Contents

Preface xi

List of Contributors xiii

Chapter 1. Introduction

A. Greven, G. Keller, G. Warnecke 1

1.1 Outline of the Book 4

1.2 Notations 14

PART 1. FUNDAMENTAL CONCEPTS 17

Chapter 2. Entropy: a Subtle Concept in Thermodynamics

I. Müller 19

2.1 Origin of Entropy in Thermodynamics 19

2.2 Mechanical Interpretation of Entropy in the Kinetic Theory of Gases 23

2.2.1 Configurational Entropy 25

2.3 Entropy and Potential Energy of Gravitation 28

2.3.1 Planetary Atmospheres 28

2.3.2 Pfeffer Tube 29

2.4 Entropy and Intermolecular Energies 30

2.5 Entropy and Chemical Energies 32

2.6 Omissions 34

References 35

Chapter 3. Probabilistic Aspects of Entropy

H.-O. Georgii 37

3.1 Entropy as a Measure of Uncertainty 37

3.2 Entropy as a Measure of Information 39

3.3 Relative Entropy as a Measure of Discrimination 40

3.4 Entropy Maximization Under Constraints 43

3.5 Asymptotics Governed by Entropy 45

3.6 Entropy Density of Stationary Processes and Fields 48

References 52
PART 2. ENTROPY IN THERMODYNAMICS 55

Chapter 4. Phenomenological Thermodynamics and Entropy Principles
K. Hutter and Y. Wang 57
4.1 Introduction 57
4.2 A Simple Classification of Theories of Continuum Thermodynamics 58
4.3 Comparison of Two Entropy Principles 63
 4.3.1 Basic Equations 63
 4.3.2 Generalized Coleman–Noll Evaluation of the Clausius–Duhem Inequality 66
 4.3.3 Müller–Liu’s Entropy Principle 71
4.4 Concluding Remarks 74
References 75

Chapter 5. Entropy in Nonequilibrium
I. Müller 79
5.1 Thermodynamics of Irreversible Processes and Rational Thermodynamics for Viscous, Heat-Conducting Fluids 79
5.2 Kinetic Theory of Gases, the Motivation for Extended Thermodynamics 82
 5.2.1 A Remark on Temperature 82
 5.2.2 Entropy Density and Entropy Flux 83
 5.2.3 13-Moment Distribution. Maximization of Nonequilibrium Entropy 83
 5.2.4 Balance Equations for Moments 84
 5.2.5 Moment Equations for 13 Moments. Stationary Heat Conduction 85
 5.2.6 Kinetic and Thermodynamic Temperatures 87
 5.2.7 Moment Equations for 14 Moments. Minimum Entropy Production 89
5.3 Extended Thermodynamics 93
 5.3.1 Paradoxes 93
 5.3.2 Formal Structure 95
 5.3.3 Pulse Speeds 98
 5.3.4 Light Scattering 101
5.4 A Remark on Alternatives 103
References 104

Chapter 6. Entropy for Hyperbolic Conservation Laws
C. M. Dafermos 107
6.1 Introduction 107
6.2 Isothermal Thermoelasticity 108
6.3 Hyperbolic Systems of Conservation Laws 110
6.4 Entropy 113
6.5 Quenching of Oscillations 117
References 119
CONTENTS

Chapter 7. Irreversibility and the Second Law of Thermodynamics
J. Uffink

7.1 Three Concepts of (Ir)reversibility 121
7.2 Early Formulations of the Second Law 124
7.3 Planck 129
7.4 Gibbs 132
7.5 Carathéodory 133
7.6 Lieb and Yngvason 140
7.7 Discussion 143
References 145

Chapter 8. The Entropy of Classical Thermodynamics
E. H. Lieb, J. Yngvason

8.1 A Guide to Entropy and the Second Law of Thermodynamics 148
8.2 Some Speculations and Open Problems 190
8.3 Some Remarks About Statistical Mechanics 192
References 193

PART 3. ENTROPY IN STOCHASTIC PROCESSES 197

Chapter 9. Large Deviations and Entropy
S. R. S. Varadhan

9.1 Where Does Entropy Come From? 199
9.2 Sanov’s Theorem 201
9.3 What About Markov Chains? 202
9.4 Gibbs Measures and Large Deviations 203
9.5 Ventcel–Freidlin Theory 205
9.6 Entropy and Large Deviations 206
9.7 Entropy and Analysis 209
9.8 Hydrodynamic Scaling: an Example 211
References 214

Chapter 10. Relative Entropy for Random Motion in
a Random Medium
F. den Hollander

10.1 Introduction 215
10.1.1 Motivation 215
10.1.2 A Branching Random Walk in a Random Environment 217
10.1.3 Particle Densities and Growth Rates 217
10.1.4 Interpretation of the Main Theorems 219
10.1.5 Solution of the Variational Problems 220
10.1.6 Phase Transitions 223
10.1.7 Outline 224
10.2 Two Extensions 224
10.3 Conclusion 225
10.4 Appendix: Sketch of the Derivation of the Main Theorems 226
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.1 Local Times of Random Walk</td>
</tr>
<tr>
<td>10.4.2 Large Deviations and Growth Rates</td>
</tr>
<tr>
<td>10.4.3 Relation Between the Global and the Local Growth Rate</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Chapter 11. Metastability and Entropy

E. Olivieri

11.1 Introduction	233
11.2 van der Waals Theory	235
11.3 Curie–Weiss Theory	237
11.4 Comparison Between Mean-Field and Short-Range Models	237
11.5 The ‘Restricted Ensemble’	239
11.6 The Pathwise Approach	241
11.7 Stochastic Ising Model. Metastability and Nucleation	241
11.8 First-Exit Problem for General Markov Chains	244
11.9 The First Descent Tube of Trajectories	246
11.10 Concluding Remarks	248
References	249

Chapter 12. Entropy Production in Driven Spatially Extended Systems

C. Maes

12.1 Introduction	251
12.2 Approach to Equilibrium	252
12.2.1 Boltzmann Entropy	253
12.2.2 Initial Conditions	254
12.3 Phenomenology of Steady-State Entropy Production	254
12.4 Multiplicity Under Constraints	255
12.5 Gibbs Measures with an Involution	258
12.6 The Gibbs Hypothesis	261
12.6.1 Pathspace Measure Construction	262
12.6.2 Space-Time Equilibrium	262
12.7 Asymmetric Exclusion Processes	263
12.7.1 MEP for ASEP	263
12.7.2 LFT for ASEP	264
References	266

Chapter 13. Entropy: a Dialogue

J. L. Lebowitz, C. Maes

| References | 275 |

PART 4. ENTROPY AND INFORMATION

<table>
<thead>
<tr>
<th>Chapter 14. Classical and Quantum Entropies: Dynamics and Information</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Benatti</td>
<td>279</td>
</tr>
</tbody>
</table>
CONTENTS

14.1 Introduction 279
14.2 Shannon and von Neumann Entropy 280
 14.2.1 Coding for Classical Memoryless Sources 281
 14.2.2 Coding for Quantum Memoryless Sources 282
14.3 Kolmogorov–Sinai Entropy 283
 14.3.1 KS Entropy and Classical Chaos 285
 14.3.2 KS Entropy and Classical Coding 285
 14.3.3 KS Entropy and Algorithmic Complexity 286
14.4 Quantum Dynamical Entropies 287
 14.4.1 Partitions of Unit and Decompositions of States 290
 14.4.2 CNT Entropy: Decompositions of States 290
 14.4.3 AF Entropy: Partitions of Unit 292
14.5 Quantum Dynamical Entropies: Perspectives 293
 14.5.1 Quantum Dynamical Entropies and Quantum Chaos 295
 14.5.2 Dynamical Entropies and Quantum Information 296
 14.5.3 Dynamical Entropies and Quantum Randomness 296
References 296

Chapter 15. Complexity and Information in Data
 J. Rissanen 299
 15.1 Introduction 299
 15.2 Basics of Coding 301
 15.3 Kolmogorov Sufficient Statistics 303
 15.4 Complexity 306
 15.5 Information 308
 15.6 Denoising with Wavelets 311
References 312

Chapter 16. Entropy in Dynamical Systems
 L.-S. Young 313
 16.1 Background 313
 16.1.1 Dynamical Systems 313
 16.1.2 Topological and Metric Entropies 314
 16.2 Summary 316
 16.3 Entropy, Lyapunov Exponents, and Dimension 317
 16.3.1 Random Dynamical Systems 321
 16.4 Other Interpretations of Entropy 322
 16.4.1 Entropy and Volume Growth 322
 16.4.2 Growth of Periodic Points and Horseshoes 323
 16.4.3 Large Deviations and Rates of Escape 325
References 327

Chapter 17. Entropy in Ergodic Theory
 M. Keane 329
References 335

Combined References 337