \, dt \\
= \frac{1}{2} C_{obs} \int_0^T \| X e^{t\Delta_\Omega} f \|_{L^2(\tilde{\omega})}^2 \, dt = C_{obs} \int_0^T \| e^{t\Delta_\Omega} f \|_{L^2(\omega)}^2 \, dt,
\]

which proves the claim.
Let \(f \in L^2(\Omega) \) and set \(Xf = f \oplus (-f) \) for Dirichlet boundary conditions and \(Xf = f \oplus f \) for Neumann boundary conditions.

To prove the theorem (in this simple case) it is enough to notice that

- \(f \in L^2(\Omega) \), then \(Xf \in L^2(\tilde{\Omega}) = L^2(\Omega) \oplus L^2(M(\Omega)) \),
- \(f \in D(-\Delta_\Omega) \) then \(Xf \in D(-\Delta_{\tilde{\Omega}}) \),
- \(X(-\Delta_\Omega f) = -\Delta_{\tilde{\Omega}}(Xf) \) and \(e^{t\Delta_{\tilde{\Omega}}}Xf = Xe^{t\Delta_\Omega}f \).

Therefore, since the observability estimate holds for the larger systems, we have

\[
\| e^{t\Delta_\Omega} f \|^2_{L^2(\Omega)} = \frac{1}{2} \| Xe^{t\Delta_\Omega} f \|^2_{L^2(\tilde{\Omega})} = \frac{1}{2} \| e^{t\Delta_{\tilde{\Omega}}} Xf \|^2_{L^2(\tilde{\Omega})} \leq \frac{1}{2} C_{obs} \int_0^T \| e^{t\Delta_{\tilde{\Omega}}} Xf \|^2_{L^2(\tilde{\omega})} \, dt
\]

\[
= \frac{1}{2} C_{obs} \int_0^T \| Xe^{t\Delta_\Omega} f \|^2_{L^2(\tilde{\omega})} \, dt = C_{obs} \int_0^T \| e^{t\Delta_\Omega} f \|^2_{L^2(\omega)} \, dt,
\]

which proves the claim.

Corollary 4 (E.-Seelmann '19)

Let \(\Omega \) be the half-space, the positive orthant or a sector of angle \(\pi/2^n, \, n \geq 2 \), and let \(S \subset \mathbb{R}^d \) be a \((\gamma, a)\)-thick set. Set \(\omega = S \cap \Omega \), then the controlled heat equation on \(\Omega \) is null-controllable from \(\omega \) in any time \(T > 0 \).
THANK YOU FOR YOUR ATTENTION!