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Plan of the talk
‚ Reminder on index pairings (just functional analysis perspective)

‚ Construction of and intuition for associated spectral localizer
(index pairing as a semiclassical KK -product)

‚ Main result: pairing as half-signature of spectral localizer

‚ Proof via spectral flow

‚ Even dimensional case (Chern numbers)

‚ Numerical illustration for a topological insulator

‚ Z2-invariants via spectral localizer (pairings with real symmetries)

‚ Spectral localizer for semifinite index pairings

‚ Semiclassical perspective and Callias-type index theorem

‚ Numerical illustration of Weyl point count for a topological semimetal
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General framework: odd index pairings

A bounded invertible operator on Hilbert space H (K1-class)

D selfadjoint Dirac operator on H with compact resolvent (K 1-class)

A differentiable w.r.t. D, namely commutator rD,As bounded

D then called odd Fredholm module for A (Atiyah, Kasparov)

Hardy projection Π “ χpD ą 0q Set: T “ ΠAΠ` p1´ Πq

Fact: T Fredholm operator and IndpT q called index pairing

Index theorems (Atiyah-Singer, Connes, ...):
local formula for IndpT q

Best-known example: Noether index theorem for winding number

Aim here: numerical technique for calculation of IndpT q
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Spectral localizer
For (semiclassical) parameter κ ą 0 introduce spectral localizer:

Lκ “

˜

κD A
A˚ ´κD

¸

Aρ restriction of A (Dirichlet) to finite-dimensional range of χp|D| ď ρq

Lκ,ρ “

˜

κDρ Aρ
A˚ρ ´κDρ

¸

Clearly selfadjoint matrix:
pLκ,ρq˚ “ Lκ,ρ

Fact 1: Lκ,ρ is gapped, namely 0 R Lκ,ρ (A is like a mass)
Fact 2: Lκ,ρ has spectral asymmetry measured by signature
Fact 3: signature linked to topological invariant
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Schematic representation

Lκpλq “

˜

κD λA
λA˚ ´κD

¸

, λ ě 0

Spectrum for λ “ 0 symmetric and with space quanta κ

σpLκp0qq

κ

0

Spectrum for λ “ 1: less regular, central gap open and asymmetry

σpLκp1qq

g

0

Spectral asymmetry determined by low-lying spectrum (finite volume!)
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Theorem (with Loring 2017)

Given D “ D˚ with compact resolvent and invertible A
with invertibility gap g “ }A´1}´1. Provided that

}rD,As} ď
g3

12 }A}κ
(*)

and
2 g
κ

ď ρ (**)

the matrix Lκ,ρ is invertible and with Π “ χpD ě 0q

1
2 SigpLκ,ρq “ Ind

`

ΠAΠ` p1´ Πq
˘

How to use: form (*) infer κ, then ρ from (**)
If A unitary, g “ }A} “ 1 and κ “ p12}rD,As}q´1 then ρ “ 2

κ

Hence small matrix with ρ ď 100 sufficient! Great for numerics!
N.B.: scaling A ÞÑ λA in (*) forces κ ÞÑ λκ, so same ρ due to (**)
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Why it can work:

Proposition

If (*) and (**) hold,

L2
κ,ρ ě

g2

2

Proof:

L2
κ,ρ “

˜

AρA˚ρ 0
0 A˚ρAρ

¸

` κ2

˜

D2
ρ 0

0 D2
ρ

¸

` κ

˜

0 rDρ,Aρs
rDρ,Aρs˚ 0

¸

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)

Now A˚A ě g2, but pA˚Aqρ “ A˚ρAρ

This issue can be dealt with by tapering argument!
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Lemma

D even function fρ : RÑ r0,1s with fρpxq “ 0 for |x | ě ρ

and fρpxq “ 1 for |x | ď ρ
2 such that }pf 1ρ}1 “

8
ρ

With this, f “ fρpDq “ fρp|D|q and 1ρ “ χp|D| ď ρq:

A˚ρAρ “ 1ρA˚1ρA1ρ ě 1ρA˚f 2A1ρ
“ 1ρfA˚Af1ρ ` 1ρ

`

rA˚, f sfA` fA˚rf ,As
˘

1ρ
ě g2 f 2 ` 1ρ

`

rA˚, f sfA` fA˚rf ,As
˘

1ρ

Due to below, A˚ρAρ indeed positive close to origin for ρ large ... l

Proposition (Bratelli-Robinson)

For f : RÑ R with Fourier transform defined without
?

2π,

}rf pDq,As} ď }pf 1}1 }rD,As}
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Proof by spectral flow (Phillips’ basic approach)
Using SF “ Ind for phase U “ A|A|´1 and properties of SF:

IndpΠAΠ` 1´ Πq “ IndpΠUΠ` 1´ Πq “ SFpU˚DU,Dq
“ SFpκU˚DU, κDq

“ SF

˜˜

U 0
0 1

¸˚˜

κD 0
0 ´κD

¸˜

U 0
0 1

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

U 0
0 1

¸˚˜

κD 1
1 ´κD

¸˜

U 0
0 1

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

κU˚DU U
U˚ ´κD

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

κD U
U˚ ´κD

¸

,

˜

κD 0
0 ´κD

¸¸

Now localize and use SF “ 1
2 Sig-Diff on paths of selfadjoint matrices l
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Sketch on how to use this in a concrete situation
Solid state system in d “ 3 in one-particle tight-binding approximation

H : `2pZ3,C2Lq Ñ `2pZ3,C2Lq with 2L orbitals per unit cell

H is local, namely only matrix elements between neighboring sites

Matrix elements from quantum chemistry (tunneling, exchange)

H gapped (insulator!) and has a chiral (or sublattice) symmetry

H “ ´JHJ “

˜

0 A
A˚ 0

¸

, J “

˜

1L 0
0 ´1L

¸

If H periodic, in Fourier space k P T3 ÞÑ Apkq P CLˆL smooth invertible

Wind3pAq “
1

24π2

ż

T3
Tr
`

A´1 dA dA´1 dA
˘

Index theorem Π “ χp
ř3

i“1 σiBki ą 0q spectral projection of Dirac

Wind3pAq “ ´ Ind
`

ΠAΠ` p1´ Πq
˘
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Spectrum and signature of localizer
(Dual) Dirac D “

ř3
i“1 σiXi on `2pZ3,C2q locality: }rD,Hs} ă 8

Spectral localizer (placing Hamiltonian in a Dirac trap):

Lκ “

˜

κD A
A˚ ´κD

¸

No functional calculus, just place H and D in 2ˆ 2: Typical result:

-4 -2 0 2 4
0

20

40

60

80

DOS of Spectral Localizer

ρ “ 6, κ “ 0.1, etc. half-signature easy to compute
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Even index pairings (in even dimension d)
Consider gapped Hamiltonian H “ H˚ on H and P “ χpH ă 0q

Dirac operator D on H‘H is odd w.r.t. grading Γ “
`1 0

0 ´1

˘

Thus D “ ´ΓDΓ “
` 0 D1
pD1q˚ 0

˘

and Dirac phase F “ D1|D1|´1

rH,D1s bounded ùñ PFP ` p1´ Pq Fredholm (index “ Chern #)
Spectral localizer

Lκ “

˜

´H κD1

κ pD1q˚ H

¸

“ ´H b Γ ` κD

Theorem (with Loring 2018)
Suppose }rH,D1s} ă 8 and D1 normal, and κ, ρ with (*) and (**)

Ind
`

PFP ` p1´ Pq
˘

“ 1
2 SigpLκ,ρq

Proof: K -theoretic via fuzzy spheres or again by spectral flow
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Numerics: p ` ip dirty superconductor
p ` ip Hamiltonian on `2pZ2,C2q depending on µ and δ

H “

˜

S1 ` S˚1 ` S2 ` S˚2 ´ µ δ
`

S1 ´ S˚1 ` ıpS2 ´ S˚2 q
˘

δ
`

S1 ´ S˚1 ` ıpS2 ´ S˚2 q
˘˚

´pS1 ` S˚1 ` S2 ` S˚2 ´ µq

¸

` λVdis

where S1, S2 shifts and disorder strength λ and i.i.d. entries in

Vdis “
ÿ

nPZ2

˜

vn,0 0
0 vn,1

¸

|nyxn|

Build even spectral localizer from D “ X1σ1 ` X2σ2 “ ´σ3Dσ3:

Lκ,ρ “

˜

´Hρ κ pX1 ` iX2qρ

κ pX1 ´ iX2qρ Hρ

¸

Calculation of signature by block Chualesky algorithm
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Low-lying spectrum of one random Hamiltonian
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Eigenvalues of the Hamiltonian with disorder
 δ=-0.35, µ=0.25, ρ=30

Nota bene: beyond λ « 2.7 no spectral gap, but Anderson localization
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Low-lying spectrum of spectral localizer
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Eigenvalues of the spectral localizer with disorder
 δ=-0.35, µ=0.25, κ=0.03, ρ=30

Nota bene: up to λ « 3.3 localizer has gap (not covered by Theorem)

Spectral asymmetry difficult to see, but easy to compute
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Half-signature and gaps for p ` ip superconductor
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Half-signature for spectral localizer with disorder 
 100 realizations 

 δ=-0.35, µ=0.25, κ=0.03, ρ=30

Average of half-signature
Average gap localizer

Average gap hamiltonian
Minimum gap localizer

Minimum gap hamiltonian

Up to λ « 3.2 almost no configurations with ”wrong signature”
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16 Real Z2-valued index pairings (Real K -theory)
Real structure C “ complex conjugation on H, then A “ CAC

Possible: P “ P real, P quaternionic, P “ 1´ P Lagrangian , odd Lag.

Depending on d : D “ D real, D “ ´D imaginary, D (odd) quaternionic

Focus on BdG, d “ 1: H “ ´H with P “ χpH ă 0q “ 1´ P and D “ D

With Π “ χpD ą 0q again T “ Πp1´ 2PqΠ` 1´ Π Fredholm and

Ind2pT q “ dimpKerpT qqmod 2 P Z2

Real skew spectral localizer

Lκ “

˜

0 κD ´ iH
κD ` iH 0

¸

Theorem (with Doll 2020)
Suppose }rH,Ds} ă 8 and κ, ρ with (*) and (**)

Ind2
`

PFP ` p1´ Pq
˘

“ sgnpPfpLκ,ρqq “ sgnpdetpκDρ ` ıHρqq
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Semifinite index pairings (here only odd case)
pN , T q semifinite von Neumann with T normal, faithful
K norm-closure of span of T -finite projections. Then Calkin sequence:

0 Ñ K Ñ N π
Ñ N {K Ñ 0

T P N Fredholm if πpT q invertible

Definition
Breuer-Fredholm index of T P N w.r.t. projections P,Q P N

T -IndpP¨QqpT q “ T
`

KerpT q XQ
˘

´ T
`

KerpT ˚q X P
˘

provided KerpT q XQ and KerpT ˚q X P are T -finite

For Π “ χpD ą 0q, U P N and rD,Usp1` D2q´
1
2 P K, index pairing

xrUs, rDsy “ T -IndpΠ¨ΠqpΠUΠq P R

Link to spectral flow: Carey, Gayrel, Phillips, Rennie 2015
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Semifinite spectral localizer

for U “ A|A|´1

Lκ “

˜

κD A
A˚ ´κD

¸

and restrictions

Lκ,ρ “ ΠρLκΠρ , Πρ “ χpD2 ă ρ2q

Theorem (with Stoiber 2021)

For κ, ρ satisfying (*) and (**), and U “ A|A|´1 as above,

xrUs, rDsy “ 1
2 T -SigpLκ,ρq

where T -SigpLq “ T pχpL ą 0qq ´ T pχpL ă 0qq

Application: numerical method for weak invariants of topo. insul.
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Semiclassical perspective on spectral localizer
Up to now spectral localizer invertible and with spectral asymmetry
Now situation non-trivial kernel of (Cayley transform of localizer)

Lκ “

˜

0 κD ´ iH
κD ` iH 0

¸

“ C˚
˜

´H κD
κD H

¸

C

with supersymmetric index, provided κD ` iH Fredholm,

IndpκD ` iHq “ SigpJ|KerpLκqq , J “

˜

1 0
0 ´1

¸

Kernel linked to kernel of semiclassical Schrödinger-like operators:

pLκq2 “

˜

κ2D2 ` H2 ´ κirD,Hs 0
0 κ2D2 ` H2 ` κirD,Hs

¸

Low-lying spectrum accessible by rough semiclassics (IMS localiza.)
Classical situation: Callias index theorem x P Rd ÞÑ Hx “ pHxq

˚

Solid state context: topological semimetals instead of insulators
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Callias-type index theorems
C1-map x P Rd ÞÑ Hx “ pHxq

˚ of selfadjoint Fredholm operators

Hx uniformly invertible for |x | ě Rc

Hypothesis: zero set ZpHq “ tx P Rd : dimpKerpHxqq ě 1u finite

For each zero x˚ P ZpHq topological charge Chd´1pHx |Hx |
´1, BBδpx˚qq

Theorem (with Stoiber 2021)

d odd and D “ γ ¨ B Dirac operator on Rd . For all κ ď 1,

IndpκD ` iHq “ SigpJ|KerpLκqq “
ÿ

x˚PZpHq
Chd´1pHx |Hx |

´1, BBδpx˚qq

Even dimensional analogue as Guentner-Higson, but with infinite fiber

Proof: similar to Witten’s semiclassical proof of Morse inequalities

R.h.s.: multiparameter spectral flow counting Weyl points with charge

Topological semimetal: Weyl point count over a Brillouin torus
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Weyl points of systems in d “ 3

H “ Hp`ip ` δ

˜

0 S3 ` S˚3
S3 ` S˚3 0

¸

` λHdis on `2pZ3,C2q
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ρ “ 7, so cube of size 15, δ “ 0.6, µ “ 1.2, λ “ 0.5, κ “ 0.1

Approximate kernel dimension counts number of Weyl points

Existence of Weyl points ùñ non-vanishing weak Chern numbers

ùñ surface currents (as in QHE)
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