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1 Manifolds, vector fields, curves and flows

1.1 Smooth manifolds and smooth maps

Definition 1.1. [Charts, Atlas] Let M be a topological space.

(a) A pair (,U), consisting of an open subset U C M and a homeomorphism ¢: U —
»(U) CR™ of U onto an open subset of R™ is called an n-dimensional chart of M.

(b) Two n-dimensional charts (p,U) and (¢, V) of M are said to be C¥-compatible (k €
NU{oc}) f UNV =0 orif UNV # @ and the homeomorphism

Yo 9071|4P(Uﬂv): eUNV)CR" - y(UNV)CR”

is a C*-diffeomorphism.
(¢) An n-dimensional C*-atlas of M is a family A := (¢;,U;)ies of n-dimensional charts
of M with the following properties:

(A1) Ui  Us = M, ie. (Us)ier is an open covering of M.

(A2) All charts (¢;,U;), i € I, are pairwise C*-compatible: for all 4,7 € I the homeomor-
phisms

Qi =5 005 iyt viUiy) = 0;(Ui;) Uy :=U;NU;

are C*-maps.

(d) A chart (¢, U) is called compatible with a C*-atlas (p;, U;)ier if it is C*-compatible
with all charts of the atlas A. A C*-atlas A is called mazimal if it contains all charts
compatible with it. A maximal C*-atlas is also called a C*-differentiable structure on M.
For k = oo we also call it a smooth structure.

Remark 1.2. 1. Every atlas A is contained in a unique maximal atlas: We simply add
all charts compatible with A, and thus obtain a maximal atlas. This atlas is unique
(Exercise [L.2). This implies that every C*-atlas A defines a unique C*-differentiable
structure on M.

2. A given topological space M may carry different differentiable structures. Examples
are the exotic differentiable structures on R* (the only R™ carrying exotic differentiable
structures) and the 7-sphere S”.

Definition 1.3. [C*-manifold] An n-dimensional C*-manifold is a pair (M, A) consisting of
a Hausdorff space M and a maximal n-dimensional C*-atlas A for M. For k = oo we call it
a smooth manifold.

Example 1.4. [Open subsets of R"| Let U C R™ be an open subset. Then U is a Hausdorff
space with respect to the induced topology. The inclusion map ¢: U — R™ defines a chart
(¢, U) which already defines a smooth atlas of U, turning U into an n-dimensional smooth
manifold.

Example 1.5. [Products of manifolds] Let M and N be smooth manifolds of dimensions
d, resp., k and
MxN={(m,n):meMmneN}



the product set, which we endow with the product topology.

We show that M x N carries a natural structure of a smooth
(d + k)-dimensional manifold. Let A = (¢;,U;)ier be an atlas of M and B = (¢4, V;)es an
atlas of N. Then the product sets W;; := U; x V; are open in M x N and the maps

Yij =i X 5 Up x V; = REx RF 2 R (2,9) = (03(2),5(y))
are homeomorphisms onto open subsets of R4**. On virj (Wi; N Wirjr) we have
Vi Vi = (pi 0 93 t) X (Y5 095,),
which is a smooth map. Therefore (¢i;, Wij) (i jyerx.s is a smooth atlas on M x N.

Example 1.6. [Submanifolds of R"] Smooth k-dimensional submanifolds of R™ are often
defined as follows:

A smooth k-dimensional submanifold of R™ is a subset M C R"™ such that for every point
p € M there is an open neighborhood U, C R™ and a smooth function f, : U, — R~ * such
that M NU, = f,1(0) and rank(df,(z)) =n — k for all z € U, N M.

Every smooth k-dimensional submanifold M C R”™ has a natural structure as a k-
dimensional manifold. Firstly, M has a natural structure of a Hausdorff space as a subset
of the Hausdorff space R™. Moreover, by the Implicit Function Theorem there exist for each
p € M an open neighbourhood V,, C U, C R" of p, an open neighbourhood W,, C R™ of 0
and a smooth diffeomorphism ¢, : V,, = W,, such that

ep(Up N M) = (R* x {0}) N Wy
If we identify R¥ x {0} with R¥ then (¢p|v, nar, V,NM) is a chart for M and for V,NV,NM # 0,
$Pq © W;lhop(vpqumM) = (‘Pq‘VqﬁM) o (‘Pp|VpﬂM)_1‘gop(mequM)
ep(Vo N Vg N M) = ¢q(V, N Ve N M)
is a smooth map onto an open subset of R¢. We thus obtain a smooth atlas of M.

Many manifolds that play an important role in physics are submanifolds of R™. A par-
ticularly simple example are quadrics, which cover already many relevant examples.

Example 1.7. [quadrics] A quadric Q in R™ is the set of zeros of a function f : R™ — R of
the form
f(z) = (z, Az + b) + c.

where A € Mat(n,R) is a symmetric matrix, b € R”, ¢ € R and (, ) denotes the Euclidean
scalar product on R™. The gradient of the function f is given by

grad f(z) = 2Az + b,

and its zeros are precisely the solutions of the linear equation 2Ax + b = 0. If none of its
solutions lies on the affine plane (x,b) + 2¢ = 0, we have

f(@)=3(x,2Az+b+b) +c=L(z,b) + c £ 0 Va € (gradf) ' (0)



and the quadric Q@ = f~%(0) is an (n — 1)-dimensional smooth manifold. In particular, this
is the case for all quadrics with b = 0, ¢ # 0 and A € GL,(R) and for all quadrics with
A =0 and b # 0. This includes the following cases, all of which are (n — 1)-dimensional
submanifolds of R™:

e A=0,0b+#0: affine hyperspaces of R"

M={zeR": (z,b) +c=0} with b # 0.

e A=1,,b=0and ¢ = —1: the (n — 1)-sphere

St ={x e R": (x,2) = 1}

A =diag(1,-1,...,—-1),b=0and ¢ = —1: (n — 1)-dimensional hyperbolic space

n—1
H”_lz{xER":xi—Zaz?: }
i=1

e A=diag(1,-1,...,—1),b=0, c=1: (n — 1)-dimensional de Sitter space
n—1
dS,—1 = {x ER™: 22 — fo = —1}.
i=1
o A=diag(1,...,1,—1,....,—1),b=0, ¢ = 1: (p,q)-anti de Sitter space
—— —— ——
X (g+1)x
P n
Ay = {re®: 3wt = 30 =1} pramnot
i=1 i=p+1

With the results of Example it is easy to check that a given subset of R™ is a
submanifold and to determine its dimension. However, for many purposes this is not enough
since one needs an explicit description of M in terms of coordinates. Although the definition
of the smooth structure on M is based on a maximal smooth atlas, in practice it is advisable
to describe a manifold with as few charts as possible. If an n-dimensional manifold cannot
be realised as an open subset of R™, it is clear that one needs at least two charts, and in
many examples, this is already sufficient.

Example 1.8. [The n-dimensional sphere] We consider the unit sphere
S™ = {(x0,...,xn) ER" g2 4+ i+ ..+ 22 =1}

in R™, endowed with the subspace topology, turning it into a compact space.
(a) To specify a smooth manifold structure on S™, we consider the open subsets

U ={xeS": ex; >0}, i=0,...,n, € {1}



These 2(n + 1) subsets form a covering of S™. We have homeomorphisms
0;: U = B:={z eR": |22 < 1}
onto the open unit ball in R™, given by
5 () = (T, @1y oy Tie 1y Tig 1y - -+, Ty

and with continuous inverse map

(yla"'7yn) — (ylw"?y’hg\/ 1- ||y|‘%7yl+1aayn)

This leads to charts (¢5, UF) of S™.
It is easy to see that these charts are pairwise compatible. We have
S o (p5 )"t =idp, and for i < j, we have

%05 o (@5 )_1(y) = (yla"'ayi7yi+27' "7yj7€/\/ 1- ||y‘|%’yj+17"'ayn>7

which is a smooth map , , ,
o5 (U NUS ) = @i (U N U5 ).

(b) There is another atlas of S™ consisting only of two charts, where the maps are slightly
more complicated.

We call the unit vector eg := (1,0,...,0) the north pole of the sphere and —eq the south
pole. We then have the corresponding stereographic projection maps

O U+ = Sn\{eo} %Rna (y07y) = Y

1=

and

o :U_:=8"\{-eo} = R", (y0,9) = Y.

1+ yo

Both maps are bijective with inverse maps

23 -1 2 )
3 + 171+ [[=]13

o3l = (+

(Exercise [T.4). This implies that (¢1,U}) and (¢_,U_) are charts of S". That both are
smoothly compatible, hence a smooth atlas, follows from

(o1 09~ (@) = (0 0 o7 1)(w) = ﬁ z € R™\ {0},

which is the inversion at the unit sphere.

Example 1.9. [Counterexample: the Double Cone] Consider for n > 2 the double cone

M= {(@o, 2. 2) ER: ad— (o ...+ a2) = 0).



As a subset of the Hausdorff space R*™!, M is a Hausdorff space. However, M is not a
smooth manifold. To show this, note that A \ {0} is an n-dimensional manifold by Example
1.0l

M=f720) with f:R"™ SR, f(z)=a2—(z2+...+22)

n

and
gradf(zo,...,zn) = 2(xg, —X1,...,—Zy) #0 Y(zg,...,xn) # (0,...,0).

Suppose now that there exists a chart (¢, U) with 0 € U, U C M open, and a homeomorphism
¢ : U — ¢(U) C R2. Then U \ {0} cannot be connected, because it contains at least one
point z € M with 2y > 0 and one point y € M with yg < 0. After applying a translation
and restricting ¢ to a suitable subset, we can suppose ¢(0) = 0 and

P(U) = Be(0) = {z € R" : |[|z[|l2 < €}

with € > 0. This implies that U \ {0} = ¢~ 1(B(0) \ {0}) is connected, since ¢ is a homeo-
morphism and B.(0) \ {0} is connected for n > 2. Contradiction.

Although a large class of manifolds can be realised as submanifolds of R™ for some n € N,
viewing a manifold as a subset of R is inadequate for several reasons. Firstly, it often leads
to a very complicated description of the manifolds. Secondly, it is contrary to the sprit of
differential geometry, in which the central structures are the charts and transitions between
them, not the embedding into R™. This is also reflected in its applications in physics. In
general relativity, a spacetime is described by a manifold, and this description is crucial
for the interpretation of the theory. Embedding this manifold into R™ would correspond to
introducing an absolute time and space outside of the spacetime manifold and hence to a
Newtonian viewpoint.

For this reason, it natural to ask if one can construct a manifold “from scratch” instead
of defining it as a certain subset of R™ or, more generally, of a Hausdorff topological space.
This is possible and is called the gluing construction of manifolds. The idea is to start from
certain open subsets V; C R™ and C*-homeomorphisms @ji : Vi; = Vj; between certain open
subsets V;; C V;, which identify (glue together) the subsets V;; and Vj;.

Definition 1.10. [Gluing data] A set of gluing data on R™ is a countable triple

((Vi)ier, (Vig)iger, (i), jyek)
consisting of
e pairwise disjoint, non-empty open subsets V; C R™, the parametrisation domains

e open subsets V;; C V; such that V;; = V; for all i € I and Vj; = () if and only if Vii = 0
for all 4,7 € I. The non-empty sets V;; with j # ¢ are called gluing domains.

e C*_diffeomorphisms ;; : Vi; — Vj; for (i,7) € K = {(i,j) € I x I : V;; # 0}, the
gluing functions

which satisfy the following conditions:



(G1) cocycle condition: for all i, j,k € I with V;; NV}, # 0:

5 (Vii O Vi) C Vi and kil =y v, = 983 © 9iilo=t (v,0v;0)
(G2) Hausdorff condition: for all pairs of points € (0Vi;) N V;, y € (0V;;) NV, with
(1,7) € K, i # j there exist open neighbourhoods V, of « and V,, of y with

(Vy NVii) N pa(Vae N Vi) = 0.

Remark 1.11. (a) The cocycle condition implies ¢;; = idy, : V; — V; for all i € I and
Yij = %0;@1 for all (i,7) € K.
(b) A set of gluing data defines an equivalence relation on V' = [],.; Vi:

r~y & 3(i,j) € Kwitha € Vi, y = ¢ji(z).

Reflexivity: For x € V; the relation ¢;;(x) = = implies = ~ x.

Symmetry: If x ~ y and (4,7) € K with y = ¢;;(z), then ¢;; = <pj_i1 implies ¢ = ¢;;(y) and
hence y ~ .

Transitivity: If x ~ y and y ~ z then there exist index pairs (7,7),(j, k) € K such that
z € Vi, y = pji(z) € V%Z and y € Vji, 2 = ¢j(y) € Vij. As Vj; NV, # 0, the cocyle
condition implies z € ¢ (Vij NVjg) C Vig and @ri(z) = @r; 0 wji(z) = @r(y) = 2, so that
T~z

Proposition 1.12. For every set of gluing data, the quotient M = (Hie] V,)/ ~ s an
n-dimensional C*-manifold.

Proof. We consider the maps t; = po; : Vi — M, x +— [x], where ¢; : V; — [[,.; Vi are the
inclusion maps and p : [[;c; Vi — M the projection on the equivalence classes. We equip
M with the finest topology such that all maps t; are continuous, i.e. a subset O C M is
open if and only if, for every i, the inverse image t;l(O) is open. If W C V; is open, then
t;lti(W) = ;;(W N V) is open in V; for every j € I, and therefore ¢;(W) open in M. As
t; is obviously injective, it is an homeomorphism onto an open subset of M.

For all ¢ € I, we thus obtain a chart ¢; := ti_l ct3(Vi) = Vi for M, M = ;¢ t:(V;) and,
for all (3,7) € K,

piopi ! =wsit Vig = Vi,

is a C*-function by definition. This shows that (¢;,t;(V;))ics is an n-dimensional C*-Atlas
for M, and by adding all maps compatible with this atlas, we obtain a C*-diffferentiable
structure on M (see Remark [1.2).

It remains to prove that M is Hausdorff. For this, we first show that

ti(Vig) =t;(Vis) (i,5) € K

(Vi) N 5(V;) = {@ (i.) ¢ K.

In fact, t;(z) € t;(V;) is contained in ¢;(V}) for some ¢ # j if and only if there exists ay € Vj
with t;(x) = t;(y), i.e. (4,7) € K, x € Vij and ¢;;(z) = .



Consider now two distinct points in p,q € M with p # g. Then there exist 7,5 € I and
z; € Vi, y; € V; with p = t;(x), ¢ = t,;(y). If V;; =0, then ¢,(V;) and t;(V;) are disjoint open
sets in M with p € t;(V;) and ¢ € t;(V;). Otherwise, there are three cases:

(a) g € t;(Vi) or p € t;(V;): Assume that ¢ € ¢;(V;). Then there exist disjoint open
neighbourhoods V, C V; of « and V,, C V; of ¢;;(y). Their images t;(V;),t;(V,) contain,
respectively, p and ¢ and are open and disjoint since ¢; is a homeomorphism. The case
p € t;(V;) is similar.

This leaves the cases where ¢ # j, y € Vj; and x € V.

(b) y € Vj; or & € V;;: Again, it suffices to deal with the first case. Then ¢;(V;) and
t;(V; \ V};) are disjoint open subsets of M, containing p, resp., q.

(c) x € 0V;; and y € OVj;. Then the Hausdorff condition implies that there exist open
neighbourhoods V; of = and V, of y with (V, N V};) N¢;i(Vz N Vi) = 0. This implies that the
images t;(V,) and t;(V,,) are disjoint open subsets of M with p € t;(V,,) and ¢ € t;(V,). O

Remark 1.13. The Hausdorff condition is necessary to ensure that M = [[,.; Vi/ ~ is a
Hausdorff space. Consider R? with the parametrisation and gluing domains
Vi =] -3,-1[x]0,1], Va=]1,3[x]0,1], Via=]—3,-2[x]0,1[, Va1 =]1,2[x]0,1]

and the gluing function @21 : Via — WVia, @o1(x1,22) = (21 + 4,23). Then the sets
V1, Vo, Via, Vo1 are open, 19 is a diffeomorphism and the cocycle condition is satisfied triv-
ially, since there are only two gluing domains, Vj2 and Va;.

However, M = V;[[ Va/ ~ is not Hausdorff. For all zo €]0,1[, the points ¢ ((—2,z2)),
ta2((2,2)) € V1 [[ Vo/ ~ are distinct since (—2,22) € V1 \Vi2 and (2,22) € Va2\ V21. However,
they cannot be separated by disjoint open subsets of M | since every open neighbourhood
U_2 C M of t1((—2,x2)) contains a point t1((—2—¢€,z2)) and and every open neighbourhood
U2 C M of tz((Q,Ig)) a point t2((2 — 6,1‘2)). As tl(—Q — 6,33‘2) = tg((pgl(—Z — 6,1‘2)) =
t1(2 — €, x2), it follows that Uy N U_o # (.

Example 1.14. [Cylinder and Mébius strip by gluing] We consider R? with the parametri-
sation and gluing domains

Vi =] —4,-1[x]0, 1], Vie = (] —2,—-1[x]0,1]) U (] — 4, —3[x]0, 1]) C V4,
Va :]1,4[X}0, 1[’ Va1 = (]L 2[X}Oa 1[) U (]374[X]0’ 1[) cV

and the gluing function @91 : V3o — Vo3

(1 +3,22) (x1,22) €] — 2,—1[x]0, 1]

(@1, 22) = {(7+x1,z2) (w1, 22) €] — 4, =3[x]0, 1]

The cocycle condition is again satisfied trivially, and to show that this defines a set of gluing
data, the only condition to be checked is the Hausdorff condition. We have

Vi N Vi = ({=3}x]0,1)U({-2}x]0,1)  9Va1 NV = ({2}x]0, I)U({3} x]0, 1[).
Ifl’GaVuﬂvl, yeé‘VglﬁVQ and 0 <e< % then

©21(Viz2 N Be(x)) = Be(p21(x)) N Va1 C (1,1 + €[x]0,1[) U (J4 — €, 4[x]0, 1])
Var N Be(y) € (12— 6,2 + €[]0, 1)) U (J3 — €, 3 + €[]0, 1]).



This implies @o1(Be(2) N Vi2) N (Be(y) NVa1) = 0. We can thus take V,, = Bc(z), V,, = Be(y).
Consequently, the Hausdorff condition is satisfied and V5 [ V2/ ~ is a smooth manifold. One
can show that V3 x V5 is homeomorphic to a cylinder S*x]0, 1].

If we take the same parametrisation and gluing domains Vi, Vo, V12, Vo1 but modify the
gluing function to

(1 + 3, 22) (z1,22) €] =2, =1[x]0, 1]

wo1(z1,22) = {(7+x1,1 —x9)  (z1,12) €] —4,—3[x]0, 1],

it is easy to see that the Hausdorff condition is again satisfied. The resulting smooth manifold
Vi ][ Va/ ~ is a Mobius strip.

Remark 1.15. Note that this construction is a refinement of the gluing of topological spaces
in topology, where the openness of the subsets V;; is not required. The difference is that the
above gluing construction defines an n-dimensional C*-manifold and not not just a topological
space. To ensure this, additional conditions on the gluing data are necessary which are absent
in the gluing of topological spaces.

Definition 1.16. [Smooth Maps, Diffeomorphisms] Let M and N be differentiable manifolds.
(a) We call a continuous map f: M — N smooth in p € M if there exist charts (o, U) of
M with p € U and (¢, V) of N with f(p) € V auch that the map

Yo fopTtio(fTHV)) = w(V), ¢lz) = v(f(z)) (1)

is smooth in a neighborhood of ¢(p). We call a continuous map f: M — N smooth if it is
smooth in each point of M and write C°°(M, N) for the set of smooth maps f: M — N. If
N =R we set C°(M) := C>(M,R).

(b) A smooth map f: M — N is called a smooth isomorphism or a diffeomorphism if there
exists a smooth map g: N — M with go f =idy; and fog =idy. We write Diff (M, N) for
the set of diffeomorphisms of M to N and Diff(M) := Diff(M, M). Two manifolds M and
N are called diffeomorphic if there exists a diffeomorphism f: M — N.

Remark 1.17. (a) The identity map idy; : M — M, p — p is smooth, since for any chart
(¢,U) of M the map o ¢! =id,y) is smooth.

(b) If f: M — N and g: N — @ are continuous maps with f smooth in p € M and g
smooth in f(p), then the composition g o f is smooth in p. For charts (¢, U), (¢, V), resp.,
(n,W) of M, N, resp., Q, with p e U, f(p) € V and go f(p) € W we have

no(gof)op ™t =(nogoyp ") o(ho fop™),

on its natural domain, which contains a neighborhood of ¢(p).

(c) Tt follows from (a) and (b) that “diffeomorphic” is an equivalence relation on the class
of smooth n-dimensional manifolds.

(d) It follows from (b) that, if f: M — N is smooth in p, then for any two charts (x, W)
of M with p € W and (§,Z) of N with f(p) € Z, the map

Eofox i x(fH(2)) »€(2)

is smooth. Smoothness does not depend on the choice of charts.

10



(e) If U is an open subset of R™, then a map f: U — M to a smooth m-dimensional
manifold M is smooth if and only if for each chart (p, V) of M the map

o f: fTH(V) >R

is smooth. Smoothness of maps f: M — R™ can be checked more easily. Since the identity
is a chart of R™, the smoothness condition simply means that for each chart (¢, U) of M the
map

foe ™ io(fTH(V)NU) - R"

is smooth.

(f) Any chart (p,U) of a smooth n-dimensional manifold M defines a diffeomorphism
U — ¢(U) C R", when U is endowed with the canonical manifold structure as an open
subset of M. In fact, by definition, we may use (¢, U) as an atlas of U. Then the smoothness
of ¢ is equivalent to the smoothness of the map @ o ™! = id, (1), which is trivial. Likewise,
the smoothness of ¢~1: ¢(U) — U is equivalent to the smoothness of p o ! = idy ).

Example 1.18. If M and N are differentiable manifolds and M x NN their product, then
the following maps are smooth:

(a) the projection maps ppr: M x N — M and py: M x N — N.

(b) for x € M, y € N, the embeddings

iz: N> MxN, y— (z,9) Y: M —-MXxN, z~ (z,y)
(c) the diagonal embedding Apr: M — M x M,z — (x, z).

Definition 1.19. [Smooth Curve, Piecewise Smooth Curve]

(a) If I C R is an open interval, then a smooth map ~: I — M is called a smooth curve.

(b) For a not necessarily open interval I C R, a map v: I — R" is called smooth if all
derivatives v*) exist in all points of I and define continuous functions I — R”. Based on
this generalization of smoothness for curves, a curve v: I — M is said to be smooth, if for
each chart (o, U) of M the curves ¢ oy: v~ 1(U) — R™ are smooth.

(c) A curve «: [a,b] — M is called piecewise smooth if «y is continuous and there exists a
subdivision xg = a < x1 < ...,< xy = b such that ~v is smooth for i =0,... N — 1.

[zi,2i41]

Exercises for Section [1.1]

Exercise 1.1. Let M := R, endowed with its standard topology. Show that C*-compatibility
of 1-dimensional charts is not an equivalence relation.

Exercise 1.2. Show that each n-dimensional C*-atlas is contained in a unique maximal one.

Exercise 1.3. Let If M;, i =1,...,n, be smooth manifolds of dimension d;. Show that the
product space M := M; X ... x M, carries the structure of a (dy + ... + d,)-dimensional
manifold.

Exercise 1.4. (a) Verify the details in Example where we describe an atlas of S™ by
stereographic projections.

(b) Show that the two atlasses of S™ constructed in Example and the atlas obtained
from the realization of S™ as a quadric in R**! define the same differentiable structure.

11



Exercise 1.5. Determine a smooth atlas for the n-dimensional hyperboloid
H'={reR"™ 22, — (2} +a5+...+22) =1}

with as few maps as possible. What conclusions do you draw from this about the relation
between the manifolds H™ and R™?

Exercise 1.6. Let 0 < r < R. Determine a set of gluing data on R? for the torus
T = {(Rcost +rsinp, Rsint + rsing,rcos ) : t,p € [0,2n]} C R,

Exercise 1.7. Show that the set A := C°°(M,R) of smooth real-valued functions on M is
a real algebra. If g € A is nonzero and U := g~ 1(R*), then % € C>*(U,R).

Exercise 1.8. Let f1: My — Ny and fo: Ms — Ny be smooth maps. Show that the map

Ji X fa: My x My — N1 x Na,  (z,y) = (fi(x), f2(y))
is smooth.

Exercise 1.9. Let fi: M — N; and fo: M — Ns be smooth maps. Show that the map

(f1,f2): M — N1 x No, = (fi(z), fa(2))

is smooth.

Exercise 1.10. Let N be an open subset of the smooth manifold M. Show that if A =
(¢i, Us)ier is a smooth atlas of M, V; := U; N N and v; := @;|v,, then B := (¢;, V;)ics is a
smooth atlas of N.

Exercise 1.11. Let Vi,...,V; and V be finite-dimensional real vector space and
B:Vix...xV,—=>V

be a k-linear map. Show that 8 is smooth with

k
dB(SCl, . 7$k)(h1, .. .,hk) = Zﬁ(,ﬁbl, e 7.’Ej,1, hj7xj+17 e ,{L‘k).

=1

Exercise 1.12. Let M be a compact smooth manifold containing at least two points. Then
each atlas of M contains at least two charts. In particular the atlas of S™ obtained from
stereographic projections is minimal.

Exercise 1.13. Let X and Y be topological spaces and ¢: X — Y a quotient map, i.e. ¢ is
surjective and O C Y is open if and only if ¢=1(O) is open in X. Show that amap f: Y — Z
(Z a topological space) is continuous if and only if the map foq: X — Z is continuous.

Exercise 1.14. Show that a smooth function f: R — R is a diffeomorphism if and only if
either

(1) f/ >0 and limy 100 f(z) = fo0.
(2) f' <0 and limy 100 f(z) = Foo.
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1.2 Tangent Vectors and Tangent Maps

Definition 1.20. [tangent vector, tangent bundle] Let M be a smooth manifold and p € M.
(a) A tangent vector to M in p is an equivalence class of smooth curves v : (—¢,¢) > M
with v(0) = p under the equivalence relation

v~ <& there exists a chart (U, ) with p € U and (¢ o v1)'(0) = (¢ 0 72)'(0).

(b) The tangent space T, (M) is the set of all tangent vectors in p. The disjoint union of
all tangent spaces on M

T(M) = [] Tn(M)

peEM

is called the tangent bundle of M. We write mrp: TM — M for the projection, mapping
T,(M) to {p}.

Remark 1.21. (a) If 71,72 : (—€,e) = M with 71(0) = 72(0) = p are equivalent curves,
then we have (1) 0 41)"(0) = (¢ 0 v2)’(0) for all charts (V) with p € V, since

(1 07:)'(0) = d(upy) (W o @) (@ 07:)(0).

(b) f U C R" is an open subset and p € U, then each smooth curve
~v: I — U with v(0) = p is equivalent to the curve n,(t) := p + tv for v = +/(0). Hence
each equivalence class contains exactly one curve 7,. We may therefore think of a tangent
vector in p € U as a vector v € R™ attached to the point p, and the map

R = T,(U), v+ [n]

is a bijection. In this sense, we identify all tangent spaces T,,(U) with R", so that we obtain
a bijection
T({U)=U x R™
As an open subset of the product space T(R™) = R?", the tangent bundle T'(U) inherits a
natural manifold structure.
(c) If V is a vector space, then we identify T(V'), as in (b), in a natural way with V x V.
Accordingly we have

T, (f)(w) = (f(p), af (p)v),

for a map df: T(M) — V with df(p) := df|r, -
(d) For each p € M and any chart (¢,U) with p € U, the map

Tp(p): Tp(M) = R",  [7] = (p07)'(0)
is well-defined and injective by the definition of the equivalence relation. Moreover, the curve

Y(t) = o~ (o(p) + tv),

which is smooth and defined on some neighborhood of 0, satisfies (¢ o v)’(0) = v. Hence

T,(¢p) is a bijection.
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Lemma 1.22. Let M be an m-dimensional manifold. Then there is a unique vector space
structure on T,(M) such that for each chart (¢,U) of M with p € U the map

Tp(@): Tp(M) = R™,  [y] = (p07)'(0)

s a linear isomorphism. If N is an n-dimensional manifold and f : M — N a smooth map,
then for allp € M
Tp(f) : TpM — TN, [y = [f o]

defines a linear map between Ty M and Tty N. The collection of all these maps defines a
map
T(f): T(M) = T(N) with  Tp(f) =T(f)|z, ) p € M.

It is called the tangent map of f

Proof. The bijectiion T),(¢) from Remark d) defines a vector space structure on T, (M)
by
vt w:=Ty(0) H(Tp(p)v + Tp(p)w)  and v = Tp(p) " (AT, (¢)v)

for A € R, v,w € T,(M). It remains to show that this vector space structure does not depend
on the choice of the chart. For any other chart (1, V) with p € V' we have

T;D(@Z)) = dy(p) (7/} © 9071) © TP(SD)~
Aspop ™t i pUNV) — (U NV) is a diffecomorphism, A, := dy,) (1 0 ¢~ !) is a linear
automorphism of R™, so that
Ty () " (T () + Tyhw) = Ty~ 0 AN (A 0 Ty(0)v + Ay 0 Ty(p)v)
= Tp(@)fl(T (L) + Tp(p)w)
Tp(w)_l()‘Tp(w)U) = Tp‘P_l © Ap (/\Ap ° Tp(‘?)”) = Tp(‘?)_l()‘Tp(¢)U)-
This shows that the vector space structure does not depend on the choice of the map and is
well-defined.

Consider now a smooth map f : M — N between smooth manifolds M, N. We need to
show that T),(f) is well defined and linear. For any chart (¢, U) of N with f(p) € U and any
chart (1, V) of M with p € V, we have

Tip)(@)[f 071 = (o f07)(0) = dygy(po fov™ ") (¥ 07)(0)
dypy(p o f o™ )T, ().

This relation shows that T},(f) does not depend on the choice of the representative v and it
is linear, since the maps T, (¢), T,(¢)) and dy,)(p o fo™!) are linear. O

Example 1.23. [Open subsets] (a) For an open subset U C R™ and p € U, the vector space
structure on T,(U) = {p} x R™ is simply given by

(p,0) + (p,w) == (p,v+w) and  A(p,v) := (p, Av)

for v,w € R™ and A € R.
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(b) If f: U — V is a smooth map between open subsets U C R™ and V C R™, p € U,
and 7, (t) = p + tv, then the tangent map satisfies

T(f)(p,v) = [f ool = (f 0 1,)"(0) = (f(p), df (p),,(0)) = (f(p),df (p)v).

The main difference to the map df is the book keeping; here we keep track of what happens
to the point p and the tangent vector v. We may also write

T(f) = (fomry,df): TU 2 U x R* - TV 2V x R",

where mry: TU — U, (p,v) — p, is the projection map.
(c) If (p,U) is a chart of M and p € U, then we identify T(o(U)) with ¢(U) x R™ and
obtain for [y] € T,,(M):

T(p)([7]) = (¢(p), [ o 7)) = (¢(p), (v 07)'(0)),

which is consistent with our previously introduced notation T),(¢).

Example 1.24. [Submanifolds of R"] Let M C R™ be a smooth k-dimensional submanifold
and p € M. Then there exists an open neighbourhood U, C R" of p and a smooth function
fp : Up = R"™F such that M NU, = f,1({0}) and rank(d, f,) = n — k. For every smooth
curve 7 : (—e¢,€) = M N U, with v(0) = p we have f, oy(t) = 0 for all ¢ and hence

0=(fpo 7)'(0) = dpfp(Vl(O)) = 7(0) ¢ ker(d, fp)-

We can therefore identify the tangent space T),(M) with ker(d, fp). If (¢p, V) is a chart as
in Example With ©0p(Vp N M) = (RF x {0}) N W, then dp, : R¥ — ker(d, f,) is a vector
space isomorphism and

Tp(ep) 7] = (9p ©7)'(0) = dpipp(7'(0)).

Lemma 1.25. (Chain rule for tangent maps) For smooth maps f: M — N and g: N — L,
the tangent maps satisfy

T(gof)=T(g)oT(f).

Proof. We recall from Remark that go f: M — L is a smooth map, so that T'(go f) is
defined. For p € M and [v] € T,,(M), we further have

Tp(go N =lgo for]=Trp(@f oV = Trp)(9)T(f)]-

Since p was arbitrary, this implies the lemma. O

So far we only considered the tangent bundle T'(M) of a smooth manifold M as a set,
but this set also carries a natural topology and a smooth manifold structure.

Definition 1.26. [Manifold structure on T'(M)] Let M be a smooth manifold. First we
introduce a topology on T'(M). For each chart (¢,U) of M, we have a tangent map

T(p): T(U) = T(p(U)) = ¢(U) x R,
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where we consider T'(U) = U,y Tp(M) as a subset of T'(M). We define a topology on
T(M) by declaring a subset O C T(M) to be open if for each chart (¢,U) of M, the set
T(p)(ONT(U)) is an open subset of T'(¢(U)). It is easy to see that this defines indeed a
Hausdorff topology on T'(M) for which all the subsets T'(U) are open and the maps T'(¢) are
homeomorphisms onto open subsets of R?" (Exercise .

Since for two charts (¢,U), (3, V) of M, the map

T(pop™") =T(p) o T(¥)™": T(&(V)) = T(p(U))

is smooth, for each atlas A of M, the collection (T'(¢),T(U))(p,u)ea is a smooth atlas of
T(M). We thus obtain on T'(M) the structure of a smooth manifold.

Lemma 1.27. If f: M — N is a smooth map, then its tangent map T(f) is smooth.

Proof. Let p € M and choose charts (p,U) and (¢,V) of M, resp., N with p € U and
f(p) € V. Then the map

TW)oT(f)oT(p) ' =T(Wo fop™): T(p(f~H(V)NU)) = T(V)
is smooth, and this implies that T'(f) is a smooth map. O

Remark 1.28. For smooth manifolds My, ..., M,, the projection maps
mis My X oo X My — My, (p1,.-.,0n) & D
induce a diffeomorphism
(T(m1)y...,T(mp)): T(My X -+ x M) — TMy x --- x TM,

(Exercise [1.17]).

Exercises for Section [1.2]

Exercise 1.15. Show that for a submanifold M C R™ which is a quadric M = f~1(0) with
f:R" =R, f(z) = (x, Ax +b) + ¢, the tangent space T,,(M) is isomorphic to the orthogonal
complement

(24p +b)* = {y € R™: (y,24p +b) = 0}.

Determine the tangent spaces T,S™ and T,H" of the n-sphere and the n-dimensional hyper-
bolic space.

Exercise 1.16. Let M be a smooth manifold. We call a subset O C T'(M) open if for each
chart (¢,U) of M, the set T'(¢)(ONT(U)) is an open subset of T(¢(U)). Show that:

(1) This defines a topology on T(M).
(2) All subsets T(U) are open.

(3) The maps T(¢): TU — T(o(U)) =2 ¢(U) x R™ are homeomorphisms onto open subsets
of R2" 22 T(R™).
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(4) The projection 7rpr: T(M) — M is continuous.
(5) T(M) is Hausdorff.
Exercise 1.17. For smooth manifolds M, ..., M,, the projection maps
mit My X - X My — My, (p1,...,Dn) & Di

induce a diffeomorphism

(T'(m1), ..., T(mn)): T(My X -+- x M) - TMy x --- X TM,.
Exercise 1.18. Let N and M;,..., M, be a smooth manifolds. Show that a map

fiN— M x---xM,

is smooth if and only if all its component functions f;: N — M; are smooth.

Exercise 1.19. Let f: M — N be a smooth map between manifolds,
7wy s TM — M the tangent bundle projection and op: M — TM the zero section. Show
that for each smooth map f: M — N we have

mryoTf=fomry and onof=Tfoou.

Exercise 1.20. [Inverse Function Theorem for manifolds] Let f: M — N be a smooth
map and p € M such that T,(f): T,(M) — Ty, (N) is a linear isomorphism. Show that
there exists an open neighborhood U of p in M such that the restriction f|y: U — f(U) is
a diffeomorphism onto an open subset of N.

Exercise 1.21. Let u: E x F© — W be a bilinear map and M a smooth manifold. For
fe€C®(M,E), g C®(M,F) and p € M set h(p) := pu(f(p),g(p)). Show that h is smooth
with

T(h)v = u(T(f)v,9(p)) + n(f(p), T(g)v) for v e T,(M).

1.3 Vector fields

Throughout this subsection M denotes an n-dimensional smooth manifold.

Definition 1.29. [Vector Field, Lie Derivative] Let M be a n-dimensional manifold and
denote by wpar: TM — M the canonical projection mapping T,(M) to p. A (smooth) vector
field X on M is a smooth section of the tangent bundle T'M, i.e. a smooth map X: M — TM
with 7mpp 0 X = idps. We denote by V(M) for the space of all vector fields on M.

If f € C*°(M,V) is a smooth function on M with values in some finite-dimensional vector
space V and X € V(M), then we obtain a smooth function on M via

Lxf:=dfoX: M —-TM —V.

We thus obtain for each X € V(M) a linear operator Lx on C*°(M,V). The function Lx f
is also called the Lie derivative of f with respect to X.
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Remark 1.30. (a) If U is an open subset of R™, then TU = U x R™ with the bundle
projection
mry: U X R = U, (z,0)— x.

Therefore each smooth vector field is of the form X (z) = (z, X (z)) for some smooth function
X: U — R", and we may thus identify V(U) with the space C>(U, R™) of smooth R™-valued
functions on U.

(b) The space V(M) carries a natural vector space structure given by

(X +Y)(p):=X(p)+Y(p), AX)(p):=AX(p).

More generally, we can multiply vector fields with smooth functions

(fX)(p) = f(p)X(p), [feC(MR),X eV(M).

Remark 1.31. [Time-dependent vector fields| In many physics applications such as classical
mechanics or electrodynamics, one considers so-called time-dependent vector fields. From
a mathematical viewpoint, these are simply smooth functions X : I x M — TM with
X(t,p) € T,(M) for all t € I, p € M. Equivalently, one can consider time-dependent vector
fields as smooth vector fields on the product manifold I x M with

X(t,p) € Im(Tp(ir)) C Tepy (M) ¥(t,p) € I x M,

where i, : M — {t} x M, p — (t,p) denotes the embedding of M into the product manifold
IxM.

Remark 1.32. [Basic Vector Fields] (a) Let (¢, U) be a chart of M and ¢1,...,¢,: U - R
the corresponding coordinate functions. Then we obtain on U vector fields bf, J=1,...,n,
defined by

b7 (p) = Tp() e

where ey, ...,e, is the standard basis for R". We call these vector fields the @-basic vec-
tor fields on U. The expression basic vector field is doubly justified. On the one hand,
(b7 (p),...,b¢(p)) is a basis for T,(M) for every p € U. On the other hand, the definition
shows that every X € V(U) can be written uniquely as

X = Z zj- by with z; € C*(U).
j=1

(b) For functions f € C*(U), we denote by

of
.
I, b7d

its Lie derivatives with respect to the basic vector fields. This notation is justified by the
following observation: The smooth curves

Yi:(—6,6) = M, %i(t) = ¢ (o(p) +te;)
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satisfy Ty (¢)(7;) = e;, which implies

of

S p) = L3 6) = Af 0 T() e = Gl ol 097 )el0) + t65) = 0,7 07 lp).

(¢) The Lie derivatives of f with respect to the basic vector fields coincide with partial
derivatives of the function fo ¢ !y : p(U) - R. Asdf : TM — TR = R x R is linear on
each tangent space, the Lie derivative of f € C°°(U) with respect to X = >_7" | ;b7 € V(U)
then takes the form

(d) If (p,U), (¢, V) are coodinate charts on M with U NV # (), then it is easy to show
that the basic vector fields for ¢ and 1) are related on U NV by

0 0 0 0
Zaij DHE). () - Zaiju L wevn,

and we have the identity

— 9; 5% 31/J s

(see Exercise [1.23)).

Lemma 1.33. (Properties of the Lie derivative) The Lie derivative is a derivation:
(a) It islocal: Lxf(p) = Lx(flv)(p) for any open subset VC U with p € U.
(b) It is linear in f:

x(f+9)=Lxf+Lxg  LAS)=Mxf VfgeCT(U),AeR
(¢) It satisfies the Leibnitz identity:

Lx(f-9)=9-Lxf+[ Lxg VfgeC*U),XeV{U).

Proof. For any point p € M we can choose a chart (¢,U) with p € U. The assertions then
follow directly from the formulas in Remark and the corresponding properties of the
partial derivatives of functions g : R™ — R. O

Definition 1.34. (Lie bracket) Let (¢,U) be a chart of M and X = Y I  x;b7, Y =
Yoy yibf smooth vector fields on U. The Lie bracket of X and Y is the smooth vector field
[X,Y] € V(U) defined by

XY =3 <Z 5052 ) - yxp)ZZ(p)) W) e
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Remark 1.35. In local coordinates, we find for the composition of two Lie derivative op-
erators Lx and Ly corresponding to the vector fields X = Y. a;b7 and Y = >, y;b7 (cf.

Remark [1.32):

n n 8y] 8f 2f
LxLyf= ;xz Zyl D Z ' 0p; Op; + Y JC’?%&P]

j=1 i,j=1

This is not of the form Lz f for any vector field Z because it contains second derivatives of f.
However, the Schwarz Lemma implies that the term containing the second derivatives does
not change if we exchange X and Y. This leads to the relation

Oz; \ Of
dpj

0
LxLyf—LyLxf= Z ( iy,

2
o s Lixyf (2)

3,7=1

Clearly, this relation determines the Lie bracket [X,Y] uniquely because any vector field
Z € V(U) is determined by its Lie derivative on C>(U).

Lemma 1.36. (The Lie algebra structure on V(M))

(a) The Lie bracket does not depend on the choice of the chart and defines a bilinear, anti-
symmetric map [, ]: V(M) x V(M) — V(M) that satisfies the Jacobi identity

(X, Y. Z]|+ [V, [Z, X]| + [Z,[X,Y]]=0  VX,Y,Z e V(M).
This equips V(M) with the structure of a Lie algebra (cf. Definition .
(b) Forall f € C*(M), X,Y € V(M), the Lie bracket satifies:

(¢) Forall f e C®(M), X,Y € V(M):

LxLyf—LyLxf=Lixyf
Proof. We first show that the Lie bracket does not depend on the choice of the chart. Once
this is established, all other identities can then be derived by direct calculations using the
formulas from Remark and Definition for the p-basic vector fields for a chart (¢, U).

(a) Let (¢,U) and (v, V) be two charts on M with UNV # § and X, Y € V(U NV).
Then we can uniquely express the vector fields X, Y in terms of the ¢- and v-basic vector

fields as
X = lebso Zx]], Y = z:yzw7 Zyg

For a smooth function f € C°°(U NV) the function

Lixyif=LxLyf—-LyLxf
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can be calculated in both coordinate systems, which leads to the corresponding formulas for
the Lie bracket (Remark [1.35]):

- (i) (SRR )

j=1 \i=1

This shows that the Lie bracket is independent of the choice of the chart. We can thus
cover M by charts and define [X, Y] by the formula in Definition on the domain of each
chart. As the resulting brackets agree on the overlap U NV of any two charts (¢,U) and
(1, V), this yields a map

[,]: V(M) x V(M) = V(M).
The bilinearity and antisymmetry follow directly from the formula in Definition [1.34 For

the Jacobi idenity, it is sufficient to show that it holds on the domain of each chart (p,U).
This can be verified by the following calculation:

Lix ol =Lx(LyLyz —LzLy)f —(LyLz — LzLy)Lx f
=(LxLyLy—LxLzLy —LyLzLx +LzLyLx)f.

A short calculation shows that the cyclic sum over X, Y, Z of this expression vanishes, which
shows that, for J := [X, [V, Z]] + [V, [Z, X]] + [Z, [ X, Y]], we have L;f = 0 for every f, and
hence that J = 0.

(b) It is again sufficient to show that this holds in the domain of each chart (p,U). We
calculate:

n

[X,f-Y]:Z< o(fy;) fz );0

ij=1 9pi

_ ~ ( Oy O
=f Z (xza% yza%)b]

i,7=1

-6

+(Segt) (S

:f[X7Y]+£XfY

(c) We know from (a) that the Lie bracket [X,Y] for X, Y € V(M) is a well-defined global
vector field. That this vector field satisfies (¢) in any local chart follows from Remark

Example 1.37. For open subsets U C R"™, the space V(U) can be identified with C*° (U, R™),
and the Lie bracket of two vector fields X = Y"1 | z;e;, Y = Z _, yje; is given by

(Z z;(p)9iy;(p) — yi(p)ﬁiwj(p)> ej = dY (p)X(p) —dX(p)Y (p).
1
For the Lie derivative of a function f € C*°(U) with respect to X, we obtain

Lxf(p) = Z z;(p)0i f(p).
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It remains to investigate how Lie derivatives of functions and the Lie brackets of vector
fields behave under smooth maps ¢ : M — N. For each vector field X € V(M), we obtain
a smooth map Tpo X : M — TN. On the other hand, every vector field Y € V(NN) yields
a smooth map Y o : M — T'N. This allows one to relate and compare vector fields on M
and on N.

Definition 1.38. [p-related vector fields] If ¢: M — N is a smooth map, then we call two
vector fields X € V(M) and Y € V(N) p-related if

Yop=TpoX: M — TN. (3)

Example 1.39. For every chart (¢,U) on M, the p-basic vector fields on U are p-related
to the constant vector fields e; € C*°(R™,R"), e;(p) = e; since we have:

T, (0)b% (p) = Tp(2)T, () ej(o(p)) = ej(p(p)) =€;  VpeU.
Example 1.40. We consider M = S? and the vector field X : S? — T'S? defined by
X(p)=esxp WYpeS§?
where x denotes the vector product in R3. The rotations around the xs-axis
R:R® — R3, R(x1,z2,23) = (cosaxy + sin awg, cos axy — sin axy, x3)

map S? to itself and hence induce smooth maps ¢ = R|s2 : S? — S2. By Example [1.24] we
have

Ty(p) = Rlps :p™ = (p)~  VpeS?
which implies
X(p(p)) = e3 x ¢(p) = Rez x Rp = R(ez x p) = T,(»)(X(p))-
The vector field X is y-related to itself.

Lemma 1.41. (Related Vector Field Lemma) Let M and N be smooth manifolds, ¢: M — N
a smooth map, YY" € V(N) and X, X' € V(M). If X is p-related to Y and X' is p-related
to Y’, then the Lie bracket [X, X'] is @-related to [Y,Y"], and

Lxop®=¢ oLy, (4)
where @*: C°(N) — C®(M), f+— f oy is the pullback map.
Proof. The relation follows for f € C°°(N) from the Chain Rule:
Lxo'f=d(fop)X =dfoT(p)oX =dfoYop =9 Ly f.

If, conversely,
Lxo*f=¢"Lyf
holds for all smooth functions defined on open subsets U C N, we can apply this relation to

coordinate functions to obtain
T(p)o X =Y oy,
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i.e., that X is p-related to Y.
We further obtain

Lixxn9 f=LxLx —Lx Lx)p"f=Lxp Ly f—Lxo"Ly f
=" (LyLy — Ly Ly)f = o" Liyynf
for smooth functions defined on subsets U C N, and by the preceding argument, this implies
that [X, X'] is e-related to [Y,Y”]. O
Exercises for Section [1.3l

Exercise 1.22. Consider the n-sphere with the charts from Example [[.§ and determine the
associated ¢-basic vector fields.

Exercise 1.23. Let M be an n-dimensional manifold and (¢, U), (¢, V) coodinate charts
on M with UNV # (). Prove that the - and 1-basic vector fields on U NV are related by

a@k

bE(p)  YpeUNV
awj p

and that the Lie derivatives with respect to the basic vector fields satisfy the relations

&Pk 3f 6% 3<Pk Ny o
51/’3 Za% Iy Z&Pk 0Y; ) = 8%() i

Exercise 1.24. Let M be a smooth manifold, X,Y € V(M) and f,g € C°(M,R). Show
that

(1) Lx(f-9)=Lx(f) g+ f Lx(g),ie. themap f — Lx(f) is a derivation.
(2) Lix(9) =f-Lx(9)-
Exercise 1.25. Let A be a K-algebra (not necessarily associative). Show that

(i) der(A) := {D € End(A): (Va,b € A)D(ab) = Da - b+ a- Db} is a Lie subalgebra of
gl(A) = End(A)L, i.e., closed under the commutator bracket [Dy, D3] := D1 Dy— D2 D;.

(ii) If, in addition, A is commutative, then for D € der(A) and a € A, the map aD: A —
A, x — aDx also is a derivation.

Exercise 1.26. Let U be an open subset of R>"® and P = C>°(U,R) be the space of smooth
functions on U and write q1, ..., ¢m,P1,.-.,Pm for the coordinates with respect to a basis.
Then P is a Lie algebra with respect to the Poisson bracket

Z df 0g  9f Og
dq; Opi  Op; g;’

{f.q}

Exercise 1.27. To each A € gl,,(R), we associate the linear vector field X 4(z) :== Az on R"
Show that, for A, B € M,(R), we have X4 g} = —[Xa, Xp].
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1.4 Integral Curves and Local Flows
Throughout this subsection M denotes an n-dimensional manifold.

Definition 1.42. Let X € V(M) and I C R an open interval containing 0. A differentiable
map v: I — M is called an integral curve of X if

Y (t) = X (v(t)) for each tel.

Note that the preceding equation implies that 4 is continuous and further that if v is C*,
then 7/ is also C*. Therefore integral curves of smooth vector fields are automatically smooth.

If J D I is an interval containing I, then an integral curve n: J — M is called an extension
of v if n|;y = 7. An integral curve = is said to be mazimal if it has no proper extension.

Remark 1.43. Integral curves can be defined analogously for time-dependent vector fields.
By Remark a time dependent vector field on M is a smooth function X : I x M — TM.
A curve v : I — M is called an integral curve of X if it satisfies

v(t) = X(t,y(t) Vel

Remark 1.44. (a) If U C R" is an open subset of R™, then we write a vector field X € V(U)
as X (z) = (x, F(x)), where F': U — R" is a smooth function. A curvey: I — U is an integral
curve of X if and only if it satisfies the ordinary differential equation

Y(t)=F(y(t)) forall tel.

(b) If (,U) is a chart of the manifold M and X € V(M), then a curve v: I — M is an
integral curve of X if and only if the curve 7 := ¢ oy is an integral curve of the vector field
X, =T(p)oXop ! eV(p)) because

Xo(n(t)) = Ty (@)X (v(t))  and /(1) = Ty ()7 ().

Example 1.45. We consider the vector field X : S — T'S?, X(p) = ez x p from Example
Then for all p € S?, the curve

Yo I =R (t) =cos(t)(p — (p.es)es) + sin(t)es x p+ (p, e3)es

defines an integral curve of X since we have:

(1), (1)) = ({p, ) — (D, €3)?) cos®(t) + ((p, p) — (p, e3)?) sin®(t) + (p,e3)* =1
and
7(E) = —sin(8)(p — (pres)es) + cos(t)es x p = es X 1(t) = X(3(0).

Definition 1.46. Let a < b € [—00, o0]. For a continuous curve «: |a,b[ — M we say that

lim v(t) = 0o

t—b

if for each compact subset K C M there exists a ¢ < b with v(¢) € K for ¢t > ¢. Similarly, we
define
lim (t) = oo.

t—a
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Theorem 1.47. (Existence and Uniqueness of Integral Curves) Let X € V(M) and p € M.
Then there exists a unique maximal integral curve v,: I, — M with v,(0) = p. Ifa =
inf I, > —o0, then lim;_,, v,(t) = 0o and if b :=sup I, < oo, then limy;_,;, 7y, (t) = oco.

Proof. We have seen in Remark [[.44] that in local charts, integral curves are solutions of an
ordinary differential equation with a smooth right hand side. We now reduce the proof to
the Local Existence- and Uniqueness Theorem for ODE’s.

Uniqueness: Let v,n: I — M be two integral curves of X with 7(0) = n(0) = p. The
continuity of the curves implies that

0eJ:={tel:~(t)=n(t)}

is a closed subset of I. In view of the Local Uniqueness Theorem for ODE’s, for each ty € J
there exists an € > 0 with [to,to + €] C J, and likewise [ty — €,t9] C J. Therefore J is also
open. Now the connectedness of I implies I = J, so that v = .

Ezistence: The Local Existence Theorem implies the existence of some integral curve
~v: I — M on some open interval containing 0. For any other integral curve n: J — M, the
intersection I N J is an interval containing 0, so that the uniqueness assertion implies that
n=~yonlNJ.

Let I, C R be the union of all open intervals I; containing 0 on which there exists an
integral curve v;: I; = M of X with 7;(0) = p. Then the preceding argument shows that

v(t) =) for tel;

defines an integral curve of X on I, which is maximal by definition. The uniqueness of the
maximal integral curve also follows from its definition.

Limit condition: Suppose that b := supl, < oo. If lim; ., y(t) = oo does not hold,
then there exists a compact subset K C M and a sequence t,, € I, with ¢,, — b and
Y(tm) € K. As K can be covered with finitely many closed subsets homeomorphic to a
closed subset of a ball in R™, after passing to a suitable subsequence, we may w.l.0.g. assume
that K itself is homeomorphic to a compact subset of R™. Then a subsequence of (7(t))men
converges, and we may replace the original sequence by this subsequence, hence assume that
q = lim, 00 Y(t) exists.

The Local Existence Theorem for ODE’s implies the existence of a compact neighborhood
V C M of g and € > 0 such that the initial value problem

n0) ==z, n' =Xon

has a solution on [—¢,¢] for each x € V. Pick m € N with ¢, > b—¢ and y(¢,,) € V. Further
let n: [—€,e] = M be an integral curve with 1(0) = v(t,,). Then

V(t) = 77(t - tnb) fOI‘ te [tm — &, tm =+ 6],

defines an extension of 7 to the interval I, U |ty,,t,, + €] strictly containing ]a,b[, hence
contradicting the maximality of I,,. This proves that lim;_,;, v(¢) = co. Replacing X by —X,
we also obtain lim;_,, y(t) = oco. O
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Example 1.48. (a) On M = R we consider the vector field X given by the function
F(s)=1+s% ie. X(s)=(s,1+ s?). The corresponding ODE is

7'(s) = X(v(s)) =1 +7(s)”.

For 7(0) = 0 the function (s) := tan(s) on I := | — 7, 7 is the unique maximal solution
because
lim tan(f) = co  and lim tan(t) = —co.
t—5 t—=—7
(b) Let M :=]—1,1[ and X(s) = (s,1), so that the corresponding ODE is v'(s) = 1.

Then the unique maximal solution is
7(5)2& I:]flvl[
Note that we also have in this case

Jim,2(6) =00

if we consider v as a curve in the noncompact manifold M.
For M = R the same vector field has the maximal integral curve

v(s)=s, I=R.

(¢) For M =R and X(s) = (s, —s), the differential equation is v'(t) = —7(¢), so that we
obtain the maximal integral curves v(t) = yge™t. For 7o = 0 this curve is constant, and for
Yo # 0 we have lim; o, ¥(t) = 0, hence lim;_, o, ¥(t) # oo. This shows that maximal integral
curves do not always leave every compact subset of M if they are defined on an interval that
is unbounded from above.

The preceding example shows in particular that the global existence of integral curves
can also be destroyed by deleting parts of the manifold M, i.e., by considering M’ := M \ K
for some closed subset K C M.

Definition 1.49. A vector field X € V(M) is said to be complete if all its maximal integral
curves are defined on all of R.

Corollary 1.50. All vector fields on a compact manifold M are complete.
Definition 1.51. Let M be a smooth manifold. A local flow on M is a smooth map

P:U— M,

where U C R x M is an open subset containing {0} x M, such that for each x € M the
intersection I, := U N (R x {z}) is an interval containing 0 and

®(0,2) =2 and (¢, P(s,z)) = (t + s,2)
hold for all ¢, s, z for which both sides are defined. The maps
oz Iy = M, t— O(t,x)

are called the flow lines. The flow ® is said to be global if U =R x M.
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Lemma 1.52. If ®: U — M is a local flow, then

d
X®(z) = Ztl oo

O(t, z) = a(0)
defines a smooth vector field.
It is called the velocity field or the infinitesimal generator of the local flow ®.

Lemma 1.53. If &: U — M is a local flow on M, then the flow lines are integral curves
of the vector field X®. In particular, the local flow ® is uniquely determined by the vector
field X 2.

Proof. Let a,: I, — M be a flow line and s € I,,. For sufficiently small ¢ € R we then have
p(s+1) =P(s+t,x) = (¢, (s, z)) = (L, ax(s)),

so that taking derivatives in ¢ = 0 leads to o/, (s) = X ®(a,(s)).
That ® is uniquely determined by the vector field X® follows from the uniqueness of
integral curves (Theorem |1.47]). O

Example 1.54. We consider M = S? and ® : R x S? — S? and the flow associated with a
rotation around the x3-axis:

cost —sint 0
O(t,z) = R(t)x with R= | sint cost 0
0 0 1

Then ® is a flow because ®(0,z) = x and ®(t, (s, z)) = R(t)R(s)r = R(t+s)x for all z € S?
and t, s € R. The associated velocity field X, : S — T'S? is given by

Xo(z) = %|t:0@(t7x) = R'(t)x = x1e2 — x2e1 = e3 X .
Its flow lines are the curves 7, : R — S?
v (t) =p(t, ) = R(t)x = cost(zie; + xaea) + sint(xi1ea — x2e1) + T3es
=cost(x — (z,e3)e3) +sin(t)es X z + (x, e3)es.
These are precisely the integral curves of the vector field X from Example

As every flow determines a unique vector field, its velocity field, it is natural to ask if all
vector fields on a manifold M arise as velocity fields of flows on M. That this is indeed the
case is shown by the following theorem.

Theorem 1.55. Fach smooth vector field X is the velocity field of a unique local flow defined
by
Dx = U I, x{z} and ®(t,z):=~() for (t,z)€ Dx,
xeM

where v, : I, — M 1is the unique mazximal integral curve through x € M.
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Proof. 1f (s, ), (t, ®(s,z)) and (s + t,z) € Dy, the relation
O(s+t,z) = <I>(t, @(s,x)) and  Ip(s0) =Ly, (5) = Lo — 5
follow from the fact that both curves
ts O(t+s,2) =7 (t+s) and ¢t (L, P(s,2)) = Ya(s0)(t)

are integral curves of X with the initial value ®(s,x), hence coincide.
We claim that all maps

O My:={xeM: (t,z) eDx} > M, z— D(t,x)

are injective. In fact, if p := ®¢(x) = P¢(y), then v,(t) = 7,(t), and on [0,¢] the curves
s = Yz(t — ),y (t — s) are integral curves of —X, starting in p. Hence the Uniqueness
Theorem implies that they coincide in s = ¢, which mans that z = 7,(0) = v,(0) = y.
From this argument it further follows that ®;(M;) = M_; and CI)t_1 =d_,.

It remains to show that Dx is open and ® smooth. The local Existence Theorem provides
for each x € M an open neighborhood U, diffeomorphic to a cube and some €, > 0, as well
as a smooth map

@z:]_EIaEm[XUm’_)Mv @m(tay)zlyy(t):@(tay)'

Hence | — €,,e,[ XU, C Dx, and the restriction of ® to this set is smooth. Therefore ® is
smooth on a neighborhood of {0} x M in Dx.

Now let J, be the setj of all ¢ € [0, oo], for which Dx contains a neighborhood of [0, ¢] x {z}
on which @ is smooth. The interval J, is open in RT := [0, co[ by definition. We claim that
J, = I,NAR™. This entails that Dx is open because the same argument applies to I,N]—o0, 0].

We assume the contrary and find a minimal 7 € I, N RT \ J,, because this interval
is closed. Put p := ®(7,2) and pick a product set I x W C Dx, where W is an open
neighborhood of p and I =] —2¢, 2¢[ a 0-neighborhood, such that 2e < 7and @ : IXxW — M
is smooth. By assumption, there exists an open neighborhood V of x such that ® is smooth
on [0,7 —e] x V. C Dx. Then ®,_. is smooth on V and

Vi b (V) 1V
is a neighborhood of z. Further,
Vi=oZl (eZ'(W))nV = (W)NV,
and ® is smooth on |7 — 2e, 7 + 2¢[x V', because it is a composition of smooth maps:
7 —2e,7+2e[xV = M, (t,y)— ®(t—7,0(, (r—c,y))).

We thus arrive at the contradiction 7 € J,.
This completes the proof of the openness of Dx and the smoothness of ®. The uniqueness
of the flow follows from the uniqueness of the integral curves. O
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Remark 1.56. Let X € V(M) be a complete vector field. If
P Rx M — M
is the corresponding global flow, then the maps ®; : z +— ®X (¢, 7) satisfy
(A1) f =idy.
(A2) ®F, =0X 0@ fort,s €R.

It follows in particular that ®;X € Diff(M) with (®X)~! = ®¥,, so that we obtain a group
homomorphism
vx: R = Diff (M), t— ®;F.

With respect to the terminology introduced below, (A1) and (A2) mean that ®% defines
a smooth action of R on M. As ®X is determined by the vector field X, we call X the
infinitesimal generator of this action. In this sense the smooth R-actions on a manifold M
are in one-to-one correspondence with the complete vector fields on M.

Remark 1.57. Let ®X: Dy — M be the maximal local flow of a vector field X on M.
Let My = {x € M: (t,z) € Dx}, and observe that this is an open subset of M. We have
already seen in the proof of Theorem above, that all the smooth maps ®;: M; — M
are injective with ®;X (M;) = M_; and (®;*)~! = ®%, on the image. It follows in particular,
that ®X (M;) = M_; is open, and that

OF: My — M,
t
is a diffeomorphism whose inverse is ®-,.

Proposition 1.58. (Smooth Dependence Theorem) Let M and A be smooth manifolds and
U: A — V(M) be a map for which the map

AxXM—=TM), (A\p)— Ux(p)
is smooth (the vector field Uy depends smoothly on the parameter X). Then the subset
D:={(t,\,p) eRxAXxM: (t,p) € Dg, }
of R x A x M is open and the map D — M, (t,\,p) — ®¥*(t,p) is smooth.

Proof. The parameters do not cause any additional problems, as can be seen by the following
trick: On the product manifold A x M we consider the smooth vector field Y, given by

Y (A, p) = (0x, Wa(p)) € TA(A) x Tp(M) = Tx py (A x M).

Then the integral curves of Y are of the form ~(t) = (XA, 7,(t)), where ~, is an integral curve
of the smooth vector field ¥y on M. Therefore the assertion is an immediate consequence
on the smoothness of the flow of Y on A x M (Theorem [1.55)). O
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We take a closer look at the interaction of local flows and vector fields. It will turn out
that this leads to a new concept of a directional derivative which works for general tensor
fields. Let X € V(M) and ®*: Dx — M its maximal local flow. For f € C*°(M) and t € R
we set

() f = fo® € C®(M).
Then we find 1
lim ;((‘I’f{)*f —[)=df(X)=Lx[f e C™(M).

t—0

For a second vector field Y € V(M), we define a smooth vector field on the open subset
M_; C M by
(@)Y =T (@)oY 0 ®*, = T(®F) oY o (&)7!

(cf. Remark [1.57)) and define the Lie derivative by

T e _d X
£xY =l H(@X)y —v) = 4] @)y,

which is defined on all of M since for each p € M the vector ((®;X).Y)(p) is defined for
sufficiently small ¢ and depends smoothly on t.

Theorem 1.59. LxY = [X,Y] for X,Y € V(M).

Proof. Fix p € M. Tt suffices to show that £LxY and [X,Y] coincide in p. We may therefore
work in a local chart, hence assume that M = U is an open subset of R™.
Identifying vector fields with smooth R™-valued functions, we then have

(X, Y](z) =aY ()X (z) —dX(2)Y (x), xze€U.
On the other hand,
((@%)).Y)(2) = T(®X,) o Y 0 ;% (z)
= a(@%) (@ (@)Y (@ (2)) = (a(@)(2) V(@ ().
To calculate the derivative of this expression with respect to ¢, we first observe that it does

not matter if we first take derivatives with respect to ¢ and then with respect to x or vice
versa. This leads to

d . d

= a@N) @) =a(],_ o) @) = aX(2).

t=0

Next we note that for any smooth curve a: [—¢,e] — GL,(R) with «(0) = 1 we have
(@™ () = —a(t) "o/ (Ha(t) ",
and in particular (a=!)’(0) = —a/(0). Combining all this, we obtain with the Product Rule
Lx(Y)(r)=—-dX(2)Y(z)+dY (z)X(z) = [X,Y](x). O
Corollary 1.60. If X, Y € V(M) are complete vector fields, then their global flows &%, ®Y : R —
Diff (M) commute if and only if X and Y commute, i.e. [X,Y]=0.
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Proof. (1) Suppose first that ®* and ®¥ commute, i.e.,
X (t) o Y (s) = &Y (s) o ®X(t) fort,s €R.
Let p € M and 7,(s) := ®Y (p) be the Y-integral curve through p. We then have
T(s) = Y (p) = @ 0 ] 0 @%,(p),
and passing to the derivative in s = 0 yields
Y (p) = 7,(0) = T(2;)Y (2%, (p)) = ((q’X) Y)(p).

Passing now to the derivative in ¢t = 0, we arrive at [X| ] = Y) =
(2) Now we assume [X,Y] = 0. First we show that (®; ) Y ho ds for all t € R. For
t,s € R we have
(P 0):Y = (27)2(97).Y,
so that
d
dt(
for each t € R. Since for each p € M the curve

)Y = —(27).Lx(Y) =0

R = Tp(M), tw (2).Y)(p)

is smooth, and its derivative vanishes, it is constant Y (p). This shows that (®).Y =Y for
each t € R.
For v(s) := ®X®Y (p) we now have v(0) = & (p) and

7' (s) = T(®) o Y (@] (p)) = Y (27" @7 (p)) = Y (7(5)),

so that 7 is an integral curve of Y. We conclude that v(s) = ®Y (®X(p)), and this means
that the flows of X and Y commute. O

Exercises for Section [1.4]

Exercise 1.28. Let M :=R". For a matrix A € M, (R), we consider the linear vector field
X a(x) := Az. Determine the maximal flow ®% of this vector field.

Exercise 1.29. Let M be a smooth manifold and ¥ € V(M) a smooth vector field on M.
Suppose that Y generates a local flow ® : Dy — M which is defined on an entire box of the
form [—¢,e] x M C Dy. Show that this implies the completeness of Y.

Exercise 1.30. Let ¢: M — N be a smooth map and X € V(M), Y € V(N) be ¢p-related
vector fields. Show that for any integral curve v: I — M of X, the curve po~y: I — N is an
integral curve of Y.

Exercise 1.31. Let X € V(M) be a vector field and write X® € V(R) for the vector field on
R, given by X®(¢) = (¢,1). Show that, for an open interval I C R, a smooth curve vy: I — M
is an integral curve of X if and only if X® and X are y-related.
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Exercise 1.32. Let X € V(M), be a complete vector field and ¢ € Diff (M). Then ¢, X is
also complete and
(I’f*X :(po@f(ogp_l for teR.

Exercise 1.33. Let M be a smooth manifold, ¢ € Diff(M) and X € V(M) be a complete
vector field. Show that the following are equivalent:

(1) ¢ commutes with the flow maps ®;*.
(2) For each integral curve v: I — M of X, the curve p o~ also is an integral curve of X.
(3) X =p.X=T(p)oXop L ie., X is p-invariant.

Exercise 1.34. Let X, Y € V(M) be two commuting complete vector fields, i.e., [X,Y] = 0.
Show that the vector field X + Y is complete and that its flow is given by

XY =dX o®Y  forall teR.

Exercise 1.35. Let V be a finite-dimensional vector space and p;(v) := tv for ¢ € R*. Show
that:

(1) A vector field X € V(V) is linear if and only if (u:).X = X holds for all ¢ € R*.

(2) A diffeomorphism ¢ € Diff (V) is linear if and only if it commutes with all the maps i,
t e R*.

2 Lie Groups

Symmetries of physical systems are most naturally modelled by the mathematical concept of
a group. If S is the state space of a physical system, then a symmetry is mostly considered as
a bijection of this set preserving additional structure on S. As composition of symmetries is
a symmetry and any symmetry should have an inverse symmetry, we are thus lead to certain
groups G of bijections of the set S.

Groups can be studied on three levels:

e the discrete level: no additional structure on G.
e the topological level: topological groups; G is endowed with a topology.
e the differentiable level: Lie groups; G is endowed with a smooth manifold structure.

The first level only provides a reasonable context for groups arising as symmetry groups
of discrete structures, such as crystals, which do not permit any continuous (in the sense
of “continuum”) symmetry operations. Whenever continuous symmetries exist, such as ro-
tations of a round sphere, it is natural to study symmetries (g;:)icr depending on a real
parameter, such that

go=1id and ¢igs = gi1+s for t,seR.
We thus obtain continuous one-parameter groups of a topological group G. As topological

groups can still be rather wild, one then refines the structure on G in such a way that
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differentiation of one-parameter groups becomes meaningful. This leads to the concept of an
“Infinitesimal generator” of a one-parameter group (the great idea of Sophus LiEED which is
closely related to vector fields as infinitesimal generators of local flows on manifolds. It turns
out that the concept of a Lie group, i.e. a group endowed with a smooth manifold structure
compatible with the group operations, provides precisely the additional structure for which
the set L(G) of infinitesimal generators of one-parameter groups carries the nice algebraic
structure of a Lie algebra and, in addition, the structure of the group near the identity is
completely determined by its Lie algebra, resp., its one-parameter groups.

2.1 The concept of a Lie group

In the context of smooth manifolds, the natural class of groups are those endowed with a
manifold structure compatible with the group structure.

Definition 2.1. A Lie group is a group G, endowed with the structure of a smooth manifold,
such that the group operations

mg: GxG—G, (r,y)—2zy and 1g:G—=G, z—a !
are smooth.
In the following, G denotes a Lie group with
e multiplication map mg: G X G = G, (x,y) — zy,
e inversion map tq: G — G,z — ™1, and
e neutral element 1.
For g € G we write
o )\;: G = G,z — g for the left multiplication maps (left translations),
o pg: G = G,z — xg for the right multiplication maps (right translations), and
e ¢;: G— G,z grg~! for the conjugation with g.
A morphism of Lie groups is a smooth homomorphism of Lie groups ¢: G; — Ga.

Remark 2.2. All maps Ay, py and ¢, are smooth. Moreover, they are bijective with

Ag—1 = )\9_1, Pg—1 = pg_1 and c;—1 = cg_l7 so that they are diffeomorphisms of G.

Example 2.3. The additive group G := (R",+) is a Lie group because the maps
R?*" - R", (z,y)—z+y and R"—>R", z+— —x

are smooth.

IThe Norwegian mathematician Marius Sophus Lie (1842-1899) was the first to study differentiability
properties of groups in a systematic way. In the 1890s Sophus Lie developed his theory of differentiable
groups (called continuous groups at a time when the concept of a topological space was not yet developed)
to study symmetries of differential equations.
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Example 2.4. Let G := GL,(K) be the group of invertible (n x n)-matrices with entries in
the field K € {R, C}. Since the determinant function

det: M,(K) = K, det(a;;) = Z sgn(0)a1,5(1) "+ * Gn,o(n)
o€eS,

is continuous and K* := K\ {0} is open in K, the set GL,,(K) = det™*(K*) is open in M, (K)
and thus carries a canonical manifold structure.
For the smoothness of the multiplication map, it suffices to observe that

(ab)ir = Y _ aijbjk
j=1

is the (ik)-entry in the product matrix. Since all these entries are quadratic polynomials in
the entries of @ and b, the product is a smooth map.

For g € GL,(K) we define b;;(g) := det(gmr)m=j kzi- According to Cramer’s Rule, the
inverse of g is given by o
- (=1

(6 i =
det g
The smoothness of the inversion therefore follows from the smoothness of the determinant
(which is a polynomial) and the polynomial functions b;; defined on M, (K).

bij(g)'

Example 2.5. (a) (The circle group) We have already seen how to endow the circle
Sti={(z,y) € R*: 2% +¢* =1}
with a manifold structure. Identifying it with the unit circle
T:={z€C:|z] =1}
in C, it also inherits a group structure, given by
(,9) - (¢, ¢) == (xa’ —yy/ 2y +2'y)  and  (z,9)"" = (z, —y).

With these explicit formulas, it is easy to verify that T is a Lie group (Exercise [2.1]).
(b) (The n-dimensional torus) In view of (a), we have a natural manifold structure on
the n-dimensional torus T" := (S*)". The corresponding direct product group structure

(t1, oy tn)(S1,- oy Sn) i= (t181, .+« s tnSn)
turns T into a Lie group (Exercise .

Lemma 2.6. Let G be a Lie group with multiplication mg: G x G — G. Then its tangent
map satisfies

Tig.my(ma)(v,w) = To(pn)v + Ta(Ag)w — for v € Ty(G),w € Th(G) (5)
Proof. For v € Ty(G) and w € Tj,(G), the linearity of T(, ,)(mg) implies that

Tig.ny(ma)(v,w) = Ty n)(ma)(v,0) + Tg.n) (ma)(0,w) = Ty(pn)v + Th(Ag)w. O
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In the following we shall use the simplified notation
g-v:=T(\g)v and v-g:=T(p,)v for geGveTqG. (6)

Then (5)) turns into
T(g7h)(mG)(Ua w)=g-w+v-h.

For differential curves «(t), 8(t) in G, this leads to the product rule
(@B)(t) = a(t)B'(t) + o' () B(2). (7)

2.2 The Lie algebra of a Lie group

Lie groups are non-linear objects. We now introduce the Lie algebra L(G) of a Lie group as
a “first order approximation”, resp., a “linearization” of G.
We start with the introduction of the concept of a Lie algebra.

Definition 2.7. (a) Let K be a field and L a K-vector space. A bilinear map [-,-]: LxL — L
is called a Lie bracket if

(L1) [x,2] =0 for z € L and
(L2) [z,[y,2]] = [z, ], 2] + [y, [z, 2] for z,y,2 € L (Jacobi identity)ﬂ

Note that, provided (L1) holds, the Jacobi identity can also be expressed in a more
symmetric fashion by

[z7 [yvz]] + [yv [va]] + [Zv [Iry]] =0.

A Lie algebmﬂ (over K) is a K-vector space L, endowed with a Lie bracket. A subspace
E C L of a Lie algebra is called a subalgebra if [E, E] C E. A homomorphism ¢: L1 — Ls
of Lie algebras is a linear map with ¢([z,y]) = [¢(x), o(y)] for z,y € L1. A Lie algebra L is
said to be abelian if [z,y] = 0 holds for all z,y € L.

Remark 2.8. If by,...,b, € L is a basis of the Lie algebra L, then all information on the
bilinear Lie bracket is contained in the brackets

[bi,b;] = ckibx
k=1

which in turn is contained in the n® numbers ci—“j called the structure constants of L. Skew-

symmetry and Jacobi identity of the Lie bracket can be expressed in terms of the structure

constants as
k _ k L m L m L m __
¢; = —¢j; and E CiiCon + Cice + Cicg; = 0.
¢

2Carl Gustav Jacob Jacobi (1804-1851), mathematician in Berlin and Konigsberg (Kaliningrad). He found
his famous identity about 1830 in the context of Poisson brackets, which are related to Hamiltonian Mechanics
and Symplectic Geometry.

3The notion of a Lie algebra was coined in the 1920s by Hermann Weyl.
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Example 2.9. Each associative algebra A is a Lie algebra Ay, with respect to the commutator
bracket
[a,b] := ab — ba.

In particular, the matrix algebra M, (K) and the endomorphism algebra End(V') of a vector
space are Lie algebras with respect to the commutator bracket.
In fact, (L1) is obvious. For (L2), we calculate

[a, bc] = abe — bea = (ab — ba)c + b(ac — ca) = [a, blc + bla, ¢],
and this implies
[a, [b, ] = [a, b]c + bla, ] — [a, c]b = cla, b] = [[a, b],c] + [b, [a, c]].

Example 2.10. For every smooth manifold M, the space V(M) of smooth vector fields on
M is a Lie algebra.

Let G be a Lie group. A vector field X € V(G) is called left invariant if

X(gh)=g-X(h) for g,hegq.

We write V(G)! for the linear space of left invariant vector fields in V(G). Clearly V(G)! is
a linear subspace of V(G).
Lemma 2.11. The vector space V(G)! of left invariant vector fields on G is a Lie subalgebra

Proof. Writing the left invariance as X o A\; = T'()\y) o X, we see that it means that X is
left invariant if and only if it is Ag-related to itself for every g € G. Therefore the Related
Vector Field Lemma implies that if X and Y are left invariant, their Lie bracket [X,Y] is
also Ag-related to itself for each g € G, hence left invariant. O

Definition 2.12. [The Lie algebra of G] Next we observe that the left invariance of a vector
field X implies that for each g € G we have X(g) = g - X (1), so that X is completely
determined by its value X (1) € T1(G). Conversely, for each 2z € T1(G), we obtain a left
invariant vector field z; € V(G)! with z;(1) = = by ;(g9) := g - #. That this vector field is
indeed left invariant follows from

zi(gh) = gh -z =T(Ang)z = T(Ap 0 Ag)z = T'(A\n)T(Ag)z = h - 1(g)

for all h,g € G. Hence
T (G) = V@), =

is a linear bijection. We thus obtain a Lie bracket [-, ] on T1(G) by

[z,y] := [, m](1).

It satisfies
[:an}l = [xbyl] for all T,y € Tl(G) (8)

The Lie algebra
L(G) = (T1(G), [ ]) = V(@)

is called the Lie algebra of G.
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Remark 2.13. Let dy, ..., d, be a basis of 1 (G) and D; € V(G)" denote the corresponding
left invariant vector fields. To determine the Lie bracket on L(G) = T4 (G), one can proceed
as follows. In a local chart (¢, U) of G with 1 € U we identify the vector fields l~)j =Dy
with smooth functions

Bj = Zﬁf b7 p(U) — R™.
Then their Lie bracket is given in coordinate free notation by
[ﬁj, Ek] = dﬁk . Bj — dﬁj . Ek,

and in terms of the component functions by

ZDJ&D - Dy L.

Proposition 2.14. (Functoriality of the Lie algebra) If ¢: G — H is a morphism of Lie
groups, then the tangent map

L(p) :==Ti(p): L(G) — L(H)
18 a homomorphism of Lie algebras.

Proof. Let x,y € L(G) and z;,y; be the corresponding left invariant vector fields. Then
© o Ag = Ay(g) © p for each g € G implies that

T(p) o T(Ag) = T(Ap(g)) © T();

and applying this relation to z,y € T1(G), we get
Teox = (L(p)x),0p and Teoy = (L(p)y), o e, 9)

ie. x; is ¢-related to (L(ga)x)l and y; is p-related to (L(gp)y)l. Therefore the Related Vector
Field Lemma implies that

Tpolz,y] = [(L(p)),, (L(p)y),] o e

Evaluating at 1, we obtain L(y)[z,y] = [L(p)(z),L(p)(y)], showing that L(y) is a homo-
morphism of Lie algebras. O

Example 2.15. For the Lie group G = (R"™, +) we write its tangent bundle as TR™ = R™ xR™
and, accordingly, we write smooth vector fields as functions X: R® — R”. In this picture,
the differential of the translation maps A, (y) = = + y is the identity, so that X € V(R") is
left invariant if and only if it is constant. For constant vector fields X, Y we have

[X,Y](p) = dY (p) X (p) — dX (p)Y (p) = 0.

Therefore the Lie algebra L(R™) is abelian, i.e. all brackets vanish.
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Example 2.16. Since the Lie group G = GL,(R) is an open subset of M,,(R), we identify its
tangent bundle with the subset T'GL, (R) = GL,,(R) x M,,(R) and smooth vector fields with
functions X : GL,,(R) — M, (R). Here the left multiplications A,(h) = gh are restrictions of
linear maps, to that a vector field X € V(GL,(R)) is left invariant if and only if

X(gh) =T(N\g)X(h) =gX(h) for g,he GL,(R).

Therefore the left invariance of a vector field X is equivalent to the existence of some A €
M, (R) with X(g9) = Xa(g) := gA. For these vector fields we have dX 4(g)C = CA for
B € M,(R), so that

[Xa,X5|(9) =dXp(9)Xa(g9) —dXa(9)XB(9) = g(AB — BA).

Therefore the Lie algebra L(GL,(R)) is the space M, (R) = T}(GL,(R)), endowed with the
commutator bracket
[A,B] = AB — BA.

This Lie algebra is denoted gl,,(R), to express that it is the Lie algebra of GL, (R).

2.3 The exponential function of a Lie group

In this section, we introduce a key tool of Lie theory which is a bridge between the “nonlinear”
Lie group G and the “linear” Lie algebra L(G): the exponential function exp: L(G) = G. Tt
is a natural generalization of the matrix exponential map, which is obtained for G = GL, (R)
and its Lie algebra L(G) = g, (R).

Definition 2.17. Let G be a Lie group. A smooth function exp: L(G) — G is called an
exponential function if for every x € L(G) the curve

Yz (t) := exp(tx)
is a one-parameter group, i.e.
Yot +8) =72 (t)v2(s) fors,teR, and ~.(0)=z. (10)

Passing to the derivative of this relation with respect to s in 0, we see that any smooth
one-parameter group v: R — G with 4/(0) = z is the unique solution of the initial value
problem

70)=1 and () =7(t) -z = z(v(t)).
Therefore we call x the infinitesimal generator of v, (cf. )
Theorem 2.18. Every Lie group has a uniquely determined exponential function.
Proof. (Sketch) If v, (¢) is a smooth one-parameter group of G with ~.(0) = z, then
®4(9) == 972(t)
defines a flow on G whose infinitesimal generator X% := %|t:0¢)t € V(G) is a left invariant

vector field with X®(1) = x. In particular, v, (¢) is the unique integral curve through 1. To
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prove the existence of an exponential function, one therefore has to study the flows generated
by left invariant vector fields.

To show the existence of an exponential function, one first shows that all left invariant
vector fields z; are complete and defines exp(z) := v, (1), where ~, is the unique integral
curve of z; through the identity. Then one verifies that exp(txz) = 7,(t) for ¢t € R, and the
smoothness of exp follows from the smooth dependence of integral curves from parameters
(cf. Section 1). O

Remark 2.19. Let z € L(G) and z;(g) = gz denote the corresponding left invariant vector
field. Then its flow has the form ®}'(g) = gexp(tx), so that the corresponding Lie derivative
is given on smooth functions on G by

(Lof)(g) = Lo(g) = 2

= flgexptx).

t=0

Accordingly, the right invariant vector field z,(g) = z-g generates the flow &7 (g) = exp(tz)g
and the corresponding Lie derivative is

(Raf)(g) = La(g) = 2

=l f((expta)g).

t=0

Remark 2.20. (a) For a Lie group G, the exponential function exps: L(G) — G satisfies

To(expea) = idy,(g)

because for each z € L(G) we have

d
To(expg)x = 7 expq(tx) = .

Therefore the Inverse Function Theorem implies that exps is a local diffeomorphism in 0
in the sense that there exists an open 0-neighborhood U C L(G) such that expg |v: U —
expe(U) is a diffeomorphism onto an open subset of G.

If by,..., b, is a basis of L(G), then we thus obtain the so-called canonical coordinates of
the first kind on an identity neighborhood of G:

O:R" - G, zr expa(ribr + ...+ Tpby)
(b) Sometimes it is more convenient to use canonical coordinates of the second kind
U:R" - G, xw— expa(x1br) ... expg(znby)

That ¥ is a local diffeomorphism in 0 follows from Tp(¥)(z) = Y1, x;b;, which in turn
follows by repeated application of the product rule @ which leads to . Hence the claim
follows from the Inverse Function Theorem.

Example 2.21. For G = R" the identity expg. = id is an exponential function because each
curve 7, (t) = tz is a smooth one-parameter group with v, (0) = x.
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Example 2.22. For G := GL,(R), the left invariant vector field A; corresponding to a
matrix A is given by
Ai(g) =Ti(Ag)A =gA

because A\;(h) = gh extends to a linear endomorphism of M, (R). The unique solution
v4: R — GL,(R) of the initial value problem

70) =1, (1) =A(y(t) =~(t)A

is the curve describing the fundamental system of the linear differential equation defined by
the matrix A:

— 1
ya(t) = et = Z HtkAk.
k=0

It follows that expg(A) = e? is the matrix exponential function.

Example 2.23. We consider the 3-dimensional Heisenberg group

1
Hs := 0 rx,y,z €R
0

O = 8
i SR\

which clearly is a 3-dimensional submanifold of the Lie group GL3(R) C M3(R) = R3*3 from
which it inherits a Lie group structure. With respect to the obvious (z,y, z)-coordinates, we
can identify Hsz with R?, endowed with the multiplication

z x! x4+
xx' = [y ||y | = vty
z 2 z+ 2 +axy

From the canonical basis e, e, e3 of R? we obtain a the following left invariant vector fields
on Hz = (R3,4):

0
P(x)=Ti(Azy)e1=¢€1, QX)=Ti(A@y:)ea= 1], Z(x)=T1(Azy,-))e3 = e€3
z

with the Lie brackets

In the matrix picture, these vector fields correspond to the matrices

R 010 R 0 0 0 N 0 0 1
P=10 0 0], @Q=1(0 0 1 and Z=1[|0 0 O
0 0 0 0 0 0 0 0 0
and the exponential function is given by
R R R 0 p =z I p z+8
exp(pP+qQ+z2Z)=exp|[0 0 ¢| =0 1 q
0 0 O 0 0 1
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and defines a diffeomorphism L(H3) — Hs. On the other hand,

zTpq

+
q )
1

R R R 1 p 0 100 1 0 =z 1
exp(pP)exp(qQ)exp(zZ)=[0 1 0 01 ¢ 01 o)J=1{oO

0 0 1 0 0 1 0 0 1 0

so that the corresponding normal coordinates of the second kind are slightly different.

Remark 2.24. If the two elements z,y € L(G) commute, then the corresponding left in-
variant vector fields commute, and this implies that the corresponding flows ®*' and ®¥
commute (Corollary [1.60)). In particular,

exp(tz) exp(sy) = ¥ d7 (1) = &7 DY (1) = exp(sy) exp(tz), s,t€R.
Therefore the Trotter Formula implies that
exp(z +y) = expzrexpy.

For G = GL,(R) and z,y € M, (R) with zy = yz, the corresponding relation is an easy
consequence of the binomial formula:

X (2 +y)k 1o [k -
exp(z +y) = Z% =D n <£)1;eyk ‘
k=0 k=0 £=0
> k 2t ykfz > P © yf
=¥ Th 0 (Z ﬁ> (Z E) = exp(z) exp(y).
k=0 ¢=0 p=0 £=0

Remark 2.25. We have seen above that the one-parameter group v, : R — G of a Lie group
G with v, (0) = z is a solution of the ordinary differential equation

V() = Ta(Ayp)z =(1) -z,

which formally looks like a linear differential equation. For G = GL, (R) the - really stands
for a matrix product (cf. Example [2.22)).
More generally, one frequently considers ODEs on Lie groups of the form

4=~-& where &€ C®(,L(G)),

where I C R is an interval containing 0. Using similar arguments as for the familiar linear
time-dependent ODEs, one can show that, for any initial value -, these equations have a
unique solution ~.

For G = GL,(R), these solutions can actually be constructed by Picard iteration. For
&€ C([0,T], M,(R)) we want to solve the linear initial value problem

70)=1, () =7t)s), 0<t<T. (11)

Picard iteration yields a sequence of continuous curves:

W0t =1, p(t) =1+ / (7)€ (r) dr,

0
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so that

Talt) = 1+¥/ / ---/0725(71)6(72)---6(%) dr dry - dr.

B.(0)= | t / / " E(r)E(r) - E(r) dry dry -,

we obtain the estimate

t Tn T2 n
n TLt
||5n<t>||s||f||oo/0/0 / dry dry - dr, = €|

nl’

so that the limit v := lim, 00y = 1+ Y pey Bk exists uniformly on [0,7]. This in turn
implies that - satisfies the integral equation

10 =1+ [ e

Hence v is C! with 4 = v - £. In view of the above construction of the curve v, it is called
the product integral of &.

2.4 Linear Lie groups

The following theorem is an important result on subgroups of Lie groups. Here the exponen-
tial function turns out to be an important tool to relate subgroups and Lie subalgebras.

Theorem 2.26. (von Neumann’s Closed Subgroup Theorem) Let H be a closed subgroup of
the Lie group G. Then H is a submanifold of G and my = mg|yxn induces a Lie group
structure on H such that the inclusion map jg: H — G is a morphism of Lie groups for
which L(ju): L(H) — L(G) is an isomorphism of L(H) onto {x € L(G): exp(Rz) C H}.

The preceding theorem shows in particular that very closed subgroup G C GL,(K) is a
Lie group with Lie algebra

L(G) & {z € M,(K): exp(Rz) C G}.

These Lie groups are called linear Lie groups. Von Neumann’s Theorem provides a direct
way to calculate their Lie algebra L(G) as a Lie subalgebra of the Lie algebra gl,, (K). Below
we encounter various concrete examples of matrix groups that arise as automorphism groups
of geometric structures on R".

Lemma 2.27. Let G be a Lie group and H C G a subgroup which is a neighborhood of 1.
Then H is open and closed, hence a Lie group, and L(H) = L(G).

Proof. Since the left multiplications A, are diffeomorphisms, the coset gH = A (H) is a
neighborhood of g. For g € H the relation gH = H thus shows that H is open. Then all
cosets gH are open, and therefore H = G'\ U, 45 gH is closed.

For each x € L(G), the one-parameter group 7, : R — G is continuous. Hence v, *(H) is
a non-empty open closed subset of the connected space R, which implies that R = v, 1(H),
i.e. 7;(R) C H. This means that L(G) = L(H). O
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To introduce some important classes of linear Lie groups, we fix some notation concerning
matrices. We write a matrix A = (a;j)i j=1,....n also as (a;;) and define

AT = (aj), A:=(a;), and Al =4 = (@)
Note that AT = AT is equivalent to A = A, which means that all entries of A are real.
Examples 2.28. (a) The subgroup
GL,(R)+ :={g € GL,(R): detg > 0}

is the group of orientation preserving matrices. This is an open subgroup of GL,,(R) so that
it has the same Lie algebra as GL, (R) (Lemma [2.27)).
(b) Since vol(gE) = | det(g)| vol(E) for a measurable subset £ C R",

VGL,(R) := {g € GL,,(R): |detg| = 1}

is the group of volume preserving matrices. That it is a subgroup follows from the multi-
plicativity of the determinant. From the relation

|det(e?)| = e 4
it follows that exp(Rz) C VGL,(R) is equivalent to trx = 0, i.e.
vgl,,(R) := L(VGL,(R)) = {z € g[,(R): trz = 0}.
(¢) The special linear group
SL,(R) := {g € GL,(R): detg =1} = GL,(R);+ N VGL,(R)
is the group of those matrices preserving orientation and volume. Its Lie algebra is
sl,(R) = L(SL,(R)) = L(GL,(R)+) NL(VGL,(R)) = vgl,,(R) = {z € g[,,(R): trz =0.}

Example 2.29. (Symmetry groups of bilinear forms)
(a) Any bilinear form 8 on K" is of the form

Bx,y) =2 By = wibijy;.
ij=1
We say that a matrix g € GL, (K) preserves this form if
Blgz,gy) = B(w,y) forall =z,yeK"

In view of 8(gx,gy) = =" g Bgy, this is equivalent to the condition g* Bg = B, which leads
us to the general orthogonal groups

0,(K,B) :={g € GL,(K): ¢" Bg = B}.
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Clearly, these are closed subgroups, because they are defined by the equation ¢ Bg = B. To
determine their Lie algebra, we note that e!* € O, (K, B) for all ¢t € R leads to

B=¢" Be™ =B+ (z' B+ Ba)t+ -,

so that the derivative in 0 yields " B + Bx = 0. If, conversely, this condition is satisfied,
then the curve y(t) := e!® Be'® satisfies

A(t) = ett’ ;T Bet® + e Bret® = et* (xTB + Bz)e” =0,

to that v is constant. As (0) = B, this means that ¢/ € O, (K, B) for every t € R. We
thus arrive at

0, (K, B) := L(0,(K, B)) = {z € gl,(K): 2" B+ Bx = 0}.
(b) For B =1 (the identity matrix), we obtain the orthogonal group
0,(K)={g€GL,(K): g'g=1} with o0,(K)={zecgl,(K): 2" +z=0}.
Intersecting with SL,, (K) leads to the special orthogonal group
SO, (K) ={g € O,(K): detg =1}

with Lie algebra
50,(K) = 0,(K) = {z € gl,,(K): 2" +z = 0}.

Here we use that 7 = —x implies that trz = tra | = —tr, and therefore trz = 0.
(¢) For n =p+ g and

1 0
Ip,q = <0p _1q> (= Mp+q(R)
we obtain the pseudo-orthogonal groups
0p4(R) :={g € GLu(R): 9" 1, 09 = Lp 4},

where O, 0(R) = O, (R). We write RP¢ := (RPT? 3, ) for RPT% endowed with the corre-
sponding symmetric bilinear form

B(x,y) = 2191 + ... + TpYp — Tp+1Yp+1 — - -+ — Tp+qYp+q-

(d) For the skew-symmetric matrix J := <_2 10") , the group

Sp,,,(K) := {g € GLa,(K): g Jg=J}

is called the symplectic group. The corresponding skew-symmetric bilinear form on K?” is
given by

n
Bla,y) =a"Jy = Tiyynyi — Tntili
1=1
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Example 2.30. On C” one also considers hermitian forms, and the scalar product

n
(z,w) == Z ZjW;
=1

is the most important one. Its symmetry group is the unitary group

U,(C) ={g € GL,(C): g'g =1} = {g € GL,(C): (Vz,w € C"){gz, gw) = (z,w)}.

With similar calculations as for the real case, we obtain the Lie algebra

1, (C) :=L(U,(C)) = {x € gl,,(C): 2" + 2z =0}.

And for the special unitary group

we obtain

SUL(C) = {g € Up(C): detg =1} = U,(C) NSL,(C)

su,(C) := L(SU,(C)) = {z € gl,(C): 2" + 2 =0,trz = 0}.

Note that, although SU, (C) and U, (C) are groups of complex matrices, their Lie algebra is
only a REAL vector space.

H Lie group G Lie algebra g H
general linear group GL, (K) gl,,(K) = M, (K)
volume preserving group VGL,(R) : |detg| =1 ogl,,(R) =sl,(R): trx =0
special linear group SL,(K): detg=1 50, (K): tra=0
B -orthogonal group 0,.(K,B): g"Bg=B 0,(K,B): 2" B+ Bz =0
orthogonal group 0,(K): gTg=1 0,(K): 2T +2=0
0, (R) = O(n)
special orthogonal group SOL(K): gTg=1,detg=1 50,(K) = 0,(K): 27 +2 =0
pseudo-orthogonal group || O, ,(R) =O0(p,q): 9" I, .9 = I, 4 0p,qR): 2T, + 1, ,2=0
symplectic group Spo,(R): gTJg=J spo,(R): 2" J+ Joz =0
unitary group U,(C)=U(n):gfg=1 u,(C): XT+ X =0
special unitary group SU,(C) =SU(n): gfg=1,detg =1 su,(C): XT + X =0,tr X =0

Example 2.31. Consider the group SO3(R) of rotations of 3-space. Its Lie algebra is

s03(R) = {X € M3(R): X" = —X}.

The exponential function of this group is closely related to rotations of R3. For the basis

0
s J2 = 0
0 -1

o O O
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we have the commutator relations

[J1, Jo] = Js, [Jo,Js]=J1 and [J3,Ji] = Ja.
This can be written more compactly by using the completely antisymmetric tensor €, which
is defined by

L1 53—
1<g
We then have

3
i i) = eijndh,
k=1

so that the structure constants of so3(R) with respect to the basis (J1, Jo, J3) given by &;;p.
The corresponding one-parameter groups are given by

1 0 0 cost 0 sint cost —sint 0
et = [0 cost —sint], 2= 0 1 0 , efs=[sint cost 0],
0 sint cost —sint 0 cost 0 0 1

so that e!’i is a roation around the e;-axis. To understand the geometry of e*X for a general
X € s03(R), we recall from Exercise [2.9| the existence of a vector x € R3 with Xv = x x v for
v € R3. Now v := II%\I is a unit vector. Pick a unit vector vo L v and put vz := vy Xve = Xwvs.
Then

Xv1 =0, Xwvy=|zllvs and Xuvz= —|z|vs.

This formula also shows that the operator norm of X on euclidean R3 equals |z|. With
respect to the basis (v1,v2,v3), the matrix of the linear map e* is therefore given by

1 0 0
0 cos|z| —sin]z|
0 sinllz| cos|z|

We conclude that e*X is a one-parameter group of rotations around the axis Rz where e¥

rotates by the angle ||z||. In particular, eX = 1 for ||z| = 27.

As every element g € SO3(R) is a rotation (a consequence of the normal form of (3 x 3)-
orthogonal matrices or the simple fact that 1 must be an eigenvalue of g), it follows in
particular that the exponential function

exp: s03(R) — SO3(R)
is surjective. We actually find for each g € SO3(R) an X € so03(R) with || X|| < m and e* = g.

2.5 On the topology of matrix groups

In this subsection we take a brief look at the topological properties of matrix groups. Since
compact groups behave much better than arbitrary topological groups, we first observe that
real orthogonal and the complex unitary groups are compact. The compactness of a group has
profound implications for its representation theory, which is mostly due to the existence of a
biinvariant probability measure. In the theory of elementary particles the compactness of the
corresponding symmetry group is responsible for the discreteness of the quantum numbers
classifying these particles.
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2.5.1 Compact matrix groups

Lemma 2.32. The groups
U,(C), SU,(C), O,(R) and SO,(R)
are compact.

Proof. Since all these groups are subsets of M, (C) 2 C"", by the Heine-Borel Theorem we
only have to show that they are closed and bounded.
Boundedness: In view of

SOn(R) C Op(R) CU,(C) and SUL(C) C U,(C),

it suffices to see that U, (C) is bounded. Let ¢1,..., ¢, denote the rows of the matrix g €
M, (C). Then gt = g~! is equivalent to gg' = 1, which means that g;,...,g, form an
orthonormal basis for C" with respect to the scalar product (z,w) = > ", 2;w; which
induces the norm ||z|| = y/(z, 2). Therefore g € U, (C) implies ||g;|| = 1 for each j, so that
U, (C) is bounded.

Closedness: The functions
f.h: M, (K) = M,(K), f(A):=AA" -1 and h(A):=AAT —1
are continuous. Therefore the groups
U,(K):=f71(0) and 0O,(K):=hr"'(0)

are closed. Likewise SL,(K) = det™'(1) is closed, and therefore the groups SU, (C) and
SO, (R) are also closed because they are intersections of closed subsets. O

Proposition 2.33. (a) The exponential function exp: u,(C) — U,(C) is surjective. In
particular, Uy (C) is arcwise connected.
(b) The group O,(R) has the two arc components

0,(R)x :={g € O,(R): detg=+£1}
and the exponential function of SO, (R) = 0, (R)4 is surjective.

Proof. (a) First we consider U, (C). To see that this group is arcwise connected, let u €
U, (C). Then there exists an orthonormal basis v1, . .., v, of eigenvectors of u. Let A1,..., A,
denote the corresponding eigenvalues. Then the unitarity of w implies that |A;| = 1, and we
therefore find 6; € R with \; = e%*. Define D € M, (C) by Dv; = if;v;. Since the v; are
orthonormal, DT = —D (Exercise . Now v(t) := e'? satisfies v(1)v; = gv; for every j,
and therefore g = (1) = .

(b) For g € O,(R) we have gg' = 1 and therefore 1 = det(gg') = (det g)?. This shows
that

O0,(R) = 0, (R)1:UO,(R)-  with O, (R)+ = SO,(R),

and both sets are closed in O, (R) because det is continuous. Therefore O, (R) is not con-
nected and hence not arcwise connected. Suppose we knew that SO, (R) is arcwise connected
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and z,y € O,(R)_. Then 1,271y € SO, (R) can be connected by an arc ~: [0,1] — SO, (R),
and then ¢t — xv(t) defines an arc [0,1] — O, (R)_ connecting x to y. So it remains to show
that the exponential function of SO, (R) is surjective.

From Linear Algebra we know that every orthogonal matrix is conjugate (under an or-
thogonal matrix) to one in the following normal form

cosay —sinog

sin a1 COS (1

COS vy, — Sinayy,
sin oy, COS (i,

1

for real numbers 0 < a; < m. Let g € SO,(R). In the normal form of g, the determinant
of each 2 x 2-block is 1, so that the determinant is the product of all —1-eigenvalues. Hence
their number is even, and we can write each consecutive pair as a block

-1 0\ [(cosm —sinm
0 —-1) \sinm coswm )~
This shows that with respect to some orthonormal basis of R™, the linear map defined by ¢

has a matrix of the form

cosay —sinag
sin o CcOoSs (1

COS Oy, — Sin
sin oy, COS Qi

1

Now we obtain a smooth one-parameter group v: R — SO, (R) with v(0) =1 and v(1) = ¢
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costay —sintag
sintaq costay

costa,, —sinto,,
sintayy, cos tayy,

2.5.2 Non-compact matrix groups

To obtain some information on the topology of non-compact matrix groups as well, we now
study the polar decomposition of GL,(R) and show that it is inherited by a large class of
subgroups. It is an important tool to understand the topology of non-compact Lie groups.

Definition 2.34. We write Herm,,(K) := {4 € M, (K): AT = A} for the set of hermitian
matrices. For K = C this is not a vector subspace of M, (K), but it is always a real subspace.
A matrix A € Herm,,(K) is called positive definite if for each 0 # z € K™ we have (Az, z) > 0,
where

n
(z,w) :== Z 2 W;
j=1
is the natural scalar product on K™.

Lemma 2.35. A positive semidefinite matriz A has a unique positive semidefinite square
root B, i.e. a matrix B with B? = A.

If A is positive definite, then B is also positive definite. In this case there exists a unique
hermitian matriz X with eX = A.

In view of the uniqueness of B, it makes sense to write B := v/A and X = log A if A is
positive definite.

Proof. We know from Linear Algebra that for each hermitian matrix A there exists an or-
thonormal basis vy, ..., v, for K™ consisting of eigenvectors of A, and that all the correspond-
ing eigenvalues A1,...,\, are real. From that it is obvious that A is positive semidefinite if
and only if A\; > 0 holds for each j.

Existence of a square root: We define B with respect to the basis (vq,...,v,) by
Buvj = \/Ajv;. Then B? = A is obvious and since all \; are real and the v; are orthonormal,
B is positive definite because

<B(Zﬂivi)a§:ﬂj“j> =Y wl(Bui, o) = Y P/ >0 for Y ey #0.
i i i j=1 j

Uniqueness of a square root: Assume that C is positive definite with C? = A. Pick an
orthonormal basis ws, ..., wy, of C-eigenvectors, so that Cw; = u;w; with positive numbers
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p; > 0. Then Aw; = C’2wj = M?wj shows that, for \; := u?, the matrix C' acts on the
Aj-eigenspace of A by multiplication with y/A; = ;. This implies B = C.

If A is positive definite, then all its eigenvalues are positive, and a similar argument with
;= log A; implies the existence of X as well as its uniqueness. O

We have seen already that the unitary group is compact and that its Lie algebra consists
of skew-hermitian operators. On the other hand, every matrix X € M, (K) has a unique
decomposition

1 1
X = §(X+XT)+§(X—XT)

into a hermitian and a skew-hermitian part and now we want to derive a similar multiplica-
tive decomposition of certain matrix groups. Since this does not work without additional
hyptheses, we introduce the concept of a real algebraic group.

Definition 2.36. We call a subgroup G C GL,(R) real algebraic if there exists a family
(p;)jeJ of real polynomials

pj(m) = pj(xllu T12y - 7xnn) S R[.’L‘ll, e 7xnn}
in the entries of the matrix z € M, (R) such that
G ={z € GL,(R): (VYj € J) pj(z) = 0}.

A subgroup G C GL,(C) C GL2,(R) is called real algebraic if it is a real algebraic subgroup
of GLa, (R) (here we use the inclusion M, (C) — M, (R)).

Proposition 2.37. (Polar decomposition for matrix groups) Let G C GL,(K) be a real
algebraic subgroup invariant under t, i.e. G = G'. Then K := GNU,(K) is a compact group
and we put p := L(G) N Herm,,(K). Then the map

m: Kxp—=G, (k) ke®
s a diffeomorphism.

Proof. (Sketch) The smoothness of the map m is clear.
m is surjective: Let g € G. For 0 # v € K™ we then have

0 < (gv, gv) = (g'gv, v),

showing that g'g is positive definite. Let z := 3 log(g'g) and define u := ge~®. Then

uut = ge~Te g" = ge g = g(gT9) gt = 997 (4") 9T =1
implies that v € U, (K), and it is clear that ue® = g. From the assumption that G is real
algebraic, on can derive that x € p, so that m is surjective.
m is injective: If g = ke® = he¥, then g'g = €**, so that x = Jlog(g'g) = y is the
unique hermitian logarithm of the positive definite matrix gfg. This implies that k = ge™® =
ge ¥ = h.
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It is easy to see that the invariance of G under } implies the same for L(G), so that
L(G) = (L(G) Nuy(K)) & p = L(K) & p.

Therefore
dim G = dimL(G) = dim L(K) + dimp = dim(K x p).

Since m is bijective, in view of the Inverse Function Theorem, it suffices to show that all
differentials T, ;)(m) are injective (hence bijective for dimension reasons). This can be done
by showing that the exponential map is regular on Herm,, (K) (see [HNTI] for details). O

Corollary 2.38. The group GL,,(C) is arcwise connected and the group GL,(R) has two
arc-components given by

GL,(R)+ :={g € GL,(R): +detg > 0}.

Proof. If X = A x B is a product space, then the arc-components of X are the sets of the
form C x D, where C C A and D C B are arc-components (easy Exercise!). The polar
decomposition of GL, (K) yields a homeomorphism

GL,(K) = U, (K) x Herm,, (K).

The vector space Herm,, (K) is arcwise connected. Therefore the arc-components of GL,, (K)
are in one-to-one correspondence with those of U, (K) which have been determined in Propo-
sition [2.33] O

Example 2.39. Proposition [2.37]in particular applies to the following groups:
(a) G = SL,(R) is p~*(0) for the polynomial p(z) = detx — 1, and we obtain

SL,(R) = Kexpp X K xp

with
K =S0,(R) and p={ze€Sym,(R): trz =0}.

For SLy(R), we obtain in particular a homeomorphism
SLy(R) 2 SO5(R) x R* = St x R2.

(b) G = O,y = 0,4(R) is defined by the condition g'1I,,9 = I,,. These are n?
polynomial equations, one for each entry of the matrix. Moreover, g € O, , implies
Ipq = Ip_,; = (QTIZng)_l = g_llp,q(gT)_l

and hence gl ,9" = I, 4, i.e. g € O,,. Therefore O;q = O, 4, and all the assumptions of
Proposition [2.37] are satisfied. In this case,

K=0,,n0,2=0,x0y,,
(Exercise [2.10) and we obtain a diffeomorphism

Op,q = Op x Oy x(0p,4 N Sym,, (R)).
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In particular, we see that for p,q > 0 the group O, , has four arc-components because O,
and Oy have two arc-components (Proposition [2.33).

For the subgroup SO, , we have one additional polynomial equation, so that it is also
algebraic. Here we have

Ks:=KnNSO,,={(a,b) € O, xO,: det(a)det(b) =1}
= (S0, x SO, )U(0,_ x O, ),

so that SO, , has two arc-components if p,q > 0 (cf. the discussion of the Lorentz group in

Subsection 2.8.3]

(¢) We can also apply Proposition to the subgroup SL,(C) C GL,(C) because the
equation det g—1 = 0 in the complex matrix entries can be viewed as a pair of real polynomial
equations in the real and imaginary parts of the matrix entries. We have

K =SL,(C) NU,(C) = SUL(C) and  p = sl,(C) N Herm, (C).

H G H K =GnU,(K) \ p = L(G) N Herm, (K) \ m0(G) = G/Go = mo(K) H
GL,(R) 0.(R) Sym,, (R) 7/2
SL,(R) SO, (R) XT=XtrX=0 1
GL,(C) U,(C) Herm,, (C) 1
SL,(C) SU,(C) XT=X,trX=0 1
Op,¢(R) O, (R) x Og(R) Z/2 x Z]2 for p,q >0
SO, 4(R) || S(O,(R) x O4(R)) Z]2 for p,q >0
SO »(R) 0, (R) 7)2
Span (R) U, () Sym,, (C) 1

2.6 Integrating homomorphisms of Lie algebras

In Proposition we have seen that every homomorphism of Lie groups ¢: G — H defines
by its derivative in the identity L(p) = T1(¢): L(G) — L(H) a homomorphism of Lie
algebras. In this section we briefly discuss the question to which extent ¢ is determined by
L(v) and when there exists for a given homomorphism ¢: L(G) — L(H) of Lie algebras a
group homomorphism ¢: G — H with L(y) = 1.

Proposition 2.40. For any smooth homomorphism p: G — H of Lie groups, we have
expy o L(p) = poexpg, (12)
i.e. the following diagram commutes
¢ —* -+ H

expg expy

LG —29 . L.
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Proof. For z € L(G) we consider the smooth homomorphism
Yz € Hom(R, G),  74(t) = expg(tz).

Then o+, is a smooth one-parameter group of H with infinitesimal generator (po~,)"(0) =
L(¢)7v.(0) = L(p)z. We conclude that

(12 (t) = M(p)e(t), tER,
and for ¢ = 1, this proves the lemma. O

Lemma 2.41. The subgroup (exps(L(G))) of G generated by expo(L(G)) coincides with the
identity component Gy of G, i.e. the connected component containing 1.

Proof. Since exp is a local diffeomorphism in 0, exp~(L(G)) is a neighborhood of 1, so that
the subgroup H := (exps(L(G))) generated by the exponential image is a 1-neighborhood.
According to Lemma[2.27] H is open and closed. Since Gy is connected and has a non-empty
intersection with H, it must be contained in H.

On the other hand, exp is continuous, so that it maps the connected space L(G) into
the identity component Gy of G, which leads to H C Gy, and hence to equality. O

Proposition 2.42. For two smooth morphisms p1,p2: G — H of Lie groups we have
L(v1) = L(y2) if and only if o1 and @o coincide on the identity component Go of G.

Proof. Tf v1|c, = ¢2]c,, then we clearly have L(p1) = T1(¢1) = T1(p2) = L(¢2).
If, conversely, L(¢1) = L(¢2), then Proposition implies that o1 (expx) = pa(expx)
for every x € L(G), so that the assertion follows from Lemma O

Remark 2.43. It is easy to see that Proposition [2.42]is optimal. If the Lie group G is not
connected, then its identity component is a proper normal subgroup and we may consider
m0(G) := G/Gy as a discrete group. Any discrete group is a 0-dimensional Lie group. Now the
trivial homomorphism ¢1: G — G /Gy and the quotient homomorphism ¢o: G — G/Gg, g —
gGy are different but coincide on Gj.

A more concrete example is obtained from the homomorphism

det: O,(R) — R*
which is non-trivial but trivial on the identity component SO,,(R) (Proposition [2.33]).

The preceding proposition shows that the problem to construct a Lie group homomor-
phism ¢: G — H from a homomorphism ¢: L(G) — L(H) of Lie algebras only makes sense
if G is connected. So assume that G is connected. By Lemma [2.41] every element g € G can
be written as a product

g =expxy - expn,

and, whenever @ exists, it must satisfy

¢(g) = exp(yry) - - - exp(Pay,) (13)
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(Proposition [2.40]). However, we cannot use this relation to define ¢ because the representa-
tion of g as a product of exponentials is highly non-unique. For ¢ to exist, 1) has to satisfy
the condition

(Vn € N)(Vz1,...,2, € L(G)) expxy---expry, =1 = exp(yry)---exp(yzy,) = 1.
(14)

If, conversely, is satisfied, then yields a well-defined smooth homomorphism ¢: G —
H (Exercise). Therefore is necessary and sufficient for ¢ to exist, but this condition is
impossible to verify in practise.

The main idea to turn into a verifiable condition is to observe that any relation of
the form expxy - - -expx, = 1 defines a closed piecewise smooth path ~: [0,1] = G by

kE—1 k

<t< =
n n

v(t) :=expxy ---expag_iexp(nt — (k— 1))z, for

Now let v: [0,1] — G be any piecewise smooth path and

£(t) = y(t)"'4(t) € L(G)

be its logarithmic derivative (which is, strictly speaking, only defined on each subinterval on
which + is differentiable). Then the initial value problem

n0)=1 and 7=n-(Pof)

has a unique piecewise smooth solution 7,: [0,1] — H (Remark [2.25). If ¢ exists, then
1y = @ o 7y follows from

(poy) =T(p) = (pov) L(p)k=(po7) (¥ol).
Here we have used that
T(p)(g-z)=plg)L(p)z for geGzeTG

(Exercise). We thus arrive at the necessary condition

W=1 = p0)=1

This looks even worse than , because there are even more closed piecewise smooth paths
than exponential products representing the identity. However, the value 7,(1) does not
change if v is deformed with fixed endpoints. This leads us to the concept of homotopic
paths.

Definition 2.44. Let X be a topological space. We call two continuous paths ag, o : [0,1] —
X starting in zg and ending in x7 homotopic, written ag ~ a1, if there exists a continuous
map

H:IxI—X with H():Oéo, Hi=o

(for Hy(s) := H(t,s)) and

(Vtel) H(t0) =z, H(t,1) =z
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It is easy to show that ~ is an equivalence relation, called homotopy. The homotopy class of
a is denoted by [a].
For a(1) = 5(0) we define the concatenation product « x 3 as

| a2t) for 0
(axB)(t) := {5(% —1) forl

It turns out that [a] *[5] := [a* ] is a well-defined product on the set of homotopy classes
and that, for any zg € X, the set

m1 (X, x0) = {[a]: a € C(]0,1], X), @(0) = (1) = a0}

is a group with respect to *. Here [y]~! is represented by t + (1 —t) and the identity
element is the constant path. The group m (X, ) is called the fundamental group of X with
respect to xg. An arcwise connected space X is called simply connected if 71 (X, xg) vanishes
for an zg € X.

After this interlude on homotopy classes, we can formulate the integrability condition for
Lie algebra homomorphisms.

Theorem 2.45. Let G and H be Lie groups and v: L(G) — L(H) be a homomorphism of
Lie algebras. Suppose that G is connected. Then we obtain a well-defined homomorphism

per,: m(G,1) = H, [y]+—n,(1).

A smooth homomorphism ¢: G — H with L(p) = 1 exists if and only if pery, is trwial. In
particular, ¢ always exists if G is simply connected.

Example 2.46. (a) We identify L(T) with R, so that expyp(z) = €. Then a linear map
¥: L(T) — L(T) is given by multiplication with a real number A. To see for which A we
have a morphism ¢: T — T of Lie groups with L(y) = 1, we note that ((e®) = e'** is only
well-defined if A27Z C 27Z, i.e. if A = n € Z. Then (z) = 2™ is the corresponding group
homomorphism.

(b) For the determinant function

det: U,(C) - T

the relation det(e®) = e*® = ¢(=#%2) shows that L(det) = —itr. This a homomorphism
of Lie algebras u,(R) — R, and since R is abelian, this simply means that tr([z, y]) = 0 for
z,y € u, (C).

We thus obtain for each A € R a homomorphism ¢ := —iAtr: u,(C) — R and can ask
under which conditions there exists a homomorphism ¢: U, (C) — T with L(p) = 3. Then
it would make sense to write ¢ = det”. This is clearly the case for A € Z. That this condition
is actually necessary follows from the fact that, for z := iEy; € u,(C) with exp(27z) = 1,
we have e'¥(272) = Atr(mz) — oA2m — 1 only if A € Z. This implies in particular, that the
group U, (C) is not simply connected.

Remark 2.47. (a) Suppose that the topological space X is contractible, i.e. there exists a
continuous map H: I x X — X and xg € X with H(0,z) = z and H(1,z) = xo for x € X.
Then 71 (X, o) = {[zo]} is trivial (Exercise).
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(b) 7T1(X X Y7 ({L‘o,yo)) = 7T1(X, LL'()) X 7'1'1(}/—7 yo).

(c) m1(R™,0) = {0} because R™ is contractible.

More generally, if the open subset @ C R™ is starlike with respect to xq, then H(¢,x) :=
x + t(x — xg) yields a contraction to xg, and we conclude that 71(Q, xo) = {[zo]}-

(d) If G € GL,(K) is a linear Lie group with a polar decomposition, i.e. for K :=
GNU,K) and p := L(G) N Herm,,(K), the polar map p: K x p — G, (k,z) — ke® is a
homeomorphism, then the inclusion K — G induces an isomorphism

7T1(K,1) — 71'1(6;7 1)

because the vector space p is contractible.

(e) w1 (St) = w1 (C*) = Z follows from the classification of homotopy classes of loops in
the punctured plane by their winding number with respect to the origin.

(f) The group

_ a —b a2 2 _
SUL(C) = { (b a> € GLy(C): |af? + [b2 = 1}
is homeomorphic to the 3-sphere
{(a,) € C*: |[(a,b)]| =1} = §°

which is simply connected (Exercise . One can show that the sphere S™ carries a Lie
group structure if and only if n = 0,1, 3.
(g) With some more advanced tools from homotopy theory, one can show that the groups
SU,,(C) are always simply connected. However, this is never the case for the groups U, (C).
To see this, consider the group homomorphism

~v: T — U,(C), =z~ diag(z,1,...,1)
and note that det oy = idy. From that one easily derives that the multiplication map
2 SUL(C) x T — U,(C), (g,2) — gv(2)
is a homeomorphism, so that

71(Un(C)) = w(SUL(C)) x 71 (T) = m,(T)

1%

Z.
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[ G [ K=GnU,® | =@ =mE |

Z/2 for n > 2
GL,(R) 0, (R) Z forn=2
1 forn=1.
SL,(R) SO, (R) Z]2 for n > 2
SLa(R) SO,(R) & T Z
GL,(C) U,(C) Z
SL,(C) SU,(C) 1
SO, ¢(R) || S(Op(R) x O4(R)) | Z/2 x Z/2 for p,q > 2
Z/2 for n > 2
SO1 ., (R) 0,(R) Z forn=2
1 forn=1
Span (R) U,(C) 1

2.7 The adjoint representation

Definition 2.48. If V is a vector space and G a group, then a homomorphism ¢: G — GL(V)
is called a representation of G on V. If g is a Lie algebra, then a homomorphism of Lie
algebras ¢: g — gl(V) is called a representation of g on V.

If V is an n-dimensional vector space, then GL(V') carries a natural Lie group structure
for which it is isomorphic to GL,, (R) (cf. Exercise[2.3). As a consequence of Proposition
we therefore obtain:

Corollary 2.49. If ¢: G — GL(V) is a smooth representation of the linear Lie group G,
then L(p): L(G) — gl(V) = (End(V), [-,]) is a representation of the Lie algebra L(G).

The representation L(¢) obtained in Corollary from the group representation ¢ is
called the derived representation. This is motivated by the fact that for each z € L(G) we
have

LY S O P
L(p)z = Ztlimo © =2l im0 plexptx).

Definition 2.50. Let G be a Lie group and L(G) its Lie algebra. For g € G we recall the
conjugation automorphism ¢, € Aut(G), ¢,(z) = grg~', and define

Ad(g) == L(c,) € Aut(L(G)).

Then
Ad(gng) = L(cglgz) = L(cgl) o L(ng) = Ad(gl> Ad(g2)

shows that Ad: G — Aut(L(G)) is a group homomorphism. It is called the adjoint represen-
tation of G. To see that it is smooth, we observe that for each x € L(G) we have

Ad(g)z = Ti(cg)x =Ti(Ag 0 pg-1)x = Ty-1(Ng)T1(pg-1)z =g 29"
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in T(G). Since T(mg) is smooth, the representation Ad of G on L(G) is smooth (cf. Exer-

cise , and
L(Ad): L(G) — gl(L(@))

is a representation of L(G) on L(G).

Lemma 2.51. If G is connected, then
kerAd =Z(G) ={z € G: (Vg € G)gz = zg}
is the center of G.

Proof. In view of Proposition and the connectedness of G, the relation L(c,) = Ad(z) =
1 is equivalent to ¢, = idg, which means that z € Z(G). O

The following lemma gives a formula for this representation. Here we use the notation
ad(z)y := [z, ]
for elements z,y of a Lie algebra.
Lemma 2.52. L(Ad) = ad, i.e. L(Ad)(x)(y) = [z, y].

Proof. Let z,y € L(G) and z;,y; be the corresponding left invariant vector fields. For g € G
we then have

((cg)swn)(h) = T(cg)yi(c, (h) =g- (g7 hg) - y) -9~ =hg-y-g~" = (Ad(g)y)i(h).
On the other hand, the left invariance of y; leads to
(cg)stn = (pg " 0 Xg)st = (g )« o)t = (o )i

Next we recall that 7' = Pexpg(tz) 15 the flow of the vector field x;, so that Theorem m
implies that

d ) d d
[-Tlayl] = £w1yl = % =0 (q)ft)*yl = % =0 (CexpG(tx))*yl = % =0 (Ad(eXpG(tx))y)l.
Evaluating in 1, we get
d
[2,9] = le1, (1) = o Ad(expg(te))y = L(Ad)(2)(y)- 0

Example 2.53. For a linear Lie group G C GL,(R), the automorphisms ¢, (h) = ghg™! are

restrictions of linear endomorphisms of the vector space M, (R), which leads to
Ad(g)x = gzg™t for g€ G,z eL(G).
Accordingly, we find for ad = L(Ad) the concrete formula

adz(y) =2y —yx for z,y € L(QG).
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Example 2.54. We take a closer look at the adjoint representation of G = SUy(C). We
recall that

ail b

suy(C) = {z € gly(C): 2’ = —z,traz =0} = {( 7 > : bE(C,aER}.

— —al

This is a three-dimensional real subspace of gl,(C). The hermitian matrices

0 1 0 —i 10
n=(0) »=( 7)) »-( Y

are called the Pauli matrices. The matrices io;, j = 1,...,3 form a basis of the Lie algebra
sus(C) of SU3(C). The Pauli matrices satisfy the commutator relations

[7;0'177;0'2] = 722'0'3, [iUg,iUg] = 722'0'1, [iUg,iUl] = 721'0'2,
to that
0 0 O 0 0 -2 0 20
ad(icy)= (0 0 2|, ad(ics)={0 0 0 |, ad(iocs)=[-2 0 0],
0 -2 0 2 0 O 0 00

showing that ad(io;) = —2J; € so3(R) in the notation of Example We conclude that
ad: sus(C) — so3(R) is a linear isomorphism. Since the exponential function of SU3(C) is
surjective (Proposition [2.33)), we find with the relation Ad(expx) = 2% (Lemma and

Proposition that
Ad(SU,(C)) = Ad(expsuy(C)) = e24242(0) — exp(s03(R)) = SO3(R)
(cf. Proposition [2.33). Next we observe that
ker Ad = Z(SU3(C)) = {£1}
(see Corollary for the first equality and Exercise for the center of SU, (C)), so that

SO5(R) = SU,(C)/{1}.

2.8 Semidirect products

In this subsection we introduce the concept of a semidirect product of two Lie groups. This
is a construction to create a new Lie group from two given ones that is more general than
the direct product construction. Semidirect products of Lie groups arise naturally as groups
of isometries of euclidean spaces and groups of automorphisms of affine spaces. Therefore we
start with the concept of an affine space. An affine space can be considered as a vector space
where no origin has been specified. This is closer to the physical concept of space, where no
point plays a preferred role.
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2.8.1 Affine spaces

Definition 2.55. Let V be a vector space. An affine space with translation space V' consists
of a set A and a map
+:AXV = A (6,x)—a+x,

such that the following conditions are satisfied
(Al) a+o=uaforalacA.
(A2) a+ (x+y)=(a+x)+yforac Ax,yeV.

(A3) For a,b € A there exists a unique x € V with b = a + x. The element b — a := x is
called the translation vector from a to b.

A map p: A; — A, between affine spaces with translation space Vi, resp., V5 is called
affine, if there exists a linear map ¥: V73 — V5 with

pla+x)=pla)+¢(x) for acAxeV.

Example 2.56. (a) For every vector space V', we obtain an affine space A := V with respect
to vector addition.
(b) For V' =R", the corresponding affine space is called n-dimensional affine space A™.

Remark 2.57. Once a point o € A is chosen, the map V — A x — 0 4 x is bijective, so
that, as a set, the affine space cannot be distinguished from the vector space V. However,
conceptually, the notion of an affine space is different from that of a vector space. In view
of the preceding remark, we may think of an affine space A with translation group V as a
copy of V', where no origin is distinguished. Conversely, any choice of origin o € A leads to
an identification with V' and hence to a vector space structure of A.

The difference between A and V is also visible in the fact that the group Aut(A) of
affine automorphisms of A is larger than the group GL(V') of linear automorphisms of V.
The translations 7x(a) := a + x are also affine automorphisms and they form a subgroup
7a C Aut(A) isomorphic to V' which acts simply transitively on A. On the other hand, for
every point o € A, the stabilizer Aut(A), is isomorphic to GL(V') because it consists of maps
of the form (0 +x) = 0+ 1h(x), 1» € GL(V). Since every automorphism ¢ € Aut(A) can be
written in a unique fashion as

gp:TxO’lZ with (o) =0+ x,9 € GL(V),

we can think of affine automorphism as pairs (x,1) € V x GL(V). Composition of maps
then corresponds to

(x,) o (x,9)") = (x + (x'), p¢).

To deal with group structures of this form, we introduce the notion of a semidirect product.

60



2.8.2 Affine automorphism groups as semidirect products

The easiest way to construct a new Lie group from two given Lie groups G and H, is to
endow the product manifold G x H with the multiplication

(91, h1)(92, h2) == (9192, hiha).

The resulting group is called the direct product of the Lie groups G and H. Here G and H
can be identified with normal subgroups of G x H for which the multiplication map

(G x{1}) x ({1} x H) > Gx H, ((9,1),(1,h)) = (9, 1)(1, h) = (9,h)

is a diffeomorphism. Relaxing this condition in the sense that only one factor is assumed to
be normal, leads to the concept of a semidirect product of Lie groups, introduced below.

Definition 2.58. Let N and G be Lie groups and a.: G — Aut(N) be a group homomorphism
defining a smooth action (g,n) — a4(n) of G on N.
Then the product manifold N x G is a group with respect to the product

(n,9)(n',g") := (nay(n'),gg’)  with inversion (n,g)~' = (agfl(nfl),gfl).

Since multiplication and inversion are smooth, this group is a Lie group, called the semidirect
product of N and G with respect to «. It is denoted by N x, G.

Example 2.59. A typical example of a semidirect product is the group Aff(A™) of automor-
phisms of the n-dimensional affine space A", resp., the group Aff,,(R) of affine isomorphisms
p(z) = Az + b of R™. Writing the elements of this group as pairs (b, A), we have

(b, AW, A') = (b+ AV, AA"),
so that Aff, (R) 2 R" x, GL,(R) with a(g)z = gz.

Definition 2.60. The n-dimensional euclidean space E™ is the affine space A", endowed
with the euclidean metric

1/2
x?) for b=a+x.
1

d(a,b) := (

J

n

The euclidean group is the group ISO,(R) of affine isometries of E”; it is also called
E,(R). Example implies immediately that

IS0, (R) 2 R" x4 O, (R)

because an affine map is isometric if and only if its linear part is, which means that it
corresponds to an orthogonal matrix. Actually one can show that every isometry of a normed
space (V| - ||) is an affine map (Exercise [2.21]). This implies that all isometries of E™ are
affine.
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2.8.3 Lorentz and Poincaré group

We define the n-dimensional Minkowski space M™ as the affine space A™, endowed with the
Lorentzian form

q(a,b) = x%—Zx? for b=a+x,x=(z0,...,Tn_1).

Its group of affine isometries is the Poincaré group
ISOLn_l(R) = Rn Ao Ol,n—l(R)

of all affine isomorphisms of A™ preserving the Lorentzian forn ¢. Accordingly, L := O1 ,_1(R)
is called the Lorentz group.
We write

n—1
B(x,y) := zoyo — Z Z5Yj
j=1
for the symmetric bilinear form on R™ with signature (1,n — 1) and ¢(z) := S(z,x) for the
corresponding quadratic form. The Lorentz group has several subgroups:

Ly =801, 1(R):=LNSL,(R) and L":={g€ L: gy >1}.

The condition ggp > 1 comes from

n—1

1= B(eo, e0) = Blgeo, geo) = goo — Y, Gr0s
=1

which implies g2, > 1. Therefore either gog > 1 or ggo < —1. To understand geometrically
why LT is a subgroup, we observe that ¢ is invariant under L, so that L preserves the double
cone

C:={zeR": q(z) <0} ={z = (x0,x) € R": |zo| > ||x]|}

Let
Cy:={ze€C: £20>0} ={z=(20,x) €ER": Lz 2> x|}

Then C = C; UC_ with Cy N C_ = {0} and the sets C'y. are both convex cones, as follows
easily from the convexity of the euclidean norm function on R"~! (Exercise). Each element
g € L preserves the set C'\ {0} which has the two arc-components C1 \ {0}. The continuity of
the map g: C'\ {0} — C'\ {0} now implies that we have two possibilities. Either ¢gC = Cy
or gCy = C_. In the first case, gopo > 1 and in the latter case goo < —1. E|

The proper orthochronous Poincaré group is the corresponding affine group

_ " T
P:=R"xL,.

4In the physics literature one sometimes finds SO1,3(R) as the notation for the connected group Ll =
L nLT (cf. Example , which is inconsistent with the standard notation for matrix groups.
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This group is the identity component of ISO; ,,—1(R). E|

The topological structure of the Poincaré- and Lorentz group become transparent with
the polar decomposition (cf. Example . In particular, it shows that the Lorentz group
L has four arc-components

Lyt Lyt LY and LY,

where
Li:={g€L:detg==+1}, L‘':={g€L:gyp<-1}

and
Ly"=L,nL", Ly v:=L.NL"

10
(0 )
10
(o )

is the parity transformation. Both are contained in L, and if n is even, we have

The element

is called time reversal and

_ T
L={1,7,P,TP} L.

Evaluating the condition defining the Lie algebra so1,_1(R) in terms of (2 x 2)-block
matrices according to the decomposition R” = R @ R®~!, we obtain

.
5010 1(R) = { <g ”D) cveR"L DT = —D}.

In particular,

.
p =501,-1(R) N Sym, (R) = { (2 UO ) tv € R"‘l} ~ R,

To make the polar decomposition more explicit, we calculate exp X for

0 o'
X_(v 0).

This can be done explicitly because X3 = ||v||?X. This leads to

_ L ol ol 5 oll® | [loll*
epr_1+(§+ T+ +...>X +(1+ e +...)X
h -1 inh
—14 cos Hv|2| X2 sin ||vHX
[[v]] [v]l
sinh ||v
_ cosh ||v]| ”v“l ILyyT 7
- sin”h |“|’UH/U 1+ COS}ll‘ ||1‘12|\71va _ (U)

5Some people use the name Poincaré group only for the simply connected covering group of P which is
isomorphic to R* x SLa(C) (cf. Exercise [2.19))
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The matrix L(v) is called a Lorentz boost in direction v with rapidity ||v||. Putting w :=
sinh [|v]|
Il

v, we obtain the slightly simpler form

L V14 ||wl|? w’
v) = 1 YAHelE=t, T )

w
llwl

Let us assume, from now on, that n = 4. Then we obtain in particular

cosht sinht 0 O cosht 0 sinht O
sinht cosht 0 O 0 1 0 0
Lite) = | 7 0 1 0] FtD=14mt 0 cosht ol
0 0 0 1 0 0 0 1
and
cosht 0 0 sinht
0 1 0 0
L(te3)_ 0 0 1 0 )
sinht 0 0 cosht
resp., for s = sinh ¢:
V1452 s 0 0
VvVi+sz2 0 0
L = 5 .
(ter) 0 0 10 ete
0 0 0 1
Let
01 00 0 01 0 0 0 0 1
1 0 0 O 0 0 0 O 0 0 0 O
Bi=109 00 0| P2=|1 00 0| ®=|o o 0 o0
0 0 0O 0 0 0O 1 0 0 O

denote the generators of the one-parameter groups L(te;) and note that they form a basis for
p 2 R3. To obtain a basis for 01 3(R) = s03(R) @ p, these elements have to be supplemented
by the generators on the rotations in {0} x R3 C R!:3:

00 0 0 0 0 00 00 0 O
00 0 0 0 0 0 1 00 -1 0
Bi=1g 00 1] =0 0 ool ®=]o1 0 o
001 0 0 -1 0 0 00 0 0

From

026 5)-Co)6 8= Y)=0 )

forv e R® and A = —AT € s503(R) and
0 v"\ /0 w' (0 w™ (0 v\ (0 0
v 0 w 0 w 0 v 0) \0 vw' —wv')’
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we obtain the commutator relations

[R;, Rj] Zakak, [R;, Bj] stkBk and  [B;, B;] stkRk

Exercises for Section [2I

~

Exercise 2.1. Show that the natural group structure on T = S' C C* turns it into a Lie
group.

Exercise 2.2. Let G1,...,G, be Lie groups and G := G; X ... X G, endowed with the
direct product group structure

(917"'79'”)(9:/[7"’797/’7,) = (91937"'797149;1)
and the product manifold structure. Show that G is a Lie group with
L(G) 2 L(G1) x ... x L(G).

Exercise 2.3. Let V be an n-dimensional real vector space and fix a linear isomorphism
t: R™ — V. Then we obtain a linear isomorphism

®: End(V) = M,(R), ®(p)x =1 "(pu(x))

which we consider as a chart of End(V'). Show that we thus obtain on the open subset GL(V)
the structure of a Lie group.

Exercise 2.4. On the tangent bundle T'G of the Lie group G, we consider the multiplication
Timg): T(GxG)=2TGEXxTG—=TG, (vg,wp)—g-w+uv-h

(cf. Lemma. Show that this turns T'G into a Lie group with neutral element 01 € T3 (G)
and inversion T'(nq).

If this is too abstract, consider the special case G = GL,(R) whose tangent bundle we
identify with the open subset T GL,(R) = GL,,(R) x M, (R) of M, (R) x M, (R).

Exercise 2.5. Let G be an n-dimensional Lie group and (¢, U) be a local chart of G with
1 € U and (1) = 0. We then obtain a locally defined smooth function

zxy:= e (2)p™ (1))
defined in an open neighborhood of 0 in R™ x R™. Show that:

(i) The Taylor polynomial of order 2 of x is of the form x+y+b(z,y), where b: R” xR" — R”
is bilinear. Hint: Use the relations x * 0 = =z and 0 * y = y and that every quadratic
form

¢:R"xR" - R", q(z,y) Z AT 5 + Z bijyiy; + Z CijTiY;
i,j=1 i,j=1 3,j=1

vanishing in all pairs (x,0) and (0,y) is bilinear.
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(ii) The first order Taylor polynomial of the left invariant vector field ;(z) in 0 is 2 +b(z, ).
(iti) [z,y] = b(z,y) — b(y, ).

(iii) Apply this to the chart (g) = g — 1 of GL,,(R).

Exercise 2.6. Show that

i (R,+) — GLy(R), tH(COSt Smt)

—sint cost

is a continuous group homomorphism with ~(7) = (_01 _01) and im(y) = SO2(R).

Exercise 2.7. Show that:

(a) exp(M,(R)) is contained in the identity component GL,(R); of GL,(R). In particular
the exponential function of GL,(R) is not surjective because this group is not connected.
(b) The exponential function exp : M3(R) — GLy(R) is not surjective.

Exercise 2.8. Every matrix X € sly(K) satisfies X? = — det X1. Show that

=

Conclude further that:

)1 + (Zm(detX)’“)X.

k=0 =0

(i) e¥ =1+ X for det X = 0.

(i) eX = cosh(y/—det X)1 + % 'd(tie;(X)X for det X < 0.

(iii) eX = cos(v/det X)1 + %X for det X > 0.

(iv) ex (t 0 -1 ) __[cost —sint and ex (t 0 1 ) __(cosht sinht
p 1 0 ~ \sint cost P 1 0 ~ \sinht cosht/’
Exercise 2.9. On R3 we consider the vector product

V2W3 — V3w2
VX W= 7(1)11[)3 — ’Ugwl)
V1W2 — VW1

We define a linear map
¢:R® = M3(R), o(z)y=2xy.

Show that
(i) im(p) = so3(R).
(it) p(z x y) = [p(z), p(y)] for z,y € R?.

(iii) (R3, x) is a Lie algebra isomorphic to so3(R).
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Exercise 2.10. Show that for n = p 4+ ¢ we have
0p.q(K) N0, (K) 2 0, (K) x 0,(K).

Exercise 2.11. SO, (K) is a closed normal subgroup of O, (K) of index 2 and, for every
g € 0,(K) with det(g) = —1,

0, (K) = S0, (K) U g SO, (K)
is a disjoint decomposition.
Exercise 2.12. Let §: V x V — V be a symmetric bilinear form on the vector space V' and
¢V =V, v Bv,v)
the corresponding quadratic form. Then for ¢ € End(V') the following are equivalent:
(1) (Vv e V) q(e(v)) = q(v).
(2) (Vo,w € V) B(p(v), p(w)) = B(v,w).
Exercise 2.13. Let ¢: G — H be a smooth homomorphism of Lie groups. Show that:
(i) L(ker ) = L(ker ).
(ii) ¢ has discrete kernel if and only if L(y) is injective.
(iii) ¢ is a submersion if and only if L(y) is surjective.
(iv) If G and H are connected and L(yp) is surjective, then ¢ is surjective.
(v) If G and H are connected of the same dimension and ker ¢ is discrete, then ¢ is surjective.

Exercise 2.14. Let M be a manifold and V a finite-dimensional vector space with a basis
(b1,...,bn). Let f: M — GL(V) be a map. Show that the following are equivalent:

(1) f is smooth.

(2) For each v € V the map f,: M — V,m — f(m)v is smooth.
(3) For each i, the map f: M — V,m — f(m)b; is smooth.
Exercise 2.15. (The exponential function of SU3(C)) Show that:
(a) Uz(C) = TSU,(C) = Z(U2(C)) SU(C).

(b) If z € suy(C) with eigenvalues i\, A > 0, we have ||z| = A.

(c¢) For x,y € suy(C), there exists an element g € SU3(C) with y = Ad(g)x if and only if
]l = Tlyll-

(d) No one-parameter group v : R — SU3(C) is injective, in particular, the image of v(R) is
always circle group.
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Exercise 2.16. Show that
Z(Up,(C)=T1 and Z(SU,(C))={z1:2"=1}C,.

Hint: Each g € Z(U,(C)) satisfies Ad(g) = 1. Conclude from gl,,(C) = u,(C) + iu,, (C) that
g commutes with all matrices. For g € Z(SU,(C)), use gl,,(C) = su,(C) + i s5u,(C) + C1 is
a similar fashion.

Exercise 2.17. (a) Show that a matrix A € M,,(C) is hermitian if and only if there exists
an orthonormal basis v1,...,v, for C* and real numbers Ay, ..., A, with Av; = Ajv;.

(b) Show that a complex matrix A € M, (C) is unitary if and only if there exists an
orthonormal basis v1, ..., v, for C* and A\; € C with [\;| =1 and Av; = \jv;.

(c) Show that a complex matrix A € M, (C) is normal, i.e. satisfies ATA = AAT, if and
only if there exists an orthonormal basis vy, ..., v, for C* and A; € C with Av; = Ajv;.

Exercise 2.18. Show that the groups O, (C), SO, (C) and Sp,, (R) have polar decomposi-
tions and describe their intersections with U, (C), resp., Oz, (R).

Exercise 2.19. On the four-dimensional real vector space V := Herms(C) we consider the
symmetric bilinear form S given by

B(A,B) := i(tr Atr B — tr(AB)).
Show that:
(1) The corresponding quadratic form is given by g(A) := (A4, A) = det A.

2) Show that the basis o;, 7 =0,...,3 with g = 1 and where o;, j = 1,2, 3, are the Pauli
J J
matrices, is orthogonal with respect to S and that we thus obtain an isomorphism
(V. 6) = RV

2_ 2 2 2
q(agog + a101 + azoq + asos) = ay —aj — a; — a;.

(3) For g € GLy(C) and A € Hermy(C) the matrix gAg' is hermitian and satisfies
a(gAg") = |det(g)q(A).

(4) For g € SLy(C) we define a linear map p(g) € GL(Hermy(C)) = GL4(R) by p(g)(4) :=
gAg'. Then we obtain a homomorphism

p: SLy(C) = O(V, B) = 031 (R).

(5) Show that ker p = {£1}.

(6) L(p): sl2(C) — so031(R) is an isomorphism of Lie algebras. Hint: Use that ker L(p) =
L(ker p) (Exercise [2.13)) and compare dimensions.

(7) SO1,3(R)p = SL2(C)/{£1} (see Example for similar arguments).
(8) p(SUL(C)) = SO3(R) consists of those matrices fixing o¢ (cf. Example [2.54)).
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Exercise 2.20. Show that for n > 1 the sphere S™ is simply connected. For the proof,
proceed along the following steps:

(a) Let v : [0,1] — S™ be continuous. Then there exists an m € N such that
l9(8) = ()l < 5 for |t —#'| < ..

(b) Define & : [0,1] — R™*! as the piecewise affine curve with &(%) = fy(%) fork=0,...,m.
Then «(t) := m&(t) defines a continuous curve « : [0,1] — S™.
(c) a ~ 7.

(d) « is not surjective. The image of « is the central projection of a polygonal arc on the
sphere.

(e) If B € Q(S™,yo) is not surjective, then 8 ~ yo (it is homotopic to a constant map).

(f) 71(S™, y0) = {[yo]} for n > 2 and yo € S™.

Exercise 2.21. [Isometries of euclidean spaces are affine maps| Let (X,d) be a euclidean
space. Show that each isometry ¢: (X,d) — (X,d) is an affine map by using the following
steps:

(1) It suffices to assume that p(0) = 0 and to show that this implies that ¢ is a linear map.

(2) p(&2) = L(p(z) + ¢(y)) for 2,y € X. Hint: Use that two points 2,y € X has a unique
midpoint z with d(z, 2) = d(y, z) = 1d(z,y).

 is continuous.

o(A\r) = \p(x) for X € 22 C R.

e(x+y) = p(x) + ¢(y) for 2,y € X.

e(Az) = Ap(x) for A € R.

Exercise 2.22. Let G be a group, N C GG a normal subgroup and
qg: G—-G/N, g~ gN

be the quotient homomorphism. Show that:

(1) If G = N x4 H for a subgroup H, then H = G/N.

(2) There exists a subgroup H C G with G = N x5 H if and only if there exists a group
homomorphism ¢: G/N — G with go o =idg/N-

Exercise 2.23. Let N x, G be a semidirect product of the Lie groups G and N with respect
to a: G — Aut(N). On the manifold G x N we also obtain a Lie group structure by

(g,m)(g'sn") == (g, o)t (n)n'),
and this Lie group is denoted G X, N. Show that the map
O: NxoyG—>Gxy N, (n,g)— (g,a;l(n))

is an isomorphism of Lie groups.
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3 Geometric Structures on Manifolds

3.1 Geometric structures on vector spaces

In this subsection we introduce various types of structures on real vector spaces that will be
used below to define corresponding structures on manifolds. It will turn out that fixing an
ordered basis B determines the finest possible structure, namely an isomorphism tg: R" — V,
and the only linear automorphism in GL(V') preserving this structure is the identity. The
other geometric structures on V' correspond to non-trivial subgroups of GL(V'), such as
GL(V)4 (for orientations), SL(V') (for volume forms), O(V, 8) (for symmetric bilinear forms)
and Sp(V,w) (for symplectic structures). All these groups are Lie groups, and we shall take
a closer look at their structure and topology below.

Definition 3.1. (Oriented vector spaces)
(a) Let V be an n-dimensional real vector space. If B = (by,...,b,) and C = (cyq,...,¢y) are
two ordered bases of V, then we write M = [id]§ for the transition matrix defined by

n
bj: E m;;Ci.
i=1

We say that B and C are equally oriented, denoted B ~,. C if det M > 0. Then ~,,
is an equivalence relation on the set of all bases of V. The equivalence classes are called
orientations and we write or(V) for the set of orientations on V. We write [B] for the
orientation defined by the basis B. Since we either have det M > 0 or det M < 0, there
are only two equivalence classes, i.e. V carries two orientations. Accordingly, we write —[B]
for the opposite orientation. If O is an orientation on V, then the pair (V,O) is called an
oriented vector space.

(b) If (V,0) and (V',0’) are oriented vector spaces, then an invertible linear map ¢: V —
V' is said to be an isomorphism of oriented vector spaces or orientation preserving if (O) =
O', where this expression is defined by ¢([B]) = [p(B)] for an ordered basis B of V.

Remark 3.2. (a) For ¢ € GL(V) and an orientation [B] of V', we have [¢(B)] = sgn(det(y))[B]
In particular, ¢ preserves the orientation if and only if it belongs to the subgroup

GL(V)1 :={p € GL(V): det ¢ > 0}.
For the canonical orientation [eq,...,e,] of R™, we thus obtain the matrix group
GL,(R)+ :={g € GL,(R): detg > 0}.

This is an open subgroup of GL,,(R) so that it has the same Lie algebra as GL,, (R) (Lemma.
(b) A vector space V has no preferred orientation. The group GL(V) acts transitively on
the set of all orientations by ¢[B] = [¢(B)].
(¢) For an n-dimensional real vector space V', we write bas(V') for the set of all ordered
bases B = (b1,...,b,) of V. Once an orientation [B] of V is fixed, it defines a function

s: bas(V) — {1}, (B) — sgn(det(y)).
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This function satisfies the equation

s(p(C)) = sgn(det(p))s(C) for e GL(V),C € bas(V).
Conversely, any function bas(V) — {£1} with this transformation behavior defines an ori-
entation of V by O = {[B]: s(B) = 1}.

Definition 3.3. Let V be an n-dimensional real vector space.
(a) A density on V is a function 6: bas(V) — R with the property

0(eB) = |det(p)|0(B) for B € bas(V),p e GL(V).
In particular, the density is preserved by the subgroup
VGL(V) = {g € GL(V): |det(g)| = 1}.

(b) A volume form on V is a non-zero n-linear alternating function p: V™ — R. It defines
a function
w: bas(V) =R, B=(by,...,b,) = p(b1,...,b,)
satisfying
w(eB) =det(p)p(B) for B ebas(V),p e GL(V).

For vectors v; = ), a;;b; and A = (a;;), expansion of the n-linear form yields
w(vy, ..., vn) = (det A)p(by, ..., by) = (det A)u(B),

so that p is completely determined by the function pi. We conclude that a volume form p on
V' is preserved by the subgroup

SL(V) :={g € GL(V): det(g) = 1}.

Definition 3.4. A pair (V, ) of a K-vector space V' and a symmetric bilinear form
B:V xV — Kis called a quadratic vector space and

O(V,5) :={p € GL(V): (Vo,w € V) B(pv, pw) = B(v,w)}

is called the isometry group or the orthogonal group of (V, ). The symmetric bilinear form
B is called degenerate if there exists a vector v € V' \ {0} with B(v,w) = 0 for all w € V.
Otherwise it is called non-degenerate.

Remark 3.5. (a) For every non-degenerate symmetric bilinear form 8 on an n-dimensional
vector space V', there exists an ordered basis B = (b1, ...,b,) of V such that

1 ie{l,...,p}

bi,bj) = €; 055, € = .
Blbiby) = €10y, e {—1 ie{p+1,...,n}

Such a basis is called an orthonormal basis for 5. It is obtained from a given ordered
basis C = (e1,...,¢,) by the generalised Gram—Schmidt process. The numbers p,n — p
are independent of the choice of orthonormal basis, and the pair (p,n — p) is is called the
signature of 3.

(b) A symmetric non-degenerate bilinear form /5 of signature (n,0) is called a scalar
product on V', and a vector space with a scalar product is called a Euclidean vector space.
A symmetric bilinear form £ of signature (1,n — 1) on V is called a Minkowski metric on V
and V' a Lorentzian vector space.
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Definition 3.6. A pair (V,w) of a real vector space V and a non-degenerate alternating
bilinear form w: V x V — K is called a symplectic vector space and

Sp(V,w) := {¢ € GL(V): w(pv, pw) = B(v,w) Yv,w € V}}
is called the symplectic group of (V,w).
Remark 3.7. (a) Every symplectic vector space (V,w) is even—dimensionalﬂ
(b) Let (V,w) be a real a symplectic vector space of dimension 2n. A Darbouz basis of V
is an ordered basis B = (b1, ....ba,) such that
1 j=14+n
w(bi,bj): -1 j:i—n .
0 otherwise
Every symplectic vector space has a Darboux basis, and there is an algorithm which allows

one to transform a given ordered basis C' = (¢q,. .., c2,) into a Darboux basis. This can be
viewed as the symplectic counterpart of the Gram—Schmidt process (see Exercise |3.1)).

We summarise the relevant structures on an n-dimensional vector space V and the asso-
ciated structure preserving subgroups of GL(V) in the following table:

Structure Data Structure Preserving Subgroup
G C GL(V)

orientation ordered basis on V' GL (V) ={p e GL(V) : dety > 0}

density function 0 : bas(V) — RX VGL(V) ={p € GL(V) : |det p| = 1}

I(pB) = |det p|d(B)

volume form non-zero n-linear alternating | SL(V) = {¢ € GL(V) : dety =1}
function p: V" - R = SL,(R)
po(px...xp)=det(p) p

quadratic symmetric bilinear form isometry group

vector space B:VxV =R O(V,8) ={p e GL(V) : Bo (p x ¢) = [}
special cases:

Euclidean positive definite symmetric o(V,p) =20,

vector space bilinear form g: V xV - R

Lorentzian non-degenerate symmetric O(V,B) =2 O1,n—1

vector space bilinear form g:V xV — R

of signature (1,n — 1)

symplectic non-degenerate alternating symplectic group Sp(V,w) = {¢ € GL(V) :
vector space bilinear form w: V x V=R | wo (¢ x ¢) =w} = Sp,(R)

6This is true more generally for symplectic vector spaces over a field K as long as K is of characteristic
char(K) # 2.
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Exercises for Section [3.1]

Exercise 3.1. Show that every symplectic vector space (V,w) is even-dimensional. Describe
an algorithm that transforms an ordered basis C' = (¢q,. .., c2,) of V into a Darboux basis.

Exercise 3.2. Consider R?" with the standard symplectic form

1 j=i+n
w(e,e)=4¢-1 j=i—n

0 otherwise.

Show that every linear map ¢ € Sp,, (R) is orientation preserving and volume preserving.
Compute the group Sp,,, (R) explicitly for n =1 and n = 2.

Exercise 3.3. Let 8 be a non-degenerate symmetric bilinear form of signature (1,n — 1),
n > 1, on an n-dimensional vector space V' . Show that the restriction of 8 to the orthogonal
complement

v ={weV: B(v,w) =0}
of any vector v with (v,v) > 0 is of signature (0,n — 1).

Exercise 3.4. Let (V| ) be a Lorentzian vector space. Show that there exist vectors v, w € V
with
B(v+w,v+w)| > [B(v,v)] + |B(w, w)].

In other words: there is no counterpart of the triangle inequality for Lorentzian vector spaces.

Exercise 3.5. Let (V, ) be a Lorentzian vector space.

(a) Show that the set M = {v € V' : S(v,v) > 0} of timelike vectors has two connected
components and that two timelike vectors v,w € V are in the same connected component
if and only if S(v,w) > 0. Conclude that the relation v ~ w if f(v,w) > 0 defines an
equivalence relation on the set of timelike vectors and that there are exactly two equivalence
classes.

(b) Let v € V be a timelike vector. Show that each vector w € V' \ {0} with f(w,w) >0
satisfies either 8(v,w) > 0 or (v, w) < 0.

3.2 Geometric structures on manifolds

In this section, we show how the structures on vector spaces can be generalised to correspond-
ing structures on smooth manifolds. The general principle is the same as in Sections [I.1] to
where we defined the relevant structures locally by means of charts in such a way that
they did not depend on the choice of chart and then extended them to the whole manifold.

The only difference is that the structures in the previous subsection are associated with
vector spaces. Their generalisations to manifolds should therefore live on the tangent bundle
T(M) and be defined in terms of vector fields on M, which take the role of the charts in
Sections [[1] to [L4l

The basic idea is to use collections of smooth vector fields on open subsets U C M which
define a basis of T),(M) for each p € U. By means of these vector fields, we can then identify
the tangent spaces T,(M) with R™ and transport the structures on vector spaces to the
tangent bundle T(U).
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Definition 3.8. Let M be a smooth n-dimensional manifold. A local frame on M is an open
subset U C M together with an ordered n-tuple of smooth vector fields (Xi,...,X,) on U
such that X;(p),....,X,(p) form an ordered basis of T,,(M) for all p € U. For two local
frames o = (U, X1,..., Xy), 8= (V,Y1,...,Y,) with UNV # 0, we have
Yilp) =Y 07 0)X;(p)  VpeUNV.
j=1

with smooth matrix valued functions % : UNV — GL,(R). The functions §*% : UNV —
GL,,(R) are called transition functions for the local frames «, 3.

Remark 3.9. (a) A local frame o« = (U, X1,...,X,) on M induces a smooth map
@, : T(U) — R™ whose restriction to T,,(M) is the linear isomorphism

o1, 00y Tp(M) — R™, Z'UiXi(p) — Zviei'
i=1 i=1

fa=(UX,...,X,), 8= (V,Y1,...,Y,) are local frames with U NV # (), then the associ-
ated maps ®u|rwnv), Pslrwnvy : T(UNV) = R™ are related by the transition functions

Dplr, ) = 07 (D) - Ralr, ey VP EUNV.

(b) For all local frames o = (U, X1,...,X,), 8= (V,Y1,...,Y,) with UNV # 0, we
have 0%% = 1 0 %% where ¢ : GL,(R) — GL,(R), g + g~! denotes the inversion map. In
particular, we have %% (p) = idg~ for all p € U.

(¢) If (¢, U) is a chart on M, then the p-basic vector fields form a local frame (U, b7, ..., b7).
Remark implies that the transition functions between the local frames «, 8 associated
with two charts (U, ¢) and (V1) are given by 0% = dy,) (@ o).

Given a local frame o = (U, X1, ..., X,,) on M and one of the structures from the previous
subsection on R™, we can use the linear isomorphisms <I>Q|TP( ay T »(M) — R™ to define a
corresponding structure on each tangent space. To illustrate the general pattern, we consider
the example of a quadratic form g : R™ x R™ — R. In this case, we obtain a quadratic form
g, on each tangent space T,,(M), p € U, by setting

gy (v,w) == g(Po(v), Pa(w)) Yo,w e T,(M),p € U.

Clearly, g, depends smoothly on p due to the smoothness of the vector fields Xi,...,X,, €
V(U). We can now define quadratic form on T,(M) for each p € M by covering M
with the open domains of local frames. Given two local frames o = (U, X5,...,X,),
8= (V,Y1,...,Y,) and a point p € U NV, it is natural to ask how the associated quadratic
forms g, gg on T,(M) are related on U N V. From Remark we obtain

gy (v,w) = g(P5(v), P (w)) = g(6°* (p) @0 (v), 87 (p) P (w))
gp (v, w) = g(Pa(v), Pa(w)) Vo,w € T,(M).

To ensure that the quadratic forms on the overlap of two local frames do not depend on
the choice of the frame, we have to require that the transition functions 6% : UNV —
GL, (R) take values in the isometry group O(R", g) C GL,(R). This motivates the following
definition.
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Definition 3.10. (G-structure) Let M be an n-dimensional smooth manifold and G a sub-
group of GL,(R). Two local frames « = (U, X1,.., X,,), 8 = (V,Y1,...,Y,) on M are called
G-compatible if their transition functions 0,5 : U NV — GL,(R) take values in G. A G-

structure on M is a maximal family G = («;);er of local frames «; = (Uj, Xl(i)7 .. ,X,(f)) which

are pairwise G-compatible, and whose domains cover M: M = |, <1 U;- Maximal means that
every local frame that is G-compatible with all local frames in G is already contained in G.

Example 3.11. (a) Every family of pairwise G-compatible local frames on M whose domains
cover M defines a unique G-structure on M. The proof is analogous to the one for for C*-
atlases. In practice it is advantageous to use as few local frames as possible.

(b) It follows from Remark[3.9](c) that every smooth n-dimensional manifold has a unique
GL,,(R)-structure, which is defined by the local frames associated to the charts (¢, U) of M.

(¢) A GL4(R"™)-structure on M is called an orientation on M. For each local frame
(U, X1,...,X,) on M, the tangent vectors Xq(p), ..., X, (p) define an orientation of T),(M),
and the requirement that the transition functions between two local frames o = (U, X1, ..., X,,)
and 8 = (V,Y3,...,Y,) take values in GL4 (R™) ensures that the orientations for o and S
agree on T,(M) forallpe UNV.

(c) An {idgn }-structure on M is equivalent to the existence of a global frame, i. e. a frame
with domain M. This implies that the tangent bundle T'(M) is diffeomorphic to M x R™.

(d) An SL, (R)-structure on M is equivalent to the existence of a volume form on M,
i. e. an assignment of an alternating n-form vol, € Alt"(7,(M),R) to each point p € M such
that for each chart (¢,U) of M the function vol? : p — vol,(bY,...,b¢) is smooth.

The cases G = O(p,q) and G = Sp,,,(R) are particularly relevant to physics, since they
are related, respectively, to the concepts of a semi-Riemannian manifold and an (almost)
symplectic manifold.

Definition 3.12. (a) A semi-Riemannian manifold is a smooth manifold M together with
an assignment g : p — g, of a non-degenerate symmetric bilinear form g, on T},(M) to each
point p € M such that for all charts (p,U) of M the coefficient functions g;’;- U — R,
P gp(b7, b‘f) are smooth. The map g : p — g, is called (semi-Riemannian) metric on M.
(b) An almost symplectic manifold is a smooth n-dimensional manifold with an assignment
w : p > w, of a non-degenerate alternating bilinear form w, on T, (M) to each point of M
such that for all charts (¢, U) the coefficient functions w, p = w, (b7, b¥) are smooth. The

RE]
map w : p — wy is called an almost symplectic form on M.

Remark 3.13. (a) The smoothness of the coefficient functions g5 : U — R implies that
the non-degenerate symmetric bilinear form g, has the same signature for all p € M. The
signature of the semi-Riemannian manifold (M, g) is defined as the signature of g,.

(b) A semi-Riemannian manifold (M, g) of signature (1,q) (¢ > 1) is called a Lorentzian
manifold and g is called a Lorentzian metricon M. A semi-Riemannian manifold of signature
(¢,0) is called a Riemannian manifold and g is called a Riemannian metric on M.

(c) In the physics literature, the metric g of a semi-Riemannian manifold (M, g) is often
denoted by ds?, and on the domain of each chart (¢, U) one writes

ds® = gfda'da’ for g, (bf(p),b%(p)) = g5;(p)  VpeU.

]
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Example 3.14. (a) We consider S” C R"*!. For p € S", the tangent space T,(S") is the
orthogonal complement p* = {z € R"*! : (p,x) = 0}, where (-,-) is the Euclidean metric
on R"*1. A Riemannian metric on S™ is given by the restriction of (-,-) to p*:

gp(z,y) = (z,y)  Va,yep-.

(b) More generally, for any submanifold M of R™, the restriction of the Euclidean metric
on R” to T,,(M) defines a Riemannian metric on M (see Exercise .

(c) We consider the n-dimensional hyperbolic space H" = {x € R" ™! : (2, 2)y = 1,20 >
0}, where (, )as denotes the Minkowski metric on R™™': (z,y)nr = zoyo — i, ¥iy;. Then
the tangent space T,(H") is the orthogonal complement

p ={z e R""": (2,p)u =0},

and the restriction of the Minkowski metric to p» defines a metric of signature (0, —n) on
H"™ (see Exercise [3.6).

(d) Let M = {z € R®: (x,2)pr = 0,20 > 0} with (z,y)y = zoyo — T1y1 — T2y2 be a cone
in R3. Then the tangent space T),(M) can be identified with the plane

TP(M) = {!L‘ eR?: <p7 m>M = 0} = span{p, <07 _p27p1)}'

The Minkowski metric does not induce a metric on M because the restriction (-, )|, (ar)x 1, (a1)
is degenerate: (p,y)ar = 0 for all y € T,(M).

(e) We consider the tangent bundle M = T'N of an n-dimensional smooth manifold N.
Then in the domain of each chart (¢, U) of N we can identify TU = U x R™ and the tangent
space Tip. ) (T(U)) with Ty (TU) = T,(U) x R" 2 R™ x R 2 T,(U) x T,(U). The pairs
of ¢-basic vector fields (bf,0%), 4,5 € {1,...,n} form a local frame on TU C M. With the
definition

(V7 69), (6 7)) = Gt — 0

P77
we obtain a symplectic form on TU C M. It is easy to show that this symplectic form is

independent of the choice of the chart and defines a symplectic form on M = TN.

As already suggested by the discussion at the beginning of this subsection, a semi-
Riemannian metric of signature (p,q) on M corresponds to an O, ,-structure on M and an
almost symplectic form on M to a Sp,,,-structure on M. We have the following proposition.

Proposition 3.15. Let M be a smooth n-dimensional manifold. An O, 4-structure on M
with n = p 4 q corresponds to a semi-Riemannican metric of signature (p,q) on M, and an
SPam (R)-structure with n = 2m to an almost symplectic form on M.

Proof. (1) Let M be equipped with a O, 4-structure and (U, X1, ...,X,,) a local frame com-
patible with the Oy 4-structure. Then we define for each p € U a symmetric bilinear form of
signature (p, ¢) on T,(M) by

1 ie{l,...,p}

9(Xi(p), X(p)) = €30 where 6i:{—l ie{p+l,...,n}

For each chart (p, W) of M with U NW # 0, the coefficient functions g;’;- are given by
the expressions for the associated y-basic vector fields in terms of the vector fields X;. On
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UNW, we have by (p) = Y 1_; a;;(p)X;(p) with smooth functions a;; € C°°(U N W,R), and
the coeflicient functions are given by

95(p) = go(b7 (0), 65 () = D ai(p)a(p)gp(Xi(p), Xu(p) = D aw(p)asi(p)ex
fi=1 =1

This implies in particular that the coefficient functions are smooth. If (V)Yy,...,Y},) is
another local frame with UNV #  that is O, ,-compatible to X , then we have for p € UNV

9 (Yi(p), Y;(p)) = g5 (0°7(0) X (9), 0" () X;(p)) = 9p(Xi(p), X;(p)) = €:0i5.  (15)

The symmetric bilinear form on T},(M) is thus independent of the choice of the local frame,
and we obtain a semi-Riemannian metric on M.

Conversely, given a semi-Riemannian metric on M and a chart (¢, U) on M, we apply for
each p € U the Gram-Schmidt process to the ordered basis b (p),...,b%(p). As the ¢-basic
vector fields and the coefficient functions g:.'} are smooth, this yields smooth vector fields
Xi,...,Xn € V(U) which satisfy ¢,(X;(p), X;(p)) = € 0;; for all p € U. On the overlap of
the domains of two local frames (U, X1,...,X,,), (V,Y1,...,Y,) with this property, equation
then implies that the transition functions 6% take values in O, .

(2) The proof for the almost symplectic case is analogous. Given a Sp,,, (R)-structure on
M and a frame (U, X1, ..., Xa,,) that is Sp,,, (R)-compatible with this structure, we define
an almost symplectic form w, on T,,(M) by setting

1 Jj=t+m
wp(Xi(p), X;(p) = -1 j=i—m (16)
0 otherwise.

The required properties of the almost symplectic form w : p +— w, then follow as in the
semi-Riemannian case.

Conversely, given an almost symplectic form w : p — w, on M and a chart (¢,U) on M,
we apply for each p € U the symplectic counterpart of the Gram—Schmidt process to the
ordered basis b{(p), ..., b¢(p) to obtain a Darboux basis (see Exercise [3.1)). The smoothness
of the p-basic vector fields and of the coefficient functions w;; ensures that the resulting
vector fields are smooth. This defines a local frame (U, X7, ..., X,,) which satisfies (16). For
any two such frames with overlapping domains, one finds that the transition functions take

values in Sp,,, (R). O

Remark 3.16. It is also possible to consider subgroups G C GL,,(R) that are obtained as
intersections G = (G N G4 of two subgroups introduced above. In that case, a manifold
M with a G-structure exhibits both structures associated with the subgroups G; and Gbs.
For instance, we have SO, = GL,(R"™) N O,. A SO,-structure on M corresponds to a
metric and an orientation on M. Similarly, we have L, = SOq,_1 N GL4(R") and LT._ =
L, N LT An L, -structure on M therefore consists of a Lorentzian metric on M together
with an orientation and an Ll—structure on M of a Lorentzian metric on M together with
an orientation and a time orientation. Some examples are given in the following table.
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Group G Structure on manifold Structure on tangent spaces

G = GLL(R™) | orientation oriented bases of T),(M)

G=0,, semi-Riemannian manifold | symmetric, non-degenerate
bilinear form g, : T,(M) x T,,(M) - R
of signature (p, q)

G=01, Lorentzian manifold symmetric, non-degenerate
bilinear form g, : T,(M) x T,(M) - R
of signature (1, n)

G =0, Riemannian manifold scalar product g, : T,(M) x T,(M) - R

G = Spy,, (R) | almost symplectic manifold | almost symplectic form w,, : T,(M) x T,(M) — R

G =S50, oriented Riemannian scalar product g, : Tp(M) x T,(M) - R
manifold and oriented bases of T),(M)

G=1L" Lorentzian manifold symmetric, non-degenerate
with time orientation bilinear form g, : T,(M) x T,(M) - R

of signature (1,n) together with choice
of connected component of
{veT,(M): gp(v,v) >0}.

G= Ll oriented Lorentzian symmetric, non-degenerate
manifold with time bilinear form g, : T,(M) x T,(M) — R
orientation of signature (1,n) together with oriented

basis of T),(M) and with choice
of connected component of
{veT,(M): gp(v,v) =0}

After developing the concept of a manifold with a G-structure, it is natural to investigate
smooth maps between manifolds with G-structures that preserve G-structures. Let (M, GM),
(N,G") be manifolds with a G-structures and f : M — N a smooth map. If f is compatible
with the G-structures, it should relate the local frames in GM to the ones in GV. Concretely,
for all local frames (U, Xi,...,X,) of X there is a local frame (V,Y7,...,Y,,) of N with
VN f(U) # 0 and X; and Y; are f-related. As local frames are required to form a basis of
T,(M) for all points in their domain, this implies already that T,,(f) : T,(M) — Ty, N is an
isomorphism for all p € M. By the Inverse Function Theorem, it follows that f : M — N is
a local diffeomorphism, i. e. that for every point p € M there exists an open neighbourhood
U of p such that f|y : U — f(U) is a diffeomorphism.

Definition 3.17. Let G C GL,(R) be a subgroup and M, N smooth manifolds with G-
structures GM, GN. A local isomorphism of G-structures is a smooth map f: M — N such
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that for all points p € M there exists an open neighbourhood U such that f|y : U — f(U)
is a diffeomorphism and a local frame a = (U, X1, ..., X,) in G™ such that

fea= (f(U), fuX1,..., [+ Xn)

is a local frame in GV. An isomorphism of G structures is a local isomorphism of G-structures
that is a diffeomorphism. A (local) isomorphism of O, 4-structures is called a (local) isometry,
a (local) isomorphism of Sp,,,-structures a symplectomorphism.

Remark 3.18. (a) For any smooth manifold M with a G-structure, the isomorphisms
f: M — M of G-structures form a group, denoted Autg(M). If M, N are smooth manifolds
with G-structures, then an isomorphism f : M — N of G-structures defines a group homo-
morphism @ : Autg(M) = Autg(N), ¢ — fogo f~1. The group homomorphisms ® are
functorial: if g : N — P is another isomorphism of G structures, then ®,,¢ = ®, 0 ®¢.

(b) If M is a smooth manifold, N a smooth manifold with a G-structure G and f : M —
N alocal diffeomorphism, then there exists a unique G-structure on M such that f: M — N
is a (local) isomorphism of G-structures. This G-structure is called the pull-back of G.

Example 3.19. (a) Let (M, g), (N, h) be semi-Riemannian manifolds. Then it follows from
the proof of Proposition that a diffeomorphism f: M — N is a (local) isometry if and
only if the linear isomorphism T}, (f) : T,(M) — Ty (V) is an isometry for all p € M:

i) (Tp(F)o, Tp(fHw) = gp(v,w)  Vo,w € T,(M).

The group of isometries of a semi-Riemannian manifold (M, g) is called the isometry group
of M and denoted Isom(M). If M is a smooth manifold, (N, h) a semi-Riemannian manifold
of signature (p,¢) and f : M — N a local diffeomorphism, then the pull-back of the O, -
structure on N determines a metric f.h of signature (p,¢) on M. This metric on M is called
the pull-back of A by f and given by

(feh)p(v,w) = AT, (f)v, Tp(fHw) Vp e M,v,w e T,(M).

(b) Similarly, we find for almost symplectic manifolds (M,w) and (N,n) that a local
diffeomorphism f : M — N is a symplectomorphism if and only if the linear isomorphism
T,(f) : Tp(M) — T,(N) satisfies

Nf o) (Tp(f)v, T (flw) = wp(v, w) Yo, w € T,(M).

If M is a smooth manifold and (N, 7n) an almost symplectic manifold, then the pull-back of
the Sps,,-structure on N determines an almost symplectic form f.n on M

(fem)p(vsw) = 0y (Tp(flo, Tp(Hlw) — Vo,w € T (M).

Example 3.20. (a) We consider the n-Sphere S™ with the Riemannian metric induced by
the Euclidean scalar product on R"*!

gp(z,y) = (r,y)  Va,y € T,(S") = p™.
Then a smooth map f : S" — S" is an isometry if and only if

(T (f)v, Tp(flw) = (v, w) Vp e S, v,w e pt.
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We will show later (see Lemma that an isometry on a connected semi-Riemannian
manifold is determined uniquely by f(p) and T,(f) : T,(M) — T,(M) for a given point
p € M. As O,11 acts transitively on S™, there is a unique element A € O,, 1 with f(p) = Ap
and T,(f)z = Az for all x € T,(M). This implies f(q) = Ag for all ¢ € S”. Conversely, for
every A € Opy1, f:S" = §", g — Aq is an isometry. The isometry group of the sphere S™
is therefore given by Isom(S™) = Op41.

(b) We consider n-dimensional hyperbolic space H™ with the metric of signature (0, —n)
induced by the Minkowski metric on R®*!. Then a smooth map f : H” — H" is an isometry
if and only if

(To(F)os Ty(Pwhar = (v, w0y ¥p € HY v, € po.

As in the case of the sphere, this implies that f is of the form f(z) = Az with A € Oy .
To map the hyperboloid H™ to itself, f must preserve the time orientation, which implies
A € LT. Conversely, for every A € LT, f: H* — H", f(q) = Aq is an isometry. This implies
that the isometry group of H" is Isom(H") = LT.

Exercises for Section [3.2]

Exercise 3.6. Show that the Minkowski metric on R?*!
n
(@, y)m = Toyo — Y Ty
i=1

induces a metric of signature (0, —n) on n-dimensional hyperbolic space
H" = {x € R"™': (2,2)p = 1,20 > 0}.
Hint: It is sufficient to show that the restriction of {, )as to
T,(H") = {z € R™1: (p,z)pr = 0}
is non-degenerate and of signature (0, —n).

Exercise 3.7. Let M be a submanifold of R™. Show that the restriction of the Euclidean
metric on R” to T,,(M) defines a Riemannian metric on M. Hint: Recall Example

Exercise 3.8. Let (M, g) be a Lorentzian manifold. A timelike vector field on M is a smooth
vector field X € V(M) such that g,(X(p), X(p)) > 0 for all p € M. A Lorentzian manifold is
called time-orientable if it admits a timelike vector field. A time orientation of M is a choice
of a timelike vector field on M.

(a) Show that a Lorentzian manifold is time-orientable if and only if it has a LT-structure
and that each time orientable manifold has exactly two time orientations.

(b) Construct an example of a Lorentzian manifold (M, ¢g) that is not time-orientable.

Hint: Consider the Mdbius strip M and construct a Lorentzian metric on M from the
Minkowski metric on R2.
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3.3 Semi-Riemannian geometry

In this subsection we will focus on structures associated with semi-Riemannian manifolds
(M, g). The first important concept is the notion of a (torsion-free and metric) connection
on M, which lies at the foundation of geometric notions such as parallel transport of vector
fields, geodesics and curvature. While torsion-free connections exist in the more general
context of smooth manifolds and are in general non-unique, the requirement of compatibility
with a semi-Riermannian metric selects a unique torsion-free and metric connection, the
Levi-Civita connection.

Definition 3.21. Let M be a n-dimensional smooth manifold. A connection on M is a map
V:V(M) X VM) = VM), (X,Y)— VxY such that

(C1) is R-linear in both arguments: for all Aj, Ay € R and X3, X»5,Y71,Ys € V(M)
Vaxi+uxY =MV, Y+ AVy,Y, Vx (MY +A2Y2) = MiVxY) + VY.
(C2) satisfies VyxY = f-VxY and Vx(f-Y) = f-VxY + Lxf Y for all f € C°(M,R)
and X,Y € V(M).
A connection is called torsion-free if for all vector fields X,Y € V(M)
ViV — Vy X = [X,Y].
A connection V on a semi-Riemannian manifold (M, g) is called a metric connection if
Lz9(X,Y)=g(VzX,Y) +g(X,VzY) VX,Y,Z € V(M).

An important property of a connection is its locality, which is guaranteed under an addi-
tional assumption on the smooth manifold, namely the the requirement of paracompactness.
Smooth manifolds without this property are generally considered pathological, and many
authors include this property in the definition of a smooth manifold. In the following, we
will assume without further mention that all smooth manifolds under consideration are para-
compact.

Definition 3.22. A topological space X is called paracompact if every open cover (U, )aca
of X has a locally finite refinement. This means that there exists an open cover (Vz)gep of
X such that for every § € B there is an a € A with V3 C U, and for every p € X there is
an open neighbourhood W, C X such that {8 € B : V3N W, # 0} is finite.

It can be shown, see for instance [Br93|] or [HN11] p 397 ff, that any smooth paracompact
manifold M has smooth partitions of unity:

Lemma 3.23. Let M be a smooth paracompact manifold. Then for any open cover M C
Uaca Ua, there exists a smooth partition of unity. This is a set of smooth functions (f;)ier,
fi € C°°(M,R) such that

(P1) For all i € I there exists an o € A with supp(f;) C U,.
(P2) For all p € M, we have f;i(p) # 0 for only finitely many i € I.
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(P3) for all p € M the functions f; satisfy 0 < fi(p) <1 for alli €I and ., fi(p) =1

This implies that for all open subsets Uy, Uy C M with U, C Uy compact, there exists a bump
function, e. g. a smooth function f € C*°(M,R) with 0 < f <1, fly, =1 and f[ynv, = 0.
Such a bump function is given by

f= Z fi-

i€l,supp(f;)CU2

The existence of smooth partitions of unity and of bump functions implies that connec-
tions on a semi-Riemannian manifold (M, g) have a locality property, namely that the value
of VxY in a point p depends only on X (p) and the behaviour of the vector field Y in a small
neighbourhood of p. To prove this, we use the following lemma.

Lemma 3.24. (a) Let M be a smooth manifold and F : V(M) — C*(M,R) or F : V(M) —
V(M) a linear map that satisfies F(f - X) = f-F(X) for all X € V(M) and f € C>*°(M,R).
Then F(X)(p) depends only on X (p).

(b) If (M, g) is a semi-Riemannian manifold and F : V(M) — C*(M,R) a linear map
with F(f - X) = f-F(X) for all X € V(M) and f € C>(M,R), then there exists a unique
vector field Y € V(M) with F(X) = g(Y, X) for all X € V(M).

Proof. (a) We first show that F(X)(p) depends only on X|y for any open neighbourhood
V of p. Let V be an open neighbourhood of p such that X|y = 0. Then by means of
bump functions, we can construct a function f € C*°(M,R) with f|y = 0 for an open
neighbourhood U C V' of p and f[yny = 1. This implies f - X = X and therefore

F(X)(p) = F(f - X)(p) = f(p) - F(X)(p) = 0.
Due to the linearity of F, this implies that F(X)(p) depends only on X|y .
Let now X be a vector field on M with X(p) = 0. Then there is a chart (¢,U) with

p € U and F(X)(p) depends only on X|y. The vector field X|y is given uniquely in terms
of the ¢-basic vector fields as X|y = Y1 #;bf with z; € C*°(U), z;(p) = 0. This yields

F(X)(p)=F (Z ;- bf) Z zi(p)F(b¥) = 0.
i=1

(b) To demonstrate that there is a vector field Y on M with F(X) = ¢g(X,Y) for all
X € V(M), we consider a chart (¢,U) with p € U. Denoting by g7 € C*(U,R) the
components of the matrix inverse of the coefficent matrix of g, we define a smooth vector
field Y e V(U) b

n

Y(p) = Z (b“’)g”b” where Zg )95 (p) = i Vi,ke{l,...,n}, peU.

i=1
Then we have for all vector fields X € V(U )
g(X,Y)= > FO))glgX.bf) = Y apF(b9)gdgf, = ij F(X).
ij=1 ig, k=1

As g is non-degenerate, two vector fields Y € V(U), Y’ € V(V) with this property must agree
on UNV. We can therefore cover M with charts to obtain a smooth vector field Y on M. O
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Using this lemma, we can now prove that any connection on a semi-Riemannian manifold
is local:

Lemma 3.25. Let (M, g) be a semi-Riemannian manifold. IfV is a connection on M, p € M
and X, Y € V(M), then VxY (p) depends only on X(p) and Y|y for any neighbourhood V
of p. We obtain a bilinear map V : TM x V(M) - V(M), (v,Y) — V,Y.

Proof. The property (C2) of a connection together with Lemma implies that VxY (p)
depends only on X (p). To show the second statement, we consider an open neighbourhood
of p such that Y|y = 0. Then by means of bump functions, we can construct a function
f € C®(M,R) with fly = 0and f|pnv = 1 for an open neighbourhood U C V. This implies
f+-Y =Y and therefore

VxY(p) =Vx(f-Y)(p) =Lxf(p) Y(p)+ f(p) VxY(p) =0.
Hence VxY (p) depends only on Y|y for any neighbourhood V' of p. O

The locality properties of a connection allow one to characterise it as a sum of derivatives
of vector fields and a component that is function-linear in both arguments. This leads to the
notion of Christoffel symbols.

Definition 3.26. Let M be a smooth manifold and V a connection on M. Then, in any
local chart, the Christoffel symbol associated with V is the smooth bilinear map I" : V(M) x
V(M) — V(M) defined by

VxY =4dY - X +T'(X,Y).

Remark 3.27. (a) Due to the properties of the connection and the derivative, we have for
all vector fields X,Y € V(M)

I(f-X,Y)=f VxY—f-dY - X = f-T(X,Y),
I(X,f-Y)=f VY +Lxf Y—f-dY - X —Lxf YV =f -T(X,Y).

It follows from Lemma that T'(X,Y)(p) depends only on X(p) and Y (p) and hence
defines for each p € M a bilinear map I'y, : T,(M) x T,,(M) — T,(M).

(b) This implies in particular that we can characterise the Christffel symbols and hence
the connection uniquely in terms of the p-basic vector fields associated with charts (¢, U)
on M. Let M be a smooth manifold and (p,U) a chart on M. The Christoffel symbols
associated with (¢, U) are the smooth functions Ffj € C*(U,R) defined by

Vb (p) =T(b¢,09) = > TE(p)bf(p)  VpeU,
k=1

n

where b7, ..., b% are the p-basic vector fields on U. For vector fields

i=1 i=1
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we obtain
n

Vi - z S oG+ 3 |

i= ¢ i,k=1

In physics textbooks connections are often called covariant derwatwes and instead of this

formula, one often uses the shorthand notation yj = y + I y where yj denotes coeffi-
cient functions of VY, v’ P = B—Z and the summation over repeated indices is understood

(Einstein summation convention).
(c) A short calculation (see Exercise [3.9)) shows that a connection V on M is torsion-free
if and only if its Christoffel symbols are symmetric
k k ..
i =ry Vi, j, ke {l,...,n}

for each chart (p,U) of M. If (M, g) is a semi-Riemannian manifold, a connection on M is
a metric connection if and only if for each chart its Christoffel symbols satisfy
39ij
o

:Z(Fk]glz‘i'ri:iglj) V’L7]ak € {1,771}
=1

It turns out that the condition of metricity determines a torsion-free connection on a
semi-Riemannian manifold (M, g) uniquely and allows one to express the connection as a
function of the semi-Riemannian metric g, the Lie derivatives and the Lie bracket on M.

Theorem 3.28. Let (M,g) be a semi-Riemannian manifold. Then there erists a unique
torsion-free, metric connection on M. It is called the Levi-Civita connection and determined
by the Koszul-formula

QQ(VXY, Z) = Lxg(Y, Z)+£Y9<Z7 X)_EZQ(X7 Y)—g(X, [Y, Z])+9(K [Z’ X])—i—g(Z, [X’ Y])

Proof. (a) Uniqueness: Let V be a torsion-free, metric connection on M. Then we can verify
that it satisfies the Koszul-formula by a direct calculation:

Lxg(Y,Z2)+ Lyg(Z,X) = Lz9(X,Y) = g(X, [V, Z]) + g(Y, [Z, X]) + 9(Z, [X,Y])
=9(VxY, Z)+g(Y,VxZ)+g(VyZ,X) + 9(Z,VyX) = g(VzX,Y) — g(X,VzY)
—9(X,[Y, Z]) +9(Y, [Z, X]) + 9(Z,[X,Y])
=g(X,VyZ —-V,Y - [Y,Z])+g(Y,VxZ -V X — [X,Z]) + g(VxY + Vy X + [X,Y], 2)
=2¢9(VxY, Z).
As g is non-degenerate, VxY (p) is determined uniquely by ¢,(VxY (p), Z(p)) for all vector
fields Z € V(M). The Koszul formula thus characterises VxY (p) uniquely for all p € M.
(b) Existence: For X,Y € V(M), we define a map Fyy : V(M) — C®(M)
Fxy(Z) = Lxg(Y,Z)+ Lyg(Z, X) = Lz9(X,Y) = g(X,[Y, Z]) + g(Y, [Z, X]) + 9(Z, [ X, Y]).
It follows from the linearity of g and the Lie derivative that F'x y is linear. For f € C*°(M,R),
we compute
Fxy(f-2)=Lxf gY,2)+f Lxg(Y,Z)+Ly [ - 9(Z,X)+f - Lyg(X,Z)— [ Lz9(X,Y)
~Lyf-9(X,2)~f - 9(X, [V, Z))-Lxf-9gY,2)+f -9, [Z, X))+ 9(Z,[X,Y])
=f-Fxy(Z).
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Lemma then implies that Fx y(Z)(p) depends only on Z(p) and that there exists a
unique vector field VxY € V(M) with ¢(VxY,Z) = Fx y(Z). The properties of the con-
nection then follow by a direct calculation from the definition of VxY. O

Remark 3.29. The Koszul formula allows one to explicitly compute the Christoffel symbols
of the Levi-Civita connection on a semi-Riemannian manifold (M, g) from the coefficient
functions of the metric. Let (¢,U) be a chart on M and denote by g7 € C>(U,R) the
components of the matrix inverse of the coefficient matrix of g with respect to ¢:

> g2 (p)gin(p) =0u  VpeU.
=1

Then the Koszul formula implies that the Christoffel symbols of the Levi—-Civita connection

on M are given by
1 < 09, 0g; 09i;
F?j:*ZQZZ ggl+ git _ 0gij .
2= dpi  Opj  Opr

Example 3.30. We consider the Euclidean metric on R? and the chart (¢,U) defined by
polar coordinates

U=R?\{(z,y) €R?*:y =0,z >0}, @ 1(r,0) = (rcos,rsinf).
Then we have:
bf (rcos @, rsinf) = (cosb,sinh), by (rcos,rsinf) = (—rsinb,r cosb)
and the coefficient functions of the Euclidean metric with respect to ¢ are given by
g5 = EbE) =1, ggy = (b5,05) =12 g = (bE,bF) =0,

where we omitted the argument (r cosf,rsinf) to keep the notation simple. The inverse of
the coeflicient matrix of g is given by

1
9 =1 9= gl =0

and the Christoffel symbols of the Levi-Civita connection take the form

T 1 3990 1 39“0 1 X
00 — _5 8ie = -, ].—‘29 = Pgr = ﬁ 8’{0’9 = ;, FZ = 0 otherwise.

In the following, we will always implicitly assume that a given connection on a semi-
Riemannian manifold is its Levi-Civita connection, and when we speak about Christoffel
symbols of a semi-Riemannian manifolds, this refers to the Christoffel symbols of its Levi-
Civita connection.

The name “connection” is motivated by the fact that a connection allows one to transport
tangent vectors between the tangent spaces in different points on M and hence “connects”
different tangent spaces. This leads to the concept of parallel transport. To see this, we
need the to introduce the notion of a vector field along a smooth curve ¢ : I — M and its
derivative. This is essentially a vector field on M which is defined only on the image ¢(I).
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Definition 3.31. Let M be a semi-Riemannian manifold and ¢ : I — M a smooth curve. A
vector field along c is a smooth map X : I = T(M) withmpyyo X =c. U X : T = T(M) is a
vector field along ¢, we define its derivative V. X : T — T(M) by

(VeX)(t) = X (1) + T(e(t), X (1)),

where I' denotes the Christiffel symbols of (M, g). A vector field X : I — T(M) along c is
called parallel if V. X (t) =0 for all t € I.

Lemma 3.32. Let (M,g) be a semi-Riemannian manifold and ¢ : I — M a smooth curve.
Then the derivative along ¢ has the following properties:
(a) If (o, U) is a chart of M, ¢: I — U a smooth curve and X a vector field along c, then

n

VeX(t)=> | an()+ Y Thct)e®)a;t) | bf(et) Vel

k=1 ij=1

where ¢; = p;oc: I — R and X[y = > 1z - (bf o¢).
(b) It is linear in X : for all vector fields X,Y : I — T(M) along ¢ and all \,p € R:

VeAX +uY) = AV X + uV.Y.
(¢) For all vector fields X : I — M along ¢ and all smooth functions f: I — R:
Ve(f X)=f-X+ [ VeX.
(d) For all vector fields X,Y : I — T(M) along c:

00 (X0, Y (1) = g2 (VX (), Y (1) + g (X(0), VY (1)

(e) For all vector fields X € V(M):
V(X oc)(t) = (Ve X)(c(t)).

Proof. (a) This follows by a direct computation from the formulas for the Christoffel symbols
in terms of the y-basic vector fields for a chart (¢, U). Properties (b), (¢) and (e) follow di-
rectly from the definition. To demonstrate (d), we compute 4 g, (X (t), Y (¢)). The identity
then follows from the chain rule and the fact that V is a metric connection. O

Proposition 3.33. Let M be a semi-Riemannian manifold and ¢ : I — M a smooth curve.
Then there exists for eacht € I and v € T )M a unique parallel vector field X, : I — T(M)
with X,(t) =v. Fort,t' € I, we define the parallel transport map

Ptczyt : Tp(t)(M) — Tc(t’)M7 N Xv(tl)

The parallel transport map is a linear isometry and has properties analogous to the properties

of the flows in Section [1.4):
Py =idr, () P, oPf, =P, Vit trel,

and for every vector field X : I — T (M) along c:
P (X)) - X

t—t t—t

= V.X(1).
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Proof. (a) Let (U, ¢) be a chart of M with ¢(t) € U. In local coordinates the condition that
X is parallel reads

ai(t) + > Thp(et)aj(t)én(t) =0 Vtec ' (U),
j,k=1

where ¢; = @;0c : ¢ }(U) — R are the coefficient functions of the curve ¢ and x; €
C>(c }(U),R) the coefficient functions of X. This is a first order linear ODE in the co-
efficients of X and hence has a unique solution for every set of initial values z;(t) = wv;,
i € {1,...,n} on the connected component of ¢~!(U) which contains t. By covering c(I)
with charts we obtain a unique vector field X, : I — T(M) along ¢ with X, (t) = v.

(b) That the parallel transport map is a linear isometry can be seen as follows from
Lemma [3.32] (d): If X, : I — T(M) is the parallel vector field along ¢ with X, (t) = v, then

4
79

and therefore go () (X (t'), X(t')) = ge)(v,v) for all t' € I.

(c) The first two properties of the parallel transport follow directly from the uniqueness
property of parallel vector fields. To show the last one, we choose a chart (o, U) of M with
c(t),c(t') € U and denote by Y = 3" y; - (bf o ¢) the unique parallel vector field along ¢
with Y (#') = X (¢'). Then the mean value theorem implies that there exists an s € [¢,¢'] with

) (X(W), X(1)) = 2900 (VX (), X () =0 W €T

P Z0l) _ () = = 3 T (el)s)én (o).
Q=1

Using the smoothness of X and Y, we obtain

lim yk(t) —x(t) uk(t) — ye(t') + yr(t') — 2k (1)
t st t—t t—t t—t

= lim i I} (c(5))yi(s)é;(s) + lim yelt) — i (t)

st — t—t t—t
= d(t) + Y Th(e)yi(t)e;(8) = d(t) + D TH(e(t)zi(t)e(8) = VeX ().
i,j=1 i,5=1

O

Example 3.34. Consider M = R" with either the Euclidean or the Minkowski metric and let
¢: I — M be asmooth curve. Then T,M = R™ and a vector field X = Y"1 | ze; : t — T'(M)
along c is parallel if and only if

zp(t)=0 Vtel,ke{l,...,n}.
This implies that X is constant and the parallel transport map is given by

P y(v) =v Vv € R™.
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Lemma 3.35. Let (M,g), (N, h) be semi-Riemannian manifolds, ¢ : I — M a smooth curve
and f : M — N a local isometry. Then a vector field X : I — T(M) along c is parallel if
and only if the vector field X = T(f) o X : I — T(N) along the curve f o c is parallel. The
parallel transport map satisfies:

Ty (f) o P, =Pl o Ty (f) VWt €l

Proof. 1t is sufficient to prove this statement for vector fields in the domains of charts. Let
(¢,U) be a chart of M with f|y injective. Then (V = f(U),¥ = p o (f|v)) is a chart of N.
Since f|y : U — f(U) is an isometry, we have for the coefficient functions of the metrics g, h:

Wi (F(0)) = by (6] (F (1)), 0 (F(2))) = by (Tp(HB7), T £)(B7)) = 9 (0F . 57) = g5 (),

where we used that the ¢- and ¢-basic vector fields are f-related on U: b¥ (f(p)) = T, (f)b? (p).
Via the Koszul formula, we obtain for the Christoffel symbols F’?j on M and ij on V:

Q5 (f(p) =T5;(p)  VpeU.

A vector field Y = Y"1 | y; - (bf oc) : I — T(M) along c is parallel if and only if its coefficient
functions satisfy the differential equation

k(1) + ) TE(e(t)i(t)é;(t) = 0.

J,k=1

Using the fact that the basic vector fields for ¢ and 1 are f-related and the relation between
the Christoffel symbols, we find that this is the case if and only if the vector field T(f) oY =
S i - (Y o foc) along f o c satisfies

ge(t) + Y Q5 (f(e®)gi(t)és(t) = 0,

jk=1
with 1; 0 (foc) = (i 0 (flv)™!) o (f oc) = ¢; o c. This proves the claim. O

The concept of vector fields along curves allows one in particular to consider the derivative
¢: I — T(M) of each smooth curve ¢ : I — M as a vector field along c¢. It is then natural
to ask for which curves this derivative is a parallel vector field along c¢. This leads to the
concept of a geodesic.

Definition 3.36. Let M be a semi-Riemannian manifold. A smooth curve ¢ : I — M is
called a geodesic if the vector field ¢ : I — T(M) along c is parallel.

Remark 3.37. (a) If (p,U) is a chart of M with ¢(I) C U, then c is a geodesic if and only
if Ve¢ = 0. This is the case if and only if its component functions ¢; = @; oc: I — R satisfy
the second order differential equation

E(t)+ Y Thle(t)et)é(t) =0 Viel
j,k=1
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This implies in particular that for every p € M and v € T,,(M) there exists a unique geodesic
c: (—€€) = M with ¢(0) = p, ¢(0) = v.

(b) If (M,g) and (N,h) are semi-Riemannian manifolds and f : M — N is a local
isometry, then ¢ : I — M is a geodesic of M if and only if foc: I — N is a geodesic of N.
This follows directly from Lemma [3.35

(c) Uo to affine parameter transformations ¢t — at + b with a € R\ {0},b € R, every
geodesic ¢ : I — M on a semi-Riemannian manifold (M, g) is parametrised according to
arclength, because Lemma [3.32] implies:

%gc(t)(c’(t), ¢(t)) = 29 (Vee(t), c(t) =0 Vtel.

(d) If M = R™ and g a non-degenerate bilinear form on M, then the geodesics of (M, g)
are straight lines that are parametrised according to arclength. If one takes the standard
chart (id, R™), all Christoffel symbols vanish, and the geodesic equation reduces to

This implies that all geodesics are of the form ¢(t) = p + tv.

Example 3.38. In Einstein’s theory of general relativity, a universe is described by a four-
dimensional Lorentzian manifold (M, g) that solves Einstein’s equations. As g, (¢(t), é(t)) is
constant for each geodesic, one distinguishes three types of geodesics. A geodesic ¢: [ — M
with ¢(t) # 0 is called timelike if g (¢(t),é(t)) > 0, spacelike if g (¢(t),é(t)) < 0 and
lightlike if ge(s)(¢(t), ¢(t)) = 0 for all ¢ € I. Timelike geodesics describe the motion of point
masses in free fall, i. e. point masses that are not subject to external forces other than
the gravitational force. Lightlike geodesics describe the motion of light. The fact that
Ge(t)(€(t), ¢(t)) is constant along each geodesic ensures that this description is consistent.

Although the differential equations in Remark allow one in principle to determine
the geodesics of a manifold by covering it with charts and solving the geodesic equation on
the domain of each chart, in practice there are often better ways to determine geodesics. One
way is to use the fact that isometries map geodesics to geodesics together with the uniqueness
property of geodesics.

Example 3.39. We consider S with the metric induced by the Euclidean metric on R".
Then the unique geodesic ¢ : R — S™ with ¢(0) = p € S® and ¢(0) = = € p* \ {0} is given by

c(t) = peos(t||z]) + H%H sin(t[[[[)
and the unique geodesic with ¢(0) = p and ¢(0) = 0 by ¢(t) = p for all t € R.

Proof: The case ¢(0) = 0 is obvious. Let ¢ : [—€,¢] — S™ be the unique geodesic with
c(0) = p € S" and ¢(0) = x € p* \ {0}. Consider the plane E,, = span{z,p} C R**!
and the reflection R, , : R"™1 — R"! on this plane. Then R, , € O, = Isom(S") is an
isometry and hence maps c to another geodesic d = R, poc: [—€,¢] = S". As R, ;o = z and
R, .p = p, we have d(0) = ¢(0) = p and d(0) = ¢(0) = z. Due to the uniqueness property of
geodesics this implies d(t) = R, pc(t) = c(t) for all ¢ € [—¢,€]. Hence, for all ¢t € [—¢, €] the
point ¢(t) must lie in the intersection E, ; NS™. The geodesic ¢ is then determined uniquely
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by its initial values and the requirement that it is parametrised according to arclength. The
curve .
c(t) = peos(t||z]) + Tl sin(t]|z|]).

satisfies these requirements and hence coincides with the geodesic c.

The fact that for every point p € M and every tangent vector v € T,(M) there is a
unique geodesic ¢, : (—€,¢) — M with ¢,(0) = p and ¢é,(0) = v can be used to construct
a diffeomorphism from an open neighbourhood of 0 in the tangent space T),(M) to an open
neighbourhood U of p. The associated coordinates have particularly nice properties and can
be viewed as coordinates adapted to the geometry of M near p.

Definition 3.40. Let (M, g) be a semi-Riemannian manifold, p € M and define
D, ={veT,(M): the geodesic c on M with ¢(0) = p and ¢(0) = v is defined on [0, 1]}.

The map exp,, : D) — M, v+ ¢,(1) is called ezponential map on M in p. It extends to a
smooth map exp : D = UpeM D, — M with exp |1, (ar) = exp,, for all p € M.

Remark 3.41. (a) The exponential map exp,, : D,(M) — M satisfies exp,(tv) = ¢4, (1) =
cy(t) for all t € [0,1] and v € D,,. This follows directly from the uniqueness property of the
geodesics. In particular, this implies that D), is star-shaped for allp € M: v € D, = tv € D,
for all t € [0, 1].

(b) The tangent map Ty(exp) : ToT,(M) — T,(M) is the canonical isomorphism from
Section [[.21

(¢) The Inverse Function Theorem for manifolds implies that there is an open subset
V C Tp(M) of 0 such that exp, : V — exp, (V) is a diffeomorphism. However, in general V,
is smaller than D), and the map exp,, : D) — exp(D,) is not a diffeomorphism.

(d) If ¢ : M — M is an isometry, then the exponential map satisfies

¥ o epr = expgp(p) OTI)(QD)

This is the semi-Riemannian analogue of formula in Proposition and can be seen
as follows: As ¢ is an isometry, for every geodesic v : [0,1] — M, () = exp,(tv) with
v(0) = p, v € D, C T,(M), the image ¢ o~y is a geodesic with ¢ o y(0) = ¢(p) and
(po7)(0) =Ty(p) o7 (0) = Ty(p)v. This implies

poexp,(v) = poy(l) = exp,, (¢ ©7)(0) = expy ) (Tp(p)v).

Since for every v € D,T,(M) there exists a geodesic « : [0,1] — M with v(0) = p, 4(0) = v
this proves the claim.

We can use the exponential map to obtain a particularly nice set of coordinates around
each point p € M. The idea is to exponentiate the coordinate axes associated with an
orthonormal basis of g,.

Definition 3.42. Let (M, g) be a semi-Riemannian manifold, p € M and (v1,...v,) an
orthonormal basis of T,(M). Consider the linear isomorphism A : R* — T,(M), z —
>oi, xiv;. Then there exist open neighbourhoods V of 0 € R™ and U of p such that expoA :
V' — U is a diffeomorphism and (¢ := (exp, 0A)~1,U) is a chart on M. The associated
coordinate functions ¥; : U — R are called normal coordinates around p.
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Proposition 3.43. Let (M,g) be a semi-Riemannian manifold, p € M and (U,v) normal
coordinates around p. Then the coefficient functions of the metric and the Christoffel symbols
for (¥, U) in p take the form

9;/;- (p) = €idij, I (p) =0.

Proof. By definition the 1-basic vector fields are given by b?’ = To(exp, oA)e; = To(exp,,)vi,
and we obtain for the coefficient functions of the metric

95:(p) = gp(bY,bY)) = gp(To(exp,)vi, To(exp,)v;) = gp(vi, v;) = €6y
By definition, the unique geodesic ¢ : (—e,e) — M with ¢(0) = 0 and ¢(0) = Yo wv;
is given by c(t) = exp, oA(tw). We have ¢;(t) = 1;(c(t)) = tw; and the geodesic equation
reduces to the equation

k
Z Ffj (p)wsw; =0 Yw € R".
ij=1

This implies that all Christoffel symbols in p vanish. O

In particular, we can use the exponential map and normal coordinates to show that every
isometry of a connected semi-Riemannian manifold is determined uniquely by its value and
derivative in a single point.

Lemma 3.44. Let (M, g) be a connected semi-Riemannian manifold, p € M and
w0, : M — M isometries with ¢(p) = ¥(p) and T,(p) = T,(¢). Then the two isometries
agree on M: ©(q) = 1¥(q) for allqg € M.

Proof. We consider the set A = {qg € M : ¢(q) = ¥(q)}. By assumption, A is nonempty.
Since @, are continuous, it follows that A C M is closed. If we can show that A is
also open, then the connectedness of M implies A = M. To show that A is open, let
q € A and choose an € > 0 such that exp,|p (o) : Be(0) C T;(M) — exp,(B(0)) and
exPy(q) |B.(0) C Tp(q) = €XPy(q) (Be(0)) are diffeomorphisms. As ¢ and ¢ are isometries and
every point w € exp,(B.(0)) can be connected to g by a geodesic, Remark implies

B.(0) H(w)
B.(0) H(w)

B.(0)) © Ty(¢p) o (exp,
BE(O)) © Tq(%f}) © (eXPq

@(W) = (expgp(q)
:1/’(10) = (expgp(q)

for all w € exp,(B.(0)) and therefore exp,(Bc(0)) C A for all ¢ € A. Since Bc(0) is open and
exp, |B.(0) — exp,(Bc(0)) is a diffeomorphism, exp,(B(0)) is open. This implies that A is
open and proves the claim. O

In addition to our characterisation of geodesics as smooth curves whose velocity field is
a parallel vector field along ¢, there is an alternative characterisation of geodesics as critical
points of a certain energy functional. In analogy to the kinetic energy Ey;, = %mv2 = %mﬁvQ
in classical mechanics, we assign to each piecewise C?-curve ¢ : I — M on a semi-Riemannian

manifold an energy which is determined by its velocity field.
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Definition 3.45. Let (M, g) be a semi-Riemannian manifold. The energy of a piecewise
Cl-curve c: [0,1] — M is defined as

e D
Bld =5 | guole0),e0) .
0
The idea is now to vary the energy with respect to the geodesic, i. e. to consider the
change of the energy when the curve c is deformed slightly in such a way that its endpoints
stay fixed. For this, we require the concept of a variation with fixed endpoints.

Definition 3.46. Let (M, g) be a semi-Riemannian manifold and c: [0,1] — M a piecewise
C?%-curve. A variation of ¢ with fized endpoints is a continuous map

h:[0,1] x [—e,e] = M

with h(£,0) = c(t) for all t € [0,1], h(0,s) = ¢(0) and h(1l,s) = ¢(1) for all s € [—¢,€].
A variation of ¢ with fixed endpoints is called piecewise C? if there exists a subdivision
0=ty <t1<...<ty-1 <tx = 1suchthat hly, ;. ]x[e,—e is C?. If h is piecewise C?, then
the vector field

V() = 9l(t,s)

along c is piecewise C! and satisfies V(0) = V(1) = 0. It is called variation field of h.

s=0

Given two points p, ¢ € M, it is natural to assign to each piecewise C2-curve that connects
p and ¢ its energy and to attempt to determine the curves for which the energy is maximal
or minimal. Clearly, a curve of maximal or minimal energy should be a critical point of
the energy, i. e. the derivative of the energy with respect to the “deformation parameter” s
should vanish. Using the concept of a piecewise C?-variation with fixed endpoints, we can
give this intuition a precise meaning.

Definition 3.47. A piecewise C?-curve c : [0,1] — M is called critical point of the energy,
if for all piecewise C?-variations h : [0,1] x [—¢, €] — M of ¢ with fixed endpoints

d
o Elcs] =0, where ¢ :[0,1] = M, cs(t) := h(t,s).
s=0

Theorem 3.48. Let (M, g) be a semi-Riemannian manifold and c : [0,1] = M a pieceweise
C?%-curve. If ¢ is a critical point of the energy, then c is a geodesic.

Proof. (1) We consider first the case where ¢ and h are C2. Let V be the variation field for h

V(t) = %(t,O).
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Then the variation of the energy is given by

d

2l Bl =%
ds les] = 3

S

1 /1 . . 1 1 a

| gesn (@s(t), st ﬁszgf
s=0 5:02 0 (t)( ( ) ( )) 2 o 85 o
L 1

-1 / Gen ey (Vo V(1) €0(8)) + Guoy (0t), Vo V(1)) dt = / Goutty (Ve V (), éo(t)) dt

Ogcs (t) (Cs (t) ) Cs (t)) dt

2
N /0 %gcm (V(1),é(t) = geqry (V(8), Vei(t)) dt

t=1

— [ge (V1) é(8))]) =) — / geiey (V(1), Veit)) dt = — / gey (V(£), Ve()) dt.

where we used the metricity of the connection and the fact that the derivatives with respect
to s and ¢ commute to obtain the first expression in the second line. If the curve ¢ and the
variation h are only piecewiese C2, then there exists a subdivision 0 = tg < t; < ... <ty_1 <
ty = 1 such that bl 1,1 ]x[e,—q 18 C?. Applying the formula to the restriction ¢ [ti,t:41) and
summing over the points in the subdivision points yields

d

ds

1 N—-1
Bled == [ auo (V0. De0) de+ 3 gua (V). 0067) = (60,

5=0
where ¢(t;) = limeyo ¢(t; — €) and ¢(t]) = limejo ¢(t; + €).
(2) Let now W : [0,1] — T'(M) be a piecewise C2-vector field along ¢ and f : [0,1] — [0, 1]
a smooth function with f(0) = f(1) =0. Then h : [0,1] X [e, —¢] = M,
h(t, s) = expe) (sf ()W (1))
is a piecewise C?-variation of ¢ with fixed endpoints and

0
%h(tv 5)

s=0

If ¢ is a critical point of the energy, we have

1 N-1
— [ H 000 (V0. Vebt0) 3 10 - g (W (1), 608F) = é447) =

By considering general piecewise C? vector fields W along ¢ and choosing the smooth function
f:10,1] — [0, 1] in such a way that spt(f) C [T'—3§,T+6] for T €]t;, t;+1[ and § > 0 sufliently
small, we can show that

VCC(T) =0 VT € [07 1]\{t0,...,tN}.

By considering general piecewise C2-vector fields W along ¢ and choosing the smooth function
f:[0,1] = [0,1] in such a way that spt(f) C [t; — J,t; + 0] with & > O sufficiently small, we
find é(t;) = ¢(t;) for all i € {0,..., N}. This implies that c is not only piecewise C? but C?
and V.é(t) = 0 for all ¢ € [0,1]. Thus ¢ is a geodesic. O
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This characterisation of geodesics is particularly intuitive in the Riemannian context,
where the metric is positive definite and there is a concept of length for each pieceweise
C'-curve on M. In this case, every curve of minimal length between two points p,q € M
that is parametrised according to arclength is a geodesic.

Corollary 3.49. If (M, g) is a Riemannian manifold and c : [0,1] — M a piecewise C?-curve
of minimal length from c¢(0) = p to ¢(1) =¢q

1
Ll = /0 \/ ey (€(1), &(t)) dt = inf{L[d] : d:[0,1] — M piecewise C’2,d(0) =p,d(1l) = q}

and parametrised according to arclength, then c is a geodesic.

Proof. The Cauchy—Schwarz inequality implies

Ll = /0 Ve (E(1), &) dt < ¢ /0 ey (E(), &(t)) dt - \/ /0 1dt = \/2E[]

and L[c] = \/2E]c| if and only if g« (¢(t), é(t)) is constant. This implies that any piecewise
C?-curve c of minimal length between p and ¢ that is parametrised according to arclength
minimises the energy. If ¢ minimises the energy, then for all piecewise C2-variations with
fixed endpoints the map E : s — E[c,] is C! and has a minimum in s = 0. This implies that
c is a critical point of the energy. O

Exercises for Section [3.3

Exercise 3.9. Let (M, g) be a semi-Riemannian manifold and V a connection on M. Show
that V is torsion free if and only if for all charts (¢, U) the associated Christoffel symbols
satisfy

ry=TF  Vije{l,...,n}

Show that it is a metric connection if and only if for all charts (p,U) the Christoffel symbols
satisfy

n

99i l l »

&Pk :lzzl(rkjgll—i_rklgl]) VZ7],]€ € {Lvn}
Exercise 3.10. Let (M, g) be a semi-Riemannian manifold and (¢, U), (¢, V) charts of M
with U NV # (. Derive a formula that expresses the Christoffel symbols with respect to
(V,4) in terms of the christiffel symbols with respect to (U, ¢).

Exercise 3.11. Fill in the details in the proof of Lemma [3.32] and verify by explicit calcu-
lations the properties of the derivative V stated there.

Exercise 3.12. Consider n-dimensional hyperbolic space H"™ with the metric induced by the
Minkowski metric on R™+!. Determine all of its geodesics by using suitable isometries.
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3.4 Curvature

After investigating the properties of isometries and geodesics, we will now introduce another
fundamental concept in semi-Riemannian geometry, namely the notion of curvature. While
there are many concepts of curvature, there is a fundamental one from which all other notions
can be derived and which determines them uniquely. This is the Riemann curvature tensor.

Definition 3.50. (Riemann curvature tensor) Let (M, g) be a semi-Riemannian manifold.
Then the map R: V(M) x V(M) x V(M) — V(M), (X,Y,Z) — R(X,Y)Z with

R(X,Y)Z =VxVyZ —NyVxZ -V xy|Z
is called the Riemann curvature (tensor) of M.

Lemma 3.51. Let (M,g) be a semi-Riemannian manifold. Then the Riemann curvature
tensor of M is a tensor: For all vector fields X,Y,Z € V(M), the Riemann curvature tensor
R(X,Y)Z(p) depends only on X(p),Y (p), Z(p).

The Riemann curvature tensor has the following symmetries:
e Anti-symmetry in the first two arguments: R(X,Y)Z(p) = —R(Y, X)Z(p).
e first Bianchi identity: R(X,Y)Z + R(Z,X)Y + R(Y,Z)X =0
o g(RIX,Y)Z,W)=—g(Z, R(X,Y)W)
e g(R(X,Y)Z,W)=g(R(Z,IW)X,Y) VXY, Z,W € V(M).

Proof. To show that the Riemann curvature tensor is a tensor, we consider the second co-
variant derivative

ViyZ=VxVyZ—Vy,yZ.

Since VxY (p) depends only on X (p) and VxVyZ depends only on X(p), it follows that
V%(,Y depends only on the value of X in p. Moreover, we find for any function f € C*°(M,R)

Vigy =Lxf-VyZ+[-VxVyZ—VecryipvxyZ=f -ViyZ

By applying Lemma to the map Fx zw : V(M) = R, Y — g(V% yZ, W) we then find
that V%QYZ (p) depends only on the value of Y in p. The Riemann curvature tensor is given
by

R(X,Y)Z =VxyZ—-V3y.xZ,
and it follows directly that R(X,Y)Z(p) depends only on the values of X and Y in p. To
determine its dependence on Z, we calculate

R(X,Y)(f-2)
=Vx(Lyf-Z+f-VyvZ)=Vy(Lxf - Z+f-VxZ)=Lixy|f-Z—-f -VixyvZ
=f (VxVyZ - VyVxZ —Vixyv1Z) + (Lo Ly f — LyLx f—Lixy)f) Z
+Lyf - VxZ+Lxf - VyZ—-Lxf-VyZ—-Lyf -VxZ
—f-R(X,Y)Z.
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Applying Lemma [3.24] to the map Fx y,w : V(M) — R, Z — g(R(X,Y)Z,W) we then find
that R(X,Y)Z(p) depends only on the value of Z in p.

The antisymmetry of the Riemann curvature tensor in the first two arguments follows
directly from its definition. The first Bianchi identity is obtained from the fact that the
Levi—Civita connection is torsion free and from the Jacobi identity for the Lie bracket. To
prove the third identity, it is sufficient to show that g(R(X,Y)Z, Z) = 0 for all smooth vector
fields X,Y, Z. As V is a metric connection, we have

9(VwZ,Z) = 5Lwy(Z.Z), g(VixyZ.Z) = 3LxLyg(Z,Z)—g(Ny Z,Nx Z)—% Ly v 9(Z, Z).

Using the definition of the Riemann curvature tensor in terms of the second covariant deriva-
tive, we obtain after some computations the third identity. The forth identity follows from
the first three. O

Remark 3.52. (a) If (M, g) is a semi-Riemannian manifold and (¢,U) a chart on M, the
Riemann curvature tensor on U is characterised uniquely through its component functions
Rﬁjk € C*(U,R)

R(b, b0 = ZRﬁjkb

27_]

which is given in terms of the Christoffel symbols by the following equation (see exercise
3.16))
ar 8Fl a
! _ ]k? zk [

(b) If (M,g) and (N,h) are semi-Riemannian manifolds and f : M — N is a local
isometry, then the Riemann curvature tensor satisfies

T, (f)(BY(2,9)2) = R¥(T,(Nz. T(HTp(f)z Vpe Ma,y,2 € T,(M).

This follows directly from the fact that local isometries preserve the metric and hence the
Levi—Civita connection.

Besides the Riemann curvature tensor, there are other notions of curvature which play an
important role in differential geometry and general relativity. They are all determined by the
Riemann curvature tensor and the most important ones are given in the following definition.

Definition 3.53. Let (M, g) be a semi-Riemannian manifold and p € M.
(a) Let E C T,(M) be a plane for which the restriction g,|gxg is non-degenerate and
and z,y € T,(M) two vectors which span E. Then the sectional curvature of E is defined as

2y — 9p(R(z,y)y, x)
( ) - _ 2"
9p(@, 2)9p (Y, y) — gp (2, y)
It depends only on E and not on the choice of z and y. If dim(M) = 2 the plane E coincides
with T,,(M) and the sectional curvature is called Gauf curvature.

(b) For z,y € T,(M), the Ricci curvature is defined as the trace of the linear map
Ry : Tp(M) = Tp(M), z = R(z,y)z

ric,(x,y) = Tr(Ry ).
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It defines a non-degenerate symmetric bilinear form on 7,(M), and there exists a unique
linear map Ric,, : T,(M) — T,(M) with g,(Ric,(z),y) = ric(z,y) for all z,y € T,,(M).
(¢) The scalar curvature scal(p) of M in p is defined as the trace of the linear map
Ric, : T,(M) — T,(M):
scal(p) = Tr(Ricp).

Remark 3.54. (a) That the sectional curvature does not depend on the choice of x and
y can be shown via a direct calculation: two vectors 2’ = ax + by and 3y’ = cz + dy with
a,b,c,d € R form a basis of F if and only if ad—bc # 0. Using the properties of the curvature
tensor, one obtains

gp(R(2", )y, ')
= adcbgy(R(x,y)x,y) + (ad)*gy(R(z,y)y, ) + (be)* g, (R(y, ¥)2,y) + adbegy(R(y, x)y, x)
= (ad — be)?gp(R(x, y)y, )

and a short computation yields

gp(z’,x’)gp(y’7y’) - gp(l’/,y’)2 = (ad — bc)Z(gp(x,x)gp(y, y) — gp(l’a 9)2)

(b) The Riemann curvature tensor is determined uniquely by the sectional curvatures
K, (E) for all planes E C T,,(M) for which g,|gx g is non-degenerate. The sectional curvature
is determined by the Ricci curvature only for dim(M) < 3 and the Ricci curvature by the
scalar curvature only for dim(M) = 2.

(c) For every chart (p,U) of M, the Ricci curvature on U is described uniquely by its
component functions ric;; € C*(U,R), ric;; = ric,(bf,b) which are given in terms of the
Riemann curvature tensor by

n
: _ 2 /‘ k
T1C;; = Rijk"

k=1

and the scalar curvature is given by

n

ko ij

scal = g Ri193 -
jk=1

Example 3.55. In general relativity, a universe is described by a four-dimensional Lorentzian
manifold (M, g). The Lorentzian metric g on M is required to be a solution of the Einstein
equations

. G
ric, (z,y) — %gp(x, y) - scal(p) + Agp(z,y) = CTtp(x,y) Vpe M,z,y € T,(M),

where t, : T,(M) x T,(M) — R is a symmetric tensor called the stress-energy tensor. It
is determined by the matter content of the universe (massive matter and radiation). The
constant A € R is called the cosmological constant and G € R the gravitational constant.

A solution of Einstein’s equations for vanishing stress-energy tensor is called a vacuum
spacetime.
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As the Riemann curvature and hence also the Ricci and scalar curvature depend non-
linearly on the metric and its derivatives, Einstein’s equations define a complicated system of
non-linear differential equations that can be solved only numerically for many configurations.

The situation simplifies considerably if one considers the three-dimensional version of the
theory and vacuum spacetimes. In that case, the Ricci tensor determines the Riemann cur-
vature completely and for any vacuum spacetime the Riemann curvature tensor is constant.

Exercises for Section [3.4]

Exercise 3.13. Consider the two-sphere S? with the metric induced by the Euclidean metric
on R? and the chart given by

U=S8*\{(z,y9,2): >0,y =0} © 1 (1,0) = (cost) - sin 6, sin ¢ - sin 0, cos §).

Determine the coefficient functions of the metric, the Christoffel symbols and the coefficient
functions of the Riemann curvature tensor.

Exercise 3.14. Consider n-dimensional hyperbolic space H"™ with the metric induced by the
Minkowski metric on R™*! and the chart given by

U=H" oo,y ..y xn) = (T1,. .., Tpn).

Determine the coefficient functions of the metric, the Christoffel symbols and the coefficient
functions of the Riemann curvature tensor.

Exercise 3.15. Determine the number of independent components of the Riemann curvature
tensor and the of Ricci tensor on an n-dimensional manifold. Use your result to conclude
that the Ricci tensor determines the Riemann curvature tensor uniquely only in dimension
d <3.

Exercise 3.16. Prove the formula for the component functions of the Riemann curvature
in terms of the Christoffel symbols from Remark

Exercise 3.17. The gravitational field of a point of mass m is described by the Schwartzschild
metric on R x (R3\ {0}). In terms of a coordinate ¢ on R and polar coordinates (r, 8, ) on
R3, this metric is given by

dr?
1_ 2m

gt.r.0,0) = (1—22) dt* -

where gg2 is the metric on S? and r > 2m

1. Determine the Christoffel symbols and the Riemann curvature tensor of g. Show that
the Ricci curvature of g vanishes and that the Schwartzschild metric is a solution of
the vacuum Einstein equations with vanishing cosmological constant.

2. Sketch the vector fields b; and b, in a plane with § = ¢ = const.
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4 The Geometric Structures of Classical Mechanics

In this section we study the mathematical, resp., geometric structures underlying classical
mechanics. Since the differential equation describing the time evolution of a mechanical
system is of second order, we first introduce second order vector fields on a manifold (Sec-
tion . A key point in mechanics is the passage between velocities and momenta. This
corresponds to the passage from the tangent bundle T'Q) of our configuration space @, for
which the elements of T,,(Q)) are interpreted as velocities, to the cotangent bundle T*Q, for
which the elements of T, (Q) = T,,(Q)* are interpreted as momenta (Section . Before we
then turn to symplectic geometry, we recall some basic facts on differential forms and their
formulation in the context of general manifolds (Section . Symplectic manifolds are then
introduced in Section These are almost symplectic manifolds (M, w) satisfying the ‘inte-
grability condition’ dw = 0. From the perspective of physics, the key motivation for studying
Hamiltonian systems, which are certain flows on symplectic manifolds, is that one can give
up the distinction between space and momentum, resp., velocity coordinates. This leads to
a significant enlargement of the underlying symmetry group from the diffeomorphism group
of configuration space to the group of symplectic diffeomorphisms of the cotangent bundle.
Accordingly, cotangent bundles are the prototypes of symplectic manifolds. In Section [4.5)
we introduce the formalism of symplectic geometry: Hamiltonian vector fields and Poisson
brackets. We eventually come full circle by a discussion of Lagrangian mechanics in Sec-
tion [4.6] and the Legendre transform in Section [£.7] The Legendre transform provides the
translation between Lagrangian mechanics based on the Euler-Lagrange equations in T'Q) to
Hamiltonian mechanics in T*@Q). As a byproduct, this provides new insight in the geometry
of semi-Riemannian manifolds because it exhibits the velocity curves of geodesics as the so-
lutions of a Hamiltonian system where the Hamiltonian is the function H(v) := 1g(v,v) on

TQ.

4.1 Second order equations on manifolds

The movement of a point particle of mass m in a force field F:R3 — R3 is determined by
Newton’s Law, i.e., the second order equation

ma(t) = mx(t) = F(x(t)).

To model such equations on the level of manifolds, i.e., in a form independent of the choice
of coordinates leads to the concept of a second order vector field (Subsection [4.1]).

Let M be a smooth manifold. If v: I — M is a smooth curve, then its wvelocity curve
~': I — TM is a smooth curve with values in the tangent bundle TM. Taking one more
derivative, we arrive at a curve v"': I — TTM. To define second order differential equations
in the context of manifolds, we therefore have to consider vector fields on the tangent bundle.

Definition 4.1. Let M be a smooth manifold. A second order vector field on M is a vector
field F: TM — TTM on TM satisfying T(m) o F = idrps, where m: TM — M is the
projection map. For the integral curves 5: I — T'M of F, this means that the corresponding
curve v :=mo B: I — M satisfies



We thus obtain the relation

which justifies the terminology.

Remark 4.2. (a) To visualize the concepts locally, we consider an open subset U C R™.
Then TU 2 U x R™, w(z,v) =2, TTU 2 U x R" x R" x R", and T'(7)(x, v, u, w) = (z,u).
Therefore a second-order vector field F': TU — TTU can be written as

F(x,v) = (x,v,v, f(x,v)),

where f: U x R® — R"™ is a smooth map. Therefore it corresponds to the smooth function
U xR" = R" xR", (z,v) — (v, f(z,v)) (cf. Remark [L.30).

(b) In the theory of ODEs of degree 2 on the open subset U C R™, one observes that any
second order ODE

() = f(y(1)) (17)

can be reduced to a first order ODE if one replaces the curve v: I — U by the pair I' :=
(v,%4): I = TU = U xR™, which can be identified with the velocity curve 4': I — TU. Then
7 is a solution of if and only if the curve I' is a solution of

L(t) = F(L(1), F(z,0) = (v, f(2)) (18)

In abstract terms, I' is a curve in the tangent bundle TU = U x R™ and the function
F: U x R* = R?" defines a vector field Xz such that the solutions of are the integral
curves of Xp.

Definition 4.3. A second order vector field F' € V(T M) has in local coordinates the form

F(z,v) = (x,v,v, f(z,v)).

We call it a spray if the maps f.(v) := f(z,v) are quadratic, i.e., fi(sv) = s> f.(v) for s € R,
v e R™

Remark 4.4. (Local form of sprays) That the maps f, are quadratic implies the existence
of a unique symmetric bilinear map

T,: R" x R" - R

with
fa(v) =Tx(v,v) for veR™
This means that

Fm(vaw) = ZFfjek7
k

where the Ffj are smooth functions satisfying Ffj = I‘;‘;
If (p,U) is the chart we use to obtain the local coordinates and bf, j=1,...,n, are the
corresponding base fields, then

L(b¢,07) = erjb;j.
k
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Remark 4.5. (Sprays and torsion free connections) (a) If V is a torsion free connection,
then it has in local coordinates on U C R"™ the form

(VxY)(x) = dY (2)X (z) + T (X (2), Y (z)),
where the bilinear forms I', are symmetric. This defines a spray
FV(z,v) := (z,v,v, —Ty(v,v)).

Conversely, every spray on U is of this form.
The integral curves 5(t) = (v(t),%(t)) € TU = U x R™ of FV are determined in local
charts by the relation

() = =Ty (5(8), 7(1)),

which can also be written as V.,,4' = 0. Here we distinguish between ~/(t) = (v(¢),5(t)) as
an element of the tangent bundle and the velocity vector 4(t) € R™.

Therefore the integral curves 5: I — T'M of FV are precisely the velocity curves 8 = v/,
where v: I — M is a geodesic for V.

(b) This correspondence between sprays and connections can be made global (cf. [La99]).
Here the main point is to verify that the transformation rule for the local forms I'¥ corre-
sponding to a connection V by a chart (¢, U) of M are the same as the transformation rules
required for the corresponding local expressions of F'V to define a global vector field on M.

So let p: U — V be a diffeomorphism of open subsets of R™ and suppose that V and V’
are connections on U, resp., V, related by ¢ in the sense that

0. VX =V, xo.Y for XY €eV(U)=C®Q).
Writing
VyY =dY - X +D(X,Y) and Vi Y =dY' X' +I'(X,Y"),
we obtain for X’ = ¢, X and Y/ = ¢,Y the relations

(V% Y ) (o) = dpz((AY ) X 4+ T (X2, Yy)) = dea (Y ) Xy + de,Ta (X, Y2)
and

(V%Y )2y = (@) () X +Fgo(x)( o(2)r Vo))

d((dp - Y) 0 0™ @) (dp)a Xo + T 1) ((d9)2 Xe, (d9)2 Ya)
d(de - Y)s ( D) (@9)2 X + T ((d9)e Xa, (d9)2Yz)
d(de - V)aXo + T, ((d9) e Xo, (d) 2 Y2)

= (a® ©)

z( ) Xo +F (z)((d<p)wa7(d(P)wa)'

0)a(Ya, Xz) + (d

This leads to the transformation rule

:D(x)((dgo)xv, (dp)zw) = (dp). 'z (v, w) — (dQW)x(va)

for the Christoffel symbols.
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For the corresponding second order vector fields
F(x,v,v,—T4(v,v)) and F'(2',0" v, =T (v',v"))
we obtain with the diffeomorphism
To: TU =TV, (Te)(z,v) = (¢p(x), dprv)
the condition for F' and F’ being Tp-related:
F'(Tp(z,v)) = TTp(F(z,v)).
As

T?¢(z,v,a, b) = (p(x), dp,v, dp,a, (d2<,a)w(v7 a) + dy.b),

we have

TT@(J?,U, v, —Fm(’U,’U)) = ((p(l‘),d(pwv,dgomv, _d@wa(’Ua’U) + (dQQO)w(’U,U)),

which leads to the condition

Ffp(x) (v, dp,v) = dp T (v,v) — (d2@)x(vv v).

Comparing both transformation formulas, we see that the Christoffel symbols of a connec-
tion are subject to the same transformation rules as the quadratic components of a spray.
Therefore the correspondence under (a) has an invariant meaning on a manifold, which leads
to a global one-to-one correspondence between sprays and torsion free connections.

(c) If the connection V on M is given, then the value of the corresponding spray FV €
V(TM) in v € TM can be calculated as follows. Let v: I — M be a geodesic with 7/(0) = v.
Then

FY(0) = FY(¢/(t)) = 7(t) € Tu(TM).

Since the integral curves of FV are the velocity fields of the geodesics, the corresponding
local flow on T'M is called the geodesic flow of V.

Example 4.6. If (M, g) is a Riemannian manifold, then M carries a canonical spray, corre-
sponding to the Levi-Civita connection (Theorem . Its geodesic flow on T'M preserves
the norm squared function ¢(v) = g(v,v). Below we shall see other interpretations of this
observation.

4.2 The cotangent bundle of a manifold

Let M be a smooth manifold and T'M be its tangent bundle (cf. Definition . We know
already that T'M is a smooth manifold and that any chart (o,U) of M leads to a chart
(T, TU) of TM.

In a similar fashion we can treat the cotangent bundle T*M of M. As a set, it is defined
as

T"M = UpeMTp(M)*.
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Here we write V* := Hom(V,R) for the dual of the vector space V, i.e., the vector space of
linear maps V' — R. If ¢: V; — V4 is a linear map, then the corresponding linear map

VS =V, amaop
is called its adjoint.

Remark 4.7. (a) We recall some facts from Linear Algebra: If by,...,b, is a basis of the
finite-dimensional real vector space V, then the dual basis is defined by

bj(bk) = 0jk-
Then every a € V* has a unique representation as
a=ob] +---+ayb;, with o =a(b;).

Therefore coordinates on V introduced by the choice of the basis automatically lead to
coordinates on the dual space V*.

(b) If R™ is considered as a space of column vectors M, 1(R), i.e., matrices of size
n x 1, then it is most natural to consider the elements of the dual space (R™)* as row
vectors M;j ,(R), i.e., matrices of the form 1 x n. Then the evaluation of an element
a=(ag,...,ay) € (R™)* on x € R" corresponds to the matrix product

n
alr)=a-xz= Zaj:cj.
j=1

Here the entries x; of = are the coordinates of  with respect to the canonical basis ey, ..., e,
of R™ and the o; are the coordinates of o w.r.t. the dual basis e, ..., e}.

(¢) If La: R® —» R™, x +— Az is the linear map defined by the matrix, then its adjoint is
a linear map L% : (R")* = M; ,(R) — (R™)* corresponds to the map a — a o A given by
right multiplication with the matrix A.

On the level of coordinates we then have

n n
r_ . r_ .
T, = E ajr; and oy = g a;agi,
=1

j=1

so that the matrix of the adjoint map L7 with respect to the basis €} is the transposed
matrix AT.

For an open subset U C R™ we can identify T*U with the product set T*U = U x (R™)* =
U x My ,(R) 2 U x R" which carries a natural product manifold structure. After the
discussion in the preceding remark, it is clear how to glue these pieces together to obtain a
smooth manifold.

If (p,U) and (¢, V) are two charts of M with U NV # 0, then the diffeomorphism
ni=vop lipUNV)—=y(UNV) defines the diffeomorphism

Tn): UNV) xR = pUNV) xR, (z,0) = (n(x), dn(z)v),
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where we identify the linear map dn(z) with the corresponding matrix in M, (R). We thus
obtain transitions functions

T*(n): o(UNV) x (R")* 2 pUNV) x (R")*,  (z,0) = (n(z), a0 (dn);").

Now the same arguments that we used to obtain the manifold structure for the tangent
bundle leads to a canonical manifold structure for the cotangent bundle T* M, for which each
chart (¢,U) defines a chart

T*p: T'U = T*(p(U)) = o(U) x (R")* 2 p(U) xR", 0 = (¢(p), a0 Tp(p) ™)

(cf. Definition [1.26)).

4.3 Differential forms

Differential forms play a significant role in mathematical physics. In this subsection, we
describe a natural approach to differential forms on manifolds by defining them directly as
families of alternating multilinear functions on tangent spaces and not as sections of a vector
bundle.

Definition 4.8. (a) If M is a smooth manifold, then a (smooth) p-form w on M is a family
(wz)zenm which associates to each € M a p-linear alternating map w,: T,,(M)? — R such
that in local coordinates the map (x, vy, ..., vp) — wz(v1,...,v,) is smooth. We write QP (M)
for the space of p-forms on M and identify Q°(M) with the space C°°(M) of real-valued
smooth functions on M.

(b) The wedge product

OP(M) x QIUM) — QPTI(M), (w,n) = wAn

is defined by (w A7), := wy A 1y, where

1

M Z Sgn(a)wa: (Uo(l)> B Ua(p))nw (UU(erl)v teey Uo(p+q))~

0ESpiq

(Wz A1) (V15 -, Uptq) =

Taking into account that the forms are alternating, this product can also be written with
(p ;q) summands, which are considerably less than (p + ¢)!:

(Wa ANg) (V1.0 Uptq) == Z SgN(0)wWz (Vo (1) - -+ Vo (p) )Nz (Vo (p£1) 5 - - - s Vo (p+q) )
o€Sh(p,q)

where Sh(p, ¢) denotes the set of all (p, ¢)-shuffles in Sp4,, i.e., all permutations with
c(l)<---<o(p) and op+1)<---<olp+q).
An easy calculation shows that

wAn=(-DPnpAw for weQP(M),neQUM). (19)
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If wy,...,w, are forms of degree p1,...,px and p = p; + ... + pg, then we obtain by
induction

(Wi A Awg)(v1, ..., vp)

= > Sgn(0)w1 (Vo (1), -5 Vo(p1)) * * Wk (Vo (pprt1)s - - - Vo(p) )
o€Sh(p1,p2;-.-,Pk)

where Sh(pi,...,pr) denotes the set of all (p1,...,px)-shuffles in S, i.e., all permutations
with

o(l)<---<alp), opr+1)<--<olpi+p2), -..,0p—pp+1)<---<op).

For p1 = ... =pr =1 and k = p, we obtain in particular

(Wi A Awg)(v1, ..oy 0) 1= Z sgn(0)wi (V1)) - - W (Vo)) = det(w;(vy)).
€Sk

Remark 4.9. To describe differential forms in local coordinates, we recall that every alter-
nating k-form w on R™ has a unique description

* *
w= E Wiyigey, Ao Nej . where  wi . = w(ei, ... e).
11 <...<tg

Accordingly, we obtain for a chart (¢,U) of M and the base fields b}p, 7 =1,...,n, the
representation of a k-form w € QF(U) by

w(vr,...,v) = Z Wiy ey, iy A+ A depyy,
11 <...<tg

where
=w(b? be)

Wiq--g HERRERLV

1k

are smooth functions. Here we use the relation dy;(by) = d;;.

Example 4.10. Differential forms of degree 1, so called Pfaffian forms, are smooth functions
a: TM — R that are fiberwise linear. Typical examples arise as o = d f for smooth functions
f: M —R.

A key property of 1-forms is that they can be integrated over (piecewise) smooth paths

~: la,b] = M via
b
/ o= / (7 (1) dt,
vy a

and it is easy to see that this integral does not change under reparametrization of the path
as long as the endpoints are fixed.
If @« = df for a smooth function on M, then

b b
/df:/ dfv(t)(y’(t))dt:/ (fo)(t)dt = f(v(b)) — f(v(a))

105



depends only on the endpoints of . Conversely, it a 1-form « has this property, M is arcwise
connected and zg € M is fixed, then we obtain a smooth function

f: M —=R, f(x)::/a for = ~(0) =z, y(1) = x.

In classical mechanics this situation arises as follows: The function U: M — R is called a
potential and the 1-form F := dU is interpreted as a force field. For a force field F' € Q'(M),
the path integral [ F is interpreted as the work it requires to move a particle in the force
field along the path ~. A potential U with dU = F exists if and only if this work only
depends on the endpoints of the path. Then F' is called conservative.

Next we briefly discuss the exterior differential for differential forms in the context of
manifolds.

Definition 4.11. The exterior differential d: QP(M) — QPT1(M) is determined uniquely by
the property that we have for Xy, ..., X, € V(M) in the space C*°(M) the identity

p
(dw)(Xo, ..., Xp) = Z(— Y Xiw(Xo, ..oy Xiy oo Xp)
+Z D w((Xi, X,], X0,y Xiy oo, Xy, X)), (20)
1<J

To show the existence of d for general manifolds, the main point is to show that in a point
x € M the right hand side only depends on the values of the vector fields X; in x.

Remark 4.12. In local coordinates the exterior differential takes a rather simple form. For
every chart (o, U), the basic fields by commute: [b7,b7] = 0, which leads to

2 iawjg,...,?,...,j,,
(dw)jo,....ip = ;(—1)  oe (21)
For p = 0, this means that
(dw) Ow
W)i = 5>
J 8@]
and for p = 1, we obtain for j < k:
aCUk awj
dw)jp = ——b — —2.
(@) Opj 0ok

For w = fdy;, A--- Ady;,, formula can also be written as

— Of
Za— @i ANdi, A+ Adi, = df Adgg, A Adg, . (22)
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Example 4.13. If « is a form of degree 0, i.e., a function f, then the definition of the
exterior derivative gives df(X) = X f.
If o is of degree 1, then

do(X,Y)=XalY)-Y a(X) — a([X,Y]).

If « is of degree 2, then

da(X,Y, 7)
— Xa(Y,Z) - Ya(X, Z) + Za(X,Y) — a([X,Y]. Z) + a([X. Z2),Y) — a([Y, Z], X)
=XaV,2)+Ya(Z, X))+ Za(X,Y) —a([X,Y],2) — a([Z,X],Y) — a([Y, Z], X)

= ZXQ(Y,Z) - a([va]aZ)

cyc.
Lemma 4.14. For every w € QP(M) we have d(dw) = 0.

Proof. In local coordinates, this is an easy consequence of and the Schwarz Lemma on
the symmetry of second order partial derivatives. O

Definition 4.15. Extending d to a linear map on the space Q(M) := P
differential forms on M, the relation d2 = 0 implies that the space

pen, 2P (M) of all

ZgR(M) = ker(d|52p(M))

of closed p-forms contains the space Bip (M) := d(QP~1(M)) of ezact p-forms, so that we
may define the de Rham cohomology space by

Hig (M) := Zir (M)/Bir(M).
Lemma 4.16. If a and (8 are differential forms of degree p and q, respectively, then
dlaAp)=da A+ (—1)PaAdp.

Proof. In local coordinates, this is an easy consequence of and the Product Rule for
functions:

d(fg) =df-g+ f-dg. O

Definition 4.17. Let M and N be smooth manifolds and ¢: M — N be a smooth map.
Given a differential form w € Q¥ (V) we can define the pull-back ¢*w by (¢*w)p, 1= Tp(©)*w ().
ie.,

(90*("‘))17('013 cee 7vk) = We(p) (TP(QD)'UD cee 7Tp(w)vk)'

The pull-back of w is a differential form ¢*w € QF(M).

Proposition 4.18. The pull-back of differential forms is compatible with products and the
exterior differential. For a smooth map p: M — N, we have:

() ¢*(ahB) = p*a Ag™B for a,f € QN).
(i) d(p*w) = p*(dw) for w € QF(N).
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Proof. (i) is obvious from the definitions.
(i) f w = f € C°(N) = Q°(N), then

@ (df) =df oTp =d(fop) =d(¢"f).
Now suppose that we can write w as an exterior product of 1-forms:
w=f-dy;, A...A\dy;,. (23)
Then we obtain with (i):
d(p*w) = d((fop)pTdy, A... N dy;,) =d((fop)d( yi) A... Ad(¥ yi,))
= d(fo) Ad(@ yi) A Ad(¢™yi) = ¢ df Ad(@™yi) A A9 Yi)

)
= @ df ANe*dy, AL ATy, = e (Af Adyi, AL A dY;)
= ¢"(dw).

Locally all differential forms can be written as sums of terms of the type . Moreover, if
w vanishes on an open subset U of N, then dw vanishes on U, and f*w vanishes on f~1(U).
But then also d(f*w) vanishes on U. Therefore the claim can indeed be checked locally. O

Definition 4.19. (a) (The insertion operator) If X € V(M) is a vector field and a € Q¥ (M)
is a differential form of degree k > 0 on a manifold M, we define the insertion operator, or
contraction, of a with respect to X to be a form ixa of degree k — 1 given by

(ixa)(Xl, . 7_X}gfl) = CV(AX7 Xl, . 7Xk71)

for £ > 0. For k =0 we put ixa := 0.

One also finds the notation X _J« for ixa.

(b) (Lie derivative of differential forms) One defines the Lie derivative of a differential
form w € Q(M) in the direction of a vector field X € V(M) by using its local flow ®;X:

d X\ *
Lxw = prin (97 ) w.

Proposition 4.20. We have the following relations for the operators on differential forms:
(i) Lx(anB)=LxaAB+aNLxB fora,B € QM).
(ii) ix(aAB) =ixaAB+ (=1)*anixB for a € Q¥(M), B € Q(M).

(i) (Lxa)(Xq,...,XE) = Xa(Xl,...,Xk)—Zle a(Xy,.. X, Xi), ..., Xg) fora € QF(M)
and X, X1,..., X € V(M).

(iv) Any vector field X satisfies the Cartan formula

doix +ixod=Lx on Q(M).

(V) [Lx,iv] =ixy) for X, Y € V(M).
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Proof. (i) follows from
(@) (anB) = (@) an(2F)B
and the product rule.

(ii) is an easy calculation.
(iii) follows directly from

(D) (W(X1,- -, Xi)) = (@) w)((2X,). X1, .., (9,). X0)),

the product rule and £LxY = [X,Y] for X,Y € V(M).
(iv) With (iii), this can directly be verified with the formula defining d.
(v) follows directly from (iii). O

4.4 Symplectic manifolds

In Definition an almost symplectic manifold was defined as a pair (M,w), where M
is a smooth n-dimensional manifold and w € Q2?(M) is such that the alternating forms
wp: Tp(M)? — R are non-degenerate for every p € M.

Definition 4.21. An almost symplectic manifold (M,w) is said to be symplectic if w is
closed, i.e., dw = 0.

Example 4.22. Let (V,w) be a symplectic vector space, i.e. w is a non-degenerate skew-
symmetric form on V. We claim that the constant 2-form €2, defined by €, := w for every
p € V, is closed. In fact, for constant vector fields X, Y and Z, we obtain

daUX,Y,Z)=XQUY,Z2)-YQX,Z)+ ZQX,Y)
because the Lie brackets of constant vector fields vanish and the functions Q(X,Y") etc. are

constant, so that all terms of the form ZQ(X,Y") also vanish. This proves that df2 = 0, hence
that (V, Q) is a symplectic manifold.

Example 4.23. The most direct construction of symplectic vector spaces is to start with a
finite-dimensional vector space W and endow V := W @ W* with the symplectic form given
by

UJ((’U7 OZ)7 (w7 ﬁ)) = B(U) - a(w)
For W =R", ¢g=(q1,..-,q,) € R" and p = (p1,...,pn) € (R™)* this leads to the canonical
symplectic form

n
w((a:p), (@ 1) =D a0} — p;d]
j=1
on R?" =2 R” @ (R")*.
The corresponding 2-form is given in terms of the coordinates (g;, p;) for elements (g, p) €
R2» by
Q= Z dg; A dp;.
i

We thus obtain by restriction for each open subset U C R™ a natural symplectic form on
U =U x (R")*
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Remark 4.24. There are many reasons for assuming the closedness of the form w in the
definition of a symplectic manifold. One is that it implies, for each p € M, the existence of
an open neighborhood U and a chart (¢, U) into R?" for which ¢*wren = w|y, i.e., (U,w|y)
is symplectically isomorphic to an open subset of R?" (Darboux Theorem) (cf. Example
below). For this to hold it is clearly necessary for w to be closed because the form wgzn is
closed. Hence one may think of the closedness condition dw = 0 as necessary for the existence
of canonical coordinates (cf. Remark [4.46)).

Remark 4.25. (Metric connections in the symplectic context) (a) Another reason is related
with the existence of a metric connection. Comparing with the semi-Riemannian context,
where the Levi-Civita connection plays a fundamental role, one could ask when a metric
torsion free connection V exists for a presymplectic manifold (M, w). Here the compatibility
with w means that

Zw(X,)Y)=Lzw(X,)Y)=w(VzX,Y)+w(X,VzY) VX,Y,Z € V(M) (24)
and that it is torsion free means that
VxY -VyX=[X,Y] for XY € V(M).
This leads to the condition

XwY,Z2)+Yw(Z,X)+ Zw(X,Y)

w(VxY, Z)+w(Y,VxZ)+w(VyZ, X) +w(Z,Vy X) + w(VzX,Y) + w(X,VzY)
W(VxY = Vy X, Z) +w(VzX = VxY,Y) +w(VyZ — VY, X)

w([X,Y],Z) +w([Z, X],Y) +w([Y, Z], X).

which no longer includes V. That it is satisfied means that dw = 0 (cf. Example 4.13)).
(b) (Existence of metric connections: The Hess trick) For a 2-form w and a connection V
on M, we write

(Vxw)(Y, Z) = Xw(Y, Z) — w(VxY, Z) — w(X,VyZ),

so that V is a metric connection (w.r.t. w) if and only if Vw = 0.
If (M, w) is symplectic and V is a torsion free connection on M, then there exists a unique
connection V on M defined by the relation

w(VxY,Z)=w(VxY,Z) + é(@xw)(y, Z) + é(ﬁyw)(x, Z)

(see also Lemma below). Then an easy calculation shows that Vw = 0, i.e., V is a
metric connection, and since v xY — v xY is a symmetric function in X and Y, V is also
torsion free.
(¢) If V' and V are two metric torsion free connections for (M,w), then Bx(Y) :=
Y =VxY is C*°(M)-bilinear, so that Bx (Y)(p) = Bx(,)(Y (p)) holds for endomorphisms
B, € End(T,(M)), v € T,(M). We then have

w(BxY,Z)+w(Y,BxZ)=0 for X)Y,ZeV(M),
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i.e., Bx(p) € 5p(Tp(M),wp) for every p € M. The uniqueness of the Levi-Civita connection
in the Riemannian case implies that, in the semi-Riemannian case, any such B vanishes.
However, in the symplectic case such fields may exist, which implies that metric connections
are not unique.

For V' = R?, non-zero maps of this type exist. They correspond to By, By € sly(R) with

Bies = Bseq, so that
a b b d
B1 = <C a) and BQ = (CL b> .

Therefore we obtain a 4-parameter family of linear maps B: R? — sl3(R) 2 spy(R) defining
symmetric maps R? x R? — R2.

In Example we have seen that, for any open subset U C R"™, the cotangent bundle
T*U C R® x R® = R2" carries a canonical symplectic structure. This structure is actually
natural, i.e., compatible with diffeomorphisms, so that we can use it to obtain a canonical
symplectic structure on any cotangent bundle.

Example 4.26. (T*Q as a symplectic manifold) Let @ be a smooth manifold and
m: T*Q — @ be the canonical projection. We define the Liouwville 1-form © on T*@Q by

O,(v) == a(Tr(v)) for veTL(TQ)

and consider the 2-form
Q:=—-dO € B*(T*Q).

We claim that (T*Q, ) is symplectic.

To verify this claim, we take a closer look at © and 2 in a local chart. From a chart (¢, U),
U C (Q open, we obtain the corresponding cotangent chart T*p: T*U — R?™ = R" x R".
Writing elements of R?" as pairs (g, p), we obtain coordinates qi,. .., qn;p1,...,pn on U.

In these coordinates we have

n(¢,p) =q and Tr(q,p,v,w)=(q,v).

For @ = (¢,p) € T*R™ we thus obtain

Ga(v>w) = <pav> = Z%‘Pi»
=1

which can also be written as .
Ou = Y _ pida;,
j=1
which leads to

n
Qo = dg; Adp;.
=1

This shows in particular that €, is non-degenerate in every a € T*(Q, and hence that
(T*Q, Q) is a symplectic manifold.
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Lemma 4.27. (Naturality of the Liouville form) If o: M — N is a diffeomorphism, then
T*p: T*M — T*N, ay,+— apoTp(p)!
also is a diffeomorphism and the Liouville forms Oy € QY (T*M) and O € QY (T*N) satisfy
(T*p)*"ON = O

Proof. We write mn: T*N — N and mp;: T*M — M for the canonical projections, so that
we have
nnyoT o =pomyy.

For o € T,(M)* we have

(T*@)"ON)a(v) = (ON) 1) (T(T"@)v) = (T" ) ()(T(7n)T(T"p)v)
= (T"p)()(T(7n o T p)v) = (T*¢)(a)(T(p © mar)v)
= (o (Tp) L oTpoTmy)v = a(T(may)v) = On(v). O
Remark 4.28. Let M be a smooth manifold, Diff (M) be its group of diffeomorphisms and

Symp(T*M, Q) be the group of symplectic diffeomorphisms of T* M. The preceding lemma
implies that

(T*(p)*QM = *(T*(p)*dGM = 7d(T*(p)*@M = —dO, = Qyy,
so that T*¢ € Symp(T*M, Q). Moreover, for ¢, € Diff (M), we have

T*(pov)ap = apo Tp(p o)™ = ap o Tp() ™ o Ty ()™
=T"(p)(ap 0 () ™) = T ()T (¥)

so that
Diff (M) — Symp(T*M,Qpr), ¢+—= T p

is a group homomorphism. That it is injective follows from the relation my; o T*p = @ o mpy.

4.5 Hamiltonian vector fields and Poisson brackets

We now turn to the formalism of Hamiltonian vector fields and Poisson brackets. Here
a key point is the passage from cotangent bundles T*@Q on which the group Diff(Q) acts
naturally to symplectic manifolds (M, ). It provides an environment with more symmetries,
represented by the group Symp(M, Q) of symplectic diffeomorphisms, also called canonical
transformations (cf. Remark . In the context of physics, where one is interested in the
solutions of the Hamilton equations

0H . OH

qu@, pj__87qf

this allows one to work with coordinates in which these equations take a simpler form.
Sometimes this even leads to explicit solutions of the equations of motion. Following this
idea systematically leads to the notion of a completely integrable system, a concept which is

112



connected to many branches of mathematics and physics. Here we shall simply scratch the
surface.
Let (M, ) be a symplectic manifold. Then each v € T,(M) defines an element

Ve THM), v(w):=Q,v,w).
This leads to an isomorphism 7},(M) — Ty (M). Its inverse is denoted

Ty(M)2 o ot € T,(M), wy(ah,w)=a(w), weT,(M).

Lemma 4.29. The maps b and § define diffeomorphisms
b: T(M)—=T*(M) and §:T"(M)—T(M)
restricting to linear maps on each tangent, resp., cotangent space.

Proof. Tt clearly suffices to verify this locally, so that we may assume that M is an open
subset of R™. Then w is represented by a smooth function

Q: M — M,(R) by wy(v,w)=0vQu.

For v € T,,(M) = R™ we then have v> = v'Q, € M ,(R) (row vector) and, accordingly,
af = ()T = -Q7ta’ for a € My ,(R) = (R™)*. It is clear that the map

b: TM =M xR™ — T*M = M x (R")*, (x,v) — (z,v' Q)
is smooth with inverse
f: "M = M x (R")* - TM =M xR", (z,a)~ (z,-Q; 'a’). O

With the diffeomorphism b: TM — T*M from Lemma which is linear on each
tangent space, we obtain linear bijections

b: V(M) — QYM), X’(p):=X(p)’ and 4: QY M) = VM), o (p):=ap)*

satisfying
ian Q = . (25)

Definition 4.30. Let (M, ) be a symplectic manifold (M, Q).
(a) For H € C*(M), the vector field

Xy = (dH)*

is called the Hamiltonian vector field associated to the function H. It is uniquely determined
by the relation
Xy Q) =dH.

The corresponding local flow <I>f(H is called the Hamiltonian flow and

V() = Xu(y(1))
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the corresponding Hamiltonian equation.

(b) A vector field X € V(M) is called symplectic if LxQ =0, i.e., if Q is invariant under
the corresponding local flow (Exercise [4.4)).

(c) For F,G € C*°(M) we define the Poisson bracket by

{F, G} = Q(XF,Xg) = dF(Xg) = XgF
(cf. (25)).

Remark 4.31. The Poisson bracket of two functions can be used to describe the change of
the values of a function F' on the integral curves « of the Hamiltonian vector field X :
d

2 F0W) = dlwy (1) = dFym X (1) = (Xu F)(3(t) = {F, H}(3(2)),

= {F, H}, (26)

in the sense that the change rate of the function F' on any integral curve is given by this
differential equation.

Example 4.32. For an open subset U C R?", endowed with the canonical symplectic form

n
Q= dg; Adp

j=1

we obtain for a vector field X = (Y, Z) the relation

ixQ = Yjdp; — Z;dg;.

j=1
In view of
" OH OH
; 0q; ait Op; b
we thus obtain for H € C>°(R?"):
oOH O0H OH O0H
Xg=|(—,...,—,——, ..., — .
a (8]?1 ’ ’ 8pn ’ 8(]1 ’ ’ 6Qn)

In coordinates, we thus obtain for the Poisson bracket

" 9F 0G  OF G
FGy=XoF=S — = _ " °>7
the) ¢ ; Oq; Op;  Op; O,

For the coordinate functions ¢; and p; we obtain in particular the canonical Poisson
relations
{¢;,0:} ={pj>pi} =0 and  {g;,pi} = d;;. (27)
For a curve y(t) = (¢(t),p(t)), the Hamiltonian equation associated to H € C°°(U) now has
the form:
. OH . OH

a5 = @a pj *_aiqj'
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The following proposition clarifies some of the relations between these concepts.

Proposition 4.33. The following assertions hold:

(i) Lx; Q=0 for every f € C®(M), i.e., every Hamiltonian vector field is symplectic.
(ii) The Poisson bracket is a Lie bracket on C*>°(M) and satisfies the Leibniz rule

{f,.gh} ={f.gth+g{f.h}, f,9,h€CT(M).
(i) [Xp,X,] = X(y gy for f,g € C(M), so that
s a homomorphism of Lie algebras.
Proof. (i) From the Cartan formula Lx =doix +ix od (Proposition [4.20)), we derive

Lx,Q=d(ix,Q) +ix,d2 =d(df) = 0.

s
(iii) From the other Cartan formula [Lx,iy| = i[x y] (Proposition[4.20}), we obtain with (i)
ix,,x, ) = [Lx,,ix, Q0 = Lx, (ix,9Q) = Lx,dg
= d(ix,dg) +ix,d(dg) = d(ix,dg) = d{g, f} = ix,, ,

Since Q is non-degenerate, this implies (iii).

(ii) It is clear that {-,-} is bilinear and skew-symmetric, and from d(fg) = fdg + gdf we
conclude that it satisfies the Leibniz rule. So it remains to check the Jacobi identity. This is
an easy consequence of (iii):

{fv {gah}} = X{g,h}f = 7[Xg>Xh}f
:_Xy(th)+Xh(ng): {hv{gaf}}_{gv{huf}}' O

As a corollary, we obtain Jacobi’s great insight from about 1830 that was based on his
discovery of the Jacobi identity for the Poisson bracket.

Corollary 4.34. For H € C*®(M) a function F € C>®(M) is constant on the integral
curves of Xg if and only if {F,H} = 0. The set of all these functions is a Lie subalgebra of

(C>(M),{:,-})-
Proof. This follows from
Hr, By HY = {F {F, HY Y + {1, HY, Fo}

for Fy, Fy € C=(M). O
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Symmetries and conserved quantities

Definition 4.35. We consider the flow of the Hamiltonian vector field Xy on the symplectic
manifold (M, Q) and call (M, Q, H) the corresponding Hamiltonian system.

A smooth function F' € C*°(M) is called a constant of motion or conserved quantity if F
is constant along the integral curves of Xp.

A vector field X is called an infinitesimal symmetry of the Hamiltonian system (M, 2, H)
if LxQ=0and XH =0.

Theorem 4.36. (Hamilton Version of E. Noether’s Theorem) For each conserved quantity
F of the Hamiltonian system (M,Q, H) the corresponding vector field X is an infinitesimal
symmetry. Conversely, a Hamiltonian vector field X is an infinitesimal symmetry if and
only if F is a conserved quantity.

Proof. This is a direct consequence of Corollary If F is a conserved quantity, then the
Hamiltonian vector field Xp satisfies XpH = {H, F'} = 0, so that X is a symmetry.

If, conversely, X is a symmetry, then 0 = XpH = {H, F'} = — Xy F implies that F is a
conserved quantity. O

Examples 4.37. We consider some examples of Hamiltonian systems on open subsets U C
R?" = T*(R") and a Hamiltonian H € C*°(U), corresponding to the energy of the related
mechanical system.

(a) The relation {H, H} = 0 means that H itself is a conversed quantity, i.e., energy is
preserved. The corresponding symmetry is represented by the vector field X g generating the
dynamics of the system. In this sense one can also say that the time-independence of X
corresponds to the preservation of energy.

(b) If H is invariant under the translations 7,,: R® — R", g — ¢ + v, resp., the induced
diffeomorphisms

TR S R (g,p) — (¢+0,p),

then the vector field X (q,p) = (v,0) is a symmetry. As X = Xp, for P,(q,p) := Z?:l ViDi,
we see that the corresponding conserved quantity is the linear momentum P, in direction v.
This means that translation invariance corresponds to the conservation of linear momenta.
A typical situation where all linear momenta are preserved is the force free motion of a
particle in R3, where

_Jpl?
2m

H(q,p) or, more generally, H(q,p) = f(p).

(c) On R3 we consider the vector fields
Li:R* R Lj(z)=¢ej xua,

where x denotes the vector product on R3. These vector fields generate the rotations (R);cr,
i =1,2,3, around the coordinate axes (cf. Example .

For each R € O3(R) the corresponding diffeomorphism of R? induces a natural symplectic
diffeomorphism

T*(R): T*(R°) 2 R® = R°, T*(R)a=aoT(R)™', T"(R)(qp):= (Rq Rp)
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(cf. Lemma4.27). The infinitesimal generator of the flow T (R!) on T*(R3) is therefore given
by the vector field

Li(g,p) = (Li(q),Li(p)), q.p€R>.

The corresponding Hamiltonian function on T*Q = R3 x R3 is

J1.(¢,p) = (ei,q x p) = (e; x ¢,p) = det(es, q,p) = Y _ €ijnd;Dr-
ik

These functions are called the angular momenta.
That the vector field L; is an infinitesimal symmetry is equivalent to the invariance of
the Hamiltonian H under the rotation group

H(R!q,Rlp) = H(q,p) forall teR.

Therefore the angular momentum Jr, with respect to the g;-axis is a conserved quantity if
and only if H is invariant under the corresponding rotations.

If H is invariant under the full group SO3(R), resp., under all T*(R), R € SO3(R), then
all angular momenta are conserved. In this sense the vector

(Jry» Iy JLs)
is conserved and in particular its square length, the total angular momentum
Ji=Ji +Ji, +Ji,

is conserved.
A typical situation where all angular momenta are preserved is the motion of a particle
in R? under a central force field

2
p
10,0 = 25 v (gl or, more generally,  H(q.p) = £(lal. Ipl).

Remark 4.38. If the symplectic manifold (M, ) is ezact in the sense that there exists a
1-form © € QY (M) with —d© = Q, then it is easy to find for each X € V(M) with Lx© =0
a corresponding Hamiltonian function:

d(ixO) = LxO — ix(dO) = ixQ
implies that f := ©(X) € C°°(M) is a smooth function with X; = X.

Definition 4.39. Let @ be a smooth manifold. Any vector field X € V(Q) defines a smooth
function
Px:T"Q — R, Px(ay) = ayX(q)),

called the momentum of X.

Remark 4.40. The momentum Pyx of a vector field is a smooth function on the symplectic
manifold T7*@. To understand the structure of the corresponding Hamiltonian flow, note
that the local flow @ of X on @ induces a local flow on T*Q by the maps T*(®;X) (cf.
Lemma [4.27). We claim that this is the local flow defined by Px.
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Let
~ d

Xo = o
denote the generator of this flow. It is called the canonical lift of X to T*Q. Then Lemma[£.27]
implies that £ © = 0, so that Remark@ shows that ©(X) is a Hamiltonian function for X.
As the construction of X implies that T(W)X% = X, it follows that @()Z')(ap) =ap(X,) =
Px (ap), and this proves our claim.

Now we show that

X d

(27 )a = it aoT(®%,)

t=0 t=0

{Px,Py} = P[Y,X] for XY € V(Q) (28)
This implies in particular, that

(X, Y] = [Xpy, Xp, ] = X{PY,PX} = XP[X,Y = [X,Y].

]

In other words, V(Q) — V(T*Q), X — X is a homomorphism of Lie algebras.
To verify , we first observe that, for ¢ € Diff (@), we have

P, x(0g) = q(Tp=105) () X p-1()) = (T*(9) " g) (X p1()) = Px(T* () ),

which implies that
P, x = PxoT*(p) "
Therefore

- d - d ) d
{Px, Py} =YPx = - L, Pxo®) = Tl PxoT (@) = il o Fl@v . x = Plyx)-

Examples 4.41. (a) (Linear momenta) For @ = R? and the constant vector fields P; = e;
the corresponding momentum function on 7*Q = R3 x R? is given by

Jp,(q,p) == p; = (Pj(q),p)-

(b) (Angular momenta) For @ = R? and the linear vector fields L;(q) = e; X q generating
the rotations around the coordinate axes (cf. Example [2.31)), the corresponding momentum
function on T*Q = R3 x R? is given by

Jr,;(q,p) == (ej,q X p).

Darboux charts

In this subsection we briefly discuss Darboux charts of symplectic manifolds (cf. Remark.
Their existence is the main motivation for the introduction of symplectic manifolds in classical
mechanics because it shows that they provide a geometric structure which locally looks like
open subsets of R?”, endowed with its canonical symplectic structure. As we shall see, Dar-
boux charts correspond to local coordinates (g;, p;) satisfying the canonical Poisson relations

{5, @}y ={pj,pi} =0 and {g;,pi} = dyj. (29)
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Lemma 4.42. Let (V,w) and (W,w’) be symplectic vector spaces and v: V. — W be a linear
isomorphism. Then the following are equivalent:

(i) ¢ is symplectic, i.e., p*w' = w.

(ii) ¥* oby othofly = idy- .

(iii) fw = ¢ o fv 0 9™

(iv) {¢"a, 9" B} = w((W* ), (" B)F) = o' (a%, B%) = {a, B} for a, 8 € W*.

Proof. (i) < (ii): That ¢ is symplectic is equivalent to the coincidence of
a(v) =w(eh,v) and  W'(gad, ) = (*P(ah)’)(v)

for o € V*, v € V. This is equivalent to ¢* oby ot oy = idy .
(i) < (iii): Since % is invertible, (ii) is equivalent to

by o™ o tw o (v*) ! =idy-,

which in turn is equivalent to (iii).
(iii) = (iv): From (iii) we get

w((W ), (*B)F) = W' (ol o a, Yoty o) = w'(af, 5F)

for a, B € W*.
(iv) = (iii): From (iv) we obtain

a(¥((WB)F)) = w((Wa)f, (v B)F) = w'(af, ) = a ()
for a,, B € W*. This means that 1 o fy o ™ = #yy. O

Definition 4.43. A smooth map ¢: (M,Q) — (M,Q’) between symplectic manifolds is
called a Poisson map if

O{F,G} ={o*F,0o*G} for F,GeC>®(M").

Lemma 4.44. If (M,Q) and (M',Q) are symplectic manifolds and ¢: M — M’ is a sym-
plectic diffeomorphism, then o is a Poisson map.

Proof. Applying Lemma to the tangent maps T),(p): T,,(M) — T,(N), we obtain

(¢ F ¢ GHp) = B((T(0)"aFpi )P, (T(4) 4G )
— Q) (@F)E ) (O ) = {F. G} (p)). O
Remark 4.45. One may expect that the preceding lemma holds without the assumption of
© being a diffeomorphism. A closer inspection shows that we actually used that it is a local

diffeomorphism, i.e., that all its tangent maps are injective. However, one cannot go beyond
that, as the following example shows.
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Consider the inclusion
SOZRQ_)R47 (qlapl)'_)(qlaoaplao)'

Then the canonical symplectic forms satisfy

2

" Qge = Qpz, ¢~ Z dg; Adp; = dg1 Adpr
j=1

but for the Poisson brackets we find
{02, ¢"p2} ={0,0} =0 # 1= ¢"1 = " {qa, p2}
Actually, one can fabricate a smaller example by the inclusion
©: R ={0} = R% 0~ (0,0)

which satisfies
{0*q, 0"} =0#1=¢"1 =¢"{q,p}.

Remark 4.46. (Darboux charts) A chart (¢,U) of the symplectic manifold (M,Q) is a
chart ¢: U — R?" for which Q|y = ¢*Qge2n. We want to give a criterion for a chart to be a
Darboux chart in terms of Poisson brackets of the coordinate functions @); and P; defined by

Y= (le"‘in»Pla"an)
If ¢ is a Darboux chart, then Lemma [4.44] implies that

{Q;,Qi} ={P;,Pi} =0 and {Qj, P} = di;.

Suppose, conversely, that these relations are satisfied. Since the linear functions p; and g;
on R?” span the dual space, we obtain

Q((Tpe) @), (Te) B)) = {9*a, "B} = {a, B} = Qgan (aF, 5)

for o, 8 € (R?")*. Now Lemma implies that p*Qgzn = Q|y, i.e., that Q is a Darboux
chart.

Without proof we state the following key theorem of symplectic geometry (cf. [MR99]).
It implies in particular that (M, €2) has an atlas consisting of Darboux charts, so that 2n-
dimensional symplectic manifolds can be considered as obtained by gluing open subsets of
R2" by symplectic diffeomorphisms of open subsets.

Theorem 4.47. (Darboux Theorem) Let (M, ) be a symplecitc manifold and p € M. Then
there exists a Darbouz chart (p,U) with p € U.

4.6 Lagrangian mechanics

The idea behind the Lagrangian formulation of mechanics is that the equations of motion
encoded in Newton’s law
F =ma



can be derived from variational principles which are based on the Lagrangian L of the system.
If ¢ = (q1,...,qn) are the coordinates of an element of a configuration space @ C R™, then
L is a function of the form

L(qzaq’ut) = L(qh .. -an(Jl’ .. '7qu7t)7

where ¢ = % = (¢1,.--,4n) is the system velocity. Hamilton’s variational principle

b
6/ L(Qquat)dt:O

then leads to the Fuler—Lagrange equations

4oL oL
dtdg 0q

i=1,...,n. (30)

Example 4.48. (a) For a system of N particles moving in R3, the configuration space is an
open subset @ C R3Y and L often has the form

N
) 1 .
L(qzvq“t) = 5 Zm1||qu2 - V(Qh o 7qn)a
=1

where q; € R? is the location of the ith particle. Then the Euler-Lagrange equations reduce
to Newton’s second law

d ov

%(mi%) = _6(1/

which is F = ma for the motion of particles in a potential field V.
(b) If the Lagrangian has the form

1=1 N

P 5

N
. 1 .
L(q;, 45, t) = 3 > 9i(@)dids
i=1

where (g;;(¢)) is a positive definite matrix, then g = (g;;) defines a Riemannian metric on @
and it turns out that the Euler-Lagrange equations coincide with the equations of geodesics
with respect to this Riemannian metric (cf. Example [4.57)).

4.7 The Legendre Transform

In this subsection @ is a smooth manifold which should be interpreted as the configuration
space of a mechanical system. Its tangent bundle T'Q is called the velocity phase space. Since
the time development of our system is described by a curve y: I — @ that solves a second
order differential equation, it is uniquely determined by the element +'(¢g) € TQ. Therefore
the elements of T'Q) describe the possible states of our system.

A kinetic energy is a function T: TQ — R of the form T'(v) := 1g,(v,v) for v € T,(Q),
where ¢ is a semi-Riemannian metric on Q. A potential energy is a function U € C®(TQ)

of the form U = 7*V = V onw, where V € C®(Q,R) and 7: TQ — @Q is the canonical
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projection. In other words, U(v,) = V(q) depends only on the base point of v, € T,(Q). A
kinetic and a potential energy are combined in the corresponding Lagrange function

L:=T-U e C™(TQ).

In general, any smooth function on T'Q is called a Lagrange function. The elements of the
cotangent bundle T*@Q are called momenta of Q and T*(Q is called the momentum phase
space.

Example 4.49. For a rigid body rotating freely about its center of mass, the configuration
space is the Lie group G = SO3(R) of rotations of R3. Accordingly, the velocity phase space
is the tangent bundle TG = T SO3(R).

The connection between velocities and momenta is established in terms of the fiber deriva-
tive of the Legendre function:

Definition 4.50. (Fiber derivative) For a smooth function L: TQ — R we define its fiber
derivative

FL:TQ —TQ, (FL)(v)(w):=T,(L)w L(v + tw).

 dt| =0

Clearly, FL is a smooth function. It is also called the Legendre transform. We say that L is
hyperregular if FL is a diffeomorphism.
The function
E:TQ—- R, E(v):=(FL),(v)— L(v)

is called the corresponding energy.

Example 4.51. Suppose that L = T — U, where T'(v) = %g(vw) is a kinetic energy and
U = 7*V is a potential energy. Then FU = 0 because U is constant on the fibers 7, and
FT = 2T. Therefore

E=2T-L=T+U

is the sum of the kinetic and the potential energy, i.e., the total energy.

Remark 4.52. (a) For U C R™ open and TU = U x R”, the fiber derivative of a smooth
function is given by the partial derivative

(FL)(z,v)w = (x,dL(x,v)(0,w)) = (z,dos L(x, v)(w)),

where do denotes the partial differential with respect to the second argument.
In coordinates (g;,v;) on TU and (¢;,p;) on T*U, it takes the form

oL
67)1‘

oL
87)2‘

(FL)(QH’U’L) = (QH )7 i'e'a Di =
are the momentum variables.

(b) The fiber derivative FL is fiber preserving, i.e., it maps 7,(Q) into 7,7(Q). Therefore
L is hyperregular if and only if, for each ¢ € Q, the map T7,(Q) — T,(Q),v = FL(v) is a
diffeomorphism (Exercise .
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Example 4.53. (Movement of a point particle in R™) For a point particle of mass m in R"
moving with velocity v, the kinetic energy is given by

T(z,v) == $m|jv|>.
The fiber derivative of this function is given by
(FT)(x,v)w = m{v,w) = {(mv,w),
so that we may identify (FT')(x,v) € T (R™) with the momentum p = muv.
Definition 4.54. We define the Lagrangian forms on T'Q by
O, =FL*©® and Qp=FL*Q
(cf. Example . Then Q7 = —dOy, so that Qf, is an exact 2-form.
From the description of © and € in local coordinates

0= Zpidqi and Q= Zd%‘ A dp;,
3 7

we derive
2

oL oL 92
O = Z: %in and Qp = 12]: md(h Ndg; + mdqi A dvj.

Proposition 4.55. ([MR99, Thm. 7.3.3]) Suppose that L is a hyperreqular Lagrangian on
TQ. Then the 2-form Qp, := (FL)*Q obtained from the Liouville 2-form on T*Q is symplectic.
Let Xg € V(TQ) denote the Hamiltonian vector field corresponding to the energy function

E(v) := (FL),(v) — L(v).

Then Xg is a second order vector field on TQ and its integral curves are of the form 3 =7/,
where v := o 3 is a solution of the Euler—Lagrange equations

d oL 0L 1

— = i=1,...,n.

dt 81},‘ 8qi ’ ’ ’

The vector field Xg on T'Q is called the Lagrangian vector field corresponding to L.

Proof. Tt clearly suffices to verify all that in local coordinates, so that we may assume that
@ is an open subset of R™. We use coordinates (g,v) = (¢;,v;) on T'Q). Then

0L

= 7'Uj — L
. 0v;

E(g,v) = (2L) g (v) = L(v)

leads to 52 52 5
L L L
dF = —; dv; —v,; dg; — —dg;.
zzj: duj0v; 7 i ; ov;0q, 7 21: og; "
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We also recall from Definition [.54] that
2

0%L 0°L
Qp = ———dg; Ndqg; + ———dg; N\ dv;.
L ZJ: 900, 1T Gy, SN
Since we want a second order vector field, we start with the ansatz

XE(Q7/U) = (’U,b) = (U17"'7Un7b17"'7bn)'
This leads

2 2
txgilL = Za a bi dqﬁzm (m (aiaqj aiqui)dqﬂ')'

Comparing ix, €, with dE now leads to the following equation for the b;:

O*L 0?L
Z 8vlaq] Vi 8q] Z (%lﬁvjb +sz<8v18qj f)vj@qi)'

This in turn simplifies to

3qj Z 81)]8(12 Z Ovzav]

Since X is a second order vector field, its integral curves are of the form Bt) =
(4(t),%(¢)), and §(#) = b implies with B(t) = XE(B(t))

.. . d OL
Z 31}1811] Juiov, it Z av 8ql Vi = dt@TJj'

We conclude that g is an integral curve of Xg if and only if v satisfies the Euler-Lagrange
equations. O]

Corollary 4.56. The energy E is constant along the solutions of the Euler—Lagrange equa-
tions.

Proof. If v: I — @ is a solution of the Euler—Lagrange equations, then +/ is an integral curve
of Xg, so that the assertion follows from

E=XpE={E,E}=0. O

Example 4.57. (Geodesics and force free motion) Let (Q, g) be a semi-Riemannian manifold
and consider the Lagrangian L(v) := 3g(v,v) on TQ. We claim that L is hyperregular and
that the integral curves of the Lagrangian vector field Xg on T'Q) are the curves +/, where
v: I — @ is a geodesic. One can therefore interpret the geodesics as describing the motion
of a mechanical system under the absence of external forces (forcefree motion).

From Example [£.51] we know that £ = L is the corresponding energy function. It suffices
to verify the assertion in local coordinates, where the Lagrangian has the form

1
1}) = 5 zk:gjkvjvk.
Js
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This leads to
oL - 1 8gjk

87]1- o 2 ik 8qi

oL
v;v  and a—vz = ;gjivj.

2 : . . . .
As 783 3LUY = g;; is an invertible matrix, L is hyperregular.
10V;

On the other hand, we obtain for v; = ¥;:
d 0L d ) ; 09ji . . .1 <8gﬁ 3gm> ..
pr zj:gm] = zj:gmg + Jz}; Da Y = zj:gmj +3 jz}; dac g, )1
so that the Euler-Lagrange equations turn into

.1 9gjk  0gji 5g/ci). .
;g]l’YJ - 2 jzk ( a(h‘ an aq]' YeVi5

and thus

.1 i (99k 095  Ogri\. .
=359 ( ————)wm-.
2 ]Ek:é 9¢;  Oax  9q; /"

Comparing with the Koszul formula in local coordinats (Remark , we see that this is
the ODE for the geodesics on Q.

4.8 Exercises for Section [4]

Exercise 4.1. Let M be a smooth manifold of dimension dim M > 0. Show that not every
smooth curve in M is a solution of a second order differential equation.

Exercise 4.2. Let G be a Lie group. Show that:

(i) There exists a unique connection V such that VxY = 0 holds for left invariant vector
fields. Compute its torsion T(X,Y) := VxY — Vy X — [X,Y].

(ii) There exists a unique connection V such that VxY = 1[X,Y] holds for left invariant
vector fields. Compute its torsion.

(iii) There exists a unique connection V such that VxY = [X,Y] holds for left invariant
vector fields. Show that VxY = 0 for right invariant vector fields X,Y on G.

Exercise 4.3. Let X, Y and Z be smooth manifolds and F': X XY — X X Z a smooth
map of the form F(z,y) = (x,G(x,y)). Show that F is a diffeomorphism if and only if all
the maps G, : Y — Z,y — G(z,y) are diffeomorphisms. Hint: At some point one should use
the Inverse Function Theorem.

Exercise 4.4. Let X € V(M) and w € Q¥(M). Show that the relation £Lxw = 0 is equivalent
to the invariance of w under the local flow ®;¥ generated by X in the sense that

(97)"w = wlp,,

where D; C M is the domain of CIJtX .
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Exercise 4.5. Let X,Y € V(M). Show that the associated operators Lx on Q(M) satisfy
Lixy)=[Lx,Ly] =LxLy — LyLx.

Proceed along the following steps:

(i) D:=[Lx,Ly] is a derivation of the algebra Q(M), i.e.,

D(anB)=DaAnp+aANDB, «a,fecQ(M).

(ii) D commutes with the exterior differential d.
(iii) Verify D = L[x y] on smooth functions f and their differentials df.

(iv) Now verify the assertion for forms of the type w = fdy; A -+ Adyy and argue that this
proves the general assertion.

Exercise 4.6. Let © € Q}(T*Q) be the canonical 1-form. We consider a 1-form o € Q1(Q)
as a smooth map a: M — T* M. Show that

a*@=a forany o€ QY(Q).

With a little extra work one can even show that this property determines © € QY(T*Q)
uniquely.

Exercise 4.7. A submanifold L of a symplectic manifold (M, ) is said to be Lagrangian if
dim M = 2dim L and Q| = 0.
Show that the zero section (: Q — T7(@ is a Lagrangian submanifold.

5 Hamiltonian Group Actions

5.1 Smooth Actions of Lie Groups

We already encountered smooth flows on manifolds in the first section. These can be viewed as
actions of the one-dimensional Lie group (R, +). In particular, we have seen that these actions
are in one-to-one correspondence with complete vector fields, which is the corresponding Lie
algebra picture. Now we describe the corresponding concept for general Lie groups.

Definition 5.1. Let M be a smooth manifold and G a Lie group. A (smooth) action of G
on M is a smooth map

0:GxM—M, (g,m)—gm=os(m)
with the following properties:
(A1) o(1,m)=m for all m € M.

(A2) o(g1,0(g2,m)) = o(g1g2, m) for g1,92 € G and m € M.
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We also write
gm:=o(g,m), o4(m):=0c(g,m), oc™(g):=0(g,m)=gm.

The map ¢™ is called the orbit map.

For each smooth action o, the map

o: G — Diff(M), g~ o,
is a group homomorphism and any homomorphism ~: G — Diff (M) for which the map
oy: GxM—M, (g,m)—~(g)(m)

is smooth defines a smooth action of G on M.

Remark 5.2. What we call an action is sometimes called a left action. Likewise one defines
a right action as a smooth map op: M x G — M with

or(m,1) =m, or(or(m,g1),92) = or(m, g192).

For m.g := og(m, g), this takes the form

m.(g192) = (m.g1).g2
of an associativity condition.
If o is a smooth right action of G on M, then
or(g,m) :=og(m,g ")
defines a smooth left action of G on M. Conversely, if o7, is a smooth left action, then

UR(m,g) = UL(g_lvm)

defines a smooth left action. This translation is one-to-one, so that we may freely pass from
one type of action to the other.

Examples 5.3. (a) If X € V(M) is a complete vector field and ®: R x M — M its global
flow, then ® defines a smooth action of G = (R, +) on M.
(b) If G is a Lie group, then the multiplication map o := mg: G x G — G defines a smooth
left action of G on itself. In this case the (mg)y = Ay are the left multiplications.

The multiplication map also defines a smooth right action of G on itself. The correspond-
ing left action is

0:GxG—G, (g,h)—hg™t with o,= p;I.
There is a third action of G on itself, the conjugation action:

0:GxG—G, (g,h)— ghg™!  with Og = Cg-

127



(¢) We have a natural smooth action of the Lie group GL,(R) on R™:
o: GL,(R) x R" = R", o(g,x) := gx.
We further have an action of GL,(R) on M, (R):
o: GL,(R) x M,(R) — M,(R), o(g,A) =gAg'.
(d) On the set M, 4(R) of (p x ¢)-matrices we have an action of the direct product Lie group
G := GL,(R) x GLy4(R) by o((g, h), A) := gAh™".

The following proposition generalizes the passage from flows of vector fields to actions of
general Lie groups.

Proposition 5.4. (Derived action) Let G be a Lie group and o: G x M — M a smooth
action of G on M. Then the assignment

o: L(G) = V(M), () = —T1(c™)(x)
1s a homomorphism of Lie algebras.

Proof. First we observe that for each € L(G) the map J(z) defines a smooth map M —
T(M), and since 7(2)m € To1,m)(M) = T,n(M), it is a smooth vector field on M.
To see that ¢ is a homomorphism of Lie algebras, we pick m € M and write

" i=0"oug: G— M, g~ g tm

for the reversed orbit map. Then

"™ (gh) = (gh)"'.m =h"" (g7 m) = ¢ "(h),

which can be written as »
@m o )\g — (pg ~m.
Taking the differential in 1 € G, we obtain for each x € L(G) = T1(G):
Ty(e™)zi(g) = Ty(¢™)T1(Ag)z = Ta(™ 0 Ag)z = Ta(p? ")z

=Ty (09 ™Ty(g)x = =Ty (0% D)z = () pm(g)-

This means that the left invariant vector field x; on G is ¢™-related to the vector field &(x)
on M. Therefore the Related Vector Field Lemma implies that for z,y € L(G) the
vector field [z, yi] is ¢™-related to [6(x),d(y)], which leads for each m € M to

o[z, y])m = Ta(e™)[z,y[i(1) = Ta (™) [z, ni](1) = [6(2), 6 (y)]pm ) = [6(2),6(Y)lm- O

Without proof we state the analog of the integrability result for homomorphisms of Lie
algebras (cf. [HNTI]).

Theorem 5.5. (Palais) Let G be a simply connected Lie group, M a smooth manifold and
B: L(G) = V(M) be a homomorphism of Lie algebras such that, for a Lie generating subset
z1,...,24 € L(GQ), the vector fields B(x;) are complete. Then there exists a unique smooth
left action 0: G x M — M with ¢ = 3.
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Clearly, the completeness of all vector fields 3(z), z € L(G), is necessary, so that it is a
major point of the theorem that this condition only has to be verified for a Lie generating
subset. For the Lie group G = R, the theorem simply asserts the existence of a global flow
for a complete vector field, so that it becomes a tautology.

Definition 5.6. (a) A group action o: G x M — M is called transitive if, for my,mg € M
there exists a g € G with g.m; = ma.

(b) Let G be a group and o1: G x My — My and o9: G X My — M; two actions of G on
sets. A map f: My — M, is called G-equivariant if

f(g-m) =g.f(m) holds for all g€ G,m € M.

(¢) Let 0: G x M — M be an action of the group G on the set M. Fix m € M. Then
the orbit map
o™ G— 0, CM, g—gm

factors through a bijective map
7" GGy ={9Gm: g€ G} = On, 9Gm — gm
which is equivariant with respect to the G-actions on G/G,, and M (Exercise).

Theorem 5.7. Let G be a Lie group and H < G a closed subgroup. Then the coset space

G/H, endowed with the quotient topology, carries a natural manifold structure for which the

quotient map q: G — G/H,g — gH is a submersion, i.e., its differentials are surjective.
Moreover, 0: G x G/H — G/H, (g,2H) — gzH defines a smooth action of G on G/H.

The following corollary shows that for each smooth group action, all orbits carry natural
manifold structures. Not all these manifold structures turn these orbits into submanifolds,
as the dense one-parameter groups

a: R — T?, aft) = (eit,eiﬁt)
in the 2-torus shows.

Corollary 5.8. Let 0: G x M — M be a smooth action of the Lie group G on M. Then
for each m € M the orbit map ¢™: G — M,g — g.m factors through a smooth bijective
equivariant map

an/Gm_)M, gGm'_)gm,
whose image is the set Oy, .

The preceding corollary provides on each orbit O,, of a smooth group action the structure
of a smooth manifold. Its dimension is given by

dim(G/Gp,) = dim G — dim G,, = dim L(G) — dim L(G,,) = dim 6 (L(G))(m),
because L(G,,) is the kernel of the linear map

L(G) = T, (M), xw— d(x)(m).
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In this sense we may identify the subspace &(L(G))(m) C T,,(M) with the tangent space of
the orbit O,,.

In some case the orbit O,, may already have another manifold structure, f.i., if it is a
submanifold of M. In this case the following proposition says that this manifold structure
coincides with the one induced by identifying it with G/G,,.

Proposition 5.9. If O,, is a submanifold of M, then the map
M G/Gm = Oy GG — g.m
s a diffeomorphism.

Corollary 5.10. If 0: G x M — M s a transitive smooth action of the Lie group G on
the manifold M and m € M, then the orbit map nm: G/Gn — M is a G-equivariant
diffeomorphism G/H — M.

Definition 5.11. The manifolds of the form M = G/H, where H is a closed subgroup of
a Lie group G, are called homogeneous spaces. We know already that the canonical action
of G on G/H is smooth and transitive, and the preceding corollary shows the converse, i.e.,
that each transitive action is equivalent to the action on some G/H because there exists an
equivariant diffeomorphism G/H — M.
5.2 Lie algebraic aspects of symplectic manifolds
Let (M, Q) be a symplectic manifold. We write

symp(M,Q) :={X e V(M): Lxw =0}

for the space of symplectic vector fields. As [Lx,Ly]| = Lix,y] (Exercise , this is a Lie
subalgebra of V(M). The space

ham(M,Q) = {Xs: f € C°(M)}

of Hamiltonian vector fields is contained in symp(M, ) (Proposition 1)), and the relation
[Xf, Xg] = Xyg,5 implies that it also is a Lie subalgebra. For X € symp(M,2) and f €
C>(M) we even have

ix,x, Q= [Lx,ix, Q= Lxix, Q= Lxdf =dLx [ =d(Xf),
so that [X, X;] = Xx is also Hamiltonian. This means that
ham(M, Q) < symp(M, Q)

even is a Lie algebra ideal.
The subspace ham (M, w) is the range of the linear map

®: C°(M) — symp(M,Q), f— Xy

As Xy = (df)*, the kernel of this map coincides of those functions f for which df = 0, i.e.,
which are locally constant. This means that

ker & = Hip(M).
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To identify the cokernel of ®, we note that, for X € V(M), the relation
LxQ = d(ixg) +ixdQ) = d(ixﬂ)

shows that X € symp(M, Q) is equivalent to the 1-form ix ) being closed. By definition, X
is Hamiltonian, if ix €2 is exact. Therefore we have a linear map

U: symp(M,Q) — Hig (M), X [ixQ]

whose kernel coincides with im(®). Combining all this, we arrive at the following exact
sequence

0 — HO% (M) — C°°(M)—25 ham(M, Q) — symp(M, Q)——HLx (M) — 0.

This sequence can actually be interpreted as an exact sequence of homomorphisms of Lie
algebras if we endow HSy (M) and Hiy (M) with the trivial Lie bracket. This is clear for the
inclusion of H3, (M) which is actually contained in the center of C>°(M):

{F,G} =0 for F e H{z(M),GeC™M).

In particular, the subspace H, gR(M ) is an abelian Lie algebra.
For the map U to be a homomorphism of Lie algebras, we have to verify that ¥([X,Y]) =
0. This follows from the exactness of the form

i[Xf»Xy]Q = /l:X{g,f}Q = d{ga f}

5.3 Poisson manifolds

Definition 5.12. (a) A Poisson manifold is a pair (M,{-,-}) consisting of a manifold M
and a Lie bracket {-,-} on the algebra C°°(M) of smooth functions on M with the additional
property that the Leibniz rule

{f,gh} ={f,g}h +g{f, h}

is satisfied. The bracket {-,-} is called the Poisson bracket.

(b) A smooth map ¢: (M, {-,-}x) — (N,{-,-}n) between Poisson manifolds is called a
Poisson map if the induced map ¢*: C*°(N) — C*®(M), f — f o is a homomorphism of
Lie algebras, i.e. {fow,go oty ={f,9}n 0.

Note that the Leibniz rule means that the operators
ad f: C*(M) = C*(M), h—{f h}

are derivations for the natural algebra structure on C°°(M). That they are also derivations
for the Lie bracket is encoded in the Jacobi identity.

On each smooth manifold we can identify the Lie algebra der (C°°(M)) with the space of
smooth vector fields V(M) (cf. [HN1I]). This correspondence is established by the bijection

V(M) = Der(C=(M)), X Lx, Lxf=Xf=df(X).

131



Definition 5.13. In the special case of Poisson manifolds, we thus obtain a linear map
C>®(M) — V(M), f — Xy, where X; denotes the vector field representing the derivation
—adf:g — {g,f} of C>®(M). It follows from the Jacobi identity that the assignment
[ — —X; is a homomorphism of Lie algebras. The vector field Xy € V(M) is called the
Hamiltonian vector field associated to the function f.

Definition 5.14. A bivector field on M is a family A = (A,)pen, where Ay, € Altz(T;(M))
is a skew-symmetric form on the cotangent space T (M ), and, in local coordinates, the
functions

p= Ap(avﬁ)

are smooth.

Lemma 5.15. If (M,{-,-}) is a Poisson manifold, then there exists a bivector field A such
that

{f, 9} = Alaf,dg)
holds for f,g € C>°(M).

For each p € M and a € T,(M)*, we now associate a vector o € T},(M) which is uniquely
determined by
ﬁ(aﬁ) =A(B,a) forall peT,(M)".

Thus we obtain a fiberwise linear map T*(M) — T(M),a — of. In terms of this bundle
map, we have

Xyg={g, f} = Mdg,df) = dg(df*) = (df)g.
ie. Xy = (df)ﬁ.
Example 5.16. Let (M, Q) be a symplectic manifold. We have already seen that
{F, G} = Q(XF,Xg) = dF(X(;) = XgF
defines on M the structure of a Poisson manifold. As
{F,G} = Q((aF)*, (aG)"),
it follows that
Ap(av ﬁ) = Qp(an7 B’i)

defines the corresponding bivector field. The preceding discussion shows that the Hamiltonian
vector field X associated to a smooth function F' is defined consistently in both contexts.

Example 5.17. If (V, A) is a Poisson vector space, i.e. A: V* xV* — R is a skew-symmetric
form which we do not assume to be non-degenerate, then

{f,g} == A(df,dg)

defines a Lie bracket on C°°(V'), hence turns V' into a Poisson manifold.

In fact, it is clear that the bracket is skew-symmetric, bilinear and satisfies the Leibniz rule.
To check the Jacobi identity, we have to calculate d{f, g}. In the following calculation, we
view df as a function df: V — V*, write d? f for the corresponding function V" — Hom(V, V*)
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and also d?f, (v, w) := d?f,(v)(w) for the symmetric bilinear form defined by f in each point
x € V. In this sense, we obtain

a{f, g}o(w) = d(A(af,dg)), (w) = A(d® f,(w),dgy) + A(dfy,d*gu(w))
= d2fv (wv (dgv)ﬂ) - d29v (wa (dfv)ﬁ) = d2fv((dgv)ﬁ,w) - dzgv((df,u)ﬁ,w).

This means that d{f, g}, = —(d>f).((dgs)*) + (d%g,)((df,)?), and therefore

{{f,9},h}(v) = AQ{f, g},dh)(v) = A(d®fo(dgo)F), dhy) — A(d®gu(dfo)F, dhy)
= deU((dgv)uv (dhv>u) - d29v ((dfv)uv (dhv)u)'

Finally the symmetry of the second derivative shows that all terms in the Jacobi identity
cancel.

5.4 Hamiltonian group actions

Let M be a Poisson manifold, G a connected Lie group, and o: G x M — M a smooth
action. We also write g.p := 04(p) := 0(g,p). Then we have a homomorphism

d

o:g—> V(M) with o(X),= 7 P

U(exp(—tX),p).

Definition 5.18. (a) An action o of G on the Poisson manifold M is called Hamiltonian
if there exists a homomorphism of Lie algebras ¢: g — C°(M) such that X x) = —¢(X)
holds for all X € g.

(b) If ¢ is a Hamiltonian action and ¢: g — C°°(M) the corresponding homomorphism,
then for each p € M the assignment X — ¢(X)(p) is linear, so that we obtain the momentum
map

O: M —g*, with @(p)(X)=e(X)(p).

Remark 5.19. The terminology momentum map comes from the following two examples.

(a) On @ = R3 we consider the action of the translation group G = R? given by o,z =
g + x. This action lifts naturally to the action on T*(R3) by a;(q,p) = (¢ + g,p). The
corresponding infinitesimal action is given by

—c*(x)(q,p) = (x,0)

which is the Hamiltonian vector field of the function P,(gq,p) = Z?Zl x;p; (see Exam-
ple b)). We thus obtain the momentum map

®: T*(R’) 2R® - L(G)* = R?,  ®(q,p)(x) = Pu(q,p), ®(q,p) =p.

Therefore the momentum map ® assigns to an element (g, p) in the phases space T*(R?) its
total linear momentum.

(b) On Q@ = R?® we consider the action of the rotation group G = SO3(R) given by
orr = Rx. We identify its Lie algebra so3(R) with (R3, x) in such a way that

—o(x)y=x xy
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(cf. Exercise [2.9).
The G-action on R? lifts naturally to the action on T*(R3) by o%(q,p) = (Rq, Rp). The

corresponding infinitesimal action is given by

—0"(2)(q,p) = (& X g,x X p)

which is the Hamiltonian vector field of the function
Jo(q, p) = det(z, ¢, p) = (,q X p)
(cf. also Example m(c)) We thus obtain the momentum map
®: T*(R®) — so3(R)* 2 R®, ®(q,p) =q x p.

Therefore the momentum map ® assigns to an element (g, p) in the phases space its angular
momentum with respect to the origin.

Remark 5.20. (From symplectic actions to Hamiltonian actions) Let (M, ) be a connected
symplectic manifold and o: G x M — M be a smooth action of the Lie group G on M by
symplectic automorphisms, i.e., o;§2 = ) for every g € G. For the corresponding vector
fields ¢(x) we then have L4 (;)Q = 0, so that we have a homomorphism of Lie algebras

6:g=L(G) — symp(M, Q).

To obtain a Hamiltonian action requires to find a lift of this homomorphism to a Lie
algebra homomorphism

g — (C(M), {'7 })

A necessary condition for such a lift to exist is that im(¢(g)) C ham(M, ). Even if this is
the case, such a lift does not always exist. To understand the obstructions, we recall from
Subsection [5.2] that we have a short exact sequence

0 — R = HJy (M,R) — C*°(M) — ham(M, Q) — 0.

As M is connected, the Lie algebra C°° (M) is a one-dimensional central extension of ham(M, €2).
Assuming that ¢(g) C ham(M, Q), we consider the subspace

g:={(z,F) ego C™(M): 6(x) = —Xr}

and observe that this is a Lie subalgebra of the direct sum g & C*°(M). Moreover, the
projection p(x, F) := x is a surjective homomorphism whose kernel consists of all pairs
(0, F'), where F' is a constant function. We thus obtain the central extension

R(0,1) — g—g.

The existence of a homomorphic lift ¢: g — C°(M) is equivalent to the existence of a
splitting o: g — g. Therefore the obstruction to the existence of ¢ is a central R-extension
of g. Equivalence classes of such extensions can be measured by the Lie algebra cohomology
space H?(g,R).
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A typical example of a symplectic action which is not Hamiltonian is the translation
action
o:R2xR* = R?, 04(q,p) = (¢ + 91,0+ g2).

This action is symplectic and the constant vector fields ¢(z) are Hamiltonian. However, the
relation

{e,p} =1

shows that there exists no Lie algebra homomorphism ¢: R? — C°°(R?) with X, ,) = —d ()
for every x € R2.

5.5 The Kirillov—Kostant—Souriau Poisson structure

Let g be a finite—dimensional real Lie algebra and g* its dual space. We will explain how to
put a Poisson structure on g* in such a way that the orbits Ad*(G)a = a o Ad(G) C g* of
the coadjoint action are symplectic submanifolds of g*.

In the following, we will identify for f € C*(g*) and « € g* the derivative df, with an
element of (g*)* = g.

Proposition 5.21. The assignment
{f:9}(e) == (e, [dfa; dgal)
for f,g € C=(g*) and o € g* defines a Poisson structure on g* such that
Ao(X,Y) = o([X,Y])
1s the corresponding bivector field A.

Proof. Tt is clear that {-,-} is skew-symmetric, bilinear, and that the Leibniz rule is satisfied.
We write

{/,9}(B) = (B oad(dfs),dgs) = — (B oad(dgs),dfs)-

Thus we obtain with the chain rule and the same convention as in Example [£:22] for second
derivatives:

a{f,g}s(7) = (yoad (dfs),dgs) + (B o ad (d*f3) (), dgs) + (B o ad (dfs),d°gs(7))
7, [dfs,dgg]) + (B,1d>f5(7),dgs)]) + (B oad (dfs),d*gs(7))
v, [dfs,dgs]) — (Boad (dgs),d*fs(7)) + (B o ad (dfs),d’gs(7))

]

7, [dfs,dgs]) — d*fs(7) (B o ad(dgp)) 4+ d*gs(y) (B o ad(dfs)).

o~ o~~~

)
)~
)~
This in turn leads to

{9}, h}(B) = —(a{f, 9}5, 8 o ad (dhys))
—(Boad (dhﬂ), [df3,dgsl) + a° f5 (B o ad(dhg)) (B o ad(dgs))
— d%gs(B o ad(dhp)) (B o ad(dfs))

= —(B, [dhg, [dfs,dgsl]) + d* f5(B o ad(dhg)) (5 0 ad(dgp))
—d%gs (ﬂ oad (dhﬁ),ﬁ o ad(dfg)).
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From this expression one reads off that the Jacobi identity for {-,-} follows from the Jacobi
identity in g and the fact that second derivatives are symmetric bilinear forms in their last
two arguments. 0

Remark 5.22. We associate to X € g the linear function Hx: g* — R,a — «a(X). Then
dHx(a) = X for all a € g* and therefore

{Hx,Hy}:[X,Y] for X, Y eg
holds for the corresponding Poisson bracket. Hence the natural map
g—C™(g"), X Hy

is a homomorphism of Lie algebras.
The corresponding Hamiltonian vector field is given by

Xiry (@) = X¥(a)

and
(XEY) = Ao (Y, X) = o([Y, X]) = (a0 ad X)(Y),

so that
X! = —qoadX.

The following proposition describes an interesting link between momentum maps for gen-
eral Hamiltonian actions and the Poisson structure on g*.

Proposition 5.23. If M is a Poisson manifold, then a smooth map ®: M — g* is a Poisson
map if and only if the map ¢: g — C*°(M) defined by o(X)(p) := ®(p)(X) is a homomor-
phism of Lie algebras.

Proof. First we assume that & is a Poisson map. Then ¢(X)(p) = ®(p)(X) = (P*Hx)(p)
implies that

p([X,Y]) = @"(Hix y)) = ®"({Hx, Hy}) = {®"Hx, " Hy } = {¢(X),¢(Y)},

so that ¢ is a homomorphism of Lie algebras.
Suppose, conversely, that ¢ is a homomorphism of Lie algebras and let f,g € C*(g*).
For p € M we put X :=dfg(,) and Y :=dfe(p). Then

d(f o @)p = df@(p)dq)p = dHXd(I)p = d(‘b*Hx)p = d(p(X)p
and we thus obtain

{@*f,®*g}(p) = Ap(d(f 0 @),d(g 0 @))
= Ay (dp(X)p, dp(Y),) = {0(X), 0(Y)}(p)
= p([X,Y])(p) = (2(p), [X,Y]) = {[f, 9}(2(p))-

This proves that ® is a Poisson map. 0
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Corollary 5.24. If ®: M — g* is a momentum map for a Hamiltonian group action, then
® is a Poisson map.

Corollary 5.25. If G is a Lie group with Lie algebra g, then the coadjoint action of G on
g is Hamiltonian with momentum map idg-

Proof. If 0(g,a) = Ad*(g)a = a o Ad(g~?), then
5(X)(a) =aoad X = —X*¥ = —(dHx)*

and therefore —(X) is the Hamiltonian vector field corresponding to the linear function H x
on g*. Now the assertion follows from the fact that Hixy) = {Hx, Hy }. O

Let f € g* and Of C g* the corresponding coadjoint orbit. If G is a connected group
with Lie algebra g, then we can think of Oy as G/Gy, where Gy = {g € G: Ad"(g).f = f},
and thus obtain the structure of a homogeneous G-manifold on Oy. The tangent space of
Oy in «a is given by ad*(g).co = {aoad X : X € g}. We define a 2-form Qf on O by

Qf()(aoad X,a0adY) := a[X,Y]).

Proposition 5.26. The pair (O, Q) is a symplectic manifold and the coadjoint action of
G on Oy is Hamiltonian with the inclusion Oy — g* as momentum map.

Proof. Since cwoad X = 0 is equivalent to a([X, g]) = {0}, the form Q; is non-degenerate.
We show that it is also closed.

Let g: G — Oy denote the orbit map. Then w := ¢*Q if a left invariant 2-form on G and
since ¢ is a submersion, it suffices to prove that the form ¢*(d2;) = d(¢*Q) = dw vanishes,
i.e. that w is closed. We have w(1)(X,Y) = f([X,Y]). Hence dw is a left invariant 3-form
which for left invariant vector fields X, Y, Z on g with X (1) = X etc. satisfies

Ww(X,Y,Z)=Xw(Y,Z) - Yw(X,Z) + Zw(X,Y)
w([X,Y], Z) +w((X. 2,Y) - w([Y, 2] X)
Z) =Y [([X, 2) + Zf([Y, Z))

Y,
<[[ 1 2)) + £([1X. 2.Y)) - £([V. 2], X))
(X, Y], 2] + [12, X, Y] + [[¥, 2], X]) = 0.

= Xf(

—f(

Here we have used that the functions w([)? ,Y]) = f([X,Y]) are constant, hence annihilated
by all vector fields.

To see that the coadjoint action of G on Oy is Hamiltonian with momentum map given
by ®(«) = o for all @ € Oy, we have to show that ¢(X)(a) = —ad” X« coincides with the
Hamiltonian vector field associated to the function Hx : o = a(X). We have (X, acadY) =
o[V, X]) = Qp(a)(acadY,aocad X). Hence (dHx)! = aocad X = —ad* Xa. Further we
have

{Hx,Hy}(a) = (ng(,dHﬁ)( )= (Qf)a(acad X,a0adY) = a([X,Y]),
ie. {Hx,Hy} = Hixy). This proves that the action of G on Oy is Hamiltonian with
momentum map given by ®(«)(X) = a(X) for X € g, a € g*. O
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Corollary 5.27. If the coadjoint orbit Oy is endowed with its natural symplectic structure,
then the inclusion Oy — g* is a Poisson map.

Proof. In view of Proposition this follows from Corollary O

Proposition 5.28. If o is a Hamiltonian action of a connected Lie group G on the Poisson
manifold M and ®: M — g* is the associated momentum map, then ® is equivariant with
respect to the coadjoint action of G on g*.

Proof. Since ¢ is a homomorphism of Lie algebras, the relation ¢(Y) = Hy o ® yields
dp(Y)(p).v = (d®(p)v,Y) for v € T,(M) and Y € g. Hence
(@D (p)5(X),, ¥) = (a9, ((X))E, ¥) = d((Y), ((e(X))})
= {0(X), 0(V)}p) = o([X, Y])(p) = (2(p) 0ad X)(Y) = —(ad"(X) (2(p)), Y),
h a®(p)s (X)(p) = —ad (X) (B(1).

We conclude that the integral curves ¢ — (exptX).p of the vector field —d(X) on M are
mapped by ® into integral curves of the linear vector field defined by ad*(X) on g* via
t — Ad*(exptX)p. For t = 1, we obtain ®(exp X.p) = Ad"(exp X)p, hence

P 0 0exp x = Ad*(exp X) 0 .

Since G is connected, and therefore generated by exp g, we obtain ® o o, = Ad"(g) o @ for
all g € G, i.e. @ is equivariant. O

5.6 The affine Hamiltonian action of the Jacobi group

Let (V, ) be a symplectic vector space. The Heisenberg algebra h(V, Q) associated with V
is defined by h(V, Q) := V x R with the bracket

[(wa C)a (wlv Cl)] = (Ov Q(wa w/))'

The associated group H(V,Q) =V x R is given by the same set endowed with the multipli-
cation
(w,c) * (W', ) = (w+w,c+d +1Q(w,w)).

Further let Sp(V, ) denote the group of all automorphisms of the symplectic vector space
(V,Q), ie.
Sp(V, Q) = {g € GL(V): (Vo,w € V) Q(g.v, gw) = Q(v,w)}.

We call Sp(V, Q) the symplectic group associated to (V, ). Then Sp(V, Q) acts by automor-
phisms on H(V, Q) via g.(w, c) := (g.w, ¢) and we thus obtain a semidirect product group

HSp(V, Q) := H(V,©) % Sp(V, Q)

called the Jacobi group associated to (V, Q). Its Lie algebra hsp(V, ) is the corresponding
semidirect sum h(V, Q) x sp(V, Q).
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Proposition 5.29. The Jacobi group acts by J((w, c, g)7v) =w+g.v on V. This action is
Hamiltonian with respect to the natural structure of a symplectic manifold on (V,Q) and the
homomorphism : bsp(V,Q) — C*°(V) given by

o(w,c, A)(v) == 1Q(Aw,v) + Q(w,v) +c.

Proof. The formula for o shows that ¢(w, ¢, A)(v) = —w — A.v. For the quadratic function
F = p(w,c, A), we have

dF(v)(z) = $Q(Av, 2) + 2Q(A.2,0) + Qw,z) = QAv +w, z)

and therefore X,y c,4)(v) = —Av —w = d(w, ¢, A)(v).
It remains to show that the map ¢: hsp(V,Q) — C°(V) is a homomorphism of Lie
algebras. We calculate

(e, A), ol ¢, AV} o) = dpu! ¢, A') (X e ) (0)
= QA v+, Xp,e,a) () = UA v+ 0, —Av —w)
Q(Aw, A" ) + Q(w, A" ) + Q(Aw,w') + Q(w,w)

Q((AA" = A A)v,v) — QA w,v) + QAW v) + Q(w,w')
Q[A, A, v) + QAW — A w,v) + Q(w, w")

= p(Aw' — A w, Qw,w'),[4, A))(v) = ¢([(w, ¢, A), (W', ¢, A")]).

(I SIS

This proves that ¢ is a homomorphism and hence that the action of HSp(V,Q) on V is
Hamiltonian. Moreover, we see that hsp(V,Q) is isomorphic to the algebra of quadratic
functions on V with respect to the Poisson bracket. O

Corollary 5.30. If m: G — Sp(V, Q) is a linear representation of G on the symplectic vector
space and dr: g — sp(V, Q) is the derived action, then the action of G on V is Hamiltonian
with momentum map given by ®(v)(X) = 1Q(dn(X).v,v) forve V.

Proof. This follows by combining Proposition with Lemma below. O

Lemma 5.31. Ifo: G x M — M is a Hamiltonian action of the group G on the Poisson
manifold M with momentum map ®c and ¢: H — G is a homomorphism of Lie groups,
then og(h,p) == J(gp(g),p) defines a Hamiltonian action of H on M with momentum map
Oy =L(p)* o Pg.

Proof. For X € b, we have
or(X) =6(L)X) = Xowex) = Xen(x),

where o = ¢ o L(phi): h — C°°(M) is a homomorphism of Lie algebras such that &y =
L(¢)* o ® is the corresponding momentum map. O
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