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Plan for the lectures

‚ What is a topological insulator?

‚ What are the main experimental facts?

‚ What are the main theoretical elements?

‚ Almost everything in a one-dimensional toy model (SSH model)

‚ Toy models for higher dimension

‚ Algebraic formalism (crossed product C˚-algebras)

‚ Measurable quantities as topological invariants

‚ Bulk-edge correspondence

‚ Index theorems for invariants

‚ Implementation of symmetries (periodic table of topological ins.)

Math tools: K -theory, index theory and non-commutative geometry
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1. Experimental facts

2. Elements of basic theory

3. One-dimensional toy model

4. K -theory krash kourse

5. Observable algebra for tight-binding models

6. Topological invariants in solid state systems

7. Invariants as response coefficients
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9. Implementation of symmetries

10. Spectral flow in topological insulators

11. Dirty superconductors
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13. Further results and bibliography
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1 Experimental facts

What is a topological insulator?

‚ d-dimensional disordered system of independent Fermions with
a combination of basic symmetries

TRS, PHS, CHS = time reversal, particle hole, chiral symmetry

‚ Fermi level in a Gap or Anderson localization regime

‚ Topology of bulk (in Bloch bundles over Brillouin torus):

winding numbers, Chern numbers, Z2-invariants, higher invariants

‚ Delocalized edge modes with non-trivial topology

‚ Bulk-edge correspondence

‚ Topological bound states at defects (zero modes)

‚ Toy models: tight-binding Hamiltonians

‚ Wider notions include interactions, bosons, spins, photonic crys.
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Quantum Hall Effect: first topological insulator

von Klitzing’s measurement from 1980
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Schematic representation of IQHE
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Most important facts for IQHE

Two-dimensional electron gas between two doted semiconductors
(Spot error in picture!) Measure of macroscopic (!) Hall tension

σ “
Ix ,x
Vx ,y

“ n
e2

h
with n P N

Integer quantization with relative error 10´8 with fundamental constant
Strong magnetic field and electron density can be modified
Anderson localizated states can be filled without changing conductivity
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Prizes and further advances on the QHE

Nobel prizes:

‚ Klitzing (1985)

‚ Störmer-Tsui-Laughlin (1998) for fractional QHE

‚ Thouless (2016) explanation of integer QHE & Thouless-Kosterlitz

‚ Haldane (2016) anomalous QHE & Haldane spin chain

NO exterior magnetic field, only magnetic material

‚ QHE in graphene at room temperature

Novoselov, Geim et al 2007 (Nobel 2005)

‚ Anomalous QHE at room temperature in SnGe (Chinese group 2016)

Review: Ren, Qiao, Niu 2016
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Quantum spin Hall systems

Prior to 2005: no magnetic field ùñ no topology

Kane-Mele (2005):
Z2-topology in two-dimensional systems with time-reversal symmetry

First erronous proposal: spin orbit coupling in graphene (too small)

Theoretical prediction by Bernevig and Zhang (2006): look into HgTe

Measurement by Molenkamp group in Würzburg

Complicated samples, inconsistencies with theory, so still disputed

Measurement in more conventional Si-semiconductor by Du group
(Rice 2014) Surprise: stability w.r.t. magnetic field
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Majorana zero modes

First proposal (Read-Green 2000):
attached to flux tubes in 2d pp ` ipq-wave superconductors

Second proposal (Kitaev, Beenacker group, Alicea, etc.):
at ends of dirty superconductor wires placed on a semiconductor

Measurement in C. Marcus group (2014-2016 Bohr Inst., Kopenhagen)

Further measurements in Delft and Princeton groups

2017: http://www.seethroughthe.cloud/2017/01/23/

Headline is: Microsoft Steps Away From The Chalk Board
to Create Quantum Computer

Mysterious citation:
The magic recipe involves a combination of
semiconductors and superconductors
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Higher dimensional topological insulators?

SOC.79,80) In particular, for the Bi bilayer there have been
experimental efforts to address its topological nature,81–83)

and suggestive evidence for the existence of edge states has
been reported.82,83) It is worth mentioning that silicene, an
analog of graphene consisting of silicon atoms instead of
carbon atoms,84) has also been predicted to be a 2D TI with
a high tunability.85) Since the experimental studies of 2D
TIs have been hindered by the scarcity of samples, new
discoveries of 2D TI materials are strongly call for.

4.2 Three-dimensional TIs
As already mentioned in Sect. 2, the first 3D TI material

that was experimentally identified was Bi1!xSbx,
36) follow-

ing the very specific prediction by Fu and Kane.35) This
material is an alloy of Bi and Sb and it naturally possesses
the two essential features, (i) band inversion at an odd
number of TRIMs and (ii) opening of a bulk band gap, in the
Sb concentration range of 0.09 to 0.23.86) The 3D Z2

invariant has been identified as (1;111).
Unfortunately, it turned out that this system is not very

suitable for detailed studies of the topological surface state

due to the complicated surface-state structure,36,40) as can
be seen in Fig. 3. This is because its parent material,
Bi, already harbors prominent spin-non-degenerate surface
states due to the strong Rashba effect on the surface of
this material.87) In Bi1!xSbx, such non-topological, Rashba-
split surface states are responsible for 2 or 4 Fermi-level
crossings of the surface states (depending on the chemical
potential),36,40) and the topological one contributes just one
additional Fermi-level crossing. First-principle calculations
of the surface states of Bi1!xSbx have been reported,88,89) but
the predicted surface-state structure does not really agree
with the experimental results. Such an incomplete under-
standing of the nature of the surface state is partly
responsible for confusions occasionally seen in interpreta-
tions of experimental data. For example, in the STS work
which addressed the protection from backscattering in the
surface state of Bi1!xSbx,

38) the analysis considered the
spin polarizations of only those surface states that are
also present in topologically trivial Bi,87) and yet, it was
concluded that the result gives evidence for topological
protection.

Table I. Summary of topological insulator materials that have bee experimentally addressed. The definition of (1;111) etc. is introduced in Sect. 3.7.
(In this table, S.S., P.T., and SM stand for surface state, phase transition, and semimetal, respectively.)

Type Material Band gap Bulk transport Remark Reference

2D, ! ¼ 1 CdTe/HgTe/CdTe <10meV insulating high mobility 31

2D, ! ¼ 1 AlSb/InAs/GaSb/AlSb #4meV weakly insulating gap is too small 73

3D (1;111) Bi1!xSbx <30meV weakly insulating complex S.S. 36, 40

3D (1;111) Sb semimetal metallic complex S.S. 39

3D (1;000) Bi2Se3 0.3 eV metallic simple S.S. 94

3D (1;000) Bi2Te3 0.17 eV metallic distorted S.S. 95, 96

3D (1;000) Sb2Te3 0.3 eV metallic heavily p-type 97

3D (1;000) Bi2Te2Se #0:2 eV reasonably insulating "xx up to 6! cm 102, 103, 105

3D (1;000) (Bi,Sb)2Te3 <0:2 eV moderately insulating mostly thin films 193

3D (1;000) Bi2!xSbxTe3!ySey <0:3 eV reasonably insulating Dirac-cone engineering 107, 108, 212

3D (1;000) Bi2Te1:6S1:4 0.2 eV metallic n-type 210

3D (1;000) Bi1:1Sb0:9Te2S 0.2 eV moderately insulating "xx up to 0.1! cm 210

3D (1;000) Sb2Te2Se ? metallic heavily p-type 102

3D (1;000) Bi2(Te,Se)2(Se,S) 0.3 eV semi-metallic natural Kawazulite 211

3D (1;000) TlBiSe2 #0:35 eV metallic simple S.S., large gap 110–112

3D (1;000) TlBiTe2 #0:2 eV metallic distorted S.S. 112

3D (1;000) TlBi(S,Se)2 <0:35 eV metallic topological P.T. 116, 117

3D (1;000) PbBi2Te4 #0:2 eV metallic S.S. nearly parabolic 121, 124

3D (1;000) PbSb2Te4 ? metallic p-type 121

3D (1;000) GeBi2Te4 0.18 eV metallic n-type 102, 119, 120

3D (1;000) PbBi4Te7 0.2 eV metallic heavily n-type 125

3D (1;000) GeBi4!xSbxTe7 0.1–0.2 eV metallic n (p) type at x ¼ 0 (1) 126

3D (1;000) (PbSe)5(Bi2Se3)6 0.5 eV metallic natural heterostructure 130

3D (1;000) (Bi2)(Bi2Se2:6S0:4) semimetal metallic (Bi2)n(Bi2Se3)m series 127

3D (1;000) (Bi2)(Bi2Te3)2 ? ? no data published yet 128

3D TCI SnTe 0.3 eV (4.2K) metallic Mirror TCI, nM ¼ !2 62

3D TCI Pb1!xSnxTe <0:3 eV metallic Mirror TCI, nM ¼ !2 164

3D TCI Pb0:77Sn0:23Se invert with T metallic Mirror TCI, nM ¼ !2 162

2D, ! ¼ 1? Bi bilayer #0:1 eV ? not stable by itself 82, 83

3D (1;000)? Ag2Te ? metallic famous for linear MR 134, 135

3D (1;111)? SmB6 20meV insulating possible Kondo TI 140–143

3D (0;001)? Bi14Rh3I9 0.27 eV metallic possible weak 3D TI 145

3D (1;000)? RBiPt (R = Lu, Dy, Gd) zero gap metallic evidence negative 152

Weyl SM? Nd2(Ir1!xRhx)2O7 zero gap metallic too preliminary 158

Y. ANDOJ. Phys. Soc. Jpn. 82 (2013) 102001 INVITED REVIEW PAPERS

102001-12 #2013 The Physical Society of Japan
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2 Elements of basic theory
First for QHE in continuous physical space:

Landau-operator with disordered potential

H “
1

2m
pi Bx1 ´ eA1q

2 `
1

2m
pi Bx2 ´ eA2q

2 ` λVdis

on Hilbert space L2pR2q. Landau gauge A1 “ 0 and A2 “ BX1

If there is no disorder λ “ 0, Fourier transform in 2-direction works

F2HF˚2 “

ż ‘

R
dk2 Hpk2q

with Hpk2q “ Hpk2q
˚ shifted one-dimensional harmonic oscillator

ùñ infinitely degenerate so-called Landau bands.

Projection P on lowest band has integral kernel with Hall conductance

ChpPq “ 2πi x0|PrirX1,Ps, irX2,Pss|0y

“ π

ż

C
dx

ż

C
dy e´

1
2 p|x |

2`|y |2´xyq pxy ´ yxq “ ´1
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Effect of disorder
Typical model from i.i.d. ωn P r´1,1s and v P C8K pB1q with }v}8 ď 1

Vdispxq “
ÿ

nPZ2

ωn vpx ´ nq

Landau band widens by λ “ 0. Gap closes at λ « 1

Expectation: all states Anderson localized, except at one energy

Proof at band edges by Barbaroux, Combes, Hislop 1997, others...

ρ(

3/2

E)

2πE
h ω

C

1/2 5/2
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Spectrum of edge states
pHL half-space restriction on L2pRě0 ˆ Rq with Dirichlet

Still without disorder, Fourier transform works also for half-space:

F2
pHF˚2 “

ż ‘

R
dk2

pHpk2q

with pHpk2q “
pHpk2q

˚ cut off shifted harmonic oscillator on L2pRě0q

Read off basic bulk-edge correspondence (right pic for generic gap)

x x
−π +π

E E

k k
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Harper model
This is a lattice or tight-binding model on `2pZ2q

H “ U1 ` U˚1 ` U2 ` U˚2
Here U1 “ S1 shift in 1-direction, and U2 “ eiBX1S2 (Landau gauge)
Plotted: spectrum as a function of B (Hofstadter’s butterfly)
Spectrum fractal for irrational B. Most gaps close with Vdis

In each gap there are edge state bands (on `2pZˆ Nq, Hatsugai 1993)
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Coloured Hofstadter butterfly (Avron, Osadchy)
For each Fermi energy µ one has P “ χpH ď µq

If µ in gap, then Chern number well-defined

ChpPq “ 2πi x0|PrirX1,Ps, irX2,Pss|0y P Z

Different values, different colours
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Haldane model for anomalous QHE (1988)
On honeycomb lattice “ decorated triangular lattice, so on `2pZ2q b C2

HHal “ M

˜

0 S˚1 ` S˚2 ` 1
S1 ` S2 ` 1 0

¸

` t2
3
ÿ

j“1

˜

eiφSj ` peiφSjq
˚ 0

0 eiφSj ` peiφSjq
˚

¸

Here S3 “ S1S2. Complex hopping, but only periodic magnetic field

Then central gap with P “ χpH ď 0q and Chern number C1 “ ChpPq
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Kane-Mele model for QSHE
On honeycomb lattice with spin 1

2 , so on `2pZ2q b C4

HKM “

˜

HHal 0
0 HHal

¸

` HRas

First term comes from spin-orbit coupling to next nearest neighbors
Second Rashba spin-orbit term is off-diagonal breaks chiral symmetry
If HRas small, central gap still open
Chern number vanishes (TRS), but non-trivial Z2-invariant
This leads to edge states
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Discrete symmetries (invoking real structure)

Given commuting real, skew- or selfadjoint unitaries Jch, Str, Sph

chiral symmetry pCHSq : J˚ch H Jch “ ´H

time reversal symmetry pTRSq : S˚tr H Str “ H

particle-hole symmetry pPHSq : S˚ph H Sph “ ´H

Str “ eiπsy
orthogonal on C2s`1 with S2

tr “ ˘1 even or odd

Sph orthogonal on C2
ph with S2

ph “ ˘1 even or odd

So typical Hamiltonian acts on `2pZdq b CN b C2s`1 b C2
ph

Note: TRS + PHS ùñ CHS with Jch “ StrSph

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real

Further distinction in each of the 10 classes: topological insulators
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Periodic table of topological insulators
Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008: just strong invariants

jzd TRS PHS CHS 1 2 3 4 5 6 7 8

0 0 0 0 Z Z Z Z
1 0 0 1 Z Z Z Z

0 `1 0 0 2Z Z2 Z2 Z
1 `1 `1 1 Z 2Z Z2 Z2

2 0 `1 0 Z2 Z 2Z Z2

3 ´1 `1 1 Z2 Z2 Z 2Z
4 ´1 0 0 Z2 Z2 Z 2Z
5 ´1 ´1 1 2Z Z2 Z2 Z
6 0 ´1 0 2Z Z2 Z2 Z
7 `1 ´1 1 2Z Z2 Z2 Z
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Complex (strong) invariants come from:

K0pC0pRdqq “

#

0 , d odd
Z , d even

K1pC0pRdqq “

#

Z , d odd
0 , d even

Supplementary weak invariants from

K0pCpTdqq – Z2d´1
– K1pCpTdqq

For strong Real structures: τ : Td Ñ Td inversion involution τpkq “ ´k

KRjpC0pRd
τ qq “ πj´1´dpOq

where O stable orthogonal group with

j 0 1 2 3 4 5 6 7
πjpOq Z2 Z2 0 2Z 0 0 0 Z
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3 One-dimensional toy model (SSH, see [PS])
Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)

H “ 1
2pσ1 ` iσ2q b S ` 1

2pσ1 ´ iσ2q b S˚ `m σ2 b 1

where S bilateral shift on `2pZq, m P R mass and Pauli matrices
In their grading

H “

˜

0 S ´ im
S˚ ` im 0

¸

on `2pZq b C2

Off-diagonal – chiral symmetry σ˚3Hσ3 “ ´H. In Fourier space:

H “

ż ‘

r´π,πq
dk Hk Hk “

˜

0 e´ik ´ im
eik ` im 0

¸

Topological invariant for m “ ´1,1

Windpk P r´π, πq ÞÑ eik ` imq “ δpm P p´1,1qq
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Chiral bound states
Half-space Hamiltonian

pH “

˜

0 pS ´ im
pS˚ ` im 0

¸

on `2pNq b C2

where pS unilateral right shift on `2pNq

Still chiral symmetry σ˚3 pHσ3 “ ´
pH

If m “ 0, simple bound state at E “ 0 with eigenvector ψ0 “
`

|0y
0

˘

.

Perturbations, e.g. in m, cannot move or lift this bound state ψm!

Positive chirality conserved: σ3ψm “ ψm

Theorem 3.1 (Basic bulk-boundary correspondence)

If pP projection on bound states of pH, then

Windpk ÞÑ eik ` imq “ TrppPσ3q
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Disordered model

Add uniformly bounded i.i.d. random mass term ω “ pmnqnPZ:

Hω “ H `
ÿ

nPZ
mn σ2 b |nyxn|

Still chiral symmetry σ˚3Hωσ3 “ ´Hω so

Hω “

˜

0 A˚ω
Aω 0

¸

Bulk gap at E “ 0 ùñ Aω invertible

Non-commutative winding number, also called first Chern number:

WindpAq “ Ch1pAq “ i Eω Tr x0|A´1
ω irX ,Aωs|0y

where Eω is average over probability measure P on i.i.d. masses
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Index theorem and bulk-boundary correspondence

Theorem 3.2 (Disordered Noether-Gohberg-Krein Theorem)
If Π is Hardy projection on positive half-space, then P-almost surely

WindpAq “ Ch1pAq “ ´ IndpΠAωΠq

For periodic model as above, Aω “ Mult. by eik P CpS1q

In this case, Fredholm operator is standard Toeplitz operator

Theorem 3.3 (Disoreded bulk-boundary correspondence)

If pPω projection on bound states of pHω, then

WindpAq “ Ch1pAq “ Ch0p
pPωq “ TrppPωσ3q

Structural robust result:
holds for chiral Hamiltonians with larger fiber, other disorder, etc.
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Index in linear algebra

Rank theorem for T P MatpN ˆM,Cq

M “ dimpKerpT qq ` dimpRanpT qq

“ dimpKerpT qq ` dimpKerpT ˚qKq
“ dimpKerpT qq `

`

N ´ dimpKerpT ˚qq
˘

Hence stability of index defined by

IndpT q “ dimpKerpT qq ´ dimpKerpT ˚qqq “ M ´ N

Homotopy invariance: under continuous perturbation t P R ÞÑ Tt

t P R ÞÑ IndpTtq konstant

For quadratic matrices, i.e. N “ M, always IndpT q “ 0
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Index in infinite dimension
Definition 3.4
T P BpHq continuous Fredholm operator on H

ðñ TH closed, dimpKerpT qq ă 8, dimpKerpT ˚qq ă 8

Then: IndpT q “ dimpKerpT qq ´ dimpKerpT ˚qq

Theorem 3.5 (Dieudonné, Krein)
Ind is a compactly stable homotopy invariant:

IndpT q “ IndpT ` K q “ IndpTtq

Example: shift pS : `2pNq Ñ `2pNq by pSψ “ pψn´1qnPN on ψ “ pψnqnPN

KerppSq “ spantp1,0,0, . . .qu , KerppSq “ t0u

Thus IndppSq “ 1
Index theorems connect index to a topological invariant
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Structure: Toeplitz extension (no disorder)
S bilateral shift on `2pZq, then C˚pSq – CpS1q

pS unilateral shift on `2pNq, only partial isometry with a defect:

pS˚pS “ 1 pS pS˚ “ 1´ |0yx0|

Then C˚ppSq “ T Toeplitz algebra with exact sequence:

0 Ñ K i
ãÑ T π

Ñ CpS1q Ñ 0

K -groups for C˚-algebra A with unitization A`:

K0pAq “ trPs ´ rspPqs : projections in some MnpA`qu
K1pAq “ trUs : unitary in some MnpA`qu

Abelian group operation: Whitney sum

Example: K0pCq “ Z “ K0pKq with invariant dimpPq

Example: K1pCpS1qq “ Z with invariant given by winding number
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6-term exact sequence for Toeplitz extension

C˚-algebra short exact sequence ùñ K -theory 6-term sequence

K0pKq “ Z i˚ - K0pT q “ Z π˚ - K0pCpS1qq “ Z

K1pCpS1qq “ Z

Ind
6

� π˚ K1pT q “ 0 �
i˚ K1pKq “ 0

Exp
?

Here: rAs1 P K1pCpS1qq and rpPσ3s0 “ r
pP`s0 ´ rpP´s0 P K0pKq

IndprAs1q “ rpP`s0 ´ rpP´s0 (bulk-boundary for K -theory)

Ch0pIndpAqq “ Ch1pAq (bulk-boundary for invariants)

Disordered case: analogous
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4 K -theory krash kourse [RLL, WO, CMR]
K -theory developed to classify vector bundles over topological space X

Swan-Serre Theorem: tvector bundlesu – tprojections in MnpCpX qqu

Replace CpX q by non-commutative C˚-algebra A (no Real structures)

Definition 4.1
pA,`, ¨, } . }q Banach algebra over C if }AB} ď }A} }B}, etc.
Then: A is C˚-algebra ðñ }A˚A} “ }A}2

Gelfand: commutative C˚ algebras are A “ C0pX q with spectrum X

GNS: For any state on A D Hilbert H and representation π : AÑ BpHq

Example 1: A “ C or A “ MnpCq
Example 2: Calkin’s exact sequence over a Hilbert space H:

0 Ñ KpHq i
ãÑ BpHq π

Ñ QpHq “ BpHq{KpHq Ñ 0
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Definition of K0pAq
Unitization A` “ A‘ C of C˚-algebra A by

pA, tqpB, sq “ pAB ` As ` Bt , tsq , pA, tq˚ “ pA˚, tq

There is natural C˚-norm }pA, tq}. Unit 1 “ p0,1q P A`

Exact sequence of C˚-algebras 0 Ñ A i
ãÑ A` ρ

Ñ CÑ 0

ρ has right inverse i 1ptq “ p0, tq, then s “ i 1 ˝ ρ : A` Ñ A` scalar part

V0pAq “
#

V P
ď

ně1

M2npA`q : V ˚ “ V , V 2 “ 1 , spV q „0 E2n

+

where spV q „0 E2n means homotopic to E2n “ E‘
n

2 with E2 “
`1 0

0 ´1

˘

Equivalence relation „0 on V0pAq by homotopy and V „0
`V 0

0 E2

˘

Then K0pAq “ V0pAq{ „0 abelian group via rV s0 ` rV 1s0 “ r
`V 0

0 V 1
˘

s0
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Definition of K0pAq is equivalent to standard one via V “ 2P ´ 1:

K0pAq – pK0pAq “ trPs ´ rspPqs : projections in some MnpA`qu

Theorem 4.2 (Stability of K0)
K0pAq “ K0pMnpAqq “ K0pAbKq

Example 1: K0pCq “ K0pKq “ Z, invariant dimpPq “ dimpKerpV ´ 1qq
Example 2: K0pBpHqq “ 0 for every separable H by [RLL] 3.3.3
Example 3: K0pCpS1qq “ Z and K0pT q “ Z for Toeplitz (also dim)

Dimensions are examples of invariants, e.g. used for gap-labelling:

Theorem 4.3 (0-cocyles paired with K0pAq)
If T tracial state on all A, then class map T : K0pAq Ñ R defined by

T rV s0 “ T pPq “ 1
2 T pV ` 1q
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Definition of K1pAq
For definition of K1pAq set

V1pAq “
#

U P
ď

ně1

MnpA`q : U´1 “ U˚
+

Equivalence relation „1 by homotopy and U „1
`U 0

0 1

˘

Then K1pAq “ V1pAq{ „1 with addition rUs1 ` rU 1s1 “ rU ‘ U 1s1

If A unital, one can work with MnpAq instead of MnpA`q in V1pAq

Alternative: even chiral symmetry K2n “ K‘
n

2 with K2 “
`0 1

1 0

˘

extended diagonally K “ ‘ně1K2n to Yně1M2npA`q. Then

V1pAq “ tV P V0pAq : K ˚ V K “ ´Vu

“

#

V P
ď

ně1

M2npA`q : V ˚ “ V , V 2 “ 1 , K ˚ V K “ ´V

+
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Some examples of K1-groups

Example 1: K1pCq “ K1pKq “ 0

Example 2: K1pCpS1qq “ Z with invariant ”winding number”

Example 3: K1pA`q “ K1pAq

Example 4: K1pBpHqq “ 0 by Kuipers’ theorem (holds for all W˚’s)

Example 5: For Calkin K1pQpHqq “ Z with invariant “ Noether index
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Suspension and Bott map
Definition 4.4
Suspension of a C˚-algebra A is the C˚-algebra SA “ C0pRq bA

Alternatively upon rescaling: SA – C0pp0,1q,Aq
Theorem 4.5 (Suspension)
One has an isomorphism Θ : K1pAq Ñ K0pSAq, described below

Theorem 4.6 (Bott map)

One has isomorphism β : K0pAq – pK0pAq Ñ K1pSAq given by

βprPs0 ´ rspPqs0q “
“

t P p0,1q ÞÑ p1´ Pq ` e2πitP
‰

1

Note that r.h.s. indeed a unitary in pSAq`

Corollary 4.7 (Bott periodicity)
K0pSSAq “ K0pAq
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Standard construction of Θ : K1pAq Ñ K0pSAq [WO, RLL]

Given U P MnpAq, diagpU,U˚q is homotop to 12n in M2npAq
Let t P r0,1s ÞÑ Wt be the connecting path

Then

ΘrUs1 “ rW1 diagp1,0qW ˚
1 s0 ´ rdiagp1,0qs0 P K0pSAq

Possible choice:

Wt “ Rt diagpU˚,1qR˚t diagpU,1q

with

Rt “

¨

˝

cos
`

πt
2

˘

sin
`

πt
2

˘

´ sin
`

πt
2

˘

cos
`

πt
2

˘

˛

‚
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Construction of Θ´1 : K0pSAq Ñ K1pAq with adiabatic evolution:

0 - SA i- CpS1,Aq ev- A - 0

After rescaling is given a loop t P r0,2πq ÞÑ Pt “
1
2pVt ` 1q P MNpAq

With P0 viewed as constant loop, rPs0 ´ rP0s0 P K0pSAq
Indeed evprPs0 ´ rP0s0q “ 0 so identified with element in K0pSAq
Aim: find preimage under Θ in K1pAq
For Ht “ H˚t P MNpAq satisfying rHt ,Pt s “ 0 unitary solution Ut P A` of

i BtUt “
`

Ht ` irBtPt ,Pt s
˘

Ut , U0 “ 1N

Then Pt “ UtP0U˚t and U2π P0 U˚2π “ P0

Θ´1`rPs0 ´ rP0s0
˘

“ rP0U2πP0 ` 1N ´ P0s1

R.h.s. is unitary! Choice of Ht determines lift. Details in [PS] l
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Natural push-forwards maps in K -theory

Associated to an exact sequence of C˚-algebras

0 Ñ K i
ãÑ A π

Ñ Q Ñ 0

there are natural push-forward maps:

i˚ : KjpKq Ñ KjpAq , π˚ : KjpAq Ñ KjpQq

given i˚rV s0 “ ripV qs0 , π˚rV s0 “ rπpV qs0 , etc.

Kerpπ˚q “ Ranpi˚q, so short exact sequences of abelian groups:

K0pKq i˚
Ñ K0pAq π˚

Ñ K0pQq
and

K1pQq π˚
Ð K1pAq i˚

Ð K1pKq
Connecting maps close diagram to a cyclic 6-term diagram
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Connecting maps from KjpQq to Kj`1pKq
Definition 4.8 (Exponential map: K0pQq Ñ K1pKq)
Let B “ B˚ P MnpA`q be contraction lift of unitary V “ V ˚ P MnpQ`q

ExprV s0 “
“

exp
`

2πip1
2pB ` 1qq

˘‰

1

“ r´ cospπBq ´ i sinpπBqs1

“ r2B
a

1´ B2 ` i p1´ 2B2qs1

Definition 4.9 (Index map: K1pQq Ñ K0pKq)
Let B P MnpA`q be contraction lift of unitary U P MnpQ`q,
namely π`pBq “ U and }B} ď 1. Then define

IndrUs1 “

«˜

2BB˚ ´ 1 2B
?

1´ B˚B
2B˚

?
1´ BB˚ 1´ 2B˚B

¸ff

0
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Index map versus index of Fredholm operator

B unitary up to compact on H ðñ 1´ B˚B , 1´ BB˚ P KpHq
ùñ B Fredholm operator and U “ πpBq P QpHq unitary

Fedosov formula if 1´ B˚B and 1´ BB˚ are traceclass:

IndpBq “ dimpKerpBqq ´ dimpKerpB˚qq
“ Trp1´ B˚Bq ´ Trp1´ BB˚q

“ Tr

˜

BB˚ ´ 1 Bp1´ B˚Bq
1
2

p1´ B˚Bq
1
2 B˚ 1´ B˚B

¸

“ 1
2 Tr

`

V ´ E2
˘

with V as above

“ 1
2 Tr

`

IndrUs1 ´ E2
˘

Hence there is a connection...
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6-term exact sequence

Theorem 4.10

For every 0 Ñ K i
ãÑ A π

Ñ QÑ 0, above definitions lead to

K0pKq
i˚ - K0pAq

π˚ - K0pQq

K1pQq

Ind
6

� π˚ K1pAq �
i˚ K1pKq

Exp
?

Proof in the books...

Example 4.11

Toeplitz extension 0 Ñ Kp`2pNqq i
ãÑ T π

Ñ CpS1q Ñ 0
Bilateral shift S P CpS1q gives class rSs1 P K1pCpS1qq

Contraction lift is unilateral shift pS P T Ă Bp`2pNqq with pSpS˚ “ 1´ P0

From definition IndrSs1 “ rdiagp1´ 2P0,´1qs0
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Exact sequence of the sphere
Dd`1 Ă Dd`1 , BDd`1 “ Sd

leads to an exact sequence of C˚-algebras

0 Ñ C0pDd`1q – C0pRd`1q
i

ãÑ CpDd`1q
π
Ñ CpSdq Ñ 0

All K -groups are well-known [WO]. For for d “ 2n ` 1 odd

Z i˚ - Z π˚ - Z “ K0pCpSdqq

Z

Ind
6

� π˚ 0 �
i˚ 0

Exp
?

while for d “ 2n even

0
i˚ - Z π˚ - Z2 “ K0pCpSdqq

0

Ind
6

� π˚ 0 �
i˚ Z

Exp
?

Aim: analyze one of the connecting maps, say Ind for d odd
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Bott element
Let us write out Ind : K1pCpS2n´1qq “ ZÑ K0pC0pD2nqq “ Z

For n “ 1, generator is function z : S1 Ñ S1 with unit winding number

Lift is z : D2 Ñ D2 which is not invertible, but a contraction

Bott element is ”the” non-trivial self-adjoint unitary on D2:

Indprzs1q “

«˜

2|z|2 ´ 1 2z
a

1´ |z|2

2z
a

1´ |z|2 1´ 2|z|2

¸ff

0

P K0pCpD2qq

For higher odd d , irrep γ1, . . . , γd of Clifford Cd . Generator of K1pSdq

U “
ÿ

j“1,...,d

xj γj ` i xd`1 , x “ px1, . . . , xd`1q P Sd

Lift B P CpDd`1q same formula with x P Dd`1. Then with r “ }x}

IndrUs1 “

«˜

2r2 ´ 1 2p1´ r2q
1
2 B

2B˚p1´ r2q
1
2 ´p2r2 ´ 1q

¸ff

0
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Another connecting map (for Floquet systems)

Theorem 4.12 ([SS])

0 Ñ K ı
ãÑ A π

Ñ Q Ñ 0

Recall Ind : K1pSQq Ñ K0pSKq and Θ´1 : K0pSKq Ñ K1pKq, so

Θ´1 ˝ Ind : K1pSQq Ñ K1pKq

Given smooth path p0,2πq ÞÑ Uptq P Q specifying class K1pSQq

Θ´1pIndprp0,2πq ÞÑ Uptqs1qq “ rpUp2πqs1

where pUp2πq ´ 1 P K is end point of initial value problem in A

i Bt pUptq “ pHptq pUptq pUp0q “ 1

associated to self-adjoint lift pHptq P A of Hptq “ ´i UptqBtUptq˚ P Q
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5 Observable algebra for tight-binding models
One-particle Hilbert space `2pZdq b CL

Fiber CL “ C2s`1 b Cr with spin s and r internal degrees

e.g. Cr “ C2
ph b C2

sl particle-hole space and sublattice space

Typical Hamiltonian

Hω “ ∆B ` Wω “

d
ÿ

i“1

pt˚i SB
i ` tipSB

i q
˚q ` Wω

Magnetic translations SB
j SB

i “ eiBi,j SB
i SB

j in Laudau gauge:

SB
1 “ S1 SB

2 “ eiB1,2X1S2 SB
3 “ eiB1,3X1`iB2,3X2S3

ti matrices Lˆ L, e.g. spin orbit coupling, (anti)particle creation

matrix potential Wω “ W ˚
ω “

ř

nPZd |nyωn xn| with i.i.d. matrices ωn

Configurations ω “ pωnqnPZd P Ω compact probability space pΩ,Pq

P invariant and ergodic w.r.t. T : Zd ˆ Ω Ñ Ω

K -theory in solid state physics 5. Observable algebra for tight-binding models 45 / 141



Covariant operators (generalizes periodicity)

Covariance w.r.t. to dual magnetic translations Va “ SB
j VapSB

j q
˚

VaHωV ˚a “ HTaω , a P Zd

}A} “ supωPΩ }Aω} is C˚-norm on

Ad “ C˚
 

A “ pAωqωPΩ finite range covariant operators
(

– twisted crossed product CpΩq ¸B Zd

Fact: Suppose Ω contractible (say ωn from matrix ball)
ùñ rotation algebra C˚pSB

1 , . . . ,S
B
d q is deformation retract of Ad

In particular: K -groups of C˚pSB
1 , . . . ,S

B
d q and Ad coincide

Theorem 5.1 (Pimsner-Voiculescu 1980)

K0pAdq “ Z2d´1
and K1pAdq “ Z2d´1
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More precisely, from 0 Ñ Ad´1 bKÑ T pAdq Ñ Ad Ñ 0 one has

K0pAd´1q
i˚ - K0pT pAdqq

π˚ - K0pAdq

K1pAdq

Ind
6

� π˚ K1pT pAdqq �
i˚ K1pAd´1q

Exp
?

But Pimsner-Voiculescu also show K pT pAdqq – K pAd´1q

Under this isomorphism, one then has (note that i˚ moved!)

K0pAd´1q
0 - K0pAd´1q

i˚ - K0pAdq

K1pAdq

Ind
6

� i˚ K1pAd´1q �
0

K1pAd´1q

Exp
?

Hence there are two short exact sequences of K -groups
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Generators of KjpAdq from PV’s Toeplitz extension
From the above:

0 Ñ K0pAd´1q
i˚
Ñ K0pAdq

Exp
Ñ K1pAd´1q Ñ 0

0 Ñ K1pAd´1q
i˚
Ñ K1pAdq

Ind
Ñ K0pAd´1q Ñ 0

No torsion ùñ KjpAdq “ K0pAd´1q ‘ K1pAd´1q “ Z2d´2
‘ Z2d´2

Iterative construction of generators using inverse of Ind and Exp

Explicit generators rGIs of K -groups labelled by subsets I Ă t1, . . . ,du

Top generator I “ t1, . . . ,du identified with Bott in KjpCpSdqq

Example Gt1,2u Powers-Rieffel projection in C˚pSB
1 ,S

B
2 q

In general, any projection P P MnpAdq can be decomposed as

rPs0 “
ÿ

IĂt1,...,du

nI rGIs0 nI P Z, |I| even

Questions: calculate nI “ cI ChIpPq and give physical significance
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K -group elements of physical interest
Fermi level µ P R in spectral gap of Hω

Pω “ χpHω ď µq covariant Fermi projection

Hence: P “ pPωqωPΩ P Ad fixes element in rPs0 P K0pAdq

If chiral symmetry present: Fermi unitary U “ A|A|´1 from

Hω “ ´ J˚chHωJch “

˜

0 Aω
A˚ω 0

¸

, Jch “

˜

1 0
0 ´1

¸

If µ “ 0 in gap, A “ pAωqωPΩ P Ad invertible and rUs1 “ rAs1 P K1pAdq

Remark Sufficient to have an approximate chiral symmetry

Hω “

˜

Bω Aω
A˚ω Cω

¸

with invertible Aω
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Strong and weak invariants in K -theory terms
Fermi level µ ùñ Fermi projection P or Fermi unitary A

Decompositions

rPs0 “
ÿ

IĂt1,...,du

nI rGIs0 , rAs1 “
ÿ

IĂt1,...,du

nI rGIs1

Invariants nI , top invariant nt1,...,du P Z called strong , others weak

A systems with nt1,...,du “ 0 is called a strong topological insulator

If nt1,...,du “ 0, but some other nI “ 0, weak topological insulator

For Class A (no symmetry) and Class AIII (chiral symmetry):

dimension d 1 2 3 4 5 6 7 8
A strong invariant 0 Z 0 Z 0 Z 0 Z

AIII strong invariant Z 0 Z 0 Z 0 Z 0

Z-entries are parts of the K -groups. Calculation of number next
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Non-commutative analysis tools [BES, PS]

Definition 5.2 (Non-commutative integration and derivatives)
Tracial state T on Ad given by

T pAq “ EP TrL x0|Aω|0y

Derivations ∇ “ p∇1, . . . ,∇dq densely defined by

∇jAω “ irXj ,Aωs

Then define Ck pAq, C8pAq, etc.

Usual rules: T pABq “ T pBAq, ∇pABq “ ∇pAqB ` A∇pBq, etc.
Also: T p∇pAqq “ 0, so partial integration T p∇pAqBq “ ´T pA∇pBqq

Proposition 5.3 (Birkhoff theorem for translation group)
T is P-almost surely the trace per unit volume

T pAq “ lim
ΛÑZd

1
|Λ|

ÿ

nPΛ

TrL xn|Aω|ny
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Periodic systems

For simplicity 1-periodic in all directions and no magnetic field

Then Ad “ CpTdq b CLˆL commutative up to matrix degree

non-commutative A ∇jpAq T
commutative k ÞÑ Apkq Bkj A

ş

Td dk Tr

With dictionary: rewrite many formulas from solid state literature

Example: Kubo formula for conductivity at relaxation time τ
ż

dk
ÿ

n,m
Tr

´

Bki pfβ,µpEnpkqqPnpkqq
`

Enpkq ´ Empkq ` 1
τ

˘´1
Bkj pEmpkqPmpkqq

¯

“ T
´

∇ipfβ,µpHqq
`

LH `
1
τ

˘´1
p∇jpHqq

¯

where LH “ irH, . s Liouville operator
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6 Topological invariants in solid state systems
A P Ad invertible and |I| odd with ρ : t1, . . . , |I|u Ñ I and
sigpρq “ p´1qρ:

ChIpAq “
ipiπq

|I|´1
2

|I|!!

ÿ

ρPSI

p´1qρ T

¨

˝

|I|
ź

j“1

A´1∇ρj A

˛

‚ P R

where T pAq “ EP TrL x0|Aω|0y and ∇jAω “ irXj ,Aωs

For even |I| and projection P P Ad :

ChIpPq “
p2iπq

|I|
2

|I|
2 !

ÿ

ρPSI

p´1qρ T

¨

˝P
|I|
ź

j“1

∇ρj P

˛

‚ P R

Theorem 6.1 (Connes 1985, [Con])
ChIpAq and ChIpPq homotopy invariants; pairings with K pAdq
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Rewriting
Let d be even and Cd complex Clifford generated by γ1, . . . , γd

Extend Ad to Ad b Cd so that degree of form can be counted

Exterior derivatives are dAb v “
řd

j“1 ∇jAb γjv

Finally let evpγ1 ¨ ¨ ¨ γjq “ δj,d

Then

Cht1,...,dupPq “
p2iπq

|I|
2

|I|
2 !

T ˝ ev pPdP ¨ ¨ ¨ dPq

Special case d “ 2 gives ”first” Chern number:

Cht1,2upPq “ 2πi T ˝ ev pPdPdPq

“ 2πi T pPr∇1P,∇2Psq

“ 2πi
ż

T2

dk
p2πq2

Tr
`

PpkqrB1Ppkq, B2Ppkqs
˘

where P “
ş‘

T2 dk Ppkq
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Link to Volovik-Essin-Gurarie invariants
Express the invariants in terms of Green function/resolvent
Consider path z : r0,1s Ñ CzσpHq encircling p´8, µs X σpHq
Set

Gptq “ pH ´ zptqq´1

Theorem 6.2 ([PS])
For |I| even and with ∇0 “ Bt ,

ChIpPµq “
piπq

|I|
2

ip|I| ´ 1q!!

ÿ

ρPSIYt0u

p´1qρ
ż 1

0
dt T

¨

˝

|I|
ź

j“0

Gptq´1∇ρj Gptq

˛

‚

Isomorphism via Bott map β : K0pAdq Ñ K1pSAdq leads to

βrPµs0 “
“

t P r0,1s ÞÑ Gptq
‰

1

Combine with suspension result on cyclic cohomology side
Similar results for odd pairings
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Dimensional reduction for d even
Theorem 6.3 ([STo] )

H P Ad only nearest neighbor hopping with fibers CLˆL

Also: H “ H0`λH1 with H0 periodic in d ´1 directions along boundary

Let δ ą 0 and λ sufficiently small, P “ χpH ď µq P Ad Fermi projection

ExprPs0 “ ´rppGµ`ıδ ´ ı1Lqp
pGµ`ıδ ` ı1Lq

´1s1

where, with Π1 restriction to boundary Hilbert space `2pZd´1ˆt1u,CLq,

pGz “ Π1p
pH ´ zq´1Π˚1

Effective chiral Hamiltonian heff P Ad´1

heff “

˜

0 ppV zq˚

pV z 0

¸

, pV z “ ppGz ´ ı1qppGz ` ı1q´1

Open question: dimensional reduction in odd dimension
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Generalized Streda formulæ
In QHE: integrated density of states grows linearly in magnetic field

integrated density of states: E x0|P|0y “ ChHpPq

BB1,2 ChHpPq “
1

2π
Cht1,2upPq

Theorem 6.4 (Elliott 1984, [PS])

BBi,j ChIpPq “
1

2π
ChIYti,jupPq |I| even, i , j R I

BBi,j ChIpAq “
1

2π
ChIYti,jupAq |I| odd , i , j R I

Application: magneto-electric effects in d “ 3

Time is 4th direction needed for calculation of polarization

Non-linear response is derivative w.r.t. B given by Cht1,2,3,4upPq

K -theory in solid state physics 6. Topological invariants in solid state systems 57 / 141



Index theorem for strong invariants and odd d

γ1, . . . , γd irrep of Clifford Cd on C2pd´1q{2

D “

d
ÿ

j“1

Xj b 1b γj Dirac operator on `2pZdq b CL b C2pd´1q{2

Dirac phase F “ D
|D| provides odd Fredholm module on Ad :

F 2 “ 1 rF ,Aωs compact and in Ld`ε für A “ pAωqωPΩ P Ad

Theorem 6.5 (Local index = generalizes Noether-Gohberg-Krein)

Let Π “ 1
2pF ` 1q be Hardy projection for F . For invertible Aω

Cht1,...,dupAq “ IndpΠ AωΠq

The index is P-almost surely constant.
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Proof based on key geometric identities
Let d “ 2k ` 1

Given x1, . . . , x2k`2 P R2k`1 with x2k`2 fixed at the origin

γ1, . . . , γ2k`1 irrep on C2k
of complex Clifford Cl2k`1

ż

R2k`1
dx tr

´

2k`1
ź

j“1

`

sgnxγ, xj ` xy ´ sgnxγ, xj`1 ` xy
˘

¯

“ ´
22k`1piπqk

p2k ` 1q!!

ÿ

ρPS2k`1

p´1qρ
2k`1
ź

j“1

xj,ρj

For d “ 1: standard element in proof of Noether-Gohberg-Krein

Analog for d “ 2: Connes’ triangle equality

Extension: index theory for weak invariants (Prodan-SB)

Alternative proof: semifinite index theory (Bourne-SB)
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Local index theorem for even dimension d

As above γ1, . . . , γd Clifford, grading Γ “ ´i´d{2γ1 ¨ ¨ ¨ γd

Dirac D “ ´ΓDΓ “ |D|

˜

0 F
F˚ 0

¸

even Fredholm module

Theorem 6.6 (Connes d “ 2, Prodan, Leung, Bellissard 2013)
Almost sure index IndpPωFPωq equal to Cht1,...,dupPq

Special case d “ 2: F “ X1`iX2
|X1`iX2|

and

IndpPωFPωq “ 2πi T pPrrX1,Ps, rX2,Pssq

Proof: again geometric identity of high-dimensional simplexes

Advantages: phase label also for dynamical localized regime
implementation of discrete symmetries (CPT)
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Numerical technique for strong invariants
H chiral with Fermi unitary A. For tuning parameter κ ą 0 introduce:

Lκ “ H ` κ

˜

D 0
0 ´D

¸

“

˜

κD A
A˚ ´κD

¸

spectral localizer

Aρ restriction of A (Dirichlet b.c.) to range of χp|D| ď ρq

Lκ,ρ “

˜

κDρ Aρ
A˚ρ ´κDρ

¸

Clearly selfadjoint matrix:

pLκ,ρq˚ “ Lκ,ρ

Fact 1: Lκ,ρ is gapped, namely 0 R Lκ,ρ
Fact 2: Lκ,ρ has spectral asymmetry measured by signature
Fact 3: signature linked to topological invariant
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Theorem 6.7 ([LS2])

Given D “ D˚ with compact resolvent and invertible A
with invertibility gap g “ }A´1}´1. Provided that

}rD,As} ď
g3

12 }A}κ
(*)

and
2 g
κ

ď ρ (**)

the matrix Lκ,ρ is invertible and with Π “ χpD ě 0q

1
2 SigpLκ,ρq “ Ind

`

ΠAΠ` p1´ Πq
˘

How to use: form (*) infer κ, then ρ from (**)

If A unitary, g “ }A} “ 1 and κ “ p12}rD,As}q´1 and ρ “ 2
κ

Hence small matrix of size ď 100 sufficient! Great for numerics!
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Why it can work:

Proposition 6.8

If (*) and (**) hold,

L2
κ,ρ ě

g2

2

Proof:

L2
κ,ρ “

˜

AρA˚ρ 0
0 A˚ρAρ

¸

` κ2

˜

D2
ρ 0

0 D2
ρ

¸

` κ

˜

0 rDρ,Aρs
rDρ,Aρs˚ 0

¸

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)

Now A˚A ě g2, but pA˚Aqρ “ A˚ρAρ

This issue can be dealt with by tapering argument:
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Proposition 6.9 (Bratelli-Robinson)

For f : RÑ R with Fourier transform defined without
?

2π,

}rf pDq,As} ď }pf 1}1 }rD,As}

Lemma 6.1

D even function fρ : RÑ r0,1s with fρpxq “ 0 for |x | ě ρ

and fρpxq “ 1 for |x | ď ρ
2 such that }pf 1ρ}1 “

8
ρ

With this, f “ fρpDq “ fρp|D|q and 1ρ “ χp|D| ď ρq:

A˚ρAρ “ 1ρA˚1ρA1ρ ě 1ρA˚f 2A1ρ
“ 1ρfA˚Af1ρ ` 1ρ

`

rA˚, f sfA` fA˚rf ,As
˘

1ρ
ě g2 f 2 ` 1ρ

`

rA˚, f sfA` fA˚rf ,As
˘

1ρ

So indeed A˚ρAρ positive close to origin
Then one can conclude... but a bit tedious l
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Proof by spectral flow
Use Phillips’ result for phase U “ A|A|´1 and properties of SF:

IndpΠAΠ` 1´ Πq “ SFpU˚DU,Dq
“ SFpκU˚DU, κDq

“ SF

˜˜

U 0
0 1

¸˚˜

κD 0
0 ´κD

¸˜

U 0
0 1

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

U 0
0 1

¸˚˜

κD 1
1 ´κD

¸˜

U 0
0 1

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

κU˚DU U
U˚ ´κD

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

κD U
U˚ ´κD

¸

,

˜

κD 0
0 ´κD

¸¸

Now localize and use SF “ 1
2 Sig on paths of selfadjoint matrices l
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Even pairings (in even dimension)

Consider gapped Hamiltonian H on H specifying P “ χpH ď 0q

Dirac operator D on H‘H is odd w.r.t. grading Γ “
`1 0

0 ´1

˘

Thus D “ ´ΓDΓ “
` 0 D1
pD1q˚ 0

˘

and Dirac phase F “ D1|D1|´1

Fredholm operator PFP ` p1´ Pq has index “ Chern number
Spectral localizer

Lκ “

˜

H κD1

κ pD1q˚ ´H

¸

“ H b Γ ` κD

Theorem 6.10 ([LS3])
Suppose }rH,D1s} ă 8 and D1 normal, and κ, ρ with (*) and (**)

Ind
`

PFP ` p1´ Pq
˘

“ 1
2 SigpLκ,ρq
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Elements of proof

Definition 6.11

A fuzzy sphere pX1,X2,X3q of width δ ă 1 in C˚-algebra K is a
collection of three self-adjoints in K` with spectrum in r´1,1s and

›

›

›
1´ pX 2

1 ` X 2
2 ` X 2

3 q

›

›

›
ă δ }rXj ,Xi s} ă δ

Proposition 6.12

If δ ď 1
4 , one gets class rLs0 P K0pKq by self-adjoint invertible

L “
ÿ

j“1,2,3

Xj b σj P M2pK`q

Reason: L invertible and thus has positive spectral projection

Remark: odd-dimensional spheres give elements in K1pKq
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Proposition 6.13
Lκ,ρ homotopic to L “

ř

j“1,2,3 Xj b σj in invertibles

Construction of that particular fuzzy sphere:
Smooth tapering fρ : RÑ r0,1s with supppfρq Ă r´ρ, ρs as above
Define Fρ : RÑ r0,1s by

Fρpxq4 ` fρpxq4 “ 1

If D1 “ D1 ` iD2 with D˚j “ Dj , and R “ |D|, set

X1 “ FρpRqR´
1
2 D1,ρ R´

1
2 FρpRq

X2 “ FρpRqR´
1
2 D2,ρ R´

1
2 FρpRq

X3 “ fρpRqHρ fρpRq

Theorem 6.14
Ind rπpP F P ` 1´ Pqs1 “ rLκ,ρs0
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Proof:

General tool:

Image of K -theoretic index map can be written as fuzzy sphere

IndrπpAqs1 “
”

ÿ

j“1,2,3

Yj b σj

ı

0

(by choosing an almost unitary lift A)

Formulas for Y1,Y2,Y3 are explicit (but long)

General tool for P F P ` 1´ P provides fuzzy sphere pY1,Y2,Y3q

Final step: find classical degree 1 map M : S2 Ñ S2 such that

MpY1,Y2,Y3q „ pX1,X2,X3q
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Numerics for toy model: p ` ip superconductor
Hamiltonian on `2pZ2,C2q depending on µ and δ

H “

˜

S1 ` S˚1 ` S2 ` S˚2 ´ µ δ
`

S1 ´ S˚1 ` ıpS2 ´ S˚2 q
˘

δ
`

S1 ´ S˚1 ` ıpS2 ´ S˚2 q
˘˚

´pS1 ` S˚1 ` S2 ` S˚2 ´ µq

¸

` λVdis

and disorder strength λ and i.i.d. uniformly distributed entries in

Vdis “
ÿ

nPZ2

˜

vn,0 0
0 ´vn,1

¸

|nyxn|

Build even spectral localizer from D “ X1σ1 ` X2σ2 “ ´σ3Dσ3:

Lκ,ρ “

˜

Hρ κ pX1 ` iX2qρ

κ pX1 ´ iX2qρ ´Hρ

¸

Calculation of signature by block Chualesky algorithm
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Low-lying spectrum of Hamiltonian

 1

 1.5

 2

 2.5

 3

 3.5

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Le
ve

l 
o
f 
D

is
o
rd

e
r 

(λ
)

Eigenvalues

Eigenvalues of the Hamiltonian with disorder
 δ=-0.35, µ=0.25, ρ=30

Gap of localizer open in dynamical localization regime with no gap of H

K -theory in solid state physics 6. Topological invariants in solid state systems 71 / 141



Low-lying spectrum of spectral localizer [LSS]

 1

 1.5

 2

 2.5

 3

 3.5

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Le
ve

l 
o
f 
D

is
o
rd

e
r 

(λ
)

Eigenvalues

Eigenvalues of the spectral localizer with disorder
 δ=-0.35, µ=0.25, κ=0.03, ρ=30

K -theory in solid state physics 6. Topological invariants in solid state systems 72 / 141



Half-signature and gaps for p ` ip superconductor
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7 Invariants as response coefficients
‚ Hall conductance via Kubo formula: Chti,ju with i “ j
‚ polarization for periodically driven systems: Cht0,ju with 0 time
‚ orbital magnetization at zero temperature
‚ magneto-electric effect: Cht0,1,2,3u with 0 time
‚ chiral polarization: Chtju

Current operator J “ pJ1, . . . , Jdq in d dimension:

J “ 9X “ i rH,X s “ ∇H

Current density at equilibrium expressed by Fermi-Dirac state:

jβ,µ “ T pfβ,µpHq Jq , fβ,µpHq “ p1` eβpH´µqq´1

Proposition 7.1 ([BES])

If H “ H˚ P C1pAq and f P C0pRq, then T pf pHq∇Hq “ 0

Proof: Leibniz implies 0 “ T p∇Hnq “ nT pHn´1∇Hq for all n ě 1 l
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Hence no current at equilibrium! Add external electric field E P Rd

HE “ H ` E ¨ X

Then HE neither bounded nor homogeneous and thus not in A
Nevertheless associated time evolution remains in the algebra A
In the Schrödinger picture it is governed by the Liouville equation:

Bt ρ “ ´ i rHE , ρs “ ´ i rH ` E ¨ X , ρs “ ´LHpρq ` E ¨∇pρq

Now Dyson series with Liouville LH as perturbation is iteration of

etLHE “ etE¨∇ `

ż t

0
ds ept´sqE¨∇LHesLHE

This shows:

Proposition 7.2

˘LH ` E ¨∇ are generators of automorphism groups in A
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Next time-averaged current under the dynamics with E :

jβ,µ,E “ lim
TÑ8

1
T

ż T

0
dt T

`

fβ,µpHq etLHE pJq
˘

As trace T invariant under both ∇ and LH ,

jβ,µ,E “ lim
TÑ8

1
T

ż T

0
dt T

`

J e´tLHE pfβ,µpHqq
˘

(Schrödinger picture ðñ Heisenberg picture). Now

Proposition 7.3 (Bloch Oscillations)

Time-averaged current jβ,µ,E along direction of E vanishes

Proof. E ¨ Jptq “ etLHE pE ¨∇pHqq “ etLHE pLHE pHqq “
dHptq

dt
Taking the time average gives us

1
T

ż T

0
dt E ¨ Jptq “ HpT q ´ H

T
Since H bounded and }Hptq} “ }H}, r.h.s. vanishes as T Ñ8 l
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Modify dynamics by bounded linear collision term (like Boltzmann eq.):

Bt ρ` LHpρq ´ E ¨∇pρq “ ´ Γpρq

Main property is invariance of equilibrium: Γpfβ,µpHqq “ 0
Again Dyson series shows existence of dynamics:

ρptq “ e´tpLH´E¨∇`Γqpρp0qq

Initial state chosen to be ρp0q “ fβ,µpHq
Exponential time-averaged current density shows:

jβ,µ,E “ lim
δÑ0

δ

ż 8

0
dt e´δt T pJρptqq

“ lim
δÑ0

δ T
ˆ

J
1

δ ` Γ` LH ´ E ¨∇pfβ,µpHqq
˙

By Proposition 7.1 and pLH ` Γqpfβ,µpHqq “ 0 no current at equilibrium:

0 “ δ T
ˆ

J
1
δ

fβ,µpHq
˙

“ δ T
ˆ

J
1

δ ` LH ` Γ
pfβ,µpHqq

˙

Subtract this from jβ,µ,E and use resolvent identity
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jβ,µ,E “ lim
δÑ0

T
ˆ

J
1

δ ` Γ` LH ´ E ¨∇ E ¨∇ δ

δ ` Γ` LH
pfβ,µpHqq

˙

Now, again pLH ` Γqpfβ,µpHqq “ 0,

jβ,µ,E “ lim
δÑ0

d
ÿ

j“1

Ej T
ˆ

J
1

δ ` Γ` LH ´ E ¨∇p∇j fβ,µpHqq
˙

This contains all non-linear terms in the electric field
Limit δ Ñ 0 can be taken, if inverse exists
Linear coefficients of jβ,µ,E in E give conductivity tensor
In relaxation time approximation (RTA) on replaces Γ by 1

τ ą 0

Theorem 7.4 (Kubo formula in RTA [BES])

σi,jpβ, µ, τq “ T
˜

∇iH
1

1
τ ` LH

`

∇j fβ,µpHq
˘

¸
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Hall conductance i “ j at zero temperature β “ 8 and τ “ 8 exists

σi,jpβ “ 8, µ, τ “ 8q “ T
´

pLHq
´1p∇iHq ∇jP

¯

where P “ χpH ď µq. As

∇jP “ P∇jPp1´ Pq ` p1´ Pq∇jPP

and
pLHq

´1pP ∇jH p1´ Pqq “ ´i P ∇jP p1´ Pq

pLHq
´1pp1´ Pq∇jH Pq “ i p1´ Pq∇jP P

Hence

σi,jpβ “ 8, µ, τ “ 8q “ i T
`

Pr∇iP,∇jPs
˘

“
1

2π
Chti,jupPq

R.h.s. is integer-valued in dimension d “ 2 and d “ 3 (3D QHE)
This result holds also in a mobility gap regime [BES]
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Electric polarization
t P r0,2πq – S1 ÞÑ Hptq periodic gapped Hamiltonian (changes dyn.)
Change ∆P in polarization is integrated induced current density:

∆P “

ż 2π

0
dt T pρptq Jptqq , ρp0q “ P0 “ χpH ď µq

with Jptq “ irHptq,X s. Algebraic reformulation:

∆P “

ż 2π

0
dt T

`

ρptq rBtρptq, rX , ρptqss
˘

However, ρptq unknown. So adiabatic limit of slow time changes:

Theorem 7.5 (Kingsmith-Vanderbuilt and [ST])

t P S1 ÞÑ Hptq smooth with gap open for all t
With ρp0q “ P0p0q and ε Btρptq “ ırρptq,Hptqs, for any N P N

∆P “ i
ż 2π

0
dt T

`

P0ptq rBtP0ptq, rX ,P0ptqss
˘

` OpεNq
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Now add time to algebra: CpS1,Adq is like Ad`1

0th component is time and ∇0 “ Bt

Also trace on CpS1,Adq is 1
2π

ş2π
0 dt T

Corollary 7.6
Polarization of periodically driven system is topological:

∆Pj “ 2π Cht0,ju `OpεNq

For d “ 1,2 and j “ 1, one hence has ∆P1 P 2π Z up to OpεNq

However, in d “ 3 one does not have ∆Pj P 2π Z, but due to
generalized Streda formula, magneto-electric response satisfies

α1,2,3 “ BB2,3∆P1 “ 2π Cht0,1,2,3u P 2π Z

Similarly: IDOS on gaps satisfies gap labelling
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Chiral polarization
Chiral Hamiltonian H “ ´σ3Hσ3, typically due to sub-lattice symmetry
chiral polarization “ difference between two electric dipole moments

PC “ E Tr x0|Pσ3 X P|0y “ i T pPσ3∇Pq

due to X |0y “ 0. Let U be Fermi unitary of P

Proposition 7.7 ([PS])

PC,j “ ´ 1
2 ChtjupUq , j “ 1, . . . ,d

Proof. Expressing P in terms of U

PC “
i
4
T
˜˜

1 U˚

´U ´1

¸˜

0 ´∇U˚

´∇U 0

¸¸

“
i
4
T p´U˚∇U `U∇U˚q

Now use U∇U˚ “ ´p∇UqU˚ and cyclicity l
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8 Bulk-boundary correspondence and applications
Toeplitz extension T pAdq “ C˚pSB

1 , . . . ,S
B
d´1,

pSB
d ,Wωq

edge half-space bulk
0 Ñ Ed Ñ T pAdq Ñ Ad Ñ 0

Moreover: Ed – Ad´1 bKp`2pNqq

K0pAd´1q
i˚ - K0pT pAdqq

π˚ - K0pAdq

K1pAdq

Ind
6

� π˚ K1pT pAdqq �
i˚ K1pAd´1q

Exp
?

Theorem 8.1 ([KRS, PS])

ChIYtdupAq “ ´xChIpIndpAqq |I| even , rAs P K1pAdq

ChIYtdupPq “ xChIpExppPqq |I| odd , rPs P K0pAdq

Here xChI “ Trb ChI Proof: loooong Example: d “ 1 as for SSH
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Proof of BBC using KK -theory [BCR, BKR]
Bulk-boundary exact sequence 0 Ñ Ed Ñ T pAdq Ñ Ad Ñ 0 gives

rexts P Ext´1pAd , Edq – KK 1pAd , Edq

(see Kasparov 1981). Further view, with j “ |I| mod 2,

rxChIs P KK jpEd ,Cq , rChIYtdus P KK j`1pAd ,Cq

Theorem 8.2 ([BKR])

For Kasparov product KK 1pAd , Edq ˆ KK jpEd ,Cq Ñ KK j`1pAd ,Cq

rexts b̂Ed r
xChIs “ p´1qd rChIYtdus

For d even and |I| “ d ´ 1, let rPs0 P K0pAdq “ KK 0pC,Adq. Thus

xChIpExppPqq “ rExppPqs1 b̂Ed r
xChIs

“ rPs0 b̂Ad rexts b̂Ed r
xChIs

“ rPs0 b̂Ad rChIYtdus “ ChIYtdupPq
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Boundary maps in terms of Hamiltonians
Theorem 8.3 ([KRS, PS])
Let H P MLpAdq with gap ∆ Q µ and P “ χpH ď µq P MLpAdq

With continuous gpEq “ 1 for E ă ∆ and gpEq “ 0 for E ą ∆:

ExpprPs0q “ rexpp´2πi gppHqqs1 P K1pEdq

Proof: gppHq P T pAdq is a selfadjoint lift of P l

Theorem 8.4 ([PS])
Let H P M2LpAdq chiral with gap ∆ Q 0 and Fermi unitary U P MLpAdq

With odd continuous f pEq “ ´1 for E ă ∆ and f pEq “ 1 for E ą ∆:

IndprUs1q “ re´ı
π
2 f ppHqdiagp1,0qeı

π
2 f ppHqs0 ´ rdiagp1,0qs0 P K0pEdq

If central band of edge states gapped with projection pP “ pP` ` pP´,

IndprUs1q “ rpP`s0 ´ rpP´s0 P K0pEdq
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Physical implication in d “ 2: QHE
P Fermi projection below a bulk gap ∆ Ă R. Kubo formula:

Hall conductance “ Cht1,2upPq
Bulk-boundary:

Cht1,2upPq “ Cht1upExppPqq “ WindpExppPqq

With continuous gpEq “ 1 for E ă ∆ and gpEq “ 0 for E ą ∆:

ExppPq “ expp´2πi gppHqq P T pA2q

as indeed πpgppHqq “ gpHq “ P so that πpExppPqq “ 1 trivial

Theorem 8.5 (Quantization of boundary currents [KRS, PS])

Cht1,2upPq “ E
ÿ

n2ě0

x0,n2|g1ppHqirX1, pHs|0,n2y

The r.h.s. is current density flowing along the boundary
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Proof: With pT pAq “ T1 Tr2pAq “ EP
ř

n2ě0 x0,n2|
pAω|0,n2y, r.h.s. is

j epgq “ E
ÿ

n2ě0

x0,n2|g1ppHqirX1, pHs|0,n2y “ pT
`

pJ1 g1ppHq
˘

Summability in n2 has to be checked

Let Π : `2pZ2q Ñ `2pZˆ Nq surjective partial isometry,

namely ΠΠ˚ identity on `2pZˆ Nq

Then pH “ ΠHΠ˚

Proposition 8.6

For G P C8pRq with supppGq X σpHq “ H

Then the operator GppHq is pT -traceclass

Proof based on functional calculus often attributed to Helffer-Sjorstrand
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Proposition 8.7 (Functional calculus à la Dynkin 1972)

χ P C80 pp´1,1q, r0,1sq even and equal to 1 on r´δ, δs

For N ě 1 let quasi-analytic extension rG : CÑ C of G by

rGpx , yq “
ÿ

n“0,...,N

Gpnqpxq
piyqn

n!
χpyq , z “ x ` iy

Then with norm-convergent Riemann sum

GpHq “
´1
2π

ż

R2
dx dy Bz

rGpx , yq pz ´ Hq´1

Proof. Crucial identity is

Bz
rGpx , yq “ GpN`1qpxq

piyqN

N!
χpyq ` i

ÿ

n“0,...,N

Gpnqpxq
piyqn

n!
χ1pyq

In particular, uniformly in x , y , one has |Bz
rGpx , yq| ď C |y |N

Hence also Bz
rGpx ,0q “ 0. Now resolvent bound. Details.... l

K -theory in solid state physics 8. Bulk-boundary correspondence 88 / 141



Proof of Proposition 8.6. Geometric resolvent identity

1

z ´ pH
“ Π

1
z ´ H

Π˚ `
1

z ´ pH
ppH Π˚ ´ Π Hq

1
z ´ H

Π˚

in Dynkin for GppHq together with GpHq “ 0 leads to

GppHq “ Π GpHqΠ˚ ` pK

“
´1
2π

ż

R2
dx dy Bz

rGpx , yq
1

z ´ pH
ppH Π˚ ´ Π Hq

1
z ´ H

Π˚

Resolvents have fall-off of their matrix elements off the diagonal:

pnj ´mjq
kxn|pz ´ Hq´1|my “ ik xn|∇k

j pz ´ Hq´1|my , k P N

Expand ∇k pz ´ Hq´1 by Leibniz rule. As }∇kH} ď C

|xn|pz ´ Hq´1|my| ď
1

|y |k`1
Ck

1` |nj ´mj |
k

Same bound holds for resolvent of pH (improvement: Combes-Thomas)
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If finite range, pHΠ˚ ´ ΠH has matrix elements only on boundary. Then

|x0,n2|
pK |0,n2y|

ď
ÿ

mPZˆN

ÿ

kPZ2

1
2π

ż

R2
dx dy |Bz

rGpx , yq| |x0,n2|pz ´ Hq´1|my|

|xm|pH Π˚ ´ Π H|ky| |xk |pz ´ Hq´1|0,n2y|

ď C
ÿ

m1ě0

ż

R2
dx dy |Bz

rGpx , yq|
1

|y |2k`2
1

1` |n2|
2k

1
1` |m1|

2k

Now above bound on resolvent for N ě 2k ` 2

As integral over bounded region, sum can be carried out

|x0,n2|
pK |0,n2y| ď

C
1` |n2|

2k

But this implies desired pT -traceclass estimate l
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Proof of Theorem 8.5. Set pU “ ExppPq “ expp´2πi gppHqq and

Ind “ i pT
`

ppU˚ ´ 1q∇1
pU
˘

Express pU as exponential series and use Leibniz rule:

Ind “

8
ÿ

m“0

p2πiqm

m!

m´1
ÿ

l“0

pT
´

ppU˚ ´ 1qgppHql ∇1gppHqgppHqm´l´1
¯

where trace and sum exchange by pT -traceclass property of pU ´ 1
Due to cyclicity and rpU,gppHqs “ 0, each summand equal to

pT pppU˚ ´ 1qgppHqm´1 ∇1gppHqq

Exchanging sum and trace, summing up again:

Ind “ ´2π pT
´

p1´ pUq∇1gppHq
¯

Now same argument for pUk “ expp´2πi k gppHqq for k ‰ 0,

Ind “
i
k

pT
`

ppUk ´ 1q˚∇1
pUk˘ “ ´2π pT

´

p1´ pUk q∇1gppHq
¯
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Writing gpEq “
ş

dt g̃ptqe´Ep1`itq with adequate g̃, by DuHamel

Ind “ 2π
ż

dt g̃ptq p1`itq
ż 1

0
dq pT

´

ppUk ´ 1qe´p1´qqp1`itqpHp∇1
pHqe´qp1`itqpH

¯

With g1pEq “ ´
ş

dt p1` itq g̃ptqe´Ep1`itq for k ‰ 0,

Ind “ 2π pT
´

ppUk ´ 1qg1ppHq∇1
pH
¯

For k “ 0, the r.h.s. vanishes. To conclude, let φ P C80 pp0,1q,Rq

Fourier coefficients ak “
ş1
0 dx e´2πikxφpxq satsify

ř

k ake2πikx “ φpxq
In particular,

ř

k ak “ 0 and

a0 Ind “ ´
ÿ

k‰0

ak Ind “ 2π
ÿ

k

ak pT
´

p1´ pUk qg1ppHq∇1
pH
¯

“ 2π pT
`

p0´ φpgppHqqqg1ppHq∇1
pH
˘

As φÑ χr0,1s also a0 Ñ 1 and φpgppHqqg1ppHq Ñ g1ppHq (no Gibbs)

As J1 “ ∇1
pH proof is concluded l
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Chiral system in d “ 3: anomalous surface QHE
Chiral Fermi projection P (off-diagonal) ùñ Fermi unitary A

Cht1,2,3upAq “ Cht1,2upIndpAqq

Magnetic field perpendicular to surface opens gap in surface spec.

With pP “ pP` ` pP´ projection on central surface band, as in SSH:

IndpAq “ rpP`s ´ rpP´s

Theorem 8.8 ([PS])

Suppose either pP` “ 0 or pP´ “ 0 (conjectured to hold). Then:

Cht1,2,3upAq “ 0 ùñ surface QHE, Hall cond. imposed by bulk

Actually only approximate chiral symmetry needed
Experiment? No (approximate) chiral topological material known
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Delocalization of boundary states

Hypothesis: bulk gap at Fermi level µ

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem 8.9 ([PS])
For even d, if strong invariant Cht1,...,dupPq “ 0,
then no Anderson localization of boundary states in bulk gap
Technically: Aizenman-Molcanov bound for no energy in bulk gap

Theorem 8.10 ([PS])
For odd d ě 3, if strong invariant Cht1,...,dupAq “ 0,
then no Anderson localization at µ “ 0
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BBC for continuously periodically driven systems
BBC in time direction: stroboscopics Here: BBC in spacial direction
Lift t P S1 – r0,2πq ÞÑ pHptq of continuous gapped t P S1 ÞÑ Hptq in

0 - CpS1, Edq
i- CpS1, pAdq

ev- CpS1,Adq - 0

Then for polarization in direction d with adiabatic projection PA:

∆Pd “ 2π Cht0,dupPAq “ 2π Cht0upU∆q

where 0-th component still time and rU∆s1 “ ExprPAs0. Now

Cht0upU∆q “ ´2π
ż 2π

0
dt pT

´

g1
`

pHptq
˘

Bt pHptq
¯

For d “ 1, this is 2π times spectral flow of boundary eigenvalues. Thus

∆P1 “ ´2π SF
`

t P S1 ÞÑ pHptq by µ
˘

namely charge pumped from valence to conduction states
For d ą 1, spectral flow is in sense of Breuer-Fredholm operators

K -theory in solid state physics 8. Bulk-boundary correspondence 95 / 141



Application to topological Floquet systems
Given t ÞÑ Hptq “ Hptq˚ P Ad piecewise continuous 2π-periodic family

Differentiable path of unitaries t ÞÑ Uptq P Ad from

i BtUptq “ HptqUptq , Up0q “ 1

Evolution U “ Up2πq over period 2π called Floquet operator
Suppose eıθ R σpUq quasi-energy spectrum for θ P r0,2πq and set

hθ “ ´p2πiq´1 logθpUq

Here logθ natural logarithm with branch cut along r P r0,8q ÞÑ reıθ

By construction, U “ e´2πihθ . Set

Hθptq “

#

2 Hp2tq , t P r0, πs
´2 hθ , t P pπ,2πs

Now periodized time evolution Vθ with Vθp0q “ Vθp2πq “ 1

i BtVθptq “ HθptqVθptq , Vθp0q “ 1
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Invariants and BBC
There are new bulk invariants involving the time t “ x0, e.g. strong inv.

Cht0,1,...,dupVθq

Consider now boundary evolution:

i Bt pUptq “ pHptq pUptq , pUp0q “ p1

Floquet operator pU “ pUp2πq P T pAdq is unitary lift of U

Theorem 8.11 ([SS])

Let eıθ R σpUq and eıθ
1

not in the same gap as eıθ

gθ : S1 Ñ r0,1s smooth increasing with jump down by 1 at eıθ
1

Θ´1pIndprVθs1qq “ re´2πi gθppUqs1

If d “ 2 reformulation as counting of edge channels
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9 Implementation of symmetries

This invokes real structure simply denoted by bar on H and BpHq

chiral symmetry pCHSq : J˚ch H Jch “ ´H

time reversal symmetry pTRSq : S˚tr H Str “ H

particle-hole symmetry pPHSq : S˚ph H Sph “ ´H

Str “ eiπsy
orthogonal on C2s`1 with S2

tr “ ˘1 even or odd

Sph orthogonal on C2
ph with S2

ph “ ˘1 even or odd

Note: TRS + PHS ùñ CHS with Jch “ StrSph

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real

Further distinction in each of the 10 classes: topological insulators
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Periodic table of topological insulators
Schnyder-Ryu-Furusaki-Ludwig,Kitaev 2008: just strong invariants

jzd TRS PHS CHS 1 2 3 4 5 6 7 8

0 0 0 0 Z Z Z Z
1 0 0 1 Z Z Z Z

0 `1 0 0 2Z Z2 Z2 Z
1 `1 `1 1 Z 2Z Z2 Z2

2 0 `1 0 Z2 Z 2Z Z2

3 ´1 `1 1 Z2 Z2 Z 2Z
4 ´1 0 0 Z2 Z2 Z 2Z
5 ´1 ´1 1 2Z Z2 Z2 Z
6 0 ´1 0 2Z Z2 Z2 Z
7 `1 ´1 1 2Z Z2 Z2 Z
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Periodic table: real classes only
64 pairings = 8 KR-cycles paired with 8 KR-groups

jzd TRS PHS CHS 1 2 3 4 5 6 7 8

0 `1 0 0 2Z Z2 Z2 Z
1 `1 `1 1 Z 2Z Z2 Z2

2 0 `1 0 Z2 Z 2Z Z2

3 ´1 `1 1 Z2 Z2 Z 2Z
4 ´1 0 0 Z2 Z2 Z 2Z
5 ´1 ´1 1 2Z Z2 Z2 Z
6 0 ´1 0 2Z Z2 Z2 Z
7 `1 ´1 1 2Z Z2 Z2 Z

Focus on system in d “ 2 with odd TRS S “ Str:

S2 “ ´1 S˚HS “ H
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Z2 index for odd TRS and d “ 2

Rewrite S˚HS “ H “ S˚H tS with H t “ pHq˚

ùñ S˚pHnqtS “ Hn for n P N ùñ S˚P tS “ P

For d “ 2, Dirac phase F “ X1`iX2
|X1`iX2|

“ F t and rS,F s “ 0

Hence Fredholm operator T “ PFP of following type

Definition T odd symmetric ðñ S˚T tS “ T ðñ pTSqt “ ´TS

Theorem 9.1 (Atiyah-Singer 1969)
F2pHq “ todd symmetric Fredholm operatorsu has 2 connected
components labelled by compactly stable homotopy invariant

Ind2pT q “ dimpKerpT qq mod 2 P Z2

Application: Z2 phase label for Kane-Mele model if dyn. localized
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Existence proof of Z2-indices via Kramers arg.
First of all: IndpT q “ 0 because KerpT ˚q “ S KerpT q
Idea: KerpT q “ KerpT ˚T q

and positive eigenvalues of T ˚T have even multiplicity

Let T ˚Tv “ λv and w “ S Tv (N.B. λ “ 0). Then

T ˚T w “ S pS˚T ˚Sq pS˚TSqTv

“ S T T ˚ T v “ λS T v “ λw .

Suppose now µ P C with v “ µw . Then

v “ µS T v “ µS T µS T v “ ´|µ|2 T ˚T v “ ´|µ|2 λ v

Contradiction to v “ 0.

Now spantv ,wu is invariant subspace of T ˚T .

Go on to orthogonal complement
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Symmetries of the Dirac operator

D “

d
ÿ

j“1

Xj b 1b γj

γ1, . . . , γd irrep of Cd with γ2j “ ´γ2j and γ2j`1 “ γ2j`1

In even d exists grading Γ “ Γ˚ with D “ ´ΓDΓ and Γ2 “ 1
Moreover, exists real unitary Σ (essentially unique) with

d “ 8´ i 8 7 6 5 4 3 2 1
Σ2 1 1 ´1 ´1 ´1 ´1 1 1

Σ˚D Σ D ´D D D D ´D D D
Γ Σ Γ Σ ´Σ Σ ´Σ

pD, Γ,Σq defines a KR i -cycle (spectral triple with real structure)
(Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)
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Index theorems for periodic table

Symmetries of KR-cycles and Fermi projection/unitary lead to:

Theorem 9.2
Index theorems for all strong invariants in periodic table

Remarks:
Result holds also in the regime of strong Anderson localization
2Z entries result from quaternionic Fredholm (even Ker, CoKer)
Links to Atiyah-Singer classifying spaces
Formulation as Clifford valued index theorem possible

Physical implications: case by case study necessary!

Example: focus on TRS d “ 2 quantum spin Hall system (QSH)
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Spin Chern numbers [Pro]
Approximate spin conservation ùñ spin Chern numbers SChpPq
Kane-Mele Hamiltonian has small commutator rH, szs

Also rP, szs small and thus PszP|RanpPq spectrum close to t´1,1u
ùñ spectral gap! Let P˘ be two associated spectral projections

Proposition 9.3 ([Pro])
P˘ have off-diagonal decay so that Chern numbers can be defined

Hence P “ P` ` P´ decomposes in two smooth projections

Definition 9.4
Spin Chern number of P is SChpPq “ ChpP`q

By TRS, ChpPq “ 0 and thus SChpPq “ ´ChpP´q

Theorem 9.5 ([SB1])
Ind2pPFPq “ SChpPq mod 2

K -theory in solid state physics 9. Implementation of symmetries 105 / 141



Spin filtered helical edge channels for QSH

Remarkable: Non-trivial topology SChpPq persists TRS breaking!

General strategy: approximately conserved quantities lead to
integer-valued invariants which persist breaking of real symmetry

Further example:
Kitaev chain (Class D with Z2-invariant) has a winding number

Theorem 9.6
If SChpPq “ 0, spin filtered edge currents in ∆ Ăgap are stable w.r.t.
perturbations by magnetic field and disorder:

E Tr x0|χ∆p
pHq 1

2

 

irpH,X1s, sz
(

|0y “ |∆| SChpPq ` correct.

Resumé: Ind2pPFPq “ 1 ùñ no Anderson loc. for edge states

Rice group of Du (since 2011): QSH stable w.r.t. magnetic field
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10 Spectral flow in topological insulators
Theorem 10.1 (Laughlin 1983, Avron, Punelli 1992, Macris, [DS])

H disordered Harper-like operator on `2pZ2q b CL with µ Pgap
Hα Hamiltonian with extra flux α P r0,1s through 1 cell of Z2

Then for P “ χpH ď µq

SF
´

α P r0,1s ÞÑ Hα through µ
¯

“ ´Cht1,2upPq
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Phillips’ analytic definition (1996)

−1 −1 +1+1

t1 t2 t4t3 t5 t6 tN = 1. . .t0 = 0

b2

a2a1

b1

σ(Tt)

0

1

−a

D finite partition 0 “ t0 ă t1 ă . . . ă tN´1 ă tN “ 1 of r0,1s and
an ă 0 ă bn with t P rtn´1, tns ÞÑ χpTt P ran,bnsq continuous. Set:

SFpt P r0,1s ÞÑ Ttq “

N
ÿ

n“1

TrH
`

χpTtn´1 P ran,0sq ´ χpTtn P ran,0sq
˘

K -theory in solid state physics 10. Spectral flow in topological insulators 108 / 141



Theorem 10.2 (Phillips 1996)

SFpt P r0,1s ÞÑ Ttq independent of partition and an ă 0 ă bn.

It is a homotopy invariant when end points are kept fixed.

It satisfies concatenation and normalization:

SFpt P r0,1s ÞÑ T ` p1´ 2tqPq “ ´ dimpPq for TP “ P

Theorem 10.3 (Lesch 2004)
Homotopy invariance, concatenation, normalization characterize SF

Theorem 10.4 (Perera 1993, Phillips 1996)
SF on loops establishes isomorphism π1pF˚saq “ Z
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Theorem 10.5 (Phillips 1996)
0 gap of H “ H˚ and P “ χpH ď 0q. If t P r0,1s ÞÑ Ht “ H˚t with

(i) H1 “ UH0U˚ for unitary U
(ii) 0 in essential gap of Ht for all t P r0,1s

then
SF

´

t P r0,1s ÞÑ Ht through 0
¯

“ ´ IndpPUPq

Exact sequence interpretation: Mapping cone associated to U:

M “ tt P r0,1s ÞÑ At P A`K : A0 “ U˚A1U, At ´ A0 P K u

with 0 Ñ SK ãÑ M ev
Ñ A Ñ 0. Now K1pSKq “ K0pKq “ Z and

ExprPs0 “ rexpp2πi LiftpPqtqs1 “ rexpp2πipP ` t U˚rP,Usqqs1

Then for pairing with odd Fredholm module pH,Uq
xpH,Uq , rPs0y “ xp

ż

dtbTr, Btq , ExprPs0y “ SFp2P´1`t U˚r2P´1,Usq
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Proof of bulk-boundary in d “ 2 (idea Macris 2002)
Based on gauge invariance and compact stability
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Exact sequence behind the Laughlin argument

Theorem 10.6
With EpA2q “ C˚pSB

1 ,S
B
2 ,P0 “ |0yx0|q, split exact sequence

0 ÝÑ K i
ãÑ EpA2q

π
Ñ
Ðâ

j

A2 ÝÑ 0

Moreover, EpA2q “ C˚pSB,α
1 ,SB,α

2 q for α P RzZ where SB,α
j extra flux

Thus Ind “ 0 and Exp “ 0 so that

K0pKq “ Z i˚ - K0pEpA2qq “ Z3 π˚ - K0pA2q “ Z2

K1pA2q “ Z2

Ind
6

� π˚ K1pEpA2qq “ Z2 � i˚ K1pKq “ 0

Exp
?
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Z2 invariant and half-spectral flow for QSH

Theorem 10.7
α P r0,1s ÞÑ Hpαq inserted flux in Kane-Mele model (breaks TRS)
Ind2pPFPq “ 1 ùñ half-spectral flow SFpα P r0, 1

2 s ÞÑ Hpαqqmod 2 “ 1
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Spectral flow in higher dimensions
For d even, index theorem used Dirac (even Fredholm module)

D “ xγ|Xy “ ´ΓDΓ “ |D|

˜

0 F
F˚ 0

¸

“ |D|G

Then strong invariants:

Cht1,...,dupPq “ IndpPωFPωq

Aim: Calculate this as a spectral flow upon inserting monopole

Introduce non-abelian skew-adjoint gauge potential for k “ 1, . . . ,d :

Aαk “ αGBkG “
α

2R2 rD, γk s „ R´1

where R2 “ D2 “ X 2. One has Aαk “ ΓAαk Γ diagonal. Set

∇α
k “ Bk ´ Aαk on L2pRd ,CNq
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Monopole translations

Proposition 10.8

For v P Rd , i∇α
v “ i

ř

k vk∇α
k is essentially selfadjoint and

pe∇αv ψqpxq “ Mα
v pxqψpx ` vq , ψ P L2pRd ,C2Nq

where x P Rdzttv : t P r´1,0su ÞÑ Mα
v pxq P Up2Nq is continuous with

lim
|x |Ñ8

Mα
v pxq “ 12N

Phase factor has rotation covariance w.r.t. Pin Group representation:

gO Mα
v pO

˚xqg˚O “ Mα
Ov pxq

and
G e∇αv G “ e∇1´α

v

Restriction e∇αk to `2pZd ,CNq gives monopole translations Sα
k
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Proposition 10.9

Sα
k ´ S0

k compact operator

Suppose Hamiltonian given by polynominal in shifts and potential

H “ PpS1, . . . ,Sdq `W

Insertion of monopole into Hamiltonian gives

Hα “ PpSα
1 , . . . ,S

α
d q `W

Facts: α ÞÑ Hα ´ µ path of selfadjoint Fredholms and H1 “ G˚H0G

Theorem 10.10 ([CS])
Let d bei even

SF
´

α P r0,1s ÞÑ Hα through µ
¯

“ ´ Cht1,...,dupPq

Odd dimensional version involves ”chirality flow”
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11 Dirty superconductors
Disordered one-electron Hamiltonian h on H “ `2pZ2q b C2s`1

c “ pcn,lq anhilation operators on fermionic Fock space F´pHq
Hamilt. on F´pHq with mean field pair creation ∆˚ “ ´∆ P BpHq

H´ µN “ c˚ ph ´ µ1q c `
1
2
c˚ ∆ c˚ ´

1
2
c∆ c

“
1
2

˜

c

c˚

¸˚˜

h ´ µ ∆

´∆ ´h ` µ

¸˜

c

c˚

¸

Hence BdG Hamiltonian on Hph “ Hb C2
ph

Hµ “

˜

h ´ µ ∆

´∆ ´h ` µ

¸

Even PHS (Class D)

S˚ph Hµ Sph “ ´Hµ , Sph “

˜

0 1
1 0

¸
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Class D systems

specpHµq “ ´specpHµq and generically gap or pseudo-gap at 0

Theorem 11.1
Gibbs (KMS) state for observable Q “ dΓpQq

1
Zβ,µ

TrF´pHq
´

Q e´βpH´µNq
¯

“ TrHphpfβpHµqQq

Example p ` ip wave superconductor with H “ `2pZ2q

h “ S1 ` S˚1 ` S2 ` S˚2 ∆p`ip “ δ pS1 ´ S˚1 ` ipS2 ´ S˚2 qq

Then P “ χpHµ ď 0q satisfies ChpPq “ 1 for µ ą 0 and δ ą 0

Conjecture (Kubo missing) Quantized Wiedemann-Franz

κH “
π

8
ChpPq T ` OpT 2q
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Spectral flow in a BdG-Hamiltonian
Flux tube in two-dimensional BdG Hamiltonian

S˚ph Hα Sph “ ´H´α , S2
ph “ ˘1

Then S˚ph Hα Sph “ ´U˚H1´αU so that

σpHαq “ ´σpH´αq “ ´σpH1´αq

PHS only for α “ 0, 1
2 ,1 and thus Ind2pH 1

2
q wel-defined

Theorem 11.2 ([DS])
IndpPUPqmod 2 “ Ind2pH 1

2
q

or: odd Chern number implies existence of zero mode at defect

These zero modes are Majorana fermions (Read-Green 2000)

Worth noting: S2
ph “ ´1 ùñ IndpPUPq even ùñ no zero mode
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Spin quantum Hall effect in Class C

Theorem 11.3 (Altland-Zirnbauer 1997)
SUp2q spin rotation invariance rH,ss “ 0
ùñ H “ Hred b 1 with odd PHS (Class C)

S˚ph Hred Sph “ ´Hred , Sph “

˜

0 ´1
1 0

¸

Example d ` id wave superconductor with h as above and

∆d`id “ δ
`

ipS1 ` S˚1 ´ S2 ´ S˚2 q ` pS1 ´ S˚1 qpS2 ´ S˚2 q
˘

s2

Again ChpPq “ 2 for δ ą 0 and µ ą 0

Theorem 11.4
Spin Hall conductance (Kubo) and spin edge currents quantized
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12 Semimetals
Recall Bulk-Boundary-Correspondence (BBC) for 1D chiral systems:

Theorem 12.1
Hilbert space `2pZ,C2Lq with chiral symmetry J “ diagp1,´1q

Gapped chiral Hamiltonian H “ ´JHJ off-diagonal: H “

˜

0 A
A˚ 0

¸

Half-space restriction pH on `2pN,C2Lq has kernel projection pP with

pP “ pP` ` pP´ , J pP˘ “ ˘pP˘

Then
i T pA´1∇Aq “ TrppP`q ´ TrppP´q

where T pBq “ E Trpx0|B|yq and ∇B “ irX ,Bs

Now: 2d graphene Hamiltonian also chiral, but only pseudogap
This semimetal can have flat band of edge states! Similar BBC?
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Model for graphene

On honeycomb lattice “ decorated triangular lattice, so on `2pZ2q b C2

H “

˜

0 S1 ` S˚1 S2 ` 1
S˚1 ` S˚2 S1 ` 1 0

¸

where S1,S2 shifts on `2pZ2q. Clearly chiral JHJ “ ´H. After Fourier:

H –

ż ‘

T2
dk

˜

0 eik1 ` eipk2´k1q ` 1
e´ik1 ` e´ipk2´k1q ` 1 0

¸

DOS vanishes at E “ 0 (pseudogap). Dirac points k˘ “ p
p3˘1qπ

3 ,0q

Zigzag boundary – replace S1 by unilateral shift pS1

Armchair boundary – replace S2 by unilateral shift pS2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag
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Illustration

Energy bands for half-space pH with zigzag edge:
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Surface DOS

ξ “
`

ξ1
ξ2

˘

P S1 direction perpendicular to boundary

pH “ Πξ H Πξ half-space restriction of graphene Hamiltonian

Kernel projection pP “ pP` ` pP´ on flat band of surface states
pT trace per unit volume along the boundary

Fermi unitary U “ phase of off-diagonal pS1 ` S˚1 S2 ` 1q

Theorem 12.2 ([SSt])

i T pU´1∇ξUq “ pT ppP`q ´ pT ppP´q

where T pBq “ E Trpx0|B|0yq and ∇ξ “ ξ ¨∇ with ∇jB “ irXj ,Bs

Moreover: i T pU´1∇1Uq “ 0 and i T pU´1∇2Uq “ 1
3

Explains difference zigzag / armchair
Proves existence of edge states (generalizes Feffermann, Weinstein)
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Singularities of Fermi unitary and Besov spaces

Fourier U –
ş

dk Upkq with

Upkq “
eik1 ` eipk2´k1q ` 1
|eik1 ` eipk2´k1q ` 1|

Vorticities at Dirac points, not even continuous, so U R A2 “ CpT2q

But U lies in Besov B1
1,1, namely for all ξ:

ż 1

0

dt
t2

ż

dk
ˇ

ˇUpk ` ξtq ` Upk ´ ξtq ´ 2 Upkq
ˇ

ˇ ă 8

Similarly U P B1{2
2,2 . Both enough to push index theorem through as:

Peller (1980’s):
Toeplitz operators with Besov symbols have traceclass properties

f P B1{p
p,p pT1q ùñ Πf p1´ Πq P Lp Schatten ideal
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Remarks

Pairing xrξ ¨X s, rUs1y “ i T pU´1∇ξUq over huge algebra C˚pB1
1,1 X L8q

Thus values not in discrete range of rUs1 P K1pA2q ÞÑ xrξ ¨ X s, rUs1y

Index theory for sufficiently smooth elements

Changing H continuously, changes value of i T pU´1∇ξUq continuously

ùñ surface state density changes continuous (even for fixed ξ)

Only equality and thus BBC always holds and is hence topological

Similar situation: Levinson’s theorem for scattering on hypersurfaces

In the following:

extension to disordered chiral systems and higher dimension

Hypothesis: pseudo-gap and Anderson localization at E “ 0
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Higher dimension and disorder
Disordered d-dimensional rotation C˚-algebra Ad “ CpΩq ¸B Zd

Trace T and derivations ∇ “ p∇1, . . . ,∇dq

ξ P Sd´1 direction perpendicular to hypersurface, pT trace along it

Theorem 12.3 ([SSt])
H P M2LpAdq with chiral symmetry JHJ “ ´H

Suppose pseudo-gap at 0, namely there is γ ą 1 with

T
`

χp|H| ď εq
˘

ď Cγ ε
γ

and a mobility gap in p´ε0ε0q, that is, for some s P p0,1q

sup
|ε|ďε0

E }x0|pH ´ ε` ı0q´1|ny}s ď Cs e´βs|n|

Then, for Fermi unitary U and kernel projection pP “ pP`` pP´ as above,

i T pU´1∇ξUq “ pT ppP`q ´ pT ppP´q
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Constructions:
Finite trace T gives von Neumann algebra M “ L8pAd , T q
Non-commutative spaces LppMq, p ą 0, Banach or quasi-Banach

L2pMq “ L2pΩ,Pq b `2pZdq is GNS-Hilbert space of T
Suppose components of ξ not rationally related. R-action α on Ad :

αtpAq “ et ξ¨∇pAq

T -invariance ùñ α extends isometrically to LppMq

On GNS unitary with generator D “ ξ ¨ X and spectral decomposition:

L2pMq “

ż ‘

σpDq
Hλ µpdλq

So ”Fourier”-decomposition of A PM Ă L2pMq:

A “

ż ‘

σpDq
Aλ µpdλq

Here: Fourier spectrum “ Averson spectum
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Besov spaces:
X Banach space with isometric R-action α (here X “ LppMq)

For f P L1pRq and x P X define αf pxq as Riemann integral

αf pxq “
ż

R
f p´tqαtpxqdt

Then for f P FApRq “ FL1pRq define Fourier multiplier pf˚ P BpX q by
pf ˚ x “ αF´1f pxq

Given smooth ϕ : RÑ r0,1s supported by r´2,´2´1s Y r2´1,2s and
ÿ

kPZ
ϕp2´kxq “ 1

Littlewood-Payley dyadic decomposition pWk qkPN by

Wk “ ϕp|2´k ¨ |q for k ą 0 , W0 “ 1´
ÿ

ką0

Wk

Now: Bs
qpX q “

!

x P X : }x}Bs
qpXq “

´

ÿ

kě0

2qsk ‖xWk ˚ x‖q
X

¯
1
q
ă 8

)
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Properties of Besov spaces:

Proposition 12.4
Definition of Bs

qpX q independent of choice of ϕ

pBs
qpX q, } . }Bs

qpXqq Banach space for s P R and q P r1,8q

An equivalent norm is given by

}x}
rBs

qpXq
“ }x}X `

˜

ż

r0,1s
t´sq ωN

X px , tq
q dt

t

¸
1
q

where
ωN

X px , tq “ sup
|r |ďt

}∆N
r pxq}X

with finite difference operator ∆t : X Ñ X given by

∆tpxq “ αtpxq ´ x
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More constructions:
Set

Bs
p,qpMq “ Bs

qpL
ppMqq

Elements have ”differentiability properties perp. to hypersurface”

Crossed product Ad ¸α R with semifinite trace pT (via Hilbert algebras)
pT is trace per unit volume along the boundary

It gives von Neumann N “ L8pAd ¸α R, pT q “M¸α R

Furthermore: Lp-spaces LppN , pT q for p ą 0

Half-space projection Π “ χpD ą 0q in N , but not LppN , pT q for p ă 8

Now for ”symbol” A PM, Toeplitz and Hankel operators are

TA “ ΠAΠ , HA “ ΠAp1´ Πq

These are operators in N
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Peller criterion and index theorem
Theorem 12.5 ([SSt])

For all p ě 1 and A PMX B1{p
p,p pMq, one has HA P LppMq

Proof: explicit calculations for p “ 1,2,8, then analytic interpolation

Classical commutative case is M “ C0pRq with αtpf qpyq “ f py ` tq

In this case Peller even proved inverse implication

Theorem 12.6 ([SSt])

For U PM with U ´ 1 P B1{2
2,2 ,

i T pU´1∇ξUq “ pT -Ind
`

Π U Π` p1´ Πq
˘

where semifinite index of pT -Breuer-Fredholm T P N is defined by

pT -IndpT q “ pT pKerpT qq ´ pT pKerpT ˚qq
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Application of index theorem
H chiral Hamiltonian and pH “ ΠHΠ with polar decompositions

sgnpHq “

˜

0 U
U˚ 0

¸

, , sgnppHq “

˜

0 pU
pU˚ 0

¸

.

If (i) U P B1{2
2,2 pMq and (ii) pU ´ ΠUΠ is pT -compact, then

pT ppP` ´ pP´q “ pT pJ KerppHqq “ pT -IndppUq “ pT -IndpΠUΠq

and the index theorem implies the Theorem

Tough analytical issue: pseudogap and mobility gap imply (i) and (ii)

Main idea is that γ-pseudogap condition implies for p ą 0

H´1 P LppMq and }H´1 ´ pH ` zq´1}p ď C|=mpzq|pγ´pq{p

Used to estimate Π sgnpHqΠ´ sgnppHq after functional calculus
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13 Further results and bibliography

‚ topology associated to spacial reflections, etc. (Gomi, Thiang)

‚ weak invariants via KK -theory (Prodan, Schulz-Baldes)

‚ BBC in real cases (Bourne, Carey, Rennie, Kellendonk)

‚ effects of corners (Hayashi, Thiang)

‚ analysis of bosonic systems (Peano, Schulz-Baldes)

‚ analysis of photonic crystals (De Nittis, Lein)

‚ stability of invariants w.r.t. interactions
(Bachmann, de Roeck, Fraas, et al)
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Other groups (each with personal point of view)

‚ Bourne, Carey, Rennie, Kellendonk
‚ Mathai, Thiang, Hanabus
‚ Zirnbauer, Kennedy, Alldridge, Max
‚ Panati, Monaco, Teufel, Cornean, Moscolari
‚ Katsura, Koma, Gomi
‚ Hayashi, Furuta, Kotani
‚ Graf, Porta
‚ Gawedzki, Delplace, Tauber, Fruchart
‚ Kaufmann’s, Li

‚ many theoretical physics groups
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