Low dimensional field theories with domain walls and related categorical structures

Ingo Runkel
(Hamburg University)
Outline

- 2d TFT with domain walls
- bicategories from 2d field theories with domain walls
- brief discussion of generalisation in two directions (both incomplete): 3d TFT and 2d CFT
What are domain walls?

Describe domain wall by
- matching conditions on fields and/or additional terms in action localised on domain wall
- operators between the spaces of quantum states
2d topological field theory with defects

A 2d TFT is a symmetric monoidal functor from two-dimensional oriented bordisms to \(\mathbb{C} \)-vector spaces.
A 2d TFT with defects is a sym. mon. functor from two-dimensional oriented bordisms to \mathbb{C}-vector spaces with embedded or. 1-dim submf.

\[\text{lin. map } H_1 \otimes H_2 \to H_3 \]
2d topological field theory with defects

Suszek, IR ’08, Davydov, Kong, IR ’11

A **2d TFT with defects** is a sym. mon. functor from two-dimensional oriented bordisms to \mathbb{C}-vector spaces with embedded or. 1-dim submf. and labelled components

Label sets D_2, D_1

2-dim domains $a, b, c \in D_2$

1-dim domain walls $w, x, y, z \in D_1$

Lin. map $H_1 \otimes H_2 \to H_3$
Example: 2d lattice TFT with defects

Lattice construction of 2d TFT:
Fix a Frobenius algebra with trace pairing A
(ie. an algebra A such that $(a,b) \mapsto \text{tr}_A(L_a L_b)$ is non-deg.)

Bachas, Petropoulos '92
Fukuma, Hosono, Kawai '92
Example: 2d lattice TFT with defects

Lattice construction of 2d TFT:
Fix a Frobenius algebra with trace pairing A
(ie. an algebra A such that $(a,b) \mapsto \text{tr}_A(L_a L_b)$ is non-deg.)

- $T : A \otimes A \otimes A \to \mathbb{C}$
 (from mult. and pairing)
- $P : \mathbb{C} \to A \otimes A$
 (copairing)

lin. map $Z(A) \otimes Z(A) \to Z(A)$
Example: 2d lattice TFT with defects

Now with defects:
Fix Frobenius algebras with trace pairing $A_a, a \in D_2$
finite dim. $A_t(x)-A_s(x)$-bimodules $X_x, x \in D_1$ $(s,t : D_1 \to D_2)$

Davydov, Kong, IR ’11

lin. map $H_1 \otimes H_2 \to H_3$
Example: 2d lattice TFT with defects

Now with defects:
Fix Frobenius algebras with trace pairing $A_a, a \in D_2$
finite dim. $A_{t(x)} - A_{s(x)}$-bimodules $X_x, x \in D_1$ ($s, t : D_1 \to D_2$)

Davydov, Kong, IR ’11

tft+
lin. map $H_1 \otimes H_2 \to H_3$
Classification?

Known:
\[(\text{sym. mon. fun. 2-bord} \to \text{vect}) \cong (\text{comm. Frob alg.})\]

Unknown:
\[(\text{sym mon fun 2-bord} + \text{def.} \to \text{vect}) \cong (?)\]
A 2d TFT with defects gives a bicategory

Starting data:
- bulk phases D_2, domain walls D_1, maps $s,t : D_1 \to D_2$
- $\text{tft} : \text{sym. mon. functor } (\text{bord. with def}) \to \text{Vect}$

Bicategory
- objects $: D_2$
- 1-morph : lists of composable elements of D_1
- 2-morph : state spaces

Lattice example
- algebras A_a
- bimodules X_x

\[
\text{Hom}_{A_l A_r} \left(X_1 \otimes_{A_{12}} X_2 \otimes_{A_{23}} \cdots, \quad Y_1 \otimes_{B_{12}} Y_2 \otimes_{B_{23}} \cdots \right)
\]
Remark: also true for 2d QFT

sym. mon. fun. Q from bord. with metric and defects to top. vector spaces

- **topological domain wall:**
 - Q depends only on isotopy class of 1-dim submanifold

- **scale and translation invariant state:**

Get bicategory

objects: D_2 `world sheet phases’

1-morph: lists of composable top. dom. walls

2-morph: scale and translation invariant states

\[Q(\text{<diagram>}) = Q(\text{<diagram>}) \]
More dimensions or more dynamics

2d TFT (+ def.)
 \[\xrightarrow{\text{add dimensions}} \]
 'categorify' (non-unique)
 \[\xrightarrow{\text{compactify}} \]
 (evaluate on \(\Sigma \times S^1 \))

3d TFT (+ def.)
 \[\xrightarrow{\text{add dimensions}} \]
 \[\xrightarrow{\text{‘categorify’}} \]
 \[\xrightarrow{\text{restrict to scale + transl. inv. states}} \]
 \(\xrightarrow{\text{apply } \text{Hom}_{C \boxtimes \overline{C}}(1, -)} \)

2d CFT (+ def.)
Some defects in 3d TFT

Framework:
Reshetikhin-Turaev 3d TFT from a modular category C
symmetric monoidal functor
(3-dim extended bordisms) \rightarrow vector spaces
Example of an extended cobordism

\[M : \text{extended bordism from } E \text{ to } E' \]

\[U, V, W, R : \text{objects of } C \]

\[f : U^* \to W \otimes V^* \]
Examples of 2-dimensional defects in 3d TFT

Given:

- embedded surface Σ in 3-mf
- Frobenius algebra with trace pairing A in \mathbb{C}

surface in ambient 3-mf

Fuchs, Schweigert, IR ’01
Kapustin, Saulina ’10
Examples of 2-dimensional defects in 3d TFT

Given:

- embedded surface Σ in 3-mf
- Frobenius algebra with trace pairing A in C

I) Pick a triangulation Σ

surface in ambient 3-mf

Fuchs, Schweigert, IR ’01
Kapustin, Saulina ’10
Examples of 2-dimensional defects in 3d TFT

Given:
- embedded surface Σ in 3-mf
- Frobenius algebra with trace pairing A in C

1) Pick a triangulation Σ
2) pass to dual

surface in ambient 3-mf

Fuchs, Schweigert, IR ’01
Kapustin, Saulina ’10
Examples of 2-dimensional defects in 3d TFT

Given:
- embedded surface Σ in 3-mf
- Frobenius algebra with trace pairing A in C

1) Pick a triangulation Σ
2) pass to dual
3) label vertices by morph.
 - $T : A \otimes A \otimes A \to I$
 - $P : I \to A \otimes A$

Result indep. of choice in 1)
From 2d TFT to 3d TFT:

Frobenius algebra over \mathbb{C} is replaced by modular category \mathcal{C}

- Examples of codim. 1 domain walls from Frobenius algebra with trace pairing in \mathcal{C}

Note:
In context of Levin-Wen model for modular category \mathcal{C}, obtain codim. 1 domain walls from \mathcal{C}-\mathcal{C}-bimodule categories.
From 2d TFT to 2d CFT: enriching

- State spaces of 2d CFT are $V \otimes V$-representations
 (V is a vertex operator algebra, e.g. V_{Vir})

- Assume rational: $\mathcal{C} = \text{Rep} V$, a modular category

- State spaces are objects in $\mathcal{C} \boxtimes \overline{\mathcal{C}}$
...from 2d TFT to 2d CFT: enriching

D_2 bulk phases; D_1 domain walls with $s, t : D_1 \rightarrow D_2$

Bicategory from 2d CFT via top. def + inv. states
obj: D_2, 1-morph: D_1, 2-morph $\in \mathbf{Vect}_{\text{fin}}$

enrich
“add dynamics”
(non-unique)

apply $\text{Hom}_{\mathbf{C} \boxtimes \overline{\mathbf{C}}}(1, -)$
“restrict to vacuum states”

Enriched bicategory from 2d CFT via top. def + all states
obj, 1-morph as above, 2-morph $\in \mathbf{C} \boxtimes \overline{\mathbf{C}}$
... from 2d TFT to 2d CFT: enriching

eg lattice TFT:
• Frob. alg. with trace pairing in Vect_{fin},
• bimodules in Vect_{fin},
• bimodule maps (Hom space in Vect_{fin})

for CFT one takes:
• Frob. alg. with trace pairing in \mathcal{C}
• bimodules in \mathcal{C}
• bimodule maps (Hom space in Vect_{fin})

Next:
- AB-bimodules in \mathcal{C} form a $\mathcal{C} \boxtimes \overline{\mathcal{C}}$-module category
- internal action Hom is an object in $\mathcal{C} \boxtimes \overline{\mathcal{C}}$.
...from 2d TFT to 2d CFT: enriching

Two \mathcal{C}-actions on AB-Bimod

$X \mapsto X \otimes U$, $U \in \mathcal{C}$ and B-action via $c_{U,B}$ resp. $c_{B,U^{-1}}$

Get $\mathcal{C} \boxtimes \overline{\mathcal{C}}$-action on AB-Bimod:

$X \mapsto X \cdot R$, $R \in \mathcal{C} \boxtimes \overline{\mathcal{C}}$
... from 2d TFT to 2d CFT: enriching

Action allows to define *internal action hom*

\[
\text{Hom}_{AB}(X,Y) \in C \otimes \overline{C}
\]

via

\[
\text{Hom}_{C \otimes \overline{C}}(R, \text{Hom}_{AB}(X,Y)) \cong \text{Hom}_{AB}(X \cdot R, Y)
\]

for all \(R \in C \otimes \overline{C}\).

Physically, \(\text{Hom}_{AB}(X,Y)\) is an (infinite dimensional) \(V \otimes V\)-representation giving the full space of fields which can sit at the junction of an \(X\)- and a \(Y\)-type defect.
Knowing all top. defects means knowing all bulk sectors

Theorem:
Let C : modular category,
\[A : \text{Frobenius algebra with trace pairing in } C. \]
Then $\mathcal{Z}(AA\text{-Bimod}) \cong \mathcal{Z}(C).$
\[\cong C \boxtimes \overline{C} \]
(as C modular, cf. Müger ’01)

I.e. in rational CFT:
If we know the tensor category of topological defects transparent to $V \otimes V$, then we know the braided monoidal category $\text{Rep} V \otimes V$.

Schauenburg ’01
(under much weaker conditions)
Summary

• lattice 2d TFT with domain walls from Frobenius algebras with trace pairing and bimodules

• each 2d QFT with topological domain walls defines a bicategory (over Vect)

• rational 2d CFT : enrich over $\mathbb{C} \boxtimes \overline{\mathbb{C}}$

• knowing all ‘endo’-defects of a rational CFT amounts to knowing all $V \otimes V$-representations