Computational K-theory via the spectral localizer

Hermann Schulz-Baldes, Nora Doll, Tom Stoiber (Erlangen) Terry Loring (Albuquerque)

March 2021

Plan of the talk

- Reminder on index pairings (just functional analysis perspective)
- Construction of and intuition for associated spectral localizer (index pairing as a semiclassical $K K$-product)
- Main result: pairing as half-signature of spectral localizer
- Proof via spectral flow
- Even dimensional case (Chern numbers)
- Numerical illustration for a topological insulator
- \mathbb{Z}_{2}-invariants via spectral localizer (pairings with real symmetries)
- Spectral localizer for semifinite index pairings
- Semiclassical perspective and Callias-type index theorem
- Numerical illustration of Weyl point count for a topological semimetal

General framework: odd index pairings

A bounded invertible operator on Hilbert space \mathcal{H} (K_{1}-class)
D selfadjoint Dirac operator on \mathcal{H} with compact resolvent (K^{1}-class)
A differentiable w.r.t. D, namely commutator $[D, A]$ bounded
D then called odd Fredholm module for A (Atiyah, Kasparov)
Hardy projection $\Pi=\chi(D>0) \quad$ Set: $T=\Pi A \Pi+(1-\Pi)$
Fact: T Fredholm operator and $\operatorname{Ind}(T)$ called index pairing
Index theorems (Atiyah-Singer, Connes, ...):
local formula for $\operatorname{Ind}(T)$
Best-known example: Noether index theorem for winding number
Aim here: numerical technique for calculation of $\operatorname{Ind}(T)$

Spectral localizer

For (semiclassical) parameter $\kappa>0$ introduce spectral localizer:

$$
L_{\kappa}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right)
$$

A_{ρ} restriction of A (Dirichlet) to finite-dimensional range of $\chi(|D| \leqslant \rho)$

$$
L_{\kappa, \rho}=\left(\begin{array}{cc}
\kappa D_{\rho} & A_{\rho} \\
A_{\rho}^{*} & -\kappa D_{\rho}
\end{array}\right)
$$

Clearly selfadjoint matrix:

$$
\left(L_{\kappa, \rho}\right)^{*}=L_{\kappa, \rho}
$$

Fact 1: $L_{\kappa, \rho}$ is gapped, namely $0 \notin L_{\kappa, \rho} \quad$ (A is like a mass)
Fact 2: $L_{\kappa, \rho}$ has spectral asymmetry measured by signature
Fact 3: signature linked to topological invariant

Schematic representation

$$
L_{\kappa}(\lambda)=\left(\begin{array}{cc}
\kappa D & \lambda A \\
\lambda A^{*} & -\kappa D
\end{array}\right) \quad, \quad \lambda \geqslant 0
$$

Spectrum for $\lambda=0$ symmetric and with space quanta κ

Spectrum for $\lambda=1$: less regular, central gap open and asymmetry

Spectral asymmetry determined by low-lying spectrum (finite volume!)

Theorem (with Loring 2017)

Given $D=D^{*}$ with compact resolvent and invertible A with invertibility gap $g=\left\|A^{-1}\right\|^{-1}$. Provided that

$$
\begin{equation*}
\|[D, A]\| \leqslant \frac{g^{3}}{12\|A\| \kappa} \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 g}{\kappa} \leqslant \rho \tag{**}
\end{equation*}
$$

the matrix $L_{\kappa, \rho}$ is invertible and with $\Pi=\chi(D \geqslant 0)$

$$
\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}\right)=\operatorname{Ind}(\Pi A \Pi+(\mathbf{1}-\Pi))
$$

How to use: form (*) infer κ, then ρ from (**)
If A unitary, $g=\|A\|=1$ and $\kappa=(12\|[D, A]\|)^{-1}$ then $\rho=\frac{2}{\kappa}$ Hence small matrix with $\rho \leqslant 100$ sufficient! Great for numerics! N.B.: scaling $A \mapsto \lambda A$ in (${ }^{*}$) forces $\kappa \mapsto \lambda \kappa$, so same ρ due to (${ }^{* *)}$

Why it can work:

Proposition

If (*) and (**) hold,

$$
L_{\kappa, \rho}^{2} \geqslant \frac{g^{2}}{2}
$$

Proof:

$$
L_{\kappa, \rho}^{2}=\left(\begin{array}{cc}
A_{\rho} A_{\rho}^{*} & 0 \\
0 & A_{\rho}^{*} A_{\rho}
\end{array}\right)+\kappa^{2}\left(\begin{array}{cc}
D_{\rho}^{2} & 0 \\
0 & D_{\rho}^{2}
\end{array}\right)+\kappa\left(\begin{array}{cc}
0 & {\left[D_{\rho}, A_{\rho}\right]} \\
{\left[D_{\rho}, A_{\rho}\right]^{*}} & 0
\end{array}\right)
$$

Last term is a perturbation controlled by (*)
First two terms positive (indeed: close to origin and away from it) Now $A^{*} A \geqslant g^{2}$, but $\left(A^{*} A\right)_{\rho} \neq A_{\rho}^{*} A_{\rho}$
This issue can be dealt with by tapering argument!

Lemma

\exists even function $f_{\rho}: \mathbb{R} \rightarrow[0,1]$ with $f_{\rho}(x)=0$ for $|x| \geqslant \rho$ and $f_{\rho}(x)=1$ for $|x| \leqslant \frac{\rho}{2}$ such that $\left\|\hat{f}_{\rho}^{\prime}\right\|_{1}=\frac{8}{\rho}$

With this, $f=f_{\rho}(D)=f_{\rho}(|D|)$ and $\mathbf{1}_{\rho}=\chi(|D| \leqslant \rho)$:

$$
\begin{aligned}
A_{\rho}^{*} A_{\rho} & =\mathbf{1}_{\rho} A^{*} \mathbf{1}_{\rho} \boldsymbol{A} \mathbf{1}_{\rho} \geqslant \mathbf{1}_{\rho} A^{*} f^{2} A \mathbf{1}_{\rho} \\
& =\mathbf{1}_{\rho} f A^{*} A f \mathbf{1}_{\rho}+\mathbf{1}_{\rho}\left(\left[A^{*}, f\right] f A+f A^{*}[f, A]\right) \mathbf{1}_{\rho} \\
& \geqslant g^{2} f^{2}+\mathbf{1}_{\rho}\left(\left[A^{*}, f\right] f A+f A^{*}[f, A]\right) \mathbf{1}_{\rho}
\end{aligned}
$$

Due to below, $A_{\rho}^{*} A_{\rho}$ indeed positive close to origin for ρ large ...

Proposition (Bratelli-Robinson)

For $f: \mathbb{R} \rightarrow \mathbb{R}$ with Fourier transform defined without $\sqrt{2 \pi}$,

$$
\|[f(D), A]\| \leqslant\left\|\hat{f^{\prime}}\right\|_{1}\|[D, A]\|
$$

Proof by spectral flow (Phillips' basic approach)

 Using $\mathrm{SF}=$ Ind for phase $U=A|A|^{-1}$ and properties of SF :$$
\begin{aligned}
\operatorname{Ind}(& \Pi A \Pi+\mathbf{1}-\Pi)=\operatorname{Ind}(\Pi U \Pi+\mathbf{1}-\Pi)=\operatorname{SF}\left(U^{*} D U, D\right) \\
& =\operatorname{SF}\left(\kappa U^{*} D U, \kappa D\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{ll}
U & 0 \\
0 & \mathbf{1}
\end{array}\right)^{*}\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\left(\begin{array}{ll}
U & 0 \\
0 & \mathbf{1}
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{ll}
U & 0 \\
0 & \mathbf{1}
\end{array}\right)^{*}\left(\begin{array}{cc}
\kappa D & \mathbf{1} \\
\mathbf{1} & -\kappa D
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & \mathbf{1}
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{cc}
\kappa U^{*} D U & U \\
U^{*} & -\kappa D
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{cc}
\kappa D & U \\
U^{*} & -\kappa D
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right)
\end{aligned}
$$

Now localize and use SF $=\frac{1}{2}$ Sig-Diff on paths of selfadjoint matrices \square

Sketch on how to use this in a concrete situation

Solid state system in $d=3$ in one-particle tight-binding approximation $H: \ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2 L}\right) \rightarrow \ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2 L}\right)$ with $2 L$ orbitals per unit cell H is local, namely only matrix elements between neighboring sites Matrix elements from quantum chemistry (tunneling, exchange) H gapped (insulator!) and has a chiral (or sublattice) symmetry

$$
H=-J H J=\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right) \quad, \quad J=\left(\begin{array}{cc}
1_{L} & 0 \\
0 & -1_{L}
\end{array}\right)
$$

If H periodic, in Fourier space $k \in \mathbb{T}^{3} \mapsto A(k) \in \mathbb{C}^{L \times L}$ smooth invertible

$$
\operatorname{Wind}_{3}(A)=\frac{1}{24 \pi^{2}} \int_{\mathbb{T}^{3}} \operatorname{Tr}\left(A^{-1} d A d A^{-1} d A\right)
$$

Index theorem $\Pi=\chi\left(\sum_{i=1}^{3} \sigma_{i} \partial_{k_{i}}>0\right)$ spectral projection of Dirac

$$
\operatorname{Wind}_{3}(A)=-\operatorname{Ind}(\Pi A \Pi+(\mathbf{1}-\Pi))
$$

Spectrum and signature of localizer

(Dual) Dirac $D=\sum_{i=1}^{3} \sigma_{i} X_{i}$ on $\ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2}\right) \quad$ locality: $\|[D, H]\|<\infty$ Spectral localizer (placing Hamiltonian in a Dirac trap):

$$
L_{\kappa}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right)
$$

No functional calculus, just place H and D in 2×2 :
Typical result:

$\rho=6, \kappa=0.1$, etc.
half-signature easy to compute

Even index pairings (in even dimension d)

Consider gapped Hamiltonian $H=H^{*}$ on \mathcal{H} and $P=\chi(H<0)$
Dirac operator D on $\mathcal{H} \oplus \mathcal{H}$ is odd w.r.t. grading $\Gamma=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Thus $D=-\Gamma D \Gamma=\left(\begin{array}{cc}0 & \left.D^{\prime}\right) * \\ D_{0}^{\prime}\end{array}\right)$ and Dirac phase $F=D^{\prime}\left|D^{\prime}\right|^{-1}$
$\left[H, D^{\prime}\right]$ bounded $\Longrightarrow P F P+(\mathbf{1}-P)$ Fredholm (index $=$ Chern \#)
Spectral localizer

$$
L_{\kappa}=\left(\begin{array}{cc}
-H & \kappa D^{\prime} \\
\kappa\left(D^{\prime}\right)^{*} & H
\end{array}\right)=-H \otimes \Gamma+\kappa D
$$

Theorem (with Loring 2018)
Suppose $\left\|\left[H, D^{\prime}\right]\right\|<\infty$ and D^{\prime} normal, and κ, ρ with (*) and (**)

$$
\operatorname{Ind}(P F P+(\mathbf{1}-P))=\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}\right)
$$

Proof: K-theoretic via fuzzy spheres or again by spectral flow

Numerics: $p+i p$ dirty superconductor

$p+i p$ Hamiltonian on $\ell^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{2}\right)$ depending on μ and δ
$H=\left(\begin{array}{cc}S_{1}+S_{1}^{*}+S_{2}+S_{2}^{*}-\mu & \delta\left(S_{1}-S_{1}^{*}+\imath\left(S_{2}-S_{2}^{*}\right)\right) \\ \delta\left(S_{1}-S_{1}^{*}+\imath\left(S_{2}-S_{2}^{*}\right)\right)^{*} & -\left(S_{1}+S_{1}^{*}+S_{2}+S_{2}^{*}-\mu\right)\end{array}\right)+\lambda V_{\text {dis }}$
where S_{1}, S_{2} shifts and disorder strength λ and i.i.d. entries in

$$
V_{\text {dis }}=\sum_{n \in \mathbb{Z}^{2}}\left(\begin{array}{cc}
v_{n, 0} & 0 \\
0 & v_{n, 1}
\end{array}\right)|n\rangle\langle n|
$$

Build even spectral localizer from $D=X_{1} \sigma_{1}+X_{2} \sigma_{2}=-\sigma_{3} D \sigma_{3}$:

$$
L_{\kappa, \rho}=\left(\begin{array}{cc}
-H_{\rho} & \kappa\left(X_{1}+i X_{2}\right)_{\rho} \\
\kappa\left(X_{1}-i X_{2}\right)_{\rho} & H_{\rho}
\end{array}\right)
$$

Calculation of signature by block Chualesky algorithm

Low-lying spectrum of one random Hamiltonian

Eigenvalues of the Hamiltonian with disorder
$\delta=-0.35, \mu=0.25, \rho=30$

Nota bene: beyond $\lambda \approx 2.7$ no spectral gap, but Anderson localization

Low-lying spectrum of spectral localizer

Nota bene: up to $\lambda \approx 3.3$ localizer has gap (not covered by Theorem) Spectral asymmetry difficult to see, but easy to compute

Half-signature and gaps for $p+i p$ superconductor

Half-signature for spectral localizer with disorder
100 realizations
$\delta=-0.35, \mu=0.25, \mathrm{k}=0.03, \rho=30$

Up to $\lambda \approx 3.2$ almost no configurations with "wrong signature"

16 Real \mathbb{Z}_{2}-valued index pairings (Real K-theory)

Real structure $\mathcal{C}=$ complex conjugation on \mathcal{H}, then $\bar{A}=\mathcal{C A C}$
Possible: $P=\bar{P}$ real, P quaternionic, $P=\mathbf{1}-\bar{P}$ Lagrangian, odd Lag.
Depending on d : $D=\bar{D}$ real, $D=-\bar{D}$ imaginary, D (odd) quaternionic Focus on BdG, $d=1: H=-\bar{H}$ with $P=\chi(H<0)=\mathbf{1}-\bar{P}$ and $D=\bar{D}$ With $\Pi=\chi(D>0)$ again $T=\Pi(\mathbf{1}-2 P) \Pi+\mathbf{1}-\Pi$ Fredholm and

$$
\operatorname{Ind}_{2}(T)=\operatorname{dim}(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_{2}
$$

Real skew spectral localizer

$$
L_{\kappa}=\left(\begin{array}{cc}
0 & \kappa D-i H \\
\kappa D+i H & 0
\end{array}\right)
$$

Theorem (with Doll 2020)
Suppose $\|[H, D]\|<\infty$ and κ, ρ with ($\left.{ }^{*}\right)$ and (**)

$$
\operatorname{Ind}_{2}(P F P+(\mathbf{1}-P))=\operatorname{sgn}\left(\operatorname{Pf}\left(L_{\kappa, \rho}\right)\right)=\operatorname{sgn}\left(\operatorname{det}\left(\kappa D_{\rho}+\imath H_{\rho}\right)\right)
$$

Semifinite index pairings (here only odd case)

$(\mathcal{N}, \mathcal{T})$ semifinite von Neumann with \mathcal{T} normal, faithful
\mathcal{K} norm-closure of span of \mathcal{T}-finite projections. Then Calkin sequence:

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{N} \xrightarrow{\pi} \mathcal{N} / \mathcal{K} \rightarrow 0
$$

$T \in \mathcal{N}$ Fredholm if $\pi(T)$ invertible

Definition

Breuer-Fredholm index of $T \in \mathcal{N}$ w.r.t. projections $P, Q \in \mathcal{N}$

$$
\mathcal{T}-\operatorname{Ind}_{(P \cdot Q)}(T)=\mathcal{T}(\operatorname{Ker}(T) \cap Q)-\mathcal{T}\left(\operatorname{Ker}\left(T^{*}\right) \cap P\right)
$$

provided $\operatorname{Ker}(T) \cap Q$ and $\operatorname{Ker}\left(T^{*}\right) \cap P$ are \mathcal{T}-finite
For $\Pi=\chi(D>0), U \in \mathcal{N}$ and $[D, U]\left(1+D^{2}\right)^{-\frac{1}{2}} \in \mathcal{K}$, index pairing

$$
\langle[U],[D]\rangle=\mathcal{T}-\operatorname{Ind}_{(\Pi \cdot \Pi)}(П \cup \Pi) \in \mathbb{R}
$$

Link to spectral flow: Carey, Gayrel, Phillips, Rennie 2015

Semifinite spectral localizer

for $U=A|A|^{-1}$

$$
L_{\kappa}=\left(\begin{array}{cc}
\kappa D & A \\
A^{*} & -\kappa D
\end{array}\right)
$$

and restrictions

$$
L_{\kappa, \rho}=\Pi_{\rho} L_{\kappa} \Pi_{\rho} \quad, \quad \Pi_{\rho}=\chi\left(D^{2}<\rho^{2}\right)
$$

Theorem (with Stoiber 2021)

For κ, ρ satisfying (*) and (**), and $U=A|A|^{-1}$ as above,

$$
\langle[U],[D]\rangle=\frac{1}{2} \mathcal{T}-\operatorname{Sig}\left(L_{\kappa, \rho}\right)
$$

where $\mathcal{T}-\operatorname{Sig}(L)=\mathcal{T}(\chi(L>0))-\mathcal{T}(\chi(L<0))$
Application: numerical method for weak invariants of topo. insul.

Semiclassical perspective on spectral localizer

Up to now spectral localizer invertible and with spectral asymmetry Now situation non-trivial kernel of (Cayley transform of localizer)

$$
L_{\kappa}=\left(\begin{array}{cc}
0 & \kappa D-i H \\
\kappa D+i H & 0
\end{array}\right)=C^{*}\left(\begin{array}{cc}
-H & \kappa D \\
\kappa D & H
\end{array}\right) C
$$

with supersymmetric index, provided $\kappa D+i H$ Fredholm,

$$
\operatorname{Ind}(\kappa D+i H)=\operatorname{Sig}\left(\left.J\right|_{\operatorname{Ker}\left(L_{\kappa}\right)}\right) \quad, \quad J=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Kernel linked to kernel of semiclassical Schrödinger-like operators:

$$
\left(L_{\kappa}\right)^{2}=\left(\begin{array}{cc}
\kappa^{2} D^{2}+H^{2}-\kappa i[D, H] & 0 \\
0 & \kappa^{2} D^{2}+H^{2}+\kappa i[D, H]
\end{array}\right)
$$

Low-lying spectrum accessible by rough semiclassics (IMS localiza.) Classical situation: Callias index theorem $x \in \mathbb{R}^{d} \mapsto H_{x}=\left(H_{x}\right)^{*}$ Solid state context: topological semimetals instead of insulators

Callias-type index theorems

C^{1}-map $x \in \mathbb{R}^{d} \mapsto H_{x}=\left(H_{x}\right)^{*}$ of selfadjoint Fredholm operators H_{x} uniformly invertible for $|x| \geqslant R_{C}$
Hypothesis: zero set $\mathcal{Z}(H)=\left\{x \in \mathbb{R}^{d}: \operatorname{dim}\left(\operatorname{Ker}\left(H_{x}\right)\right) \geqslant 1\right\}$ finite For each zero $x^{*} \in \mathcal{Z}(H)$ topological charge $\mathrm{Ch}_{d-1}\left(H_{x}\left|H_{x}\right|^{-1}, \partial B_{\delta}\left(x^{*}\right)\right)$

Theorem (with Stoiber 2021)

d odd and $D=\gamma \cdot \partial$ Dirac operator on \mathbb{R}^{d}. For all $\kappa \leqslant 1$,

$$
\operatorname{Ind}(\kappa D+i H)=\operatorname{Sig}\left(\left.J\right|_{\operatorname{Ker}\left(L_{\kappa}\right)}\right)=\sum_{x^{*} \in \mathcal{Z}(H)} \operatorname{Ch}_{d-1}\left(H_{x}\left|H_{x}\right|^{-1}, \partial B_{\delta}\left(x^{*}\right)\right)
$$

Even dimensional analogue as Guentner-Higson, but with infinite fiber Proof: similar to Witten's semiclassical proof of Morse inequalities R.h.s.: multiparameter spectral flow counting Weyl points with charge Topological semimetal: Weyl point count over a Brillouin torus

Weyl points of systems in $d=3$

$$
H=H_{p+i p}+\delta\left(\begin{array}{cc}
0 & S_{3}+S_{3}^{*} \\
S_{3}+S_{3}^{*} & 0
\end{array}\right)+\lambda H_{\text {dis }} \quad \text { on } \ell^{2}\left(\mathbb{Z}^{3}, \mathbb{C}^{2}\right)
$$

$\rho=7$, so cube of size $15, \delta=0.6, \mu=1.2, \lambda=0.5, \kappa=0.1$
Approximate kernel dimension counts number of Weyl points
Existence of Weyl points \Longrightarrow non-vanishing weak Chern numbers
\Longrightarrow surface currents (as in QHE)

References (all on arXiv)

- with Loring, Finite volume calculations of K-theory invariants, New York J. Math. (2017)
- with Loring, The spectral localizer for even index pairings,
J. Noncommutative Geometry (2020)
- with Loring, Spectral flow argument localizing an odd index pairing, Cand. Bull. Math. (2019)
- with Doll, Skew localizer and \mathbb{Z}_{2}-flows for real index pairings, preprint 2020
- with Stoiber, The spectral localizer for semifinite spectral triples, Proc. AMS (2021)
- with Stoiber, Semiclassical proofs of Callias-type index theorems for multiparameter spectral flow, draft 2021.

