Index pairings with symmetries and applications to topological insulators

Index pairings with symmetries and applications to topological insulators

Hermann Schulz-Baldes, Erlangen

main collaborators: Prodan, Grossmann, De Nittis

June 2015

What is a topological insulator?

• *d*-dimensional disordered system of independent Fermions with a combination of basic symmetries

TRS, PHS, CHS = time reversal, particle hole, chiral symmetry

- Fermi level in a Gap or Anderson localization regime
- Topology of bulk (in Bloch bundles over Brillouin torus):

winding numbers, Chern numbers, $\mathbb{Z}_2\text{-invariants}$ higher invariants

- Delocalized edge modes with non-trivial topology
- Bulk-edge correspondence
- Topological bound states at defects (zero modes)
- Toy models: tight-binding

Aim: index theory for invariants also for disordered systems

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		Z		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2ℤ		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 🛛
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Aims of the talk

Construct operator algebra $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ and \mathcal{K} -group elements Realize entries of periodic table as indices of Fredholm ops First complex cases: even d: index pairing $\mathcal{K}_0(\mathcal{A})$ with even \mathcal{K} -cycle

Then real cases:

Implement symmetries on K-groups and K-cycles 8 KR-groups and 8 KR-cycles = 64 pairings

odd d: index pairing $K_1(A)$ with odd K-cycle

K-cycles = spectral triples \Rightarrow index pairings

Suppose $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ unital algebra (often C*-algebra) odd *K*-cycle is Dirac operator $D = D^*$ on \mathcal{H} with

(i) compact resolvent (ii) [D, A] bounded $\forall A \in \mathcal{A}$

even *K*-cycle if exists grading $\Gamma = \Gamma^*$ with $\Gamma^2 = \mathbf{1}$ and

$$({\rm iii}) \ \mathsf{\Gamma} D\mathsf{\Gamma} = -D \qquad ({\rm iv}) \ \mathsf{A} \,\mathsf{\Gamma} = \mathsf{\Gamma} \mathsf{A} \ \ \forall \ \mathsf{A} \in \mathcal{A}$$

odd K-cycle: set Hardy $E = \chi(D > 0)$ then (Atiyah, Connes...)

 $T = EAE + \mathbf{1} - E$ Fredholm for $[A]_1 \in K_1(A)$

even *K*-cycle: use Dirac phase $\frac{D}{|D|} = \begin{pmatrix} 0 & F \\ F^* & 0 \end{pmatrix}$ for $\Gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then

 $T = PFP + \mathbf{1} - P$ Fredholm for $[P]_0 \in K_0(\mathcal{A})$

Reminder on index pairings

If [E, A] compact, then $R = EA^{-1}E + \mathbf{1} - E$ pseudo-inverse for T:

$$TR = (EAE + 1 - E)(EA^{-1}E + 1 - E)$$

= EAE EA^{-1}E + 1 - E = 1 + K

Hence *T* Fredholm. Now $2E - \mathbf{1} = D|D|^{-1} = D \frac{1}{\pi} \int_0^\infty \frac{d\lambda}{\lambda^{\frac{1}{2}}} (\lambda + D^2)^{-1}$

Thus

$$\begin{split} [E,A] &= \frac{1}{2} \left[D|D|^{-1},A \right] = \frac{1}{2\pi} \int_0^\infty \frac{d\lambda}{\lambda^{\frac{1}{2}}} \left[D(\lambda+D^2)^{-1},A \right] \\ &= \frac{1}{2\pi} \int_0^\infty \frac{d\lambda}{\lambda^{\frac{1}{2}}} \left([D,A](\lambda+D^2)^{-1} + D(\lambda+D^2)^{-1} [D^2,A](\lambda+D^2)^{-1} \right) \end{split}$$

Tight-binding toy models in dimension d

Hilbert space $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L$ Fiber $\mathbb{C}^L = \mathbb{C}^{2s+1} \otimes \mathbb{C}^r$ with spin *s* and *r* internal degrees e.g. $\mathbb{C}^r = \mathbb{C}^2_{\text{ph}} \otimes \mathbb{C}^2_{\text{sl}}$ particle-hole space and sublattice space Typical Hamiltonian

$$\mathcal{H}_{\omega} \ = \ \Delta^B \ + \ \mathcal{W}_{\omega} \ = \ \sum_{i=1}^d \ (t^*_i S^B_i + t_i (S^B_i)^*) \ + \ \mathcal{W}_{\omega}$$

Magnetic translations $S_j^B S_i^B = e^{iB_{i,j}} S_i^B S_j^B$ in Laudau gauge:

$$S_1^B = S_1$$
 $S_2^B = e^{iB_{1,2}X_1}S_2$ $S_3^B = e^{iB_{1,3}X_1 + iB_{2,3}X_2}S_3$

 t_i matrices $L \times L$, e.g. spin orbit coupling, (anti)particle creation matrix potential $W_{\omega} = W_{\omega}^* = \sum_{n \in \mathbb{Z}^d} |n\rangle \omega_n \langle n|$ with matrices ω_n

Observable algebra

Configurations $\omega = (\omega_n)_{n \in \mathbb{Z}^d} \in \Omega$ compact probability space (Ω, \mathbb{P}) \mathbb{P} invariant and ergodic w.r.t. $T : \mathbb{Z}^d \times \Omega \to \Omega$

Covariance w.r.t. to dual magnetic translations $V_a = S_j^B V_a (S_j^B)^*$

$$V_a H_\omega V_a^* = H_{\mathcal{T}_a \omega} \qquad a \in \mathbb{Z}^d$$

 $\|A\| = \sup_{\omega} \|A_{\omega}\|$ is C*-norm on

 $\mathcal{A}_d = \operatorname{C}^* \left\{ A = (A_\omega)_{\omega \in \Omega} \text{ finite range covariant operators} \right\}$ $\cong \text{ twisted crossed product } C(\Omega) \rtimes_B \mathbb{Z}^d$

Fact: Suppose Ω contractible \implies rotation algebra $C^*(S_j^B)$ is deformation retract of \mathcal{A}_d **Pimsner-Voiculescu:** $\mathcal{K}_0(\mathcal{A}_d) = \mathbb{Z}^{2^{d-1}}$ and $\mathcal{K}_1(\mathcal{A}_d) = \mathbb{Z}^{2^{d-1}}$

K-group elements of interest

Fermi level $\mu \in \mathbb{R}$ in spectral gap of H_{ω} (or Anderson localization)

 $P_{\omega} = \chi(H_{\omega} \leq \mu)$ covariant Fermi projection

Hence: $P = (P_{\omega})_{\omega \in \Omega} \in \mathcal{A}_d$ fixes element in $K_0(\mathcal{A}_d)$

Suppose furthermore in odd d: chiral symmetry (grading)

$$H_{\omega} = -J_{
m ch}^*H_{\omega}J_{
m ch} \qquad J_{
m ch} = egin{pmatrix} {f 1} & 0 \ 0 & -{f 1} \end{pmatrix}$$

Then

$$H_{\omega} = egin{pmatrix} 0 & A_{\omega} \ A_{\omega}^* & 0 \end{pmatrix}$$

If $\mu=0$ in gap, $\mathcal{A}=(\mathcal{A}_{\omega})_{\omega\in\Omega}\in\mathcal{A}_d$ invertible and $[\mathcal{A}]_1\in\mathcal{K}_1(\mathcal{A}_d)$

Local index theorem for odd dimension d

$$\Gamma_1,\ldots,\Gamma_d$$
 irrep of Clifford C_d on $\mathbb{C}^{2^{(d-1)/2}}$, $x\in (\mathbb{R}\setminus\mathbb{Z})^d$

 $D = \sum_{j=1}^{d} (X_j + x_j) \otimes \mathbf{1} \otimes \Gamma_j \qquad \text{Dirac operator on } \ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L \otimes \mathbb{C}^{2^{(d-1)/2}}$

odd K-cycle and Hardy projection $E = \chi(D > 0)$ satisfies

 $[E, A_{\omega}]$ compact and in $\mathcal{L}^{d+\epsilon}$ für $A = (A_{\omega})_{\omega \in \Omega} \in \mathcal{A}_d$

Theorem (Prodan, S-B 2014)

Almost sure index $Ind(EA_{\omega}E + 1 - E)$ equal to odd Chern number

$$\operatorname{Ch}_{d}(A) = \frac{(-i\pi)^{\frac{d-1}{2}}}{i\,d!!} \sum_{\rho \in S_{d}} (-1)^{\rho} \mathcal{T}\left(\prod_{j=1}^{d} A^{-1} \nabla_{\rho_{j}} A\right)$$

where

 $\mathcal{T}(A) = \mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{L} \langle 0 | A_{\omega} | 0 \rangle \qquad \nabla_{j} A_{\omega} = i[X_{j}, A_{\omega}]$

Local index theorem for even dimension d

As above $\Gamma_1, \ldots, \Gamma_d$ Clifford, now grading $\Gamma = -i^{-d/2}\Gamma_1 \cdots \Gamma_d$

Even K-cycle with
$$D = -\Gamma D\Gamma = |D| \begin{pmatrix} 0 & F \\ F^* & 0 \end{pmatrix}$$
 for $\Gamma = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$

Theorem (Connes d = 2, Prodan, Leung, Bellissard 2013)

Almost sure index $\operatorname{Ind}(P_{\omega}\mathsf{F}P_{\omega}+\mathbf{1}-P_{\omega})$ equal to

$$\operatorname{Ch}_{d}(P) = \frac{(-2i\pi)^{\frac{d}{2}}}{\frac{d}{2}!} \sum_{\rho \in S_{d}} (-1)^{\rho} \mathcal{T}\left(P \prod_{j=1}^{d} \nabla_{\rho_{j}} P\right)$$

Special case d = 2: $F = \frac{X_1 + iX_2}{|X_1 + iX_2|}$ and

 $\operatorname{Ind}(PFP + 1 - P) = \operatorname{Ind}(PFP) = 2\pi i \mathcal{T}(P[[X_1, P], [X_2, P]])$

Periodic table again

Index theorem for complex cases (strong inv. = pairing d-cocycle)

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		Z		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2ℤ		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 🛛
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	Z		
7	+1	-1	1			$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Discrete symmetries

 $J_{\rm ab}^* H J_{\rm cb} = -H$ chiral symmetry (CHS): $S_{tr}^* \overline{H} S_{tr} = H$ time reversal symmetry (TRS) : $S_{\rm ph}^* \overline{H} S_{\rm ph} = -H$ particle-hole symmetry (PHS) : $S_{\rm tr} = e^{i\pi s^{\gamma}}$ orthogonal on \mathbb{C}^{2s+1} with $S_{\rm tr}^2 = \pm 1$ even or odd $S_{\rm ph}$ orthogonal on $\mathbb{C}^2_{\rm ph}$ with $S^2_{\rm ph} = \pm 1$ even or odd Note: TRS + PHS \implies CHS with $J_{ch} = S_{tr}S_{ph}$ 10 combinations of symmetries: none (1), one (5), three (4)10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real Further distinction in each of the 10 classes: topological insulators

Periodic table: real classes only

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2ℤ		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 🛛
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Focus on system in d = 2 with odd TRS $S = S_{tr}$:

$$S^2 = -\mathbf{1}$$
 $S^*\overline{H}S = H$

\mathbb{Z}_2 index for odd TRS and d = 2

Rewrite
$$S^*\overline{H}S = H = S^*H^tS$$
 with $H^t = (\overline{H})^*$
 $\implies S^*(H^n)^tS = H^n$ for $n \in \mathbb{N} \implies S^*P^tS = P$
For $d = 2$ now $F = \frac{X_1 + iX_2}{|X_1 + iX_2|} = F^t$ and $[S, F] = 0$
Hence Fredholm operator $T = PFP + \mathbf{1} - P$ of type

Definition T odd symmetric $\iff S^*T^tS = T \iff (TS)^t = -TS$

Theorem (Atiyah-Singer 1969, S-B 2013)

 $\mathbb{F}_2(\mathcal{H}) = \{ odd \ symmetric \ Fredholm \ operators \} \ has \ 2 \ connected \ components \ labelled \ by \ compactly \ stable \ homotopy \ invariant$

 $\operatorname{Ind}_2(T) = \dim(\operatorname{Ker}(T)) \mod 2 \in \mathbb{Z}_2$

Application: \mathbb{Z}_2 phase label for Kane-Mele model if dyn. localized

Proof via Kramers degeneracy:

First of all: $\operatorname{Ind}(T) = 0$ because $\operatorname{Ker}(T^*) = S \operatorname{Ker}(T)$ Idea: $\operatorname{Ker}(T) = \operatorname{Ker}(T^*T)$

and positive eigenvalues of T^*T have even multiplicity

Let $T^*Tv = \lambda v$ and $w = S \overline{Tv}$ (N.B. $\lambda \neq 0$). Then

$$T^*T w = S(S^*T^*S)(S^*TS)\overline{Tv}$$

= $S \overline{T} \overline{T^*Tv} = \lambda S \overline{T} \overline{v} = \lambda w$

Suppose now $\mu \in \mathbb{C}$ with $\mathbf{v} = \mu \, \mathbf{w}$. Then

$$\mathbf{v} = \mu S \overline{T} \overline{\mathbf{v}} = \mu S \overline{T} \overline{\mu} S T \mathbf{v} = -|\mu|^2 T^* T \mathbf{v} = -|\mu|^2 \lambda \mathbf{v}$$

Contradiction to $v \neq 0$.

Now span{v, w} is invariant subspace of T^*T .

Go on to orthogonal complement

Periodic table again

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 🛛	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2ℤ
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Example of a 2 \mathbb{Z} index: d = 4 and even TRS $H = \overline{H}$

$2\mathbb{Z}$ indices

Proposition

Let $S = \overline{S} = (S^*)^{-1}$ satisfy $S^2 = -1$. On $\mathbb{F}_4(\mathcal{H}) = \{T = S^* \overline{T}S \text{ quaternionic Fredholm operator}\}$ $\operatorname{Ind}(T) \in 2\mathbb{Z}$

Proof. Suppose $T^*Tv = \lambda v$. Then $w = S\overline{v}$ also $T^*Tw = \lambda w$.

Applies to d = 4 and even TRS

Then Fermi projection satisfies $P = \overline{P}$

Dirac phase $D = \begin{pmatrix} 0 & F \\ F^* & 0 \end{pmatrix}$ satisfies $F = S^* \overline{F} S$ with $S^2 = -1$ (more on that shortly)

Atiyah-Singer classifying spaces for Real K-theory

 $\mathbb{F}_k^{\mathbb{R}} =$ anti-s.a. Freds on $\mathcal{H}_{\mathbb{R}}$ commuting with C_{k-1} and $\pm i \in \sigma_{\scriptscriptstyle\mathrm{ess}}$

Fact: $\mathbb{F}_1^{\mathbb{R}}$ and O of same homotopy type and $\pi_k(O) = \pi_0(\mathbb{F}_k^{\mathbb{R}})$

Theorem

Bijections to Freds on complex Hilbert space with $S^2=-{f 1}$

$$\begin{split} \mathbb{F}_{0}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid \overline{T} = T\} \\ \mathbb{F}_{2}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid S^{*}T^{t}S = T\} \\ \mathbb{F}_{2}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid S^{*}\overline{T}S = T\} \\ \mathbb{F}_{4}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid S^{*}\overline{T}S = T\} \\ \mathbb{F}_{6}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid S^{*}\overline{T}S = T\} \\ \mathbb{F}_{6}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid T^{t} = T\} \\ \mathbb{F}_{6}^{\mathbb{R}} &\cong \{T \in \mathbb{F} \mid T^{t} = T\} \\ \end{split}$$

Above: for d = 2 and odd TRS, $T = PFP + \mathbf{1} - P \in \mathbb{F}_2^{\mathbb{R}}$ Above: for d = 4 and even TRS, $T = PFP + \mathbf{1} - P \in \mathbb{F}_4^{\mathbb{R}}$

Symmetries of the Dirac operator

$$D = \sum_{j=1}^d (X_j + x) \otimes \mathbf{1} \otimes \Gamma_j$$

 $\Gamma_1, \ldots, \Gamma_d$ irrep of C_d with $\Gamma_{2j} = -\overline{\Gamma_{2j}}$ and $\Gamma_{2j+1} = \overline{\Gamma_{2j+1}}$ In even d exists grading $\Gamma = \Gamma^*$ with $D = -\Gamma D\Gamma$ and $\Gamma^2 = \mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

d = 8 - i	8	7	6	5	4	3	2	1
Σ2	1	1	-1	-1	-1	-1	1	1
$\Sigma^* \overline{D} \Sigma$	D	-D	D	D	D	-D	D	D
ΓΣΓ	Σ		$-\Sigma$		Σ		$-\Sigma$	

 (D, Γ, Σ) defines a KR^i -cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Periodic table again

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 🛛
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Focus on the 8 cases in dimension d = 3

even j Fermi projection P, odd j with chiral sym. and invertible A

Dirac operator in d = 3

no grading and $\Sigma^*\overline{D}\Sigma = -D$ with $\Sigma^2 = -1$

Hence Hardy is complex symplectic (Lagrangian): $\Sigma^* \overline{E} \Sigma = \mathbf{1} - E$ (D, Σ) specifies element of $KR^5(\mathcal{A})$ pairs with any $KR_j(\mathcal{A})$ Pairing with invertible A (odd K-group) if chiral symmetry

$$\langle [A]_{\rm odd}\,,\,[(D,\Sigma)]_5\rangle\ =\ {\rm Ind}_*(EAE-1-E)$$

Pairing with invertible 1 - 2P (*P* even *K*-group) if no chiral sym.

$$\begin{split} \langle [P]_{\text{even}} \,,\, [(D,\Sigma)]_5 \rangle \;&=\; \text{Ind}_2(E(\mathbf{1}-2P)E-\mathbf{1}-E) \;\in\; \mathbb{Z}_2 \\ &=\; \text{Ind}_2(P(\mathbf{1}-2E)P-\mathbf{1}-P) \;\in\; \mathbb{Z}_2 \end{split}$$

For even-odd pairing only secondary \mathbb{Z}_2 index!

Periodic table: even-odd and odd-even

The only non-vanishing entries for odd j + d are boxed:

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				2 🛛		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 🛛
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		$2\mathbb{Z}$		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Focus now on odd TRS for d = 3

Odd TRS in d = 3

$$\Sigma^*\overline{D}\Sigma = -D$$
 with $\Sigma^2 = -\mathbf{1} \implies \Sigma^*\overline{E}\Sigma = \mathbf{1} - E$

Unitary $A = \mathbf{1} - 2P$ satisfies $S^*\overline{A}S = A$ with $S^2 = -\mathbf{1}$

 $[S, \Sigma] = 0$ and T = EAE + 1 - E Fredholm operator

Claim: $\operatorname{Ind}_2(\mathcal{T}) \in \mathbb{Z}_2$ well-defined

Non-standard Kramers degeneracy argument (even for matrices!)

Proposition

Let $T^*Tv = \lambda v$ with $\lambda > 0$ and $v \in \mathcal{H}$. Introduce $w \in \mathcal{H}$ by

$$\overline{w} = RSA^*EAEv$$

where $R = \Phi(\Sigma\overline{\Phi})^*$ built from frame Φ for $E = \Phi\Phi^*$ Then v and w are linearly independent and $T^*Tw = \lambda w$.

Résumé

- \bullet For $2\,\mathbb{Z}$ indices invoking symplectic projections 4th Kramers arg.
- Also index parings for two unitaries A and F by doubling

$$T = P\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} P + \mathbf{1} - P \qquad P = \frac{1}{2}\begin{pmatrix} \mathbf{1} & F \\ F^* & \mathbf{1} \end{pmatrix}$$

Only \mathbb{Z}_2 as for two projections and exchange $A \leftrightarrow F$ allowed

- Index theorem for every entry of periodic table
- For vanishing (empty) entry in table, homotopy to trivial model
- Non-trivial examples given by tight-binding Hamiltonians, built upon complex examples (*e.g.* Kane-Mele = 2 Haldane)
- Implications of non-trivial invariants to be examined

Periodic table of topological insulators (2008)

Schnyder-Ryu-Furusaki-Ludwig, Kitaev $KR_j(\mathbb{R}^d_{\tau}) \cong \pi_{j-1-d}(O)$

$j \setminus d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2ℤ		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2ℤ
5	-1	-1	1	2 🛛		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	-1	0		2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Symmetries of the Dirac operator

$$D = \sum_{j=1}^d (X_j + x_j) \otimes \mathbf{1} \otimes \Gamma_j$$

 $\Gamma_1, \ldots, \Gamma_d$ irrep of C_d with $\Gamma_{2j} = -\overline{\Gamma_{2j}}$ and $\Gamma_{2j+1} = \overline{\Gamma_{2j+1}}$ In even d exists grading $\Gamma = \Gamma^*$ with $D = -\Gamma D\Gamma$ and $\Gamma^2 = \mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

d = 8 - i	8	7	6	5	4	3	2	1
Σ2	1	1	-1	-1	-1	-1	1	1
$\Sigma^* \overline{D} \Sigma$	D	-D	D	D	D	-D	D	D
ΓΣΓ	Σ		$-\Sigma$		Σ		$-\Sigma$	

 (D, Γ, Σ) defines a KR^i -cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Odd KR-groups - paired with KR-cycles

$$W_1(\mathcal{A}) = \left\{ U \in \cup_{n \geq 1} M_n(\mathcal{A}^+) \mid U^{-1} = U^* \right\} \qquad \mathcal{A}^+ = \mathcal{A} \oplus \mathbb{C}$$

Equivalence relation \sim by homotopy and $U \sim \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}$

$$\mathsf{K}_1(\mathcal{A}) \;=\; \mathsf{W}_1(\mathcal{A})/\sim$$

Now $\tau(A) = \overline{A}$ anti-linear involutive *-autmorphism on \mathcal{A} τ extended to \mathcal{A}^+ as $\tau(A, t) = (\tau(A), \overline{t})$. With $\Sigma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

$$W_{1}(\mathcal{A},\tau) = \left\{ U \in W_{1}(\mathcal{A}) \mid \overline{U} = U \right\}$$

$$W_{3}(\mathcal{A},\tau) = \left\{ U \in W_{1,ev}(\mathcal{A}) \mid \Sigma^{*} \overline{U} \Sigma = U^{*} \right\}$$

$$W_{5}(\mathcal{A},\tau) = \left\{ U \in W_{1,ev}(\mathcal{A}) \mid \Sigma^{*} \overline{U} \Sigma = U \right\}$$

$$W_{7}(\mathcal{A},\tau) = \left\{ U \in W_{1}(\mathcal{A}) \mid \overline{U} = U^{*} \right\}$$

$$KR_{2i+1}(\mathcal{A},\tau) = W_{2i+1}(\mathcal{A},\tau)/\sim$$

Even KR-groups - paired with KR-cycles

Instead of projections P work with selfadjoints $Q = \mathbf{1} - 2P$

$$V_0(\mathcal{A}) \;=\; \left\{ \; Q \in \cup_{n \geq 1} M_{2n}(\mathcal{A}^+) \; \left| \; \; Q^* \;=\; Q \;, \; \; Q^2 \;=\; \mathbf{1}
ight\} \;,$$

Equiv. relation \sim by homotopy and $Q \sim \begin{pmatrix} Q & 0 \\ 0 & E_2 \end{pmatrix}$ with $E_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Then $\mathcal{K}_0(\mathcal{A}) = \mathcal{V}_0(\mathcal{A}) / \sim$ abelian group via $[Q] + [Q'] = [\begin{pmatrix} Q & 0 \\ 0 & Q' \end{pmatrix}]$

$$\begin{split} V_{0}(\mathcal{A},\tau) &= \left\{ Q \in V_{0}(\mathcal{A}) \mid \overline{Q} = Q \right\} \\ V_{2}(\mathcal{A},\tau) &= \left\{ Q \in V_{0,\mathrm{ev}}(\mathcal{A}) \mid S_{2}^{*} \overline{Q} S_{2} = -Q \right\} \quad S_{2} = \imath \sigma_{2} \otimes \Sigma \\ V_{4}(\mathcal{A},\tau) &= \left\{ Q \in V_{0,\mathrm{ev}}(\mathcal{A}) \mid S_{4}^{*} \overline{Q} S_{4} = Q \right\} \quad S_{4} = \mathbf{1} \otimes \Sigma \\ V_{6}(\mathcal{A},\tau) &= \left\{ Q \in V_{0}(\mathcal{A}) \mid S_{6}^{*} \overline{Q} S_{6} = -Q \right\} \quad S_{6} = \imath \sigma_{2} \otimes \mathbf{1} \end{split}$$

$$K_{2i}(\mathcal{A}, au) = V_{2i}(\mathcal{A}, au)/\sim$$

Current projects and questions

Above index parings show that *KR*-groups pair with *KR*-cycles Aim: direct proofs for exactness of connecting maps in *KR*-theory Related recent preprint: Boersema and Loring 2015 Aim: spell out bulk-edge correspondence in real cases Aim: further investigate physical implications of invariants (zero modes, surface states, surface currents, Hall effects, polarization, magnetization,...)