Index pairings with symmetries and applications to topological insulators

Hermann Schulz-Baldes, Erlangen

main collaborators: Prodan, Grossmann, De Nittis

June 2015

What is a topological insulator?

- d-dimensional disordered system of independent Fermions with a combination of basic symmetries

TRS, PHS, CHS $=$ time reversal, particle hole, chiral symmetry

- Fermi level in a Gap or Anderson localization regime
- Topology of bulk (in Bloch bundles over Brillouin torus): winding numbers, Chern numbers, \mathbb{Z}_{2}-invariants, higher invariants
- Delocalized edge modes with non-trivial topology
- Bulk-edge correspondence
- Topological bound states at defects (zero modes)
- Toy models: tight-binding

Aim: index theory for invariants also for disordered systems

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Aims of the talk

Construct operator algebra $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ and K-group elements
Realize entries of periodic table as indices of Fredholm ops
First complex cases:
even d : index pairing $K_{0}(\mathcal{A})$ with even K-cycle odd d : index pairing $K_{1}(\mathcal{A})$ with odd K-cycle

Then real cases:
Implement symmetries on K-groups and K-cycles
$8 K R$-groups and $8 K R$-cycles $=64$ pairings

K-cycles $=$ spectral triples \Rightarrow index pairings

Suppose $\mathcal{A} \subset \mathbb{B}(\mathcal{H})$ unital algebra (often C^{*}-algebra) odd K-cycle is Dirac operator $D=D^{*}$ on \mathcal{H} with
(i) compact resolvent
(ii) $[D, A]$ bounded $\forall A \in \mathcal{A}$
even K-cycle if exists grading $\Gamma=\Gamma^{*}$ with $\Gamma^{2}=\mathbf{1}$ and

$$
\text { (iii) } \Gamma D \Gamma=-D \quad \text { (iv) } A \Gamma=\Gamma A \forall A \in \mathcal{A}
$$

odd K-cycle: set Hardy $E=\chi(D>0)$ then (Atiyah, Connes...)

$$
T=E A E+\mathbf{1}-E \quad \text { Fredholm for }[A]_{1} \in K_{1}(\mathcal{A})
$$

even K-cycle: use Dirac phase $\frac{D}{|D|}=\binom{0}{F * 0}$ for $\Gamma=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then

$$
T=P F P+\mathbf{1}-P \quad \text { Fredholm for }[P]_{0} \in K_{0}(\mathcal{A})
$$

Reminder on index pairings

If $[E, A]$ compact, then $R=E A^{-1} E+\mathbf{1}-E$ pseudo-inverse for T :

$$
\begin{aligned}
T R & =(E A E+\mathbf{1}-E)\left(E A^{-1} E+\mathbf{1}-E\right) \\
& =E A E E A^{-1} E+\mathbf{1}-E=\mathbf{1}+K
\end{aligned}
$$

Hence T Fredholm. Now

$$
2 E-1=D|D|^{-1}=D \frac{1}{\pi} \int_{0}^{\infty} \frac{d \lambda}{\lambda^{\frac{1}{2}}}\left(\lambda+D^{2}\right)^{-1}
$$

Thus

$$
\begin{aligned}
& {[E, A]=\frac{1}{2}\left[D|D|^{-1}, A\right]=\frac{1}{2 \pi} \int_{0}^{\infty} \frac{d \lambda}{\lambda^{\frac{1}{2}}}\left[D\left(\lambda+D^{2}\right)^{-1}, A\right]} \\
& \quad=\frac{1}{2 \pi} \int_{0}^{\infty} \frac{d \lambda}{\lambda^{\frac{1}{2}}}\left([D, A]\left(\lambda+D^{2}\right)^{-1}+D\left(\lambda+D^{2}\right)^{-1}\left[D^{2}, A\right]\left(\lambda+D^{2}\right)^{-1}\right)
\end{aligned}
$$

Tight-binding toy models in dimension d

Hilbert space $\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{L}$
Fiber $\mathbb{C}^{L}=\mathbb{C}^{2 s+1} \otimes \mathbb{C}^{r}$ with spin s and r internal degrees
e.g. $\mathbb{C}^{r}=\mathbb{C}_{\mathrm{ph}}^{2} \otimes \mathbb{C}_{\mathrm{sl}}^{2}$ particle-hole space and sublattice space

Typical Hamiltonian

$$
H_{\omega}=\Delta^{B}+W_{\omega}=\sum_{i=1}^{d}\left(t_{i}^{*} S_{i}^{B}+t_{i}\left(S_{i}^{B}\right)^{*}\right)+W_{\omega}
$$

Magnetic translations $S_{j}^{B} S_{i}^{B}=e^{i B_{i, j}} S_{i}^{B} S_{j}^{B}$ in Laudau gauge:

$$
S_{1}^{B}=S_{1} \quad S_{2}^{B}=e^{i B_{1,2} X_{1}} S_{2} \quad S_{3}^{B}=e^{i B_{1,3} X_{1}+i B_{2,3} X_{2}} S_{3}
$$

t_{i} matrices $L \times L$, e.g. spin orbit coupling, (anti)particle creation matrix potential $W_{\omega}=W_{\omega}^{*}=\sum_{n \in \mathbb{Z}^{d}}|n\rangle \omega_{n}\langle n|$ with matrices ω_{n}

Observable algebra

Configurations $\omega=\left(\omega_{n}\right)_{n \in \mathbb{Z}^{d}} \in \Omega$ compact probability space (Ω, \mathbb{P})
\mathbb{P} invariant and ergodic w.r.t. $T: \mathbb{Z}^{d} \times \Omega \rightarrow \Omega$
Covariance w.r.t. to dual magnetic translations $V_{a}=S_{j}^{B} V_{a}\left(S_{j}^{B}\right)^{*}$

$$
\begin{gathered}
V_{a} H_{\omega} V_{a}^{*}=H_{T_{a} \omega} \quad a \in \mathbb{Z}^{d} \\
\|A\|=\sup _{\omega}\left\|A_{\omega}\right\| \text { is } C^{*} \text {-norm on } \\
\mathcal{A}_{d}=\mathrm{C}^{*}\left\{A=\left(A_{\omega}\right)_{\omega \in \Omega} \text { finite range covariant operators }\right\} \\
\cong \text { twisted crossed product } C(\Omega) \rtimes_{B} \mathbb{Z}^{d}
\end{gathered}
$$

Fact: Suppose Ω contractible
\Longrightarrow rotation algebra $\mathrm{C}^{*}\left(S_{j}^{B}\right)$ is deformation retract of \mathcal{A}_{d}
Pimsner-Voiculescu: $K_{0}\left(\mathcal{A}_{d}\right)=\mathbb{Z}^{2^{d-1}}$ and $K_{1}\left(\mathcal{A}_{d}\right)=\mathbb{Z}^{2^{d-1}}$

K-group elements of interest

Fermi level $\mu \in \mathbb{R}$ in spectral gap of H_{ω} (or Anderson localization)

$$
P_{\omega}=\chi\left(H_{\omega} \leq \mu\right) \quad \text { covariant Fermi projection }
$$

Hence: $P=\left(P_{\omega}\right)_{\omega \in \Omega} \in \mathcal{A}_{d}$ fixes element in $K_{0}\left(\mathcal{A}_{d}\right)$
Suppose furthermore in odd d : chiral symmetry (grading)

$$
H_{\omega}=-J_{\mathrm{ch}}^{*} H_{\omega} J_{\mathrm{ch}} \quad J_{\mathrm{ch}}=\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right)
$$

Then

$$
H_{\omega}=\left(\begin{array}{cc}
0 & A_{\omega} \\
A_{\omega}^{*} & 0
\end{array}\right)
$$

If $\mu=0$ in gap, $A=\left(A_{\omega}\right)_{\omega \in \Omega} \in \mathcal{A}_{d}$ invertible and $[A]_{1} \in K_{1}\left(\mathcal{A}_{d}\right)$

Local index theorem for odd dimension d

$\Gamma_{1}, \ldots, \Gamma_{d}$ irrep of Clifford C_{d} on $\mathbb{C}^{2^{(d-1) / 2}}, x \in(\mathbb{R} \backslash \mathbb{Z})^{d}$
$D=\sum_{j=1}^{d}\left(X_{j}+x_{j}\right) \otimes \mathbf{1} \otimes \Gamma_{j}$
Dirac operator on $\ell^{2}\left(\mathbb{Z}^{d}\right) \otimes \mathbb{C}^{L} \otimes \mathbb{C}^{2(d-1) / 2}$
odd K-cycle and Hardy projection $E=\chi(D>0)$ satisfies

$$
\left[E, A_{\omega}\right] \text { compact and in } \mathcal{L}^{d+\epsilon} \text { für } A=\left(A_{\omega}\right)_{\omega \in \Omega} \in \mathcal{A}_{d}
$$

Theorem (Prodan, S-B 2014)

Almost sure index $\operatorname{Ind}\left(E A_{\omega} E+\mathbf{1}-E\right)$ equal to odd Chern number

$$
\mathrm{Ch}_{d}(A)=\frac{(-i \pi)^{\frac{d-1}{2}}}{i d!!} \sum_{\rho \in S_{d}}(-1)^{\rho} \mathcal{T}\left(\prod_{j=1}^{d} A^{-1} \nabla_{\rho_{j}} A\right)
$$

where

$$
\mathcal{T}(A)=\mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{L}\langle 0| A_{\omega}|0\rangle \quad \nabla_{j} A_{\omega}=i\left[X_{j}, A_{\omega}\right]
$$

Local index theorem for even dimension d

As above $\Gamma_{1}, \ldots, \Gamma_{d}$ Clifford, now grading $\Gamma=-i^{-d / 2} \Gamma_{1} \cdots \Gamma_{d}$
Even K-cycle with $D=-\Gamma D \Gamma=|D|\left(\begin{array}{cc}0 & F \\ F^{*} & 0\end{array}\right)$ for $\Gamma=\left(\begin{array}{cc}\mathbf{1} & 0 \\ 0 & -\mathbf{1}\end{array}\right)$

Theorem (Connes $d=2$, Prodan, Leung, Bellissard 2013)

Almost sure index $\operatorname{Ind}\left(P_{\omega} F P_{\omega}+\mathbf{1}-P_{\omega}\right)$ equal to

$$
\mathrm{Ch}_{d}(P)=\frac{(-2 i \pi)^{\frac{d}{2}}}{\frac{d}{2}!} \sum_{\rho \in S_{d}}(-1)^{\rho} \mathcal{T}\left(P \prod_{j=1}^{d} \nabla_{\rho_{j}} P\right)
$$

Special case $d=2: F=\frac{X_{1}+i X_{2}}{\left|X_{1}+i X_{2}\right|}$ and

$$
\operatorname{Ind}(P F P+\mathbf{1}-P)=\operatorname{Ind}(P F P)=2 \pi \imath \mathcal{T}\left(P\left[\left[X_{1}, P\right],\left[X_{2}, P\right]\right]\right)
$$

Periodic table again

Index theorem for complex cases (strong inv. = pairing d-cocycle)

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Discrete symmetries

$$
\begin{array}{ll}
\text { chiral symmetry (CHS) : } & J_{\mathrm{ch}}^{*} H J_{\mathrm{ch}}=-H \\
\text { time reversal symmetry (TRS) : } & S_{\mathrm{tr}}^{*} \bar{H} S_{\mathrm{tr}}=H \\
\text { particle-hole symmetry (PHS) : } & S_{\mathrm{ph}}^{*} \bar{H} S_{\mathrm{ph}}=-H
\end{array}
$$

$S_{\mathrm{tr}}=e^{i \pi s^{y}}$ orthogonal on $\mathbb{C}^{2 s+1}$ with $S_{\mathrm{tr}}^{2}= \pm \mathbf{1}$ even or odd
S_{ph} orthogonal on $\mathbb{C}_{\mathrm{ph}}^{2}$ with $S_{\mathrm{ph}}^{2}= \pm \mathbf{1}$ even or odd
Note: TRS + PHS \Longrightarrow CHS with $J_{\mathrm{ch}}=S_{\mathrm{tr}} S_{\mathrm{ph}}$
10 combinations of symmetries: none (1), one (5), three (4)
10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real
Further distinction in each of the 10 classes: topological insulators

Periodic table: real classes only

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Focus on system in $d=2$ with odd TRS $S=S_{\mathrm{tr}}$:

$$
S^{2}=-\mathbf{1} \quad S^{*} \bar{H} S=H
$$

\mathbb{Z}_{2} index for odd TRS and $d=2$

Rewrite $S^{*} \bar{H} S=H=S^{*} H^{t} S$ with $H^{t}=(\bar{H})^{*}$
$\Longrightarrow S^{*}\left(H^{n}\right)^{t} S=H^{n}$ for $n \in \mathbb{N} \quad \Longrightarrow S^{*} P^{t} S=P$
For $d=2$ now $F=\frac{X_{1}+i X_{2}}{\left|X_{1}+i X_{2}\right|}=F^{t}$ and $[S, F]=0$
Hence Fredholm operator $T=P F P+\mathbf{1}-P$ of type
Definition T odd symmetric $\Longleftrightarrow S^{*} T^{t} S=T \Longleftrightarrow(T S)^{t}=-T S$

Theorem (Atiyah-Singer 1969, S-B 2013)

$\mathbb{F}_{2}(\mathcal{H})=\{$ odd symmetric Fredholm operators $\}$ has 2 connected components labelled by compactly stable homotopy invariant

$$
\operatorname{Ind}_{2}(T)=\operatorname{dim}(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_{2}
$$

Application: \mathbb{Z}_{2} phase label for Kane-Mele model if dyn. localized

Proof via Kramers degeneracy:

First of all: $\operatorname{Ind}(T)=0$ because $\operatorname{Ker}\left(T^{*}\right)=S \overline{\operatorname{Ker}(T)}$
Idea: $\operatorname{Ker}(T)=\operatorname{Ker}\left(T^{*} T\right)$
and positive eigenvalues of $T^{*} T$ have even multiplicity
Let $T^{*} T v=\lambda v$ and $w=S \overline{T v}($ N.B. $\lambda \neq 0)$. Then

$$
\begin{aligned}
T^{*} T w & =S\left(S^{*} T^{*} S\right)\left(S^{*} T S\right) \overline{T v} \\
& =S \bar{T} \overline{T^{*} T v}=\lambda S \bar{T} \bar{v}=\lambda w .
\end{aligned}
$$

Suppose now $\mu \in \mathbb{C}$ with $v=\mu w$. Then

$$
v=\mu S \bar{T} \bar{v}=\mu S \bar{T} \bar{\mu} S T v=-|\mu|^{2} T^{*} T v=-|\mu|^{2} \lambda v
$$

Contradiction to $v \neq 0$.
Now span $\{v, w\}$ is invariant subspace of $T^{*} T$.
Go on to orthogonal complement

Periodic table again

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Example of a $2 \mathbb{Z}$ index: $d=4$ and even TRS $H=\bar{H}$

$2 \mathbb{Z}$ indices

Proposition

Let $S=\bar{S}=\left(S^{*}\right)^{-1}$ satisfy $S^{2}=\mathbf{- 1}$.
On $\mathbb{F}_{4}(\mathcal{H})=\left\{T=S^{*} \bar{T} S\right.$ quaternionic Fredholm operator $\}$

$$
\operatorname{Ind}(T) \in 2 \mathbb{Z}
$$

Proof. Suppose $T^{*} T v=\lambda v$. Then $w=S \bar{v}$ also $T^{*} T w=\lambda w$.
Applies to $d=4$ and even TRS
Then Fermi projection satisfies $P=\bar{P}$
Dirac phase $D=\left(\begin{array}{cc}0 & F \\ F^{*} & 0\end{array}\right)$ satisfies $F=S^{*} \bar{F} S$ with $S^{2}=-\mathbf{1}$ (more on that shortly)

Atiyah-Singer classifying spaces for Real K-theory

$\mathbb{F}_{k}^{\mathbb{R}}=$ anti-s.a. Freds on $\mathcal{H}_{\mathbb{R}}$ commuting with C_{k-1} and $\pm i \in \sigma_{\text {ess }}$
Fact: $\mathbb{F}_{1}^{\mathbb{R}}$ and O of same homotopy type and $\pi_{k}(O)=\pi_{0}\left(\mathbb{F}_{k}^{\mathbb{R}}\right)$

Theorem

Bijections to Freds on complex Hilbert space with $S^{2}=-\mathbf{1}$
$\mathbb{F}_{0}^{\mathbb{R}} \cong\{T \in \mathbb{F} \mid \bar{T}=T\}$
$\mathbb{F}_{1}^{\mathbb{R}} \cong\left\{T=T^{*} \in \mathbb{F} \mid \bar{T}=-T\right\}$
$\mathbb{F}_{2}^{\mathbb{R}} \cong\left\{T \in \mathbb{F} \mid S^{*} T^{t} S=T\right\}$
$\mathbb{F}_{3}^{\mathbb{R}} \cong\left\{T=T^{*} \in \mathbb{F}_{*} \mid S^{*} \bar{T} S=T\right\}$
$\mathbb{F}_{4}^{\mathbb{R}} \cong\left\{T \in \mathbb{F} \mid S^{*} \bar{T} S=T\right\}$
$\mathbb{F}_{5}^{\mathbb{R}} \cong\left\{T=T^{*} \in \mathbb{F} \mid S^{*} \bar{T} S=-T\right\}$
$\mathbb{F}_{6}^{\mathbb{R}} \cong\left\{T \in \mathbb{F} \mid T^{t}=T\right\}$
Above: for $d=2$ and odd TRS, $T=P F P+\mathbf{1}-P \in \mathbb{F}_{2}^{\mathbb{R}}$
Above: for $d=4$ and even TRS, $T=P F P+\mathbf{1}-P \in \mathbb{F}_{4}^{\mathbb{R}}$

Symmetries of the Dirac operator

$$
D=\sum_{j=1}^{d}\left(X_{j}+x\right) \otimes \mathbf{1} \otimes \Gamma_{j}
$$

$\Gamma_{1}, \ldots, \Gamma_{d}$ irrep of C_{d} with $\Gamma_{2 j}=-\overline{\Gamma_{2 j}}$ and $\Gamma_{2 j+1}=\overline{\Gamma_{2 j+1}}$ In even d exists grading $\Gamma=\Gamma^{*}$ with $D=-\Gamma D \Gamma$ and $\Gamma^{2}=\mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

$d=8-i$	8	7	6	5	4	3	2	1
Σ^{2}	$\mathbf{1}$	$\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\Sigma^{*} \bar{D} \Sigma$	D	$-D$	D	D	D	$-D$	D	D
$\Gamma \Sigma \Gamma$	Σ		$-\Sigma$		Σ		$-\Sigma$	

(D, Γ, Σ) defines a $K R^{i}$-cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Periodic table again

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Focus on the 8 cases in dimension $d=3$
even j Fermi projection P, odd j with chiral sym. and invertible A

Dirac operator in $d=3$

no grading and $\Sigma^{*} \bar{D} \Sigma=-D$ with $\Sigma^{2}=-1$
Hence Hardy is complex symplectic (Lagrangian): $\Sigma * \bar{E} \Sigma=\mathbf{1}-E$
(D, Σ) specifies element of $K R^{5}(\mathcal{A})$ pairs with any $K R_{j}(\mathcal{A})$
Pairing with invertible A (odd K-group) if chiral symmetry

$$
\left\langle[A]_{\text {odd }},[(D, \Sigma)]_{5}\right\rangle=\operatorname{Ind}_{*}(E A E-\mathbf{1}-E)
$$

Pairing with invertible $\mathbf{1}-2 P$ (P even K-group) if no chiral sym.

$$
\begin{aligned}
\left\langle[P]_{\text {even }},[(D, \Sigma)]_{5}\right\rangle & =\operatorname{Ind}_{2}(E(\mathbf{1}-2 P) E-\mathbf{1}-E) \in \mathbb{Z}_{2} \\
& =\operatorname{Ind}_{2}(P(\mathbf{1}-2 E) P-\mathbf{1}-P) \in \mathbb{Z}_{2}
\end{aligned}
$$

For even-odd pairing only secondary \mathbb{Z}_{2} index!

Periodic table: even-odd and odd-even

The only non-vanishing entries for odd $j+d$ are boxed:

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Focus now on odd TRS for $d=3$

Odd TRS in $d=3$

$\Sigma^{*} \bar{D} \Sigma=-D$ with $\Sigma^{2}=-\mathbf{1} \Longrightarrow \Sigma^{*} \bar{E} \Sigma=\mathbf{1}-E$
Unitary $A=\mathbf{1}-2 P$ satisfies $S^{*} \bar{A} S=A$ with $S^{2}=-\mathbf{1}$
$[S, \Sigma]=0$ and $T=E A E+\mathbf{1}-E$ Fredholm operator
Claim: $\operatorname{Ind}_{2}(T) \in \mathbb{Z}_{2}$ well-defined
Non-standard Kramers degeneracy argument (even for matrices!)

Proposition

Let $T^{*} T v=\lambda v$ with $\lambda>0$ and $v \in \mathcal{H}$. Introduce $w \in \mathcal{H}$ by

$$
\bar{w}=R S A^{*} E A E v
$$

where $R=\Phi(\Sigma \bar{\Phi})^{*}$ built from frame Φ for $E=\Phi \Phi^{*}$
Then v and w are linearly independent and $T^{*} T w=\lambda w$.

Résumé

- For $2 \mathbb{Z}$ indices invoking symplectic projections 4th Kramers arg.
- Also index parings for two unitaries A and F by doubling

$$
T=P\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right) P+\mathbf{1}-P \quad P=\frac{1}{2}\left(\begin{array}{cc}
\mathbf{1} & F \\
F^{*} & \mathbf{1}
\end{array}\right)
$$

Only \mathbb{Z}_{2} as for two projections and exchange $A \leftrightarrow F$ allowed

- Index theorem for every entry of periodic table
- For vanishing (empty) entry in table, homotopy to trivial model
- Non-trivial examples given by tight-binding Hamiltonians, built upon complex examples (e.g. Kane-Mele $=2$ Haldane)
- Implications of non-trivial invariants to be examined

Periodic table of topological insulators (2008)

Schnyder-Ryu-Furusaki-Ludwig, Kitaev $K R_{j}\left(\mathbb{R}_{\tau}^{d}\right) \cong \pi_{j-1-d}(O)$

$j \backslash d$	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
2	0	+1	0	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
3	-1	+1	1	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
4	-1	0	0		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
5	-1	-1	1	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
6	0	-1	0		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
7	+1	-1	1			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	

Symmetries of the Dirac operator

$$
D=\sum_{j=1}^{d}\left(X_{j}+x_{j}\right) \otimes \mathbf{1} \otimes \Gamma_{j}
$$

$\Gamma_{1}, \ldots, \Gamma_{d}$ irrep of C_{d} with $\Gamma_{2 j}=-\overline{\Gamma_{2 j}}$ and $\Gamma_{2 j+1}=\overline{\Gamma_{2 j+1}}$ In even d exists grading $\Gamma=\Gamma^{*}$ with $D=-\Gamma D \Gamma$ and $\Gamma^{2}=\mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

$d=8-i$	8	7	6	5	4	3	2	1
Σ^{2}	$\mathbf{1}$	$\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$-\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\Sigma^{*} \bar{D} \Sigma$	D	$-D$	D	D	D	$-D$	D	D
$\Gamma \Sigma \Gamma$	Σ		$-\Sigma$		Σ		$-\Sigma$	

(D, Γ, Σ) defines a $K R^{i}$-cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Odd $K R$-groups - paired with $K R$-cycles

$$
W_{1}(\mathcal{A})=\left\{U \in \cup_{n \geq 1} M_{n}\left(\mathcal{A}^{+}\right) \mid U^{-1}=U^{*}\right\} \quad \mathcal{A}^{+}=\mathcal{A} \oplus \mathbb{C}
$$

Equivalence relation \sim by homotopy and $U \sim\left(\begin{array}{ll}U & 0 \\ 0 & 1\end{array}\right)$

$$
K_{1}(\mathcal{A})=W_{1}(\mathcal{A}) / \sim
$$

Now $\tau(A)=\bar{A}$ anti-linear involutive $*$-autmorphism on \mathcal{A} τ extended to \mathcal{A}^{+}as $\tau(A, t)=(\tau(A), \bar{t})$. With $\Sigma=\left(\begin{array}{cc}0 & -\mathbf{1} \\ \mathbf{1} & 0\end{array}\right)$

$$
\begin{aligned}
& W_{1}(\mathcal{A}, \tau)=\left\{U \in W_{1}(\mathcal{A}) \mid \bar{U}=U\right\} \\
& W_{3}(\mathcal{A}, \tau)=\left\{U \in W_{1, \mathrm{ev}}(\mathcal{A}) \mid \Sigma^{*} \bar{U} \Sigma=U^{*}\right\} \\
& W_{5}(\mathcal{A}, \tau)=\left\{U \in W_{1, \mathrm{ev}}(\mathcal{A}) \mid \Sigma^{*} \bar{U} \Sigma=U\right\} \\
& W_{7}(\mathcal{A}, \tau)=\left\{U \in W_{1}(\mathcal{A}) \mid \bar{U}=U^{*}\right\} \\
& \quad K_{2 i+1}(\mathcal{A}, \tau)=W_{2 i+1}(\mathcal{A}, \tau) / \sim
\end{aligned}
$$

Even $K R$-groups - paired with $K R$-cycles

Instead of projections P work with selfadjoints $Q=\mathbf{1}-2 P$

$$
V_{0}(\mathcal{A})=\left\{Q \in \cup_{n \geq 1} M_{2 n}\left(\mathcal{A}^{+}\right) \mid Q^{*}=Q, \quad Q^{2}=\mathbf{1}\right\}
$$

Equiv. relation \sim by homotopy and $Q \sim\left(\begin{array}{cc}Q & 0 \\ 0 & E_{2}\end{array}\right)$ with $E_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Then $K_{0}(\mathcal{A})=V_{0}(\mathcal{A}) / \sim$ abelian group via $[Q]+\left[Q^{\prime}\right]=\left[\left(\begin{array}{cc}Q & 0 \\ 0 & Q^{\prime}\end{array}\right)\right]$

$$
\begin{array}{ll}
V_{0}(\mathcal{A}, \tau)=\left\{Q \in V_{0}(\mathcal{A}) \mid \bar{Q}=Q\right\} \\
V_{2}(\mathcal{A}, \tau)=\left\{Q \in V_{0, \mathrm{ev}}(\mathcal{A}) \mid S_{2}^{*} \bar{Q} S_{2}=-Q\right\} & S_{2}=\imath \sigma_{2} \otimes \Sigma \\
V_{4}(\mathcal{A}, \tau)=\left\{Q \in V_{0, \mathrm{ev}}(\mathcal{A}) \mid S_{4}^{*} \bar{Q} S_{4}=Q\right\} & S_{4}=\mathbf{1} \otimes \Sigma \\
V_{6}(\mathcal{A}, \tau)=\left\{Q \in V_{0}(\mathcal{A}) \mid S_{6}^{*} \bar{Q} S_{6}=-Q\right\} & S_{6}=\imath \sigma_{2} \otimes \mathbf{1}
\end{array}
$$

$$
K_{2 i}(\mathcal{A}, \tau)=V_{2 i}(\mathcal{A}, \tau) / \sim
$$

Current projects and questions

Above index parings show that $K R$-groups pair with $K R$-cycles
Aim: direct proofs for exactness of connecting maps in $K R$-theory
Related recent preprint: Boersema and Loring 2015
Aim: spell out bulk-edge correspondence in real cases
Aim: further investigate physical implications of invariants (zero modes, surface states, surface currents, Hall effects, polarization, magnetization,...)

