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2.8.3 Lorentz and Poincaré group . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Geometric Structures on Manifolds 70
3.1 Geometric structures on vector spaces . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Geometric structures on manifolds . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Semi-Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 The Geometric Structures of Classical Mechanics 99
4.1 Second order equations on manifolds . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 The cotangent bundle of a manifold . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Hamiltonian vector fields and Poisson brackets . . . . . . . . . . . . . . . . . 112
4.6 Lagrangian mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7 The Legendre Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.8 Exercises for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Hamiltonian Group Actions 126
5.1 Smooth Actions of Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Lie algebraic aspects of symplectic manifolds . . . . . . . . . . . . . . . . . . 130
5.3 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4 Hamiltonian group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

1



5.5 The Kirillov–Kostant–Souriau Poisson structure . . . . . . . . . . . . . . . . . 135
5.6 The affine Hamiltonian action of the Jacobi group . . . . . . . . . . . . . . . 138

2



1 Manifolds, vector fields, curves and flows

1.1 Smooth manifolds and smooth maps

Definition 1.1. [Charts, Atlas] Let M be a topological space.
(a) A pair (ϕ,U), consisting of an open subset U ⊆ M and a homeomorphism ϕ : U →

ϕ(U) ⊆ Rn of U onto an open subset of Rn is called an n-dimensional chart of M .
(b) Two n-dimensional charts (ϕ,U) and (ψ, V ) of M are said to be Ck-compatible (k ∈

N ∪ {∞}) if U ∩ V = ∅ or if U ∩ V 6= ∅ and the homeomorphism

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V ) ⊂ Rn → ψ(U ∩ V ) ⊂ Rn

is a Ck-diffeomorphism.
(c) An n-dimensional Ck-atlas of M is a family A := (ϕi, Ui)i∈I of n-dimensional charts

of M with the following properties:

(A1)
⋃
i∈I Ui = M , i.e. (Ui)i∈I is an open covering of M .

(A2) All charts (ϕi, Ui), i ∈ I, are pairwise Ck-compatible: for all i, j ∈ I the homeomor-
phisms

ϕji := ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij)→ ϕj(Uij) Uij := Ui ∩ Uj

are Ck-maps.

(d) A chart (ϕ,U) is called compatible with a Ck-atlas (ϕi, Ui)i∈I if it is Ck-compatible
with all charts of the atlas A. A Ck-atlas A is called maximal if it contains all charts
compatible with it. A maximal Ck-atlas is also called a Ck-differentiable structure on M .
For k =∞ we also call it a smooth structure.

Remark 1.2. 1. Every atlas A is contained in a unique maximal atlas: We simply add
all charts compatible with A, and thus obtain a maximal atlas. This atlas is unique
(Exercise 1.2). This implies that every Ck-atlas A defines a unique Ck-differentiable
structure on M .

2. A given topological space M may carry different differentiable structures. Examples
are the exotic differentiable structures on R4 (the only Rn carrying exotic differentiable
structures) and the 7-sphere S7.

Definition 1.3. [Ck-manifold] An n-dimensional Ck-manifold is a pair (M,A) consisting of
a Hausdorff space M and a maximal n-dimensional Ck-atlas A for M . For k =∞ we call it
a smooth manifold.

Example 1.4. [Open subsets of Rn] Let U ⊆ Rn be an open subset. Then U is a Hausdorff
space with respect to the induced topology. The inclusion map ϕ : U → Rn defines a chart
(ϕ,U) which already defines a smooth atlas of U , turning U into an n-dimensional smooth
manifold.

Example 1.5. [Products of manifolds] Let M and N be smooth manifolds of dimensions
d, resp., k and

M ×N = {(m,n) : m ∈M,n ∈ N}
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the product set, which we endow with the product topology.
We show that M × N carries a natural structure of a smooth

(d+ k)-dimensional manifold. Let A = (ϕi, Ui)i∈I be an atlas of M and B = (ψj , Vj)j∈J an
atlas of N . Then the product sets Wij := Ui × Vj are open in M ×N and the maps

γij := ϕi × ψj : Ui × Vj → Rd × Rk ∼= Rd+k, (x, y) 7→ (ϕi(x), ψj(y))

are homeomorphisms onto open subsets of Rd+k. On γi′j′(Wij ∩Wi′j′) we have

γij ◦ γ−1
i′j′ = (ϕi ◦ ϕ−1

i′ )× (ψj ◦ ψ−1
j′ ),

which is a smooth map. Therefore (ϕij ,Wij)(i,j)∈I×J is a smooth atlas on M ×N .

Example 1.6. [Submanifolds of Rn] Smooth k-dimensional submanifolds of Rn are often
defined as follows:

A smooth k-dimensional submanifold of Rn is a subset M ⊂ Rn such that for every point
p ∈M there is an open neighborhood Up ⊂ Rn and a smooth function fp : Up → Rn−k such
that M ∩ Up = f−1

p (0) and rank(dfp(x)) = n− k for all x ∈ Up ∩M .

Every smooth k-dimensional submanifold M ⊂ Rn has a natural structure as a k-
dimensional manifold. Firstly, M has a natural structure of a Hausdorff space as a subset
of the Hausdorff space Rn. Moreover, by the Implicit Function Theorem there exist for each
p ∈ M an open neighbourhood Vp ⊂ Up ⊂ Rn of p, an open neighbourhood Wp ⊂ Rn of 0
and a smooth diffeomorphism ϕp : Vp →Wp such that

ϕp(Up ∩M) = (Rk × {0}) ∩Wp

If we identify Rk×{0} with Rk then (ϕp|Vp∩M , Vp∩M) is a chart for M and for Vp∩Vq∩M 6= ∅,

ϕq ◦ ϕ−1
p |ϕp(Vp∩Vq∩M) = (ϕq|Vq∩M ) ◦ (ϕp|Vp∩M )−1|ϕp(Vp∩Vq∩M)

ϕp(Vp ∩ Vq ∩M)→ ϕq(Vp ∩ Vq ∩M)

is a smooth map onto an open subset of Rd. We thus obtain a smooth atlas of M .

Many manifolds that play an important role in physics are submanifolds of Rn. A par-
ticularly simple example are quadrics, which cover already many relevant examples.

Example 1.7. [quadrics] A quadric Q in Rn is the set of zeros of a function f : Rn → R of
the form

f(x) = 〈x,Ax+ b〉+ c.

where A ∈ Mat(n,R) is a symmetric matrix, b ∈ Rn, c ∈ R and 〈 , 〉 denotes the Euclidean
scalar product on Rn. The gradient of the function f is given by

grad f(x) = 2Ax+ b,

and its zeros are precisely the solutions of the linear equation 2Ax + b = 0. If none of its
solutions lies on the affine plane 〈x, b〉+ 2c = 0, we have

f(x) = 1
2 〈x, 2Ax+ b+ b〉+ c = 1

2 〈x, b〉+ c 6= 0 ∀x ∈ (gradf)−1(0)
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and the quadric Q = f−1(0) is an (n − 1)-dimensional smooth manifold. In particular, this
is the case for all quadrics with b = 0, c 6= 0 and A ∈ GLn(R) and for all quadrics with
A = 0 and b 6= 0. This includes the following cases, all of which are (n − 1)-dimensional
submanifolds of Rn:

• A = 0, b 6= 0: affine hyperspaces of Rn

M = {x ∈ Rn : 〈x, b〉+ c = 0} with b 6= 0.

• A = 1n, b = 0 and c = −1: the (n− 1)-sphere

Sn−1 = {x ∈ Rn : 〈x, x〉 = 1}

• A = diag(1,−1, . . . ,−1), b = 0 and c = −1: (n− 1)-dimensional hyperbolic space

Hn−1 =
{
x ∈ Rn : x2

n −
n−1∑
i=1

x2
i = 1

}
.

• A = diag(1,−1, . . . ,−1), b = 0, c = 1: (n− 1)-dimensional de Sitter space

dSn−1 =
{
x ∈ Rn : x2

n −
n−1∑
i=1

x2
i = −1

}
.

• A = diag(1, . . . , 1︸ ︷︷ ︸
p×

,−1, . . . .,−1︸ ︷︷ ︸
(q+1)×

), b = 0, c = 1: (p, q)-anti de Sitter space

AdS(p,q) =
{
x ∈ Rn :

p∑
i=1

x2
i −

n∑
i=p+1

= −1
}
, p+ q = n− 1.

With the results of Example 1.6, it is easy to check that a given subset of Rn is a
submanifold and to determine its dimension. However, for many purposes this is not enough
since one needs an explicit description of M in terms of coordinates. Although the definition
of the smooth structure on M is based on a maximal smooth atlas, in practice it is advisable
to describe a manifold with as few charts as possible. If an n-dimensional manifold cannot
be realised as an open subset of Rn, it is clear that one needs at least two charts, and in
many examples, this is already sufficient.

Example 1.8. [The n-dimensional sphere] We consider the unit sphere

Sn := {(x0, . . . , xn) ∈ Rn+1 : x2
0 + x2

1 + . . .+ x2
n = 1}

in Rn, endowed with the subspace topology, turning it into a compact space.
(a) To specify a smooth manifold structure on Sn, we consider the open subsets

Uεi := {x ∈ Sn : εxi > 0}, i = 0, . . . , n, ε ∈ {±1}.
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These 2(n+ 1) subsets form a covering of Sn. We have homeomorphisms

ϕεi : Uεi → B := {x ∈ Rn : ‖x‖2 < 1}

onto the open unit ball in Rn, given by

ϕεi (x) = (x0, x1, . . . , xi−1, xi+1, . . . , xn)

and with continuous inverse map

(y1, . . . , yn) 7→
(
y1, . . . , yi, ε

√
1− ‖y‖22, yi+1, . . . , yn

)
.

This leads to charts (ϕεi , U
ε
i ) of Sn.

It is easy to see that these charts are pairwise compatible. We have
ϕεi ◦ (ϕε

′

i )−1 = idB , and for i < j, we have

ϕεi ◦ (ϕε
′

j )−1(y) =
(
y1, . . . , yi, yi+2, . . . , yj , ε

′
√

1− ‖y‖22, yj+1, . . . , yn

)
,

which is a smooth map
ϕε
′

j (Uεi ∩ Uε
′

j )→ ϕεi (U
ε
i ∩ Uε

′

j ).

(b) There is another atlas of Sn consisting only of two charts, where the maps are slightly
more complicated.

We call the unit vector e0 := (1, 0, . . . , 0) the north pole of the sphere and −e0 the south
pole. We then have the corresponding stereographic projection maps

ϕ+ : U+ := Sn \ {e0} → Rn, (y0, y) 7→ 1

1− y0
y

and

ϕ− : U− := Sn \ {−e0} → Rn, (y0, y) 7→ 1

1 + y0
y.

Both maps are bijective with inverse maps

ϕ−1
± (x) =

(
± ‖x‖

2
2 − 1

‖x‖22 + 1
,

2x

1 + ‖x‖22

)
(Exercise 1.4). This implies that (ϕ+, U+) and (ϕ−, U−) are charts of Sn. That both are
smoothly compatible, hence a smooth atlas, follows from

(ϕ+ ◦ ϕ−1
− )(x) = (ϕ− ◦ ϕ−1

+ )(x) =
x

‖x‖2
, x ∈ Rn \ {0},

which is the inversion at the unit sphere.

Example 1.9. [Counterexample: the Double Cone] Consider for n ≥ 2 the double cone

M = {(x0, x1, . . . , xn) ∈ Rn+1 : x2
0 − (x2

1 + . . .+ x2
n) = 0}.
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As a subset of the Hausdorff space Rn+1, M is a Hausdorff space. However, M is not a
smooth manifold. To show this, note that M \ {0} is an n-dimensional manifold by Example
1.6:

M = f−1(0) with f : Rn+1 → R, f(x) = x2
0 − (x2

1 + . . .+ x2
n)

and
gradf(x0, . . . , xn) = 2(x0,−x1, . . . ,−xn) 6= 0 ∀(x0, . . . , xn) 6= (0, . . . , 0).

Suppose now that there exists a chart (ϕ,U) with 0 ∈ U , U ⊂M open, and a homeomorphism
ϕ : U → ϕ(U) ⊂ R2. Then U \ {0} cannot be connected, because it contains at least one
point x ∈ M with x0 > 0 and one point y ∈ M with y0 < 0. After applying a translation
and restricting ϕ to a suitable subset, we can suppose ϕ(0) = 0 and

ϕ(U) = Bε(0) = {x ∈ Rn : ||x||2 ≤ ε}

with ε > 0. This implies that U \ {0} = ϕ−1(Bε(0) \ {0}) is connected, since ϕ is a homeo-
morphism and Bε(0) \ {0} is connected for n ≥ 2. Contradiction.

Although a large class of manifolds can be realised as submanifolds of Rn for some n ∈ N,
viewing a manifold as a subset of Rn is inadequate for several reasons. Firstly, it often leads
to a very complicated description of the manifolds. Secondly, it is contrary to the sprit of
differential geometry, in which the central structures are the charts and transitions between
them, not the embedding into Rn. This is also reflected in its applications in physics. In
general relativity, a spacetime is described by a manifold, and this description is crucial
for the interpretation of the theory. Embedding this manifold into Rn would correspond to
introducing an absolute time and space outside of the spacetime manifold and hence to a
Newtonian viewpoint.

For this reason, it natural to ask if one can construct a manifold “from scratch” instead
of defining it as a certain subset of Rn or, more generally, of a Hausdorff topological space.
This is possible and is called the gluing construction of manifolds. The idea is to start from
certain open subsets Vi ⊂ Rn and Ck-homeomorphisms ϕji : Vij → Vji between certain open
subsets Vij ⊂ Vi, which identify (glue together) the subsets Vij and Vji.

Definition 1.10. [Gluing data] A set of gluing data on Rn is a countable triple

((Vi)i∈I , (Vi,j)i,j∈I , (ϕji)(i,j)∈K)

consisting of

• pairwise disjoint, non-empty open subsets Vi ⊂ Rn, the parametrisation domains

• open subsets Vij ⊂ Vi such that Vii = Vi for all i ∈ I and Vij = ∅ if and only if Vji = ∅
for all i, j ∈ I. The non-empty sets Vij with j 6= i are called gluing domains.

• Ck-diffeomorphisms ϕji : Vij → Vji for (i, j) ∈ K := {(i, j) ∈ I × I : Vij 6= ∅}, the
gluing functions

which satisfy the following conditions:
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(G1) cocycle condition: for all i, j, k ∈ I with Vji ∩ Vjk 6= ∅:

ϕ−1
ji (Vji ∩ Vjk) ⊂ Vik and ϕki|ϕ−1

ji (Vji∩Vjk) = ϕkj ◦ ϕji|ϕ−1
ji (Vji∩Vjk)

(G2) Hausdorff condition: for all pairs of points x ∈ (∂Vij) ∩ Vi, y ∈ (∂Vji) ∩ Vj with
(i, j) ∈ K, i 6= j there exist open neighbourhoods Vx of x and Vy of y with

(Vy ∩ Vji) ∩ ϕji(Vx ∩ Vij) = ∅.

Remark 1.11. (a) The cocycle condition implies ϕii = idVi : Vi → Vi for all i ∈ I and
ϕij = ϕ−1

ji for all (i, j) ∈ K.
(b) A set of gluing data defines an equivalence relation on V =

∐
i∈I Vi:

x ∼ y ⇔ ∃(i, j) ∈ K with x ∈ Vij , y = ϕji(x).

Reflexivity: For x ∈ Vj the relation ϕjj(x) = x implies x ∼ x.
Symmetry: If x ∼ y and (i, j) ∈ K with y = ϕji(x), then ϕij = ϕ−1

ji implies x = ϕij(y) and
hence y ∼ x.
Transitivity: If x ∼ y and y ∼ z then there exist index pairs (i, j), (j, k) ∈ K such that
x ∈ Vij , y = ϕji(x) ∈ Vji and y ∈ Vjk, z = ϕkj(y) ∈ Vkj . As Vji ∩ Vjk 6= ∅, the cocyle
condition implies x ∈ ϕ−1

ji (Vij ∩ Vjk) ⊂ Vik and ϕki(x) = ϕkj ◦ ϕji(x) = ϕkj(y) = z, so that
x ∼ z.

Proposition 1.12. For every set of gluing data, the quotient M =
(∐

i∈I Vi
)
/ ∼ is an

n-dimensional Ck-manifold.

Proof. We consider the maps ti = p ◦ ιi : Vi → M , x 7→ [x], where ιi : Vi →
∐
i∈I Vi are the

inclusion maps and p :
∐
i∈I Vi → M the projection on the equivalence classes. We equip

M with the finest topology such that all maps ti are continuous, i.e. a subset O ⊆ M is
open if and only if, for every i, the inverse image t−1

i (O) is open. If W ⊆ Vi is open, then
t−1
j ti(W ) = ϕji(W ∩ Vij) is open in Vj for every j ∈ I, and therefore ti(W ) open in M . As
ti is obviously injective, it is an homeomorphism onto an open subset of M .

For all i ∈ I, we thus obtain a chart ϕi := t−1
i : ti(Vi)→ Vi for M , M =

⋃
i∈I ti(Vi) and,

for all (i, j) ∈ K,
ϕj ◦ ϕ−1

i = ϕji : Vij → Vji,

is a Ck-function by definition. This shows that (ϕi, ti(Vi))i∈I is an n-dimensional Ck-Atlas
for M , and by adding all maps compatible with this atlas, we obtain a Ck-diffferentiable
structure on M (see Remark 1.2).

It remains to prove that M is Hausdorff. For this, we first show that

ti(Vi) ∩ tj(Vj) =

{
ti(Vij) = tj(Vji) (i, j) ∈ K
∅ (i, j) /∈ K.

In fact, ti(x) ∈ ti(Vi) is contained in tj(Vj) for some i 6= j if and only if there exists a y ∈ Vj
with ti(x) = tj(y), i.e. (i, j) ∈ K, x ∈ Vij and ϕji(x) = y.
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Consider now two distinct points in p, q ∈ M with p 6= q. Then there exist i, j ∈ I and
xi ∈ Vi, yj ∈ Vj with p = ti(x), q = tj(y). If Vij = ∅, then ti(Vi) and tj(Vj) are disjoint open
sets in M with p ∈ ti(Vi) and q ∈ tj(Vj). Otherwise, there are three cases:

(a) q ∈ ti(Vi) or p ∈ tj(Vj): Assume that q ∈ ti(Vi). Then there exist disjoint open
neighbourhoods Vx ⊂ Vi of x and Vy ⊂ Vi of ϕij(y). Their images ti(Vx), ti(Vy) contain,
respectively, p and q and are open and disjoint since ti is a homeomorphism. The case
p ∈ tj(Vj) is similar.

This leaves the cases where i 6= j, y 6∈ Vji and x 6∈ Vij .
(b) y 6∈ Vji or x 6∈ Vij : Again, it suffices to deal with the first case. Then ti(Vi) and

tj(Vj \ Vji) are disjoint open subsets of M , containing p, resp., q.
(c) x ∈ ∂Vij and y ∈ ∂Vji. Then the Hausdorff condition implies that there exist open

neighbourhoods Vx of x and Vy of y with (Vy ∩Vji)∩ϕji(Vx∩Vij) = ∅. This implies that the
images ti(Vx) and tj(Vy) are disjoint open subsets of M with p ∈ ti(Vx) and q ∈ tj(Vy).

Remark 1.13. The Hausdorff condition is necessary to ensure that M =
∐
i∈I Vi/ ∼ is a

Hausdorff space. Consider R2 with the parametrisation and gluing domains

V1 =]− 3,−1[×]0, 1[, V2 =]1, 3[×]0, 1[, V12 =]− 3,−2[×]0, 1[, V21 =]1, 2[×]0, 1[

and the gluing function ϕ21 : V12 → V12, ϕ21(x1, x2) = (x1 + 4, x2). Then the sets
V1, V2, V12, V21 are open, ϕ12 is a diffeomorphism and the cocycle condition is satisfied triv-
ially, since there are only two gluing domains, V12 and V21.

However, M = V1

∐
V2/ ∼ is not Hausdorff. For all x2 ∈]0, 1[, the points t1((−2, x2)),

t2((2, x2)) ∈ V1

∐
V2/ ∼ are distinct since (−2, x2) ∈ V1 \V12 and (2, x2) ∈ V2 \V21. However,

they cannot be separated by disjoint open subsets of M , since every open neighbourhood
U−2 ⊂M of t1((−2, x2)) contains a point t1((−2−ε, x2)) and and every open neighbourhood
U2 ⊂ M of t2((2, x2)) a point t2((2 − ε, x2)). As t1(−2 − ε, x2) = t2(ϕ21(−2 − ε, x2)) =
t1(2− ε, x2), it follows that U2 ∩ U−2 6= ∅.

Example 1.14. [Cylinder and Möbius strip by gluing] We consider R2 with the parametri-
sation and gluing domains

V1 =]− 4,−1[×]0, 1[, V12 = (]− 2,−1[×]0, 1[) ∪ (]− 4,−3[×]0, 1[) ⊂ V1,

V2 =]1, 4[×]0, 1[, V21 = (]1, 2[×]0, 1[) ∪ (]3, 4[×]0, 1[) ⊂ V2

and the gluing function ϕ21 : V12 → V21

ϕ21(x1, x2) =

{
(x1 + 3, x2) (x1, x2) ∈]− 2,−1[×]0, 1[

(7 + x1, x2) (x1, x2) ∈]− 4,−3[×]0, 1[

The cocycle condition is again satisfied trivially, and to show that this defines a set of gluing
data, the only condition to be checked is the Hausdorff condition. We have

∂V12 ∩ V1 = ({−3}×]0, 1[)∪̇({−2}×]0, 1[) ∂V21 ∩ V2 = ({2}×]0, 1[)∪̇({3}×]0, 1[).

If x ∈ ∂V12 ∩ V1, y ∈ ∂V21 ∩ V2 and 0 < ε < 1
2 then

ϕ21(V12 ∩Bε(x)) = Bε(ϕ21(x)) ∩ V21 ⊂ (]1, 1 + ε[×]0, 1[) ∪ (]4− ε, 4[×]0, 1[)

V21 ∩Bε(y) ⊂ (]2− ε, 2 + ε[×]0, 1[) ∪ (]3− ε, 3 + ε[×]0, 1[).
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This implies ϕ21(Bε(x)∩V12)∩ (Bε(y)∩V21) = ∅. We can thus take Vx = Bε(x), Vy = Bε(y).
Consequently, the Hausdorff condition is satisfied and V1

∐
V2/ ∼ is a smooth manifold. One

can show that V1 × V2 is homeomorphic to a cylinder S1×]0, 1[.
If we take the same parametrisation and gluing domains V1, V2, V12, V21 but modify the

gluing function to

ϕ21(x1, x2) =

{
(x1 + 3, x2) (x1, x2) ∈]− 2,−1[×]0, 1[

(7 + x1, 1− x2) (x1, x2) ∈]− 4,−3[×]0, 1[,

it is easy to see that the Hausdorff condition is again satisfied. The resulting smooth manifold
V1

∐
V2/ ∼ is a Möbius strip.

Remark 1.15. Note that this construction is a refinement of the gluing of topological spaces
in topology, where the openness of the subsets Vij is not required. The difference is that the
above gluing construction defines an n-dimensional Ck-manifold and not not just a topological
space. To ensure this, additional conditions on the gluing data are necessary which are absent
in the gluing of topological spaces.

Definition 1.16. [Smooth Maps, Diffeomorphisms] LetM andN be differentiable manifolds.
(a) We call a continuous map f : M → N smooth in p ∈M if there exist charts (ϕ,U) of

M with p ∈ U and (ψ, V ) of N with f(p) ∈ V auch that the map

ψ ◦ f ◦ ϕ−1 : ϕ(f−1(V ))→ ψ(V ), ϕ(x) 7→ ψ(f(x)) (1)

is smooth in a neighborhood of ϕ(p). We call a continuous map f : M → N smooth if it is
smooth in each point of M and write C∞(M,N) for the set of smooth maps f : M → N . If
N = R we set C∞(M) := C∞(M,R).

(b) A smooth map f : M → N is called a smooth isomorphism or a diffeomorphism if there
exists a smooth map g : N →M with g ◦ f = idM and f ◦ g = idN . We write Diff(M,N) for
the set of diffeomorphisms of M to N and Diff(M) := Diff(M,M). Two manifolds M and
N are called diffeomorphic if there exists a diffeomorphism f : M → N .

Remark 1.17. (a) The identity map idM : M → M , p 7→ p is smooth, since for any chart
(ϕ,U) of M the map ϕ ◦ ϕ−1 = idϕ(U) is smooth.

(b) If f : M → N and g : N → Q are continuous maps with f smooth in p ∈ M and g
smooth in f(p), then the composition g ◦ f is smooth in p. For charts (ϕ,U), (ψ, V ), resp.,
(η,W ) of M , N , resp., Q, with p ∈ U , f(p) ∈ V and g ◦ f(p) ∈W we have

η ◦ (g ◦ f) ◦ ϕ−1 = (η ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1),

on its natural domain, which contains a neighborhood of ϕ(p).
(c) It follows from (a) and (b) that “diffeomorphic” is an equivalence relation on the class

of smooth n-dimensional manifolds.
(d) It follows from (b) that, if f : M → N is smooth in p, then for any two charts (χ,W )

of M with p ∈W and (ξ, Z) of N with f(p) ∈ Z, the map

ξ ◦ f ◦ χ−1 : χ(f−1(Z))→ ξ(Z)

is smooth. Smoothness does not depend on the choice of charts.
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(e) If U is an open subset of Rn, then a map f : U → M to a smooth m-dimensional
manifold M is smooth if and only if for each chart (ϕ, V ) of M the map

ϕ ◦ f : f−1(V )→ Rn

is smooth. Smoothness of maps f : M → Rn can be checked more easily. Since the identity
is a chart of Rn, the smoothness condition simply means that for each chart (ϕ,U) of M the
map

f ◦ ϕ−1 : ϕ(f−1(V ) ∩ U)→ Rn

is smooth.
(f) Any chart (ϕ,U) of a smooth n-dimensional manifold M defines a diffeomorphism

U → ϕ(U) ⊆ Rn, when U is endowed with the canonical manifold structure as an open
subset of M . In fact, by definition, we may use (ϕ,U) as an atlas of U . Then the smoothness
of ϕ is equivalent to the smoothness of the map ϕ ◦ ϕ−1 = idϕ(U), which is trivial. Likewise,
the smoothness of ϕ−1 : ϕ(U)→ U is equivalent to the smoothness of ϕ ◦ ϕ−1 = idϕ(U).

Example 1.18. If M and N are differentiable manifolds and M × N their product, then
the following maps are smooth:

(a) the projection maps pM : M ×N →M and pN : M ×N → N .
(b) for x ∈M , y ∈ N , the embeddings

ix : N →M ×N, y 7→ (x, y) iy : M →M ×N, x 7→ (x, y)

(c) the diagonal embedding ∆M : M →M ×M,x 7→ (x, x).

Definition 1.19. [Smooth Curve, Piecewise Smooth Curve]
(a) If I ⊆ R is an open interval, then a smooth map γ : I →M is called a smooth curve.
(b) For a not necessarily open interval I ⊆ R, a map γ : I → Rn is called smooth if all

derivatives γ(k) exist in all points of I and define continuous functions I → Rn. Based on
this generalization of smoothness for curves, a curve γ : I → M is said to be smooth, if for
each chart (ϕ,U) of M the curves ϕ ◦ γ : γ−1(U)→ Rn are smooth.

(c) A curve γ : [a, b]→M is called piecewise smooth if γ is continuous and there exists a
subdivision x0 = a < x1 < . . . , < xN = b such that γ|[xi,xi+1] is smooth for i = 0, . . . N − 1.

Exercises for Section 1.1

Exercise 1.1. Let M := R, endowed with its standard topology. Show that Ck-compatibility
of 1-dimensional charts is not an equivalence relation.

Exercise 1.2. Show that each n-dimensional Ck-atlas is contained in a unique maximal one.

Exercise 1.3. Let If Mi, i = 1, . . . , n, be smooth manifolds of dimension di. Show that the
product space M := M1 × . . . ×Mn carries the structure of a (d1 + . . . + dn)-dimensional
manifold.

Exercise 1.4. (a) Verify the details in Example 1.8, where we describe an atlas of Sn by
stereographic projections.

(b) Show that the two atlasses of Sn constructed in Example 1.8 and the atlas obtained
from the realization of Sn as a quadric in Rn+1 define the same differentiable structure.
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Exercise 1.5. Determine a smooth atlas for the n-dimensional hyperboloid

Hn = {x ∈ Rn+1 : x2
n+1 − (x2

1 + x2
2 + . . .+ x2

n) = 1}

with as few maps as possible. What conclusions do you draw from this about the relation
between the manifolds Hn and Rn?

Exercise 1.6. Let 0 < r < R. Determine a set of gluing data on R2 for the torus

T = {(R cos t+ r sinϕ,R sin t+ r sinϕ, r cosϕ) : t, ϕ ∈ [0, 2π]} ⊂ R3.

Exercise 1.7. Show that the set A := C∞(M,R) of smooth real-valued functions on M is
a real algebra. If g ∈ A is nonzero and U := g−1(R×), then 1

g ∈ C
∞(U,R).

Exercise 1.8. Let f1 : M1 → N1 and f2 : M2 → N2 be smooth maps. Show that the map

f1 × f2 : M1 ×M2 → N1 ×N2, (x, y) 7→ (f1(x), f2(y))

is smooth.

Exercise 1.9. Let f1 : M → N1 and f2 : M → N2 be smooth maps. Show that the map

(f1, f2) : M → N1 ×N2, x 7→ (f1(x), f2(x))

is smooth.

Exercise 1.10. Let N be an open subset of the smooth manifold M . Show that if A =
(ϕi, Ui)i∈I is a smooth atlas of M , Vi := Ui ∩ N and ψi := ϕi|Vi , then B := (ψi, Vi)i∈I is a
smooth atlas of N .

Exercise 1.11. Let V1, . . . , Vk and V be finite-dimensional real vector space and

β : V1 × . . .× Vk → V

be a k-linear map. Show that β is smooth with

dβ(x1, . . . , xk)(h1, . . . , hk) =

k∑
j=1

β(x1, . . . , xj−1, hj , xj+1, . . . , xk).

Exercise 1.12. Let M be a compact smooth manifold containing at least two points. Then
each atlas of M contains at least two charts. In particular the atlas of Sn obtained from
stereographic projections is minimal.

Exercise 1.13. Let X and Y be topological spaces and q : X → Y a quotient map, i.e. q is
surjective and O ⊆ Y is open if and only if q−1(O) is open in X. Show that a map f : Y → Z
(Z a topological space) is continuous if and only if the map f ◦ q : X → Z is continuous.

Exercise 1.14. Show that a smooth function f : R → R is a diffeomorphism if and only if
either

(1) f ′ > 0 and limx→±∞ f(x) = ±∞.

(2) f ′ < 0 and limx→±∞ f(x) = ∓∞.
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1.2 Tangent Vectors and Tangent Maps

Definition 1.20. [tangent vector, tangent bundle] Let M be a smooth manifold and p ∈M .
(a) A tangent vector to M in p is an equivalence class of smooth curves γ : (−ε, ε)→ M

with γ(0) = p under the equivalence relation

γ1 ∼ γ2 ⇔ there exists a chart (U,ϕ) with p ∈ U and (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0).

(b) The tangent space Tp(M) is the set of all tangent vectors in p. The disjoint union of
all tangent spaces on M

T (M) :=
∐
p∈M

Tp(M)

is called the tangent bundle of M . We write πTM : TM → M for the projection, mapping
Tp(M) to {p}.

Remark 1.21. (a) If γ1, γ2 : (−ε, ε) → M with γ1(0) = γ2(0) = p are equivalent curves,
then we have (ψ ◦ γ1)′(0) = (ψ ◦ γ2)′(0) for all charts (V, ψ) with p ∈ V , since

(ψ ◦ γi)′(0) = d(ϕ(p))(ψ ◦ ϕ−1)(ϕ ◦ γi)′(0).

(b) If U ⊆ Rn is an open subset and p ∈ U , then each smooth curve
γ : I → U with γ(0) = p is equivalent to the curve ηv(t) := p + tv for v = γ′(0). Hence
each equivalence class contains exactly one curve ηv. We may therefore think of a tangent
vector in p ∈ U as a vector v ∈ Rn attached to the point p, and the map

Rn → Tp(U), v 7→ [ηv]

is a bijection. In this sense, we identify all tangent spaces Tp(U) with Rn, so that we obtain
a bijection

T (U) ∼= U × Rn.

As an open subset of the product space T (Rn) ∼= R2n, the tangent bundle T (U) inherits a
natural manifold structure.

(c) If V is a vector space, then we identify T (V ), as in (b), in a natural way with V × V .
Accordingly we have

Tp(f)(v) = (f(p), df(p)v),

for a map df : T (M)→ V with df(p) := df |Tp(M).
(d) For each p ∈M and any chart (ϕ,U) with p ∈ U , the map

Tp(ϕ) : Tp(M)→ Rn, [γ] 7→ (ϕ ◦ γ)′(0)

is well-defined and injective by the definition of the equivalence relation. Moreover, the curve

γ(t) := ϕ−1(ϕ(p) + tv),

which is smooth and defined on some neighborhood of 0, satisfies (ϕ ◦ γ)′(0) = v. Hence
Tp(ϕ) is a bijection.
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Lemma 1.22. Let M be an m-dimensional manifold. Then there is a unique vector space
structure on Tp(M) such that for each chart (ϕ,U) of M with p ∈ U the map

Tp(ϕ) : Tp(M)→ Rm, [γ] 7→ (ϕ ◦ γ)′(0)

is a linear isomorphism. If N is an n-dimensional manifold and f : M → N a smooth map,
then for all p ∈M

Tp(f) : TpM → Tf(p)N, [γ] 7→ [f ◦ γ]

defines a linear map between TpM and Tf(p)N . The collection of all these maps defines a
map

T (f) : T (M)→ T (N) with Tp(f) = T (f)|Tp(M), p ∈M.

It is called the tangent map of f

Proof. The bijectiion Tp(ϕ) from Remark 1.21(d) defines a vector space structure on Tp(M)
by

v + w := Tp(ϕ)−1(Tp(ϕ)v + Tp(ϕ)w) and λv := Tp(ϕ)−1(λTp(ϕ)v)

for λ ∈ R, v, w ∈ Tp(M). It remains to show that this vector space structure does not depend
on the choice of the chart. For any other chart (ψ, V ) with p ∈ V we have

Tp(ψ) = dϕ(p)(ψ ◦ ϕ−1) ◦ Tp(ϕ).

As ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is a diffeomorphism, Ap := dϕ(p)(ψ ◦ ϕ−1) is a linear
automorphism of Rn, so that

Tp(ψ)−1(Tp(ψ)v + Tpψw) = Tpϕ
−1 ◦A−1

p (Ap ◦ Tp(ϕ)v +Ap ◦ Tp(ϕ)v)

= Tp(ϕ)−1(Tp(ϕ)v + Tp(ϕ)w)

Tp(ψ)−1(λTp(ψ)v) = Tpϕ
−1 ◦A−1

p (λAp ◦ Tp(ϕ)v) = Tp(ϕ)−1(λTp(ϕ)v).

This shows that the vector space structure does not depend on the choice of the map and is
well-defined.

Consider now a smooth map f : M → N between smooth manifolds M,N . We need to
show that Tp(f) is well defined and linear. For any chart (ϕ,U) of N with f(p) ∈ U and any
chart (ψ, V ) of M with p ∈ V , we have

Tf(p)(ϕ)[f ◦ γ] = (ϕ ◦ f ◦ γ)′(0) = dψ(p)(ϕ ◦ f ◦ ψ−1)(ψ ◦ γ)′(0)

= dψ(p)(ϕ ◦ f ◦ ψ−1)Tp(ψ)[γ].

This relation shows that Tp(f) does not depend on the choice of the representative γ and it
is linear, since the maps Tf(p)(ϕ), Tp(ψ) and dψ(p)(ϕ ◦ f ◦ ψ−1) are linear.

Example 1.23. [Open subsets] (a) For an open subset U ⊆ Rn and p ∈ U , the vector space
structure on Tp(U) = {p} × Rn is simply given by

(p, v) + (p, w) := (p, v + w) and λ(p, v) := (p, λv)

for v, w ∈ Rn and λ ∈ R.
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(b) If f : U → V is a smooth map between open subsets U ⊆ Rn and V ⊆ Rm, p ∈ U ,
and ηv(t) = p+ tv, then the tangent map satisfies

T (f)(p, v) = [f ◦ ηv] = (f ◦ ηv)′(0) = (f(p), df(p)η′v(0)) = (f(p), df(p)v).

The main difference to the map df is the book keeping; here we keep track of what happens
to the point p and the tangent vector v. We may also write

T (f) = (f ◦ πTU , df) : TU ∼= U × Rn → TV ∼= V × Rn,

where πTU : TU → U, (p, v) 7→ p, is the projection map.
(c) If (ϕ,U) is a chart of M and p ∈ U , then we identify T (ϕ(U)) with ϕ(U) × Rn and

obtain for [γ] ∈ Tp(M):

T (ϕ)([γ]) = (ϕ(p), [ϕ ◦ γ]) = (ϕ(p), (ϕ ◦ γ)′(0)),

which is consistent with our previously introduced notation Tp(ϕ).

Example 1.24. [Submanifolds of Rn] Let M ⊂ Rn be a smooth k-dimensional submanifold
and p ∈ M . Then there exists an open neighbourhood Up ⊂ Rn of p and a smooth function
fp : Up → Rn−k such that M ∩ Up = f−1

p ({0}) and rank(dpfp) = n − k. For every smooth
curve γ : (−ε, ε)→M ∩ Up with γ(0) = p we have fp ◦ γ(t) = 0 for all t and hence

0 = (fp ◦ γ)′(0) = dpfp(γ
′(0)) ⇒ γ′(0) ∈ ker(dpfp).

We can therefore identify the tangent space Tp(M) with ker(dpfp). If (ϕp, Vp) is a chart as
in Example 1.6 with ϕp(Vp ∩M) = (Rk × {0}) ∩Wp then dpϕp : Rk → ker(dpfp) is a vector
space isomorphism and

Tp(ϕp)[γ] = (ϕp ◦ γ)′(0) = dpϕp(γ
′(0)).

Lemma 1.25. (Chain rule for tangent maps) For smooth maps f : M → N and g : N → L,
the tangent maps satisfy

T (g ◦ f) = T (g) ◦ T (f).

Proof. We recall from Remark 1.17 that g ◦ f : M → L is a smooth map, so that T (g ◦ f) is
defined. For p ∈M and [γ] ∈ Tp(M), we further have

Tp(g ◦ f)[γ] = [g ◦ f ◦ γ] = Tf(p)(g)[f ◦ γ] = Tf(p)(g)Tp(f)[γ].

Since p was arbitrary, this implies the lemma.

So far we only considered the tangent bundle T (M) of a smooth manifold M as a set,
but this set also carries a natural topology and a smooth manifold structure.

Definition 1.26. [Manifold structure on T (M)] Let M be a smooth manifold. First we
introduce a topology on T (M). For each chart (ϕ,U) of M , we have a tangent map

T (ϕ) : T (U)→ T (ϕ(U)) ∼= ϕ(U)× Rn,
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where we consider T (U) =
⋃
p∈U Tp(M) as a subset of T (M). We define a topology on

T (M) by declaring a subset O ⊆ T (M) to be open if for each chart (ϕ,U) of M , the set
T (ϕ)(O ∩ T (U)) is an open subset of T (ϕ(U)). It is easy to see that this defines indeed a
Hausdorff topology on T (M) for which all the subsets T (U) are open and the maps T (ϕ) are
homeomorphisms onto open subsets of R2n (Exercise 1.16).

Since for two charts (ϕ,U), (ψ, V ) of M , the map

T (ϕ ◦ ψ−1) = T (ϕ) ◦ T (ψ)−1 : T (ψ(V ))→ T (ϕ(U))

is smooth, for each atlas A of M , the collection (T (ϕ), T (U))(ϕ,U)∈A is a smooth atlas of
T (M). We thus obtain on T (M) the structure of a smooth manifold.

Lemma 1.27. If f : M → N is a smooth map, then its tangent map T (f) is smooth.

Proof. Let p ∈ M and choose charts (ϕ,U) and (ψ, V ) of M , resp., N with p ∈ U and
f(p) ∈ V . Then the map

T (ψ) ◦ T (f) ◦ T (ϕ)−1 = T (ψ ◦ f ◦ ϕ−1) : T (ϕ(f−1(V ) ∩ U))→ T (V )

is smooth, and this implies that T (f) is a smooth map.

Remark 1.28. For smooth manifolds M1, . . . ,Mn, the projection maps

πi : M1 × · · · ×Mn →Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(T (π1), . . . , T (πn)) : T (M1 × · · · ×Mn)→ TM1 × · · · × TMn

(Exercise 1.17).

Exercises for Section 1.2

Exercise 1.15. Show that for a submanifold M ⊂ Rn which is a quadric M = f−1(0) with
f : Rn → R, f(x) = 〈x,Ax+ b〉+ c, the tangent space Tp(M) is isomorphic to the orthogonal
complement

(2Ap+ b)⊥ = {y ∈ Rn : 〈y, 2Ap+ b〉 = 0}.

Determine the tangent spaces TpSn and TpHn of the n-sphere and the n-dimensional hyper-
bolic space.

Exercise 1.16. Let M be a smooth manifold. We call a subset O ⊆ T (M) open if for each
chart (ϕ,U) of M , the set T (ϕ)(O ∩ T (U)) is an open subset of T (ϕ(U)). Show that:

(1) This defines a topology on T (M).

(2) All subsets T (U) are open.

(3) The maps T (ϕ) : TU → T (ϕ(U)) ∼= ϕ(U) × Rn are homeomorphisms onto open subsets
of R2n ∼= T (Rn).
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(4) The projection πTM : T (M)→M is continuous.

(5) T (M) is Hausdorff.

Exercise 1.17. For smooth manifolds M1, . . . ,Mn, the projection maps

πi : M1 × · · · ×Mn →Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(T (π1), . . . , T (πn)) : T (M1 × · · · ×Mn)→ TM1 × · · · × TMn.

Exercise 1.18. Let N and M1, . . . ,Mn be a smooth manifolds. Show that a map

f : N →M1 × · · · ×Mn

is smooth if and only if all its component functions fi : N →Mi are smooth.

Exercise 1.19. Let f : M → N be a smooth map between manifolds,
πTM : TM → M the tangent bundle projection and σM : M → TM the zero section. Show
that for each smooth map f : M → N we have

πTN ◦ Tf = f ◦ πTM and σN ◦ f = Tf ◦ σM .

Exercise 1.20. [Inverse Function Theorem for manifolds] Let f : M → N be a smooth
map and p ∈ M such that Tp(f) : Tp(M) → Tf(p)(N) is a linear isomorphism. Show that
there exists an open neighborhood U of p in M such that the restriction f |U : U → f(U) is
a diffeomorphism onto an open subset of N .

Exercise 1.21. Let µ : E × F → W be a bilinear map and M a smooth manifold. For
f ∈ C∞(M,E), g ∈ C∞(M,F ) and p ∈M set h(p) := µ

(
f(p), g(p)

)
. Show that h is smooth

with
T (h)v = µ

(
T (f)v, g(p)

)
+ µ

(
f(p), T (g)v

)
for v ∈ Tp(M).

1.3 Vector fields

Throughout this subsection M denotes an n-dimensional smooth manifold.

Definition 1.29. [Vector Field, Lie Derivative] Let M be a n-dimensional manifold and
denote by πTM : TM →M the canonical projection mapping Tp(M) to p. A (smooth) vector
field X on M is a smooth section of the tangent bundle TM , i.e. a smooth map X : M → TM
with πTM ◦X = idM . We denote by V(M) for the space of all vector fields on M .

If f ∈ C∞(M,V ) is a smooth function on M with values in some finite-dimensional vector
space V and X ∈ V(M), then we obtain a smooth function on M via

LXf := df ◦X : M → TM → V.

We thus obtain for each X ∈ V(M) a linear operator LX on C∞(M,V ). The function LXf
is also called the Lie derivative of f with respect to X.
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Remark 1.30. (a) If U is an open subset of Rn, then TU = U × Rn with the bundle
projection

πTU : U × Rn → U, (x, v) 7→ x.

Therefore each smooth vector field is of the form X(x) = (x, X̃(x)) for some smooth function

X̃ : U → Rn, and we may thus identify V(U) with the space C∞(U,Rn) of smooth Rn-valued
functions on U .

(b) The space V(M) carries a natural vector space structure given by

(X + Y )(p) := X(p) + Y (p), (λX)(p) := λX(p).

More generally, we can multiply vector fields with smooth functions

(fX)(p) := f(p)X(p), f ∈ C∞(M,R), X ∈ V(M).

Remark 1.31. [Time-dependent vector fields] In many physics applications such as classical
mechanics or electrodynamics, one considers so-called time-dependent vector fields. From
a mathematical viewpoint, these are simply smooth functions X : I × M → TM with
X(t, p) ∈ Tp(M) for all t ∈ I, p ∈ M . Equivalently, one can consider time-dependent vector
fields as smooth vector fields on the product manifold I ×M with

X(t, p) ∈ Im(Tp(it)) ⊂ T(t,p)(M) ∀(t, p) ∈ I ×M,

where it : M → {t} ×M , p 7→ (t, p) denotes the embedding of M into the product manifold
I ×M .

Remark 1.32. [Basic Vector Fields] (a) Let (ϕ,U) be a chart of M and ϕ1, . . . , ϕn : U → R
the corresponding coordinate functions. Then we obtain on U vector fields bϕj , j = 1, . . . , n,
defined by

bϕj (p) := Tp(ϕ)−1ej

where e1, . . . , en is the standard basis for Rn. We call these vector fields the ϕ-basic vec-
tor fields on U . The expression basic vector field is doubly justified. On the one hand,(
bϕ1 (p), . . . , bϕn(p)

)
is a basis for Tp(M) for every p ∈ U . On the other hand, the definition

shows that every X ∈ V(U) can be written uniquely as

X =

n∑
j=1

xj · bϕj with xj ∈ C∞(U).

(b) For functions f ∈ C∞(U), we denote by

∂f

∂ϕj
:= Lbϕj f

its Lie derivatives with respect to the basic vector fields. This notation is justified by the
following observation: The smooth curves

γi : (−ε, ε)→M, γi(t) = ϕ−1(ϕ(p) + tej)
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satisfy Tp(ϕ)(γj) = ej , which implies

∂f

∂ϕj
(p) := Lbϕj f(p) = df ◦ T (ϕ)−1ej =

d

dt

∣∣
t=0

(f ◦ ϕ−1)(ϕ(p) + tej) = ∂j(f ◦ ϕ−1)(ϕ(p)).

(c) The Lie derivatives of f with respect to the basic vector fields coincide with partial
derivatives of the function f ◦ ϕ−1|U : ϕ(U) → R. As df : TM → TR ∼= R × R is linear on
each tangent space, the Lie derivative of f ∈ C∞(U) with respect to X =

∑n
i=1 xib

ϕ
i ∈ V(U)

then takes the form

LXf =

n∑
i=1

xi
∂f

∂ϕi
.

(d) If (ϕ,U), (ψ, V ) are coodinate charts on M with U ∩ V 6= ∅, then it is easy to show
that the basic vector fields for ϕ and ψ are related on U ∩ V by

bψj (p) =

n∑
k=1

∂ϕk
∂ψj

(p)bϕk (p),
∂f

∂ψj
(p) =

n∑
k=1

∂ϕk
∂ψj

(p)
∂f

∂ϕk
∀p ∈ U ∩ V,

and we have the identity

n∑
k=1

∂ψj
∂ϕk

(p)
∂ϕk
∂ψi

(p) =
∂ψj
∂ψi

(p) = δij

(see Exercise 1.23).

Lemma 1.33. (Properties of the Lie derivative) The Lie derivative is a derivation:

(a) It is local: LXf(p) = LX(f |V )(p) for any open subset V ⊂ U with p ∈ U .

(b) It is linear in f :

LX(f + g) = LXf + LXg L(λf) = λLXf ∀f, g ∈ C∞(U), λ ∈ R

(c) It satisfies the Leibnitz identity:

LX(f · g) = g · LXf + f · LXg ∀f, g ∈ C∞(U), X ∈ V(U).

Proof. For any point p ∈ M we can choose a chart (ϕ,U) with p ∈ U . The assertions then
follow directly from the formulas in Remark 1.32 and the corresponding properties of the
partial derivatives of functions g : Rn → R.

Definition 1.34. (Lie bracket) Let (ϕ,U) be a chart of M and X =
∑n
i=1 xib

ϕ
i , Y =∑n

i=1 yib
ϕ
i smooth vector fields on U . The Lie bracket of X and Y is the smooth vector field

[X,Y ] ∈ V(U) defined by

[X,Y ](p) =

n∑
j=1

(
n∑
i=1

xi(p)
∂yj
∂ϕi

(p)− yi(p)
∂xj
∂ϕi

(p)

)
bϕj (p) ∀p ∈ U.
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Remark 1.35. In local coordinates, we find for the composition of two Lie derivative op-
erators LX and LY corresponding to the vector fields X =

∑
i xib

ϕ
i and Y =

∑
i yib

ϕ
i (cf.

Remark 1.32):

LXLY f =

n∑
i=1

xi
∂

∂ϕi

 n∑
j=1

yi
∂f

∂ϕi

 =

n∑
i,j=1

xi
∂yj
∂ϕi

∂f

∂ϕj
+ xiyj

∂2f

∂ϕi∂ϕj
.

This is not of the form LZf for any vector field Z because it contains second derivatives of f .
However, the Schwarz Lemma implies that the term containing the second derivatives does
not change if we exchange X and Y . This leads to the relation

LXLY f − LY LXf =

n∑
i,j=1

(
xi
∂yj
∂ϕi
− yi

∂xj
∂ϕi

)
∂f

∂ϕj
= L[X,Y ]f. (2)

Clearly, this relation determines the Lie bracket [X,Y ] uniquely because any vector field
Z ∈ V(U) is determined by its Lie derivative on C∞(U).

Lemma 1.36. (The Lie algebra structure on V(M))

(a) The Lie bracket does not depend on the choice of the chart and defines a bilinear, anti-
symmetric map [ , ] : V(M)× V(M)→ V(M) that satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 ∀X,Y, Z ∈ V(M).

This equips V(M) with the structure of a Lie algebra (cf. Definition 2.7).

(b) For all f ∈ C∞(M), X,Y ∈ V(M), the Lie bracket satifies:

[X, f · Y ] = f · [X,Y ] + LXf · Y.

(c) For all f ∈ C∞(M), X,Y ∈ V(M):

LXLY f − LY LXf = L[X,Y ]f

Proof. We first show that the Lie bracket does not depend on the choice of the chart. Once
this is established, all other identities can then be derived by direct calculations using the
formulas from Remark 1.32 and Definition 1.34 for the ϕ-basic vector fields for a chart (ϕ,U).

(a) Let (ϕ,U) and (ψ, V ) be two charts on M with U ∩ V 6= ∅ and X,Y ∈ V(U ∩ V ).
Then we can uniquely express the vector fields X,Y in terms of the ϕ- and ψ-basic vector
fields as

X =

n∑
i=1

xib
ϕ
i =

n∑
j=1

x̃jb
ψ
j , Y =

n∑
i=1

yib
ϕ
i =

n∑
j=1

ỹjb
ψ
j .

For a smooth function f ∈ C∞(U ∩ V ) the function

L[X,Y ]f = LXLY f − LY LXf
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can be calculated in both coordinate systems, which leads to the corresponding formulas for
the Lie bracket (Remark 1.35):

[X,Y ] =

n∑
j=1

(
n∑
i=1

xi
∂yj
∂ϕi
− yi

∂xj
∂ϕi

)
bϕj =

n∑
j=1

(
n∑
i=1

x̃i
∂ỹj
∂ψi
− ỹi

∂x̃j
∂ψi

)
bψj .

This shows that the Lie bracket is independent of the choice of the chart. We can thus
cover M by charts and define [X,Y ] by the formula in Definition 1.34 on the domain of each
chart. As the resulting brackets agree on the overlap U ∩ V of any two charts (ϕ,U) and
(ψ, V ), this yields a map

[·, ·] : V(M)× V(M)→ V(M).

The bilinearity and antisymmetry follow directly from the formula in Definition 1.34. For
the Jacobi idenity, it is sufficient to show that it holds on the domain of each chart (ϕ,U).
This can be verified by the following calculation:

L[X,[Y,Z]]f = LX(LY LZ − LZLY )f − (LY LZ − LZLY )LXf
= (LXLY LZ − LXLZLY − LY LZLX + LZLY LX)f.

A short calculation shows that the cyclic sum over X,Y, Z of this expression vanishes, which
shows that, for J := [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]], we have LJf = 0 for every f , and
hence that J = 0.

(b) It is again sufficient to show that this holds in the domain of each chart (ϕ,U). We
calculate:

[X, f · Y ] =

n∑
i,j=1

(
xi
∂(fyj)

∂ϕi
− fyi

∂xj
∂ϕi

)
bϕj

=f ·

 n∑
i,j=1

(
xi
∂yj
∂ϕi
− yi

∂xj
∂ϕi

)
bϕj

+

(
n∑
i=1

xi
∂f

∂ϕi

) n∑
j=1

yjb
ϕ
j


=f · [X,Y ] + LXf · Y.

(c) We know from (a) that the Lie bracket [X,Y ] for X,Y ∈ V(M) is a well-defined global
vector field. That this vector field satisfies (c) in any local chart follows from Remark 1.35.

Example 1.37. For open subsets U ⊂ Rn, the space V(U) can be identified with C∞(U,Rn),
and the Lie bracket of two vector fields X =

∑n
i=1 xiei, Y =

∑n
j=1 yjej is given by

[X,Y ](p) =

n∑
j=1

(
n∑
i=1

xi(p)∂iyj(p)− yi(p)∂ixj(p)

)
ej = dY (p)X(p)− dX(p)Y (p).

For the Lie derivative of a function f ∈ C∞(U) with respect to X, we obtain

LXf(p) =

n∑
i=1

xi(p)∂if(p).
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It remains to investigate how Lie derivatives of functions and the Lie brackets of vector
fields behave under smooth maps ϕ : M → N . For each vector field X ∈ V(M), we obtain
a smooth map Tϕ ◦X : M → TN . On the other hand, every vector field Y ∈ V(N) yields
a smooth map Y ◦ ϕ : M → TN . This allows one to relate and compare vector fields on M
and on N .

Definition 1.38. [ϕ-related vector fields] If ϕ : M → N is a smooth map, then we call two
vector fields X ∈ V(M) and Y ∈ V(N) ϕ-related if

Y ◦ ϕ = Tϕ ◦X : M → TN. (3)

Example 1.39. For every chart (ϕ,U) on M , the ϕ-basic vector fields on U are ϕ-related
to the constant vector fields ej ∈ C∞(Rn,Rn), ej(p) = ej since we have:

Tp(ϕ)bϕj (p) = Tp(ϕ)Tp(ϕ)−1ej(ϕ(p)) = ej(ϕ(p)) = ej ∀p ∈ U.

Example 1.40. We consider M = S2 and the vector field X : S2 → TS2 defined by

X(p) = e3 × p ∀p ∈ S2,

where × denotes the vector product in R3. The rotations around the x3-axis

R : R3 → R3, R(x1, x2, x3) = (cosαx1 + sinαx2, cosαx2 − sinαx1, x3)

map S2 to itself and hence induce smooth maps ϕ = R|S2 : S2 → S2. By Example 1.24, we
have

Tp(ϕ) = R|p⊥ : p⊥ → ϕ(p)⊥ ∀p ∈ S2,

which implies

X(ϕ(p)) = e3 × ϕ(p) = Re3 ×Rp = R(e3 × p) = Tp(ϕ)(X(p)).

The vector field X is ϕ-related to itself.

Lemma 1.41. (Related Vector Field Lemma) Let M and N be smooth manifolds, ϕ : M → N
a smooth map, Y, Y ′ ∈ V(N) and X,X ′ ∈ V(M). If X is ϕ-related to Y and X ′ is ϕ-related
to Y ′, then the Lie bracket [X,X ′] is ϕ-related to [Y, Y ′], and

LX ◦ ϕ∗ = ϕ∗ ◦ LY , (4)

where ϕ∗ : C∞(N)→ C∞(M), f 7→ f ◦ ϕ is the pullback map.

Proof. The relation (4) follows for f ∈ C∞(N) from the Chain Rule:

LXϕ∗f = d(f ◦ ϕ)X = df ◦ T (ϕ) ◦X = df ◦ Y ◦ ϕ = ϕ∗LY f.

If, conversely,
LXϕ∗f = ϕ∗LY f

holds for all smooth functions defined on open subsets U ⊆ N , we can apply this relation to
coordinate functions to obtain

T (ϕ) ◦X = Y ◦ ϕ,
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i.e., that X is ϕ-related to Y .
We further obtain

L[X,X′]ϕ
∗f = (LXLX′ − LX′LX)ϕ∗f = LXϕ∗LY ′f − LX′ϕ∗LY f

= ϕ∗(LY LY ′ − LY ′LY )f = ϕ∗L[Y,Y ′]f

for smooth functions defined on subsets U ⊆ N , and by the preceding argument, this implies
that [X,X ′] is ϕ-related to [Y, Y ′].

Exercises for Section 1.3

Exercise 1.22. Consider the n-sphere with the charts from Example 1.8 and determine the
associated ϕ-basic vector fields.

Exercise 1.23. Let M be an n-dimensional manifold and (ϕ,U), (ψ, V ) coodinate charts
on M with U ∩ V 6= ∅. Prove that the ϕ- and ψ-basic vector fields on U ∩ V are related by

bψj (p) =

n∑
k=1

∂ϕk
∂ψj

(p)bϕk (p) ∀p ∈ U ∩ V

and that the Lie derivatives with respect to the basic vector fields satisfy the relations

∂f

∂ψj
(p) =

n∑
k=1

∂ϕk
∂ψj

(p)
∂f

∂ϕk

n∑
k=1

∂ψj
∂ϕk

(p)
∂ϕk
∂ψi

(p) =
∂ψj
∂ψi

(p) = δij

Exercise 1.24. Let M be a smooth manifold, X,Y ∈ V(M) and f, g ∈ C∞(M,R). Show
that

(1) LX(f · g) = LX(f) · g + f · LX(g), i.e. the map f 7→ LX(f) is a derivation.

(2) LfX(g) = f · LX(g).

Exercise 1.25. Let A be a K-algebra (not necessarily associative). Show that

(i) der(A) := {D ∈ End(A) : (∀a, b ∈ A)D(ab) = Da · b + a · Db} is a Lie subalgebra of
gl(A) = End(A)L, i.e., closed under the commutator bracket [D1, D2] := D1D2−D2D1.

(ii) If, in addition, A is commutative, then for D ∈ der(A) and a ∈ A, the map aD : A →
A, x 7→ aDx also is a derivation.

Exercise 1.26. Let U be an open subset of R2n and P = C∞(U,R) be the space of smooth
functions on U and write q1, . . . , qm, p1, . . . , pm for the coordinates with respect to a basis.
Then P is a Lie algebra with respect to the Poisson bracket

{f, g} :=

n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

Exercise 1.27. To each A ∈ gln(R), we associate the linear vector field XA(x) := Ax on Rn
Show that, for A,B ∈Mn(R), we have X[A,B] = −[XA, XB ].
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1.4 Integral Curves and Local Flows

Throughout this subsection M denotes an n-dimensional manifold.

Definition 1.42. Let X ∈ V(M) and I ⊆ R an open interval containing 0. A differentiable
map γ : I →M is called an integral curve of X if

γ′(t) = X(γ(t)) for each t ∈ I.

Note that the preceding equation implies that γ′ is continuous and further that if γ is Ck,
then γ′ is also Ck. Therefore integral curves of smooth vector fields are automatically smooth.

If J ⊇ I is an interval containing I, then an integral curve η : J →M is called an extension
of γ if η|I = γ. An integral curve γ is said to be maximal if it has no proper extension.

Remark 1.43. Integral curves can be defined analogously for time-dependent vector fields.
By Remark 1.31, a time dependent vector field on M is a smooth function X : I×M → TM .
A curve γ : I →M is called an integral curve of X if it satisfies

γ′(t) = X(t, γ(t)) ∀t ∈ I.

Remark 1.44. (a) If U ⊆ Rn is an open subset of Rn, then we write a vector field X ∈ V(U)
as X(x) = (x, F (x)), where F : U → Rn is a smooth function. A curve γ : I → U is an integral
curve of X if and only if it satisfies the ordinary differential equation

γ′(t) = F (γ(t)) for all t ∈ I.

(b) If (ϕ,U) is a chart of the manifold M and X ∈ V(M), then a curve γ : I → M is an
integral curve of X if and only if the curve η := ϕ ◦ γ is an integral curve of the vector field
Xϕ := T (ϕ) ◦X ◦ ϕ−1 ∈ V(ϕ(U)) because

Xϕ(η(t)) = Tγ(t)(ϕ)X(γ(t)) and η′(t) = Tγ(t)(ϕ)γ′(t).

Example 1.45. We consider the vector field X : S2 → TS2, X(p) = e3 × p from Example
1.40. Then for all p ∈ S2, the curve

γp : I → R3, γ(t) = cos(t)(p− 〈p, e3〉e3) + sin(t)e3 × p+ 〈p, e3〉e3

defines an integral curve of X since we have:

〈γp(t), γp(t)〉 = (〈p, p〉 − 〈p, e3〉2) cos2(t) + (〈p, p〉 − 〈p, e3〉2) sin2(t) + 〈p, e3〉2 = 1

and
γ′p(t) = − sin(t)(p− 〈p, e3〉e3) + cos(t)e3 × p = e3 × γp(t) = X(γp(t)).

Definition 1.46. Let a < b ∈ [−∞,∞]. For a continuous curve γ : ]a, b[→M we say that

lim
t→b

γ(t) =∞

if for each compact subset K ⊆M there exists a c < b with γ(t) 6∈ K for t > c. Similarly, we
define

lim
t→a

γ(t) =∞.
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Theorem 1.47. (Existence and Uniqueness of Integral Curves) Let X ∈ V(M) and p ∈M .
Then there exists a unique maximal integral curve γp : Ip → M with γp(0) = p. If a :=
inf Ip > −∞, then limt→a γp(t) =∞ and if b := sup Ip <∞, then limt→b γp(t) =∞.

Proof. We have seen in Remark 1.44 that in local charts, integral curves are solutions of an
ordinary differential equation with a smooth right hand side. We now reduce the proof to
the Local Existence- and Uniqueness Theorem for ODE’s.

Uniqueness: Let γ, η : I → M be two integral curves of X with γ(0) = η(0) = p. The
continuity of the curves implies that

0 ∈ J := {t ∈ I : γ(t) = η(t)}

is a closed subset of I. In view of the Local Uniqueness Theorem for ODE’s, for each t0 ∈ J
there exists an ε > 0 with [t0, t0 + ε] ⊆ J , and likewise [t0 − ε, t0] ⊆ J . Therefore J is also
open. Now the connectedness of I implies I = J , so that γ = η.

Existence: The Local Existence Theorem implies the existence of some integral curve
γ : I → M on some open interval containing 0. For any other integral curve η : J → M , the
intersection I ∩ J is an interval containing 0, so that the uniqueness assertion implies that
η = γ on I ∩ J .

Let Ip ⊆ R be the union of all open intervals Ij containing 0 on which there exists an
integral curve γj : Ij →M of X with γj(0) = p. Then the preceding argument shows that

γ(t) := γj(t) for t ∈ Ij

defines an integral curve of X on Ip, which is maximal by definition. The uniqueness of the
maximal integral curve also follows from its definition.

Limit condition: Suppose that b := sup Ip < ∞. If limt→b γ(t) = ∞ does not hold,
then there exists a compact subset K ⊆ M and a sequence tm ∈ Ip with tm → b and
γ(tm) ∈ K. As K can be covered with finitely many closed subsets homeomorphic to a
closed subset of a ball in Rn, after passing to a suitable subsequence, we may w.l.o.g. assume
that K itself is homeomorphic to a compact subset of Rn. Then a subsequence of (γ(tm))m∈N
converges, and we may replace the original sequence by this subsequence, hence assume that
q := limm→∞ γ(tm) exists.

The Local Existence Theorem for ODE’s implies the existence of a compact neighborhood
V ⊆M of q and ε > 0 such that the initial value problem

η(0) = x, η′ = X ◦ η

has a solution on [−ε, ε] for each x ∈ V . Pick m ∈ N with tm > b−ε and γ(tm) ∈ V . Further
let η : [−ε, ε]→M be an integral curve with η(0) = γ(tm). Then

γ(t) := η(t− tm) for t ∈ [tm − ε, tm + ε],

defines an extension of γ to the interval Ip ∪ ]tm, tm + ε[ strictly containing ]a, b[, hence
contradicting the maximality of Ip. This proves that limt→b γ(t) =∞. Replacing X by −X,
we also obtain limt→a γ(t) =∞.
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Example 1.48. (a) On M = R we consider the vector field X given by the function
F (s) = 1 + s2, i.e. X(s) = (s, 1 + s2). The corresponding ODE is

γ′(s) = X(γ(s)) = 1 + γ(s)2.

For γ(0) = 0 the function γ(s) := tan(s) on I := ] − π
2 ,

π
2 [ is the unique maximal solution

because
lim
t→π

2

tan(t) =∞ and lim
t→−π2

tan(t) = −∞.

(b) Let M := ] − 1, 1[ and X(s) = (s, 1), so that the corresponding ODE is γ′(s) = 1.
Then the unique maximal solution is

γ(s) = s, I = ]− 1, 1[.

Note that we also have in this case

lim
s→±1

γ(s) =∞

if we consider γ as a curve in the noncompact manifold M .
For M = R the same vector field has the maximal integral curve

γ(s) = s, I = R.

(c) For M = R and X(s) = (s,−s), the differential equation is γ′(t) = −γ(t), so that we
obtain the maximal integral curves γ(t) = γ0e

−t. For γ0 = 0 this curve is constant, and for
γ0 6= 0 we have limt→∞ γ(t) = 0, hence limt→∞ γ(t) 6=∞. This shows that maximal integral
curves do not always leave every compact subset of M if they are defined on an interval that
is unbounded from above.

The preceding example shows in particular that the global existence of integral curves
can also be destroyed by deleting parts of the manifold M , i.e., by considering M ′ := M \K
for some closed subset K ⊆M .

Definition 1.49. A vector field X ∈ V(M) is said to be complete if all its maximal integral
curves are defined on all of R.

Corollary 1.50. All vector fields on a compact manifold M are complete.

Definition 1.51. Let M be a smooth manifold. A local flow on M is a smooth map

Φ: U →M,

where U ⊆ R ×M is an open subset containing {0} ×M , such that for each x ∈ M the
intersection Ix := U ∩ (R× {x}) is an interval containing 0 and

Φ(0, x) = x and Φ
(
t,Φ(s, x)

)
= Φ(t+ s, x)

hold for all t, s, x for which both sides are defined. The maps

αx : Ix →M, t 7→ Φ(t, x)

are called the flow lines. The flow Φ is said to be global if U = R×M .
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Lemma 1.52. If Φ: U →M is a local flow, then

XΦ(x) :=
d

dt t=0
Φ(t, x) = α′x(0)

defines a smooth vector field.

It is called the velocity field or the infinitesimal generator of the local flow Φ.

Lemma 1.53. If Φ: U → M is a local flow on M , then the flow lines are integral curves
of the vector field XΦ. In particular, the local flow Φ is uniquely determined by the vector
field XΦ.

Proof. Let αx : Ix →M be a flow line and s ∈ Ix. For sufficiently small t ∈ R we then have

αx(s+ t) = Φ(s+ t, x) = Φ
(
t,Φ(s, x)

)
= Φ

(
t, αx(s)

)
,

so that taking derivatives in t = 0 leads to α′x(s) = XΦ(αx(s)).
That Φ is uniquely determined by the vector field XΦ follows from the uniqueness of

integral curves (Theorem 1.47).

Example 1.54. We consider M = S2 and Φ : R × S2 → S2 and the flow associated with a
rotation around the x3-axis:

Φ(t, x) = R(t)x with R =

 cos t − sin t 0
sin t cos t 0

0 0 1

 .

Then Φ is a flow because Φ(0, x) = x and Φ(t,Φ(s, x)) = R(t)R(s)x = R(t+s)x for all x ∈ S2

and t, s ∈ R. The associated velocity field Xϕ : S2 → TS2 is given by

Xϕ(x) =
d

dt

∣∣
t=0

Φ(t, x) = R′(t)x = x1e2 − x2e1 = e3 × x.

Its flow lines are the curves γx : R→ S2

γx(t) =ϕ(t, x) = R(t)x = cos t(x1e1 + x2e2) + sin t(x1e2 − x2e1) + x3e3

= cos t(x− 〈x, e3〉e3) + sin(t)e3 × x+ 〈x, e3〉e3.

These are precisely the integral curves of the vector field X from Example 1.45.

As every flow determines a unique vector field, its velocity field, it is natural to ask if all
vector fields on a manifold M arise as velocity fields of flows on M . That this is indeed the
case is shown by the following theorem.

Theorem 1.55. Each smooth vector field X is the velocity field of a unique local flow defined
by

DX :=
⋃
x∈M

Ix × {x} and Φ(t, x) := γx(t) for (t, x) ∈ DX ,

where γx : Ix →M is the unique maximal integral curve through x ∈M .
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Proof. If (s, x),
(
t,Φ(s, x)

)
and (s+ t, x) ∈ DX , the relation

Φ(s+ t, x) = Φ
(
t,Φ(s, x)

)
and IΦ(s,x) = Iγx(s) = Ix − s

follow from the fact that both curves

t 7→ Φ(t+ s, x) = γx(t+ s) and t 7→ Φ
(
t,Φ(s, x)

)
= γΦ(s,x)(t)

are integral curves of X with the initial value Φ(s, x), hence coincide.
We claim that all maps

Φt : Mt := {x ∈M : (t, x) ∈ DX} →M, x 7→ Φ(t, x)

are injective. In fact, if p := Φt(x) = Φt(y), then γx(t) = γy(t), and on [0, t] the curves
s 7→ γx(t − s), γy(t − s) are integral curves of −X, starting in p. Hence the Uniqueness
Theorem 1.47 implies that they coincide in s = t, which mans that x = γx(0) = γy(0) = y.
From this argument it further follows that Φt(Mt) = M−t and Φ−1

t = Φ−t.
It remains to show that DX is open and Φ smooth. The local Existence Theorem provides

for each x ∈M an open neighborhood Ux diffeomorphic to a cube and some εx > 0, as well
as a smooth map

ϕx : ]− εx, εx[×Ux →M, ϕx(t, y) = γy(t) = Φ(t, y).

Hence ] − εx, εx[×Ux ⊆ DX , and the restriction of Φ to this set is smooth. Therefore Φ is
smooth on a neighborhood of {0} ×M in DX .

Now let Jx be the set¡ of all t ∈ [0,∞[, for which DX contains a neighborhood of [0, t]×{x}
on which Φ is smooth. The interval Jx is open in R+ := [0,∞[ by definition. We claim that
Jx = Ix∩R+. This entails that DX is open because the same argument applies to Ix∩ ]−∞, 0].

We assume the contrary and find a minimal τ ∈ Ix ∩ R+ \ Jx, because this interval
is closed. Put p := Φ(τ, x) and pick a product set I × W ⊆ DX , where W is an open
neighborhood of p and I = ]−2ε, 2ε[ a 0-neighborhood, such that 2ε < τ and Φ : I×W →M
is smooth. By assumption, there exists an open neighborhood V of x such that Φ is smooth
on [0, τ − ε]× V ⊆ DX . Then Φτ−ε is smooth on V and

V ′ := Φ−1
τ−ε
(
Φ−1
ε (W )

)
∩ V

is a neighborhood of x. Further,

V ′ = Φ−1
τ−ε
(
Φ−1
ε (W )

)
∩ V = Φ−1

τ (W ) ∩ V,

and Φ is smooth on ]τ − 2ε, τ + 2ε[×V ′, because it is a composition of smooth maps:

]τ − 2ε, τ + 2ε[×V ′ →M, (t, y) 7→ Φ
(
t− τ,Φ(ε,Φ(τ − ε, y))

)
.

We thus arrive at the contradiction τ ∈ Jx.
This completes the proof of the openness of DX and the smoothness of Φ. The uniqueness

of the flow follows from the uniqueness of the integral curves.
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Remark 1.56. Let X ∈ V(M) be a complete vector field. If

ΦX : R×M →M

is the corresponding global flow, then the maps ΦXt : x 7→ ΦX(t, x) satisfy

(A1) ΦX0 = idM .

(A2) ΦXt+s = ΦXt ◦ ΦXs for t, s ∈ R.

It follows in particular that ΦXt ∈ Diff(M) with (ΦXt )−1 = ΦX−t, so that we obtain a group
homomorphism

γX : R→ Diff(M), t 7→ ΦXt .

With respect to the terminology introduced below, (A1) and (A2) mean that ΦX defines
a smooth action of R on M . As ΦX is determined by the vector field X, we call X the
infinitesimal generator of this action. In this sense the smooth R-actions on a manifold M
are in one-to-one correspondence with the complete vector fields on M .

Remark 1.57. Let ΦX : DX → M be the maximal local flow of a vector field X on M .
Let Mt = {x ∈ M : (t, x) ∈ DX}, and observe that this is an open subset of M . We have
already seen in the proof of Theorem 1.55 above, that all the smooth maps ΦXt : Mt → M
are injective with ΦXt (Mt) = M−t and (ΦXt )−1 = ΦX−t on the image. It follows in particular,
that ΦXt (Mt) = M−t is open, and that

ΦXt : Mt →M−t

is a diffeomorphism whose inverse is ΦX−t.

Proposition 1.58. (Smooth Dependence Theorem) Let M and Λ be smooth manifolds and
Ψ: Λ→ V(M) be a map for which the map

Λ×M → T (M), (λ, p) 7→ Ψλ(p)

is smooth (the vector field Ψλ depends smoothly on the parameter λ). Then the subset

D := {(t, λ, p) ∈ R× Λ×M : (t, p) ∈ DΦλ}

of R× Λ×M is open and the map D →M, (t, λ, p) 7→ ΦΨλ(t, p) is smooth.

Proof. The parameters do not cause any additional problems, as can be seen by the following
trick: On the product manifold Λ×M we consider the smooth vector field Y , given by

Y (λ, p) := (0λ,Ψλ(p)) ∈ Tλ(Λ)× Tp(M) ∼= T(λ,p)(Λ×M).

Then the integral curves of Y are of the form γ(t) = (λ, γp(t)), where γp is an integral curve
of the smooth vector field Ψλ on M . Therefore the assertion is an immediate consequence
on the smoothness of the flow of Y on Λ×M (Theorem 1.55).

29



We take a closer look at the interaction of local flows and vector fields. It will turn out
that this leads to a new concept of a directional derivative which works for general tensor
fields. Let X ∈ V(M) and ΦX : DX →M its maximal local flow. For f ∈ C∞(M) and t ∈ R
we set

(ΦXt )∗f := f ◦ ΦXt ∈ C∞(Mt).

Then we find

lim
t→0

1

t
((ΦXt )∗f − f) = df(X) = LXf ∈ C∞(M).

For a second vector field Y ∈ V(M), we define a smooth vector field on the open subset
M−t ⊆M by

(ΦXt )∗Y := T (ΦXt ) ◦ Y ◦ ΦX−t = T (ΦXt ) ◦ Y ◦ (ΦXt )−1

(cf. Remark 1.57) and define the Lie derivative by

LXY := lim
t→0

1

t
((ΦX−t)∗Y − Y ) =

d

dt t=0
(ΦX−t)∗Y,

which is defined on all of M since for each p ∈ M the vector ((ΦXt )∗Y )(p) is defined for
sufficiently small t and depends smoothly on t.

Theorem 1.59. LXY = [X,Y ] for X,Y ∈ V(M).

Proof. Fix p ∈M . It suffices to show that LXY and [X,Y ] coincide in p. We may therefore
work in a local chart, hence assume that M = U is an open subset of Rn.

Identifying vector fields with smooth Rn-valued functions, we then have

[X,Y ](x) = dY (x)X(x)− dX(x)Y (x), x ∈ U.

On the other hand,

((ΦX−t)∗Y )(x) = T (ΦX−t) ◦ Y ◦ ΦXt (x)

= d(ΦX−t)(Φ
X
t (x))Y (ΦXt (x)) =

(
d(ΦXt )(x)

)−1
Y (ΦXt (x)).

To calculate the derivative of this expression with respect to t, we first observe that it does
not matter if we first take derivatives with respect to t and then with respect to x or vice
versa. This leads to

d

dt t=0
d(ΦXt )(x) = d

( d
dt t=0

ΦXt

)
(x) = dX(x).

Next we note that for any smooth curve α : [−ε, ε]→ GLn(R) with α(0) = 1 we have

(α−1)′(t) = −α(t)−1α′(t)α(t)−1,

and in particular (α−1)′(0) = −α′(0). Combining all this, we obtain with the Product Rule

LX(Y )(x) = −dX(x)Y (x) + dY (x)X(x) = [X,Y ](x).

Corollary 1.60. If X,Y ∈ V(M) are complete vector fields, then their global flows ΦX ,ΦY : R→
Diff(M) commute if and only if X and Y commute, i.e. [X,Y ] = 0.
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Proof. (1) Suppose first that ΦX and ΦY commute, i.e.,

ΦX(t) ◦ ΦY (s) = ΦY (s) ◦ ΦX(t) for t, s ∈ R.

Let p ∈M and γp(s) := ΦYs (p) be the Y -integral curve through p. We then have

γp(s) = ΦYs (p) = ΦXt ◦ ΦYs ◦ ΦX−t(p),

and passing to the derivative in s = 0 yields

Y (p) = γ′p(0) = T (ΦXt )Y (ΦX−t(p)) =
(
(ΦXt )∗Y

)
(p).

Passing now to the derivative in t = 0, we arrive at [X,Y ] = LX(Y ) = 0.
(2) Now we assume [X,Y ] = 0. First we show that (ΦXt )∗Y = Y holds for all t ∈ R. For

t, s ∈ R we have
(ΦXt+s)∗Y = (ΦXt )∗(Φ

X
s )∗Y,

so that
d

dt
(ΦXt )∗Y = −(ΦXt )∗LX(Y ) = 0

for each t ∈ R. Since for each p ∈M the curve

R→ Tp(M), t 7→
(
(ΦXt )∗Y

)
(p)

is smooth, and its derivative vanishes, it is constant Y (p). This shows that (ΦXt )∗Y = Y for
each t ∈ R.

For γ(s) := ΦXt ΦYs (p) we now have γ(0) = ΦXt (p) and

γ′(s) = T (ΦXt ) ◦ Y (ΦYs (p)) = Y (ΦXt ΦYs (p)) = Y (γ(s)),

so that γ is an integral curve of Y . We conclude that γ(s) = ΦYs (ΦXt (p)), and this means
that the flows of X and Y commute.

Exercises for Section 1.4

Exercise 1.28. Let M := Rn. For a matrix A ∈Mn(R), we consider the linear vector field
XA(x) := Ax. Determine the maximal flow ΦX of this vector field.

Exercise 1.29. Let M be a smooth manifold and Y ∈ V(M) a smooth vector field on M .
Suppose that Y generates a local flow ΦY : DY →M which is defined on an entire box of the
form [−ε, ε]×M ⊆ DY . Show that this implies the completeness of Y .

Exercise 1.30. Let ϕ : M → N be a smooth map and X ∈ V(M), Y ∈ V(N) be ϕ-related
vector fields. Show that for any integral curve γ : I →M of X, the curve ϕ ◦ γ : I → N is an
integral curve of Y .

Exercise 1.31. Let X ∈ V(M) be a vector field and write XR ∈ V(R) for the vector field on
R, given by XR(t) = (t, 1). Show that, for an open interval I ⊆ R, a smooth curve γ : I →M
is an integral curve of X if and only if XR and X are γ-related.
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Exercise 1.32. Let X ∈ V(M)c be a complete vector field and ϕ ∈ Diff(M). Then ϕ∗X is
also complete and

Φϕ∗Xt = ϕ ◦ ΦXt ◦ ϕ−1 for t ∈ R.

Exercise 1.33. Let M be a smooth manifold, ϕ ∈ Diff(M) and X ∈ V(M)c be a complete
vector field. Show that the following are equivalent:

(1) ϕ commutes with the flow maps ΦXt .

(2) For each integral curve γ : I →M of X, the curve ϕ ◦ γ also is an integral curve of X.

(3) X = ϕ∗X = T (ϕ) ◦X ◦ ϕ−1, i.e., X is ϕ-invariant.

Exercise 1.34. Let X,Y ∈ V(M) be two commuting complete vector fields, i.e., [X,Y ] = 0.
Show that the vector field X + Y is complete and that its flow is given by

ΦX+Y
t = ΦXt ◦ ΦYt for all t ∈ R.

Exercise 1.35. Let V be a finite-dimensional vector space and µt(v) := tv for t ∈ R×. Show
that:

(1) A vector field X ∈ V(V ) is linear if and only if (µt)∗X = X holds for all t ∈ R×.

(2) A diffeomorphism ϕ ∈ Diff(V ) is linear if and only if it commutes with all the maps µt,
t ∈ R×.

2 Lie Groups

Symmetries of physical systems are most naturally modelled by the mathematical concept of
a group. If S is the state space of a physical system, then a symmetry is mostly considered as
a bijection of this set preserving additional structure on S. As composition of symmetries is
a symmetry and any symmetry should have an inverse symmetry, we are thus lead to certain
groups G of bijections of the set S.

Groups can be studied on three levels:

• the discrete level: no additional structure on G.

• the topological level: topological groups; G is endowed with a topology.

• the differentiable level: Lie groups; G is endowed with a smooth manifold structure.

The first level only provides a reasonable context for groups arising as symmetry groups
of discrete structures, such as crystals, which do not permit any continuous (in the sense
of “continuum”) symmetry operations. Whenever continuous symmetries exist, such as ro-
tations of a round sphere, it is natural to study symmetries (gt)t∈R depending on a real
parameter, such that

g0 = id and gtgs = gt+s for t, s ∈ R.

We thus obtain continuous one-parameter groups of a topological group G. As topological
groups can still be rather wild, one then refines the structure on G in such a way that
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differentiation of one-parameter groups becomes meaningful. This leads to the concept of an
“infinitesimal generator” of a one-parameter group (the great idea of Sophus Lie1) which is
closely related to vector fields as infinitesimal generators of local flows on manifolds. It turns
out that the concept of a Lie group, i.e. a group endowed with a smooth manifold structure
compatible with the group operations, provides precisely the additional structure for which
the set L(G) of infinitesimal generators of one-parameter groups carries the nice algebraic
structure of a Lie algebra and, in addition, the structure of the group near the identity is
completely determined by its Lie algebra, resp., its one-parameter groups.

2.1 The concept of a Lie group

In the context of smooth manifolds, the natural class of groups are those endowed with a
manifold structure compatible with the group structure.

Definition 2.1. A Lie group is a group G, endowed with the structure of a smooth manifold,
such that the group operations

mG : G×G→ G, (x, y) 7→ xy and ιG : G→ G, x 7→ x−1

are smooth.

In the following, G denotes a Lie group with

• multiplication map mG : G×G→ G, (x, y) 7→ xy,

• inversion map ιG : G→ G, x 7→ x−1, and

• neutral element 1.

For g ∈ G we write

• λg : G→ G, x 7→ gx for the left multiplication maps (left translations),

• ρg : G→ G, x 7→ xg for the right multiplication maps (right translations), and

• cg : G→ G, x 7→ gxg−1 for the conjugation with g.

A morphism of Lie groups is a smooth homomorphism of Lie groups ϕ : G1 → G2.

Remark 2.2. All maps λg, ρg and cg are smooth. Moreover, they are bijective with
λg−1 = λ−1

g , ρg−1 = ρ−1
g and cg−1 = c−1

g , so that they are diffeomorphisms of G.

Example 2.3. The additive group G := (Rn,+) is a Lie group because the maps

R2n → Rn, (x, y) 7→ x+ y and Rn → Rn, x 7→ −x

are smooth.

1The Norwegian mathematician Marius Sophus Lie (1842–1899) was the first to study differentiability
properties of groups in a systematic way. In the 1890s Sophus Lie developed his theory of differentiable
groups (called continuous groups at a time when the concept of a topological space was not yet developed)
to study symmetries of differential equations.
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Example 2.4. Let G := GLn(K) be the group of invertible (n× n)-matrices with entries in
the field K ∈ {R,C}. Since the determinant function

det : Mn(K)→ K, det(aij) =
∑
σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n)

is continuous and K× := K\{0} is open in K, the set GLn(K) = det−1(K×) is open in Mn(K)
and thus carries a canonical manifold structure.

For the smoothness of the multiplication map, it suffices to observe that

(ab)ik =

n∑
j=1

aijbjk

is the (ik)-entry in the product matrix. Since all these entries are quadratic polynomials in
the entries of a and b, the product is a smooth map.

For g ∈ GLn(K) we define bij(g) := det(gmk)m 6=j,k 6=i. According to Cramer’s Rule, the
inverse of g is given by

(g−1)ij =
(−1)i+j

det g
bij(g).

The smoothness of the inversion therefore follows from the smoothness of the determinant
(which is a polynomial) and the polynomial functions bij defined on Mn(K).

Example 2.5. (a) (The circle group) We have already seen how to endow the circle

S1 := {(x, y) ∈ R2 : x2 + y2 = 1}

with a manifold structure. Identifying it with the unit circle

T := {z ∈ C : |z| = 1}

in C, it also inherits a group structure, given by

(x, y) · (x′, y′) := (xx′ − yy′, xy′ + x′y) and (x, y)−1 = (x,−y).

With these explicit formulas, it is easy to verify that T is a Lie group (Exercise 2.1).
(b) (The n-dimensional torus) In view of (a), we have a natural manifold structure on

the n-dimensional torus Tn := (S1)n. The corresponding direct product group structure

(t1, . . . , tn)(s1, . . . , sn) := (t1s1, . . . , tnsn)

turns Tn into a Lie group (Exercise 2.2).

Lemma 2.6. Let G be a Lie group with multiplication mG : G × G → G. Then its tangent
map satisfies

T(g,h)(mG)(v, w) = Tg(ρh)v + Th(λg)w for v ∈ Tg(G), w ∈ Th(G) (5)

Proof. For v ∈ Tg(G) and w ∈ Th(G), the linearity of T(g,h)(mG) implies that

T(g,h)(mG)(v, w) = T(g,h)(mG)(v, 0) + T(g,h)(mG)(0, w) = Tg(ρh)v + Th(λg)w.

34



In the following we shall use the simplified notation

g · v := T (λg)v and v · g := T (ρg)v for g ∈ G, v ∈ TG. (6)

Then (5) turns into
T(g,h)(mG)(v, w) = g · w + v · h.

For differential curves α(t), β(t) in G, this leads to the product rule

(αβ)′(t) = α(t)β′(t) + α′(t)β(t). (7)

2.2 The Lie algebra of a Lie group

Lie groups are non-linear objects. We now introduce the Lie algebra L(G) of a Lie group as
a “first order approximation”, resp., a “linearization” of G.

We start with the introduction of the concept of a Lie algebra.

Definition 2.7. (a) Let K be a field and L a K-vector space. A bilinear map [·, ·] : L×L→ L
is called a Lie bracket if

(L1) [x, x] = 0 for x ∈ L and

(L2)
[
x, [y, z]

]
=
[
[x, y], z

]
+
[
y, [x, z]

]
for x, y, z ∈ L (Jacobi identity).2

Note that, provided (L1) holds, the Jacobi identity can also be expressed in a more
symmetric fashion by [

x, [y, z]
]

+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0.

A Lie algebra 3 (over K) is a K-vector space L, endowed with a Lie bracket. A subspace
E ⊆ L of a Lie algebra is called a subalgebra if [E,E] ⊆ E. A homomorphism ϕ : L1 → L2

of Lie algebras is a linear map with ϕ([x, y]) = [ϕ(x), ϕ(y)] for x, y ∈ L1. A Lie algebra L is
said to be abelian if [x, y] = 0 holds for all x, y ∈ L.

Remark 2.8. If b1, . . . , bn ∈ L is a basis of the Lie algebra L, then all information on the
bilinear Lie bracket is contained in the brackets

[bi, bj ] =

n∑
k=1

ckijbk

which in turn is contained in the n3 numbers ckij called the structure constants of L. Skew-
symmetry and Jacobi identity of the Lie bracket can be expressed in terms of the structure
constants as

ckij = −ckji and
∑
`

c`ijc
m
`k + c`jkc

m
`i + c`kic

m
`j = 0.

2Carl Gustav Jacob Jacobi (1804–1851), mathematician in Berlin and Königsberg (Kaliningrad). He found
his famous identity about 1830 in the context of Poisson brackets, which are related to Hamiltonian Mechanics
and Symplectic Geometry.

3The notion of a Lie algebra was coined in the 1920s by Hermann Weyl.
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Example 2.9. Each associative algebraA is a Lie algebraAL with respect to the commutator
bracket

[a, b] := ab− ba.
In particular, the matrix algebra Mn(K) and the endomorphism algebra End(V ) of a vector
space are Lie algebras with respect to the commutator bracket.

In fact, (L1) is obvious. For (L2), we calculate

[a, bc] = abc− bca = (ab− ba)c+ b(ac− ca) = [a, b]c+ b[a, c],

and this implies

[a, [b, c]] = [a, b]c+ b[a, c]− [a, c]b− c[a, b] = [[a, b], c] + [b, [a, c]].

Example 2.10. For every smooth manifold M , the space V(M) of smooth vector fields on
M is a Lie algebra.

Let G be a Lie group. A vector field X ∈ V(G) is called left invariant if

X(gh) = g ·X(h) for g, h ∈ G.

We write V(G)l for the linear space of left invariant vector fields in V(G). Clearly V(G)l is
a linear subspace of V(G).

Lemma 2.11. The vector space V(G)l of left invariant vector fields on G is a Lie subalgebra
of (V(G), [·, ·]).

Proof. Writing the left invariance as X ◦ λg = T (λg) ◦ X, we see that it means that X is
left invariant if and only if it is λg-related to itself for every g ∈ G. Therefore the Related
Vector Field Lemma implies that if X and Y are left invariant, their Lie bracket [X,Y ] is
also λg-related to itself for each g ∈ G, hence left invariant.

Definition 2.12. [The Lie algebra of G] Next we observe that the left invariance of a vector
field X implies that for each g ∈ G we have X(g) = g · X(1), so that X is completely
determined by its value X(1) ∈ T1(G). Conversely, for each x ∈ T1(G), we obtain a left
invariant vector field xl ∈ V(G)l with xl(1) = x by xl(g) := g · x. That this vector field is
indeed left invariant follows from

xl(gh) = gh · x = T (λhg)x = T (λh ◦ λg)x = T (λh)T (λg)x = h · xl(g)

for all h, g ∈ G. Hence
T1(G)→ V(G)l, x 7→ xl

is a linear bijection. We thus obtain a Lie bracket [·, ·] on T1(G) by

[x, y] := [xl, yl](1).

It satisfies
[x, y]l = [xl, yl] for all x, y ∈ T1(G). (8)

The Lie algebra
L(G) := (T1(G), [·, ·]) ∼= V(G)l

is called the Lie algebra of G.
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Remark 2.13. Let d1, . . . , dn be a basis of T1(G) and Dj ∈ V(G)l denote the corresponding
left invariant vector fields. To determine the Lie bracket on L(G) = T1(G), one can proceed

as follows. In a local chart (ϕ,U) of G with 1 ∈ U we identify the vector fields D̃j := ϕ∗DJ

with smooth functions
D̃j =

∑
`

D̃`
j · b

ϕ
` : ϕ(U)→ Rn.

Then their Lie bracket is given in coordinate free notation by

[D̃j , D̃k] = dD̃k · D̃j − dD̃j · D̃k,

and in terms of the component functions by

[D̃j , D̃k]` =
∑
α

D̃α
j

∂D̃`
k

∂ϕα
− D̃α

k

∂D̃`
j

∂ϕα
.

Proposition 2.14. (Functoriality of the Lie algebra) If ϕ : G → H is a morphism of Lie
groups, then the tangent map

L(ϕ) := T1(ϕ) : L(G)→ L(H)

is a homomorphism of Lie algebras.

Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector fields. Then
ϕ ◦ λg = λϕ(g) ◦ ϕ for each g ∈ G implies that

T (ϕ) ◦ T (λg) = T (λϕ(g)) ◦ T (ϕ),

and applying this relation to x, y ∈ T1(G), we get

Tϕ ◦ xl =
(
L(ϕ)x

)
l
◦ ϕ and Tϕ ◦ yl =

(
L(ϕ)y

)
l
◦ ϕ, (9)

i.e. xl is ϕ-related to
(
L(ϕ)x

)
l

and yl is ϕ-related to
(
L(ϕ)y

)
l
. Therefore the Related Vector

Field Lemma implies that

Tϕ ◦ [xl, yl] = [
(
L(ϕ)x

)
l
,
(
L(ϕ)y

)
l
] ◦ ϕ.

Evaluating at 1, we obtain L(ϕ)[x, y] = [L(ϕ)(x),L(ϕ)(y)], showing that L(ϕ) is a homo-
morphism of Lie algebras.

Example 2.15. For the Lie groupG = (Rn,+) we write its tangent bundle as TRn ∼= Rn×Rn
and, accordingly, we write smooth vector fields as functions X : Rn → Rn. In this picture,
the differential of the translation maps λx(y) = x + y is the identity, so that X ∈ V(Rn) is
left invariant if and only if it is constant. For constant vector fields X, Y we have

[X,Y ](p) = dY (p)X(p)− dX(p)Y (p) = 0.

Therefore the Lie algebra L(Rn) is abelian, i.e. all brackets vanish.
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Example 2.16. Since the Lie group G = GLn(R) is an open subset of Mn(R), we identify its
tangent bundle with the subset T GLn(R) = GLn(R)×Mn(R) and smooth vector fields with
functions X : GLn(R)→Mn(R). Here the left multiplications λg(h) = gh are restrictions of
linear maps, to that a vector field X ∈ V(GLn(R)) is left invariant if and only if

X(gh) = T (λg)X(h) = gX(h) for g, h ∈ GLn(R).

Therefore the left invariance of a vector field X is equivalent to the existence of some A ∈
Mn(R) with X(g) = XA(g) := gA. For these vector fields we have dXA(g)C = CA for
B ∈Mn(R), so that

[XA, XB ](g) = dXB(g)XA(g)− dXA(g)XB(g) = g(AB −BA).

Therefore the Lie algebra L(GLn(R)) is the space Mn(R) ∼= T1(GLn(R)), endowed with the
commutator bracket

[A,B] = AB −BA.

This Lie algebra is denoted gln(R), to express that it is the Lie algebra of GLn(R).

2.3 The exponential function of a Lie group

In this section, we introduce a key tool of Lie theory which is a bridge between the “nonlinear”
Lie groupG and the “linear” Lie algebra L(G): the exponential function expG : L(G)→ G. It
is a natural generalization of the matrix exponential map, which is obtained for G = GLn(R)
and its Lie algebra L(G) = gln(R).

Definition 2.17. Let G be a Lie group. A smooth function exp: L(G) → G is called an
exponential function if for every x ∈ L(G) the curve

γx(t) := exp(tx)

is a one-parameter group, i.e.

γx(t+ s) = γx(t)γx(s) for s, t ∈ R, and γ′x(0) = x. (10)

Passing to the derivative of this relation with respect to s in 0, we see that any smooth
one-parameter group γ : R → G with γ′(0) = x is the unique solution of the initial value
problem

γ(0) = 1 and γ̇(t) = γ(t) · x = xl(γ(t)).

Therefore we call x the infinitesimal generator of γx (cf. (7)).

Theorem 2.18. Every Lie group has a uniquely determined exponential function.

Proof. (Sketch) If γx(t) is a smooth one-parameter group of G with γ′x(0) = x, then

Φt(g) := gγx(t)

defines a flow on G whose infinitesimal generator XΦ := d
dt |t=0Φt ∈ V(G) is a left invariant

vector field with XΦ(1) = x. In particular, γx(t) is the unique integral curve through 1. To
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prove the existence of an exponential function, one therefore has to study the flows generated
by left invariant vector fields.

To show the existence of an exponential function, one first shows that all left invariant
vector fields xl are complete and defines exp(x) := γx(1), where γx is the unique integral
curve of xl through the identity. Then one verifies that exp(tx) = γx(t) for t ∈ R, and the
smoothness of exp follows from the smooth dependence of integral curves from parameters
(cf. Section 1).

Remark 2.19. Let x ∈ L(G) and xl(g) = g ·x denote the corresponding left invariant vector
field. Then its flow has the form Φxlt (g) = g exp(tx), so that the corresponding Lie derivative
is given on smooth functions on G by

(Lxf)(g) := Lxl(g) :=
d

dt t=0
f(g exp tx).

Accordingly, the right invariant vector field xr(g) = x·g generates the flow Φxrt (g) = exp(tx)g
and the corresponding Lie derivative is

(Rxf)(g) := Lxr (g) :=
d

dt t=0
f((exp tx)g).

Remark 2.20. (a) For a Lie group G, the exponential function expG : L(G)→ G satisfies

T0(expG) = idL(G)

because for each x ∈ L(G) we have

T0(expG)x =
d

dt t=0
expG(tx) = x.

Therefore the Inverse Function Theorem implies that expG is a local diffeomorphism in 0
in the sense that there exists an open 0-neighborhood U ⊆ L(G) such that expG |U : U →
expG(U) is a diffeomorphism onto an open subset of G.

If b1, . . . , bn is a basis of L(G), then we thus obtain the so-called canonical coordinates of
the first kind on an identity neighborhood of G:

Φ: Rn → G, x 7→ expG(x1b1 + . . .+ xnbn)

(b) Sometimes it is more convenient to use canonical coordinates of the second kind

Ψ: Rn → G, x 7→ expG(x1b1) · . . . · expG(xnbn)

That Ψ is a local diffeomorphism in 0 follows from T0(Ψ)(x) =
∑n
i=1 xibi, which in turn

follows by repeated application of the product rule (7). which leads to . Hence the claim
follows from the Inverse Function Theorem.

Example 2.21. For G = Rn the identity expRn = id is an exponential function because each
curve γx(t) = tx is a smooth one-parameter group with γ′x(0) = x.
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Example 2.22. For G := GLn(R), the left invariant vector field Al corresponding to a
matrix A is given by

Al(g) = T1(λg)A = gA

because λg(h) = gh extends to a linear endomorphism of Mn(R). The unique solution
γA : R→ GLn(R) of the initial value problem

γ(0) = 1, γ′(t) = Al(γ(t)) = γ(t)A

is the curve describing the fundamental system of the linear differential equation defined by
the matrix A:

γA(t) = etA =

∞∑
k=0

1

k!
tkAk.

It follows that expG(A) = eA is the matrix exponential function.

Example 2.23. We consider the 3-dimensional Heisenberg group

H3 :=


1 x z

0 1 y
0 0 1

 : x, y, z ∈ R


which clearly is a 3-dimensional submanifold of the Lie group GL3(R) ⊆M3(R) ∼= R3×3 from
which it inherits a Lie group structure. With respect to the obvious (x, y, z)-coordinates, we
can identify H3 with R3, endowed with the multiplication

x]x′ =

xy
z

 ]

x′y′
z′

 :=

 x+ x′

y + y′

z + z′ + xy′

 .

From the canonical basis e1, e2, e3 of R3 we obtain a the following left invariant vector fields
on H3

∼= (R3, ]):

P (x) = T1(λ(x,y,z))e1 = e1, Q(x) = T1(λ(x,y,z))e2 =

0
1
x

 , Z(x) = T1(λ(x,y,z))e3 = e3

with the Lie brackets
[P,Q] = Z, [P,Z] = [Q,Z] = 0.

In the matrix picture, these vector fields correspond to the matrices

P̂ =

0 1 0
0 0 0
0 0 0

 , Q̂ =

0 0 0
0 0 1
0 0 0

 and Ẑ =

0 0 1
0 0 0
0 0 0


and the exponential function is given by

exp(pP̂ + qQ̂+ zẐ) = exp

0 p z
0 0 q
0 0 0

 =

1 p z + pq
2

0 1 q
0 0 1
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and defines a diffeomorphism L(H3)→ H3. On the other hand,

exp(pP̂ ) exp(qQ̂) exp(zẐ) =

1 p 0
0 1 0
0 0 1

1 0 0
0 1 q
0 0 1

1 0 z
0 1 0
0 0 1

 =

1 p z + pq
0 1 q
0 0 1

 ,

so that the corresponding normal coordinates of the second kind are slightly different.

Remark 2.24. If the two elements x, y ∈ L(G) commute, then the corresponding left in-
variant vector fields commute, and this implies that the corresponding flows Φxl and Φyl

commute (Corollary 1.60). In particular,

exp(tx) exp(sy) = Φyls Φxlt (1) = Φxlt Φyls (1) = exp(sy) exp(tx), s, t ∈ R.

Therefore the Trotter Formula implies that

exp(x+ y) = expx exp y.

For G = GLn(R) and x, y ∈ Mn(R) with xy = yx, the corresponding relation is an easy
consequence of the binomial formula:

exp(x+ y) =

∞∑
k=0

(x+ y)k

k!
=

∞∑
k=0

1

k!

k∑
`=0

(
k

`

)
x`yk−`

=

∞∑
k=0

k∑
`=0

x`

`!

yk−`

(k − `)!
=
( ∞∑
p=0

xp

p!

)( ∞∑
`=0

y`

`!

)
= exp(x) exp(y).

Remark 2.25. We have seen above that the one-parameter group γx : R→ G of a Lie group
G with γ′x(0) = x is a solution of the ordinary differential equation

γ̇(t) = T1(λγ(t))x = γ(t) · x,

which formally looks like a linear differential equation. For G = GLn(R) the · really stands
for a matrix product (cf. Example 2.22).

More generally, one frequently considers ODEs on Lie groups of the form

γ̇ = γ · ξ where ξ ∈ C∞(I,L(G)),

where I ⊆ R is an interval containing 0. Using similar arguments as for the familiar linear
time-dependent ODEs, one can show that, for any initial value γ0, these equations have a
unique solution γ.

For G = GLn(R), these solutions can actually be constructed by Picard iteration. For
ξ ∈ C([0, T ],Mn(R)) we want to solve the linear initial value problem

γ(0) = 1, γ′(t) = γ(t)ξ(t), 0 ≤ t ≤ T. (11)

Picard iteration yields a sequence of continuous curves:

γ0(t) := 1, γn+1(t) := 1 +

∫ t

0

γn(τ)ξ(τ) dτ,
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so that

γn(t) = 1 +

n∑
k=1

∫ t

0

∫ τn

0

· · ·
∫ τ2

0

ξ(τ1)ξ(τ2) · · · ξ(τn) dτ1 dτ2 · · · dτn.

For

βn(t) :=

∫ t

0

∫ τn

0

· · ·
∫ τ2

0

ξ(τ1)ξ(τ2) · · · ξ(τn) dτ1 dτ2 · · · dτn,

we obtain the estimate

‖βn(t)‖ ≤ ‖ξ‖n∞
∫ t

0

∫ τn

0

· · ·
∫ τ2

0

dτ1 dτ2 · · · dτn = ‖ξ‖n∞
tn

n!
,

so that the limit γ := limn→∞ γn = 1 +
∑∞
k=1 βk exists uniformly on [0, T ]. This in turn

implies that γ satisfies the integral equation

γ(t) = 1 +

∫ t

0

γ(τ)ξ(τ) dτ.

Hence γ is C1 with γ̇ = γ · ξ. In view of the above construction of the curve γ, it is called
the product integral of ξ.

2.4 Linear Lie groups

The following theorem is an important result on subgroups of Lie groups. Here the exponen-
tial function turns out to be an important tool to relate subgroups and Lie subalgebras.

Theorem 2.26. (von Neumann’s Closed Subgroup Theorem) Let H be a closed subgroup of
the Lie group G. Then H is a submanifold of G and mH := mG|H×H induces a Lie group
structure on H such that the inclusion map jH : H → G is a morphism of Lie groups for
which L(jH) : L(H)→ L(G) is an isomorphism of L(H) onto {x ∈ L(G) : exp(Rx) ⊆ H}.

The preceding theorem shows in particular that very closed subgroup G ⊆ GLn(K) is a
Lie group with Lie algebra

L(G) ∼= {x ∈Mn(K) : exp(Rx) ⊆ G}.

These Lie groups are called linear Lie groups. Von Neumann’s Theorem provides a direct
way to calculate their Lie algebra L(G) as a Lie subalgebra of the Lie algebra gln(K). Below
we encounter various concrete examples of matrix groups that arise as automorphism groups
of geometric structures on Rn.

Lemma 2.27. Let G be a Lie group and H ⊆ G a subgroup which is a neighborhood of 1.
Then H is open and closed, hence a Lie group, and L(H) = L(G).

Proof. Since the left multiplications λg are diffeomorphisms, the coset gH = λg(H) is a
neighborhood of g. For g ∈ H the relation gH = H thus shows that H is open. Then all
cosets gH are open, and therefore H = G \

⋃
g 6∈H gH is closed.

For each x ∈ L(G), the one-parameter group γx : R→ G is continuous. Hence γ−1
x (H) is

a non-empty open closed subset of the connected space R, which implies that R = γ−1
x (H),

i.e. γx(R) ⊆ H. This means that L(G) = L(H).
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To introduce some important classes of linear Lie groups, we fix some notation concerning
matrices. We write a matrix A = (aij)i,j=1,...,n also as (aij) and define

A> := (aji), A := (aij), and A† := A
>

= (aji).

Note that A† = A> is equivalent to A = A, which means that all entries of A are real.

Examples 2.28. (a) The subgroup

GLn(R)+ := {g ∈ GLn(R) : det g > 0}

is the group of orientation preserving matrices. This is an open subgroup of GLn(R) so that
it has the same Lie algebra as GLn(R) (Lemma 2.27).

(b) Since vol(gE) = |det(g)| vol(E) for a measurable subset E ⊆ Rn,

VGLn(R) := {g ∈ GLn(R) : |det g| = 1}

is the group of volume preserving matrices. That it is a subgroup follows from the multi-
plicativity of the determinant. From the relation

|det(eA)| = etrA

it follows that exp(Rx) ⊆ VGLn(R) is equivalent to trx = 0, i.e.

vgln(R) := L(VGLn(R)) = {x ∈ gln(R) : trx = 0}.

(c) The special linear group

SLn(R) := {g ∈ GLn(R) : det g = 1} = GLn(R)+ ∩VGLn(R)

is the group of those matrices preserving orientation and volume. Its Lie algebra is

sln(R) = L(SLn(R)) = L(GLn(R)+) ∩ L(VGLn(R)) = vgln(R) = {x ∈ gln(R) : trx = 0.}

Example 2.29. (Symmetry groups of bilinear forms)
(a) Any bilinear form β on Kn is of the form

β(x, y) = x>By =

n∑
i,j=1

xibijyj .

We say that a matrix g ∈ GLn(K) preserves this form if

β(gx, gy) = β(x, y) for all x, y ∈ Kn.

In view of β(gx, gy) = x>g>Bgy, this is equivalent to the condition g⊥Bg = B, which leads
us to the general orthogonal groups

On(K, B) := {g ∈ GLn(K) : g>Bg = B}.
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Clearly, these are closed subgroups, because they are defined by the equation g>Bg = B. To
determine their Lie algebra, we note that etx ∈ On(K, B) for all t ∈ R leads to

B = etx
>
Betx = B + (x>B +Bx)t+ · · · ,

so that the derivative in 0 yields x>B + Bx = 0. If, conversely, this condition is satisfied,

then the curve γ(t) := etx
⊥
Betx satisfies

γ̇(t) = etx
>
x>Betx + etx

>
Bxetx = etx

>
(x>B +Bx)etx = 0,

to that γ is constant. As γ(0) = B, this means that etx ∈ On(K, B) for every t ∈ R. We
thus arrive at

on(K, B) := L(On(K, B)) = {x ∈ gln(K) : x>B +Bx = 0}.

(b) For B = 1 (the identity matrix), we obtain the orthogonal group

On(K) = {g ∈ GLn(K) : g>g = 1} with on(K) = {x ∈ gln(K) : x> + x = 0}.

Intersecting with SLn(K) leads to the special orthogonal group

SOn(K) = {g ∈ On(K) : det g = 1}

with Lie algebra
son(K) = on(K) = {x ∈ gln(K) : x> + x = 0}.

Here we use that x> = −x implies that trx = trx> = − trx, and therefore trx = 0.
(c) For n = p+ q and

Ip,q :=

(
1p 0
0 −1q

)
∈Mp+q(R)

we obtain the pseudo-orthogonal groups

Op,q(R) := {g ∈ GLn(R) : g>Ip,qg = Ip,q},

where On,0(R) = On(R). We write Rp,q := (Rp+q, βp,q) for Rp+q, endowed with the corre-
sponding symmetric bilinear form

β(x, y) = x1y1 + . . .+ xpyp − xp+1yp+1 − . . .− xp+qyp+q.

(d) For the skew-symmetric matrix J :=

(
0 1n
−1n 0

)
, the group

Sp2n(K) := {g ∈ GL2n(K) : g>Jg = J}

is called the symplectic group. The corresponding skew-symmetric bilinear form on K2n is
given by

β(x, y) = x>Jy =

n∑
i=1

xiyn+i − xn+iyi.
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Example 2.30. On Cn one also considers hermitian forms, and the scalar product

〈z, w〉 :=

n∑
j=1

zjwj

is the most important one. Its symmetry group is the unitary group

Un(C) = {g ∈ GLn(C) : g†g = 1} = {g ∈ GLn(C) : (∀z, w ∈ Cn)〈gz, gw〉 = 〈z, w〉}.

With similar calculations as for the real case, we obtain the Lie algebra

un(C) := L(Un(C)) = {x ∈ gln(C) : x† + x = 0}.

And for the special unitary group

SUn(C) = {g ∈ Un(C) : det g = 1} = Un(C) ∩ SLn(C)

we obtain
sun(C) := L(SUn(C)) = {x ∈ gln(C) : x† + x = 0, trx = 0}.

Note that, although SUn(C) and Un(C) are groups of complex matrices, their Lie algebra is
only a REAL vector space.

Lie group G Lie algebra g

general linear group GLn(K) gln(K) = Mn(K)

volume preserving group VGLn(R) : |det g| = 1 vgln(R) = sln(R) : trx = 0

special linear group SLn(K) : det g = 1 sln(K) : trx = 0

B -orthogonal group On(K, B) : g>Bg = B on(K, B) : x>B +Bx = 0

orthogonal group On(K) : g>g = 1 on(K) : x> + x = 0

On(R) = O(n)

special orthogonal group SOn(K) : g>g = 1,det g = 1 son(K) = on(K) : x> + x = 0

pseudo-orthogonal group Op,q(R) = O(p, q) : g>Ip,qg = Ip,q op,q(R) : x>Ip,q + Ip,qx = 0

symplectic group Sp2n(R) : g>Jg = J sp2n(R) : x>J + Jx = 0

unitary group Un(C) = U(n) : g†g = 1 un(C) : X† +X = 0

special unitary group SUn(C) = SU(n) : g†g = 1,det g = 1 sun(C) : X† +X = 0, trX = 0

Example 2.31. Consider the group SO3(R) of rotations of 3-space. Its Lie algebra is

so3(R) = {X ∈M3(R) : X> = −X}.

The exponential function of this group is closely related to rotations of R3. For the basis

J1 :=

0 0 0
0 0 −1
0 1 0

 , J2 :=

 0 0 1
0 0 0
−1 0 0

 , J3 :=

0 −1 0
1 0 0
0 0 0
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we have the commutator relations

[J1, J2] = J3, [J2, J3] = J1 and [J3, J1] = J2.

This can be written more compactly by using the completely antisymmetric tensor εijk which
is defined by

εσ1σ2σ3
=
∏
i<j

σj − σi
j − i

.

We then have

[Ji, Jj ] =

3∑
k=1

εijkJk,

so that the structure constants of so3(R) with respect to the basis (J1, J2, J3) given by εijk.
The corresponding one-parameter groups are given by

etJ1 =

1 0 0
0 cos t − sin t
0 sin t cos t

 , etJ2 =

 cos t 0 sin t
0 1 0

− sin t 0 cos t

 , etJ3 =

cos t − sin t 0
sin t cos t 0

0 0 1

 ,

so that etJj is a roation around the ej-axis. To understand the geometry of etX for a general
X ∈ so3(R), we recall from Exercise 2.9 the existence of a vector x ∈ R3 with Xv = x× v for
v ∈ R3. Now v1 := x

‖x‖ is a unit vector. Pick a unit vector v2⊥v1 and put v3 := v1×v2 = Xv2.

Then
Xv1 = 0, Xv2 = ‖x‖v3 and Xv3 = −‖x‖v2.

This formula also shows that the operator norm of X on euclidean R3 equals ‖x‖. With
respect to the basis (v1, v2, v3), the matrix of the linear map eX is therefore given by1 0 0

0 cos ‖x‖ − sin ‖x‖
0 sin ‖x‖ cos ‖x‖

 .

We conclude that etX is a one-parameter group of rotations around the axis Rx where eX

rotates by the angle ‖x‖. In particular, eX = 1 for ‖x‖ = 2π.
As every element g ∈ SO3(R) is a rotation (a consequence of the normal form of (3× 3)-

orthogonal matrices or the simple fact that 1 must be an eigenvalue of g), it follows in
particular that the exponential function

exp: so3(R)→ SO3(R)

is surjective. We actually find for each g ∈ SO3(R) an X ∈ so3(R) with ‖X‖ ≤ π and eX = g.

2.5 On the topology of matrix groups

In this subsection we take a brief look at the topological properties of matrix groups. Since
compact groups behave much better than arbitrary topological groups, we first observe that
real orthogonal and the complex unitary groups are compact. The compactness of a group has
profound implications for its representation theory, which is mostly due to the existence of a
biinvariant probability measure. In the theory of elementary particles the compactness of the
corresponding symmetry group is responsible for the discreteness of the quantum numbers
classifying these particles.
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2.5.1 Compact matrix groups

Lemma 2.32. The groups

Un(C), SUn(C), On(R) and SOn(R)

are compact.

Proof. Since all these groups are subsets of Mn(C) ∼= Cn2

, by the Heine–Borel Theorem we
only have to show that they are closed and bounded.

Boundedness: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),

it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of the matrix g ∈
Mn(C). Then g† = g−1 is equivalent to gg† = 1, which means that g1, . . . , gn form an
orthonormal basis for Cn with respect to the scalar product 〈z, w〉 =

∑n
j=1 zjwj which

induces the norm ‖z‖ =
√
〈z, z〉. Therefore g ∈ Un(C) implies ‖gj‖ = 1 for each j, so that

Un(C) is bounded.
Closedness: The functions

f, h : Mn(K)→Mn(K), f(A) := AA† − 1 and h(A) := AA> − 1

are continuous. Therefore the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) = det−1(1) is closed, and therefore the groups SUn(C) and
SOn(R) are also closed because they are intersections of closed subsets.

Proposition 2.33. (a) The exponential function exp: un(C) → Un(C) is surjective. In
particular, Un(C) is arcwise connected.

(b) The group On(R) has the two arc components

On(R)± := {g ∈ On(R) : det g = ±1}

and the exponential function of SOn(R) = On(R)+ is surjective.

Proof. (a) First we consider Un(C). To see that this group is arcwise connected, let u ∈
Un(C). Then there exists an orthonormal basis v1, . . . , vn of eigenvectors of u. Let λ1, . . . , λn
denote the corresponding eigenvalues. Then the unitarity of u implies that |λj | = 1, and we
therefore find θj ∈ R with λj = eθji. Define D ∈ Mn(C) by Dvj = iθjvj . Since the vj are
orthonormal, D† = −D (Exercise 2.17). Now γ(t) := etD satisfies γ(1)vj = gvj for every j,
and therefore g = γ(1) = eD.

(b) For g ∈ On(R) we have gg> = 1 and therefore 1 = det(gg>) = (det g)2. This shows
that

On(R) = On(R)+∪̇On(R)− with On(R)+ = SOn(R),

and both sets are closed in On(R) because det is continuous. Therefore On(R) is not con-
nected and hence not arcwise connected. Suppose we knew that SOn(R) is arcwise connected
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and x, y ∈ On(R)−. Then 1, x−1y ∈ SOn(R) can be connected by an arc γ : [0, 1]→ SOn(R),
and then t 7→ xγ(t) defines an arc [0, 1]→ On(R)− connecting x to y. So it remains to show
that the exponential function of SOn(R) is surjective.

From Linear Algebra we know that every orthogonal matrix is conjugate (under an or-
thogonal matrix) to one in the following normal form

cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm
sinαm cosαm

−1
. . .

−1
1

. . .

1


for real numbers 0 < αj < π. Let g ∈ SOn(R). In the normal form of g, the determinant
of each 2× 2-block is 1, so that the determinant is the product of all −1-eigenvalues. Hence
their number is even, and we can write each consecutive pair as a block(

−1 0
0 −1

)
=

(
cosπ − sinπ
sinπ cosπ

)
.

This shows that with respect to some orthonormal basis of Rn, the linear map defined by g
has a matrix of the form

g =



cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm
sinαm cosαm

1
. . .

1


.

Now we obtain a smooth one-parameter group γ : R→ SOn(R) with γ(0) = 1 and γ(1) = g
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by

γ(t) :=



cos tα1 − sin tα1

sin tα1 cos tα1

. . .

cos tαm − sin tαm
sin tαm cos tαm

1
. . .

1


.

2.5.2 Non-compact matrix groups

To obtain some information on the topology of non-compact matrix groups as well, we now
study the polar decomposition of GLn(R) and show that it is inherited by a large class of
subgroups. It is an important tool to understand the topology of non-compact Lie groups.

Definition 2.34. We write Hermn(K) := {A ∈ Mn(K) : A† = A} for the set of hermitian
matrices. For K = C this is not a vector subspace of Mn(K), but it is always a real subspace.
A matrix A ∈ Hermn(K) is called positive definite if for each 0 6= z ∈ Kn we have 〈Az, z〉 > 0,
where

〈z, w〉 :=

n∑
j=1

zjwj

is the natural scalar product on Kn.

Lemma 2.35. A positive semidefinite matrix A has a unique positive semidefinite square
root B, i.e. a matrix B with B2 = A.

If A is positive definite, then B is also positive definite. In this case there exists a unique
hermitian matrix X with eX = A.

In view of the uniqueness of B, it makes sense to write B :=
√
A and X = logA if A is

positive definite.

Proof. We know from Linear Algebra that for each hermitian matrix A there exists an or-
thonormal basis v1, . . . , vn for Kn consisting of eigenvectors of A, and that all the correspond-
ing eigenvalues λ1, . . . , λn are real. From that it is obvious that A is positive semidefinite if
and only if λj ≥ 0 holds for each j.

Existence of a square root: We define B with respect to the basis (v1, . . . , vn) by
Bvj =

√
λjvj . Then B2 = A is obvious and since all λj are real and the vj are orthonormal,

B is positive definite because〈
B
(∑

i

µivi

)
,
∑
j

µjvj

〉
=
∑
i,j

µiµj〈Bvi, vj〉 =

n∑
j=1

|µj |2
√
λj > 0 for

∑
j

µjvj 6= 0.

Uniqueness of a square root: Assume that C is positive definite with C2 = A. Pick an
orthonormal basis w1, . . . , wm of C-eigenvectors, so that Cwj = µjwj with positive numbers
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µj > 0. Then Awj = C2wj = µ2
jwj shows that, for λj := µ2

j , the matrix C acts on the

λj-eigenspace of A by multiplication with
√
λj = µj . This implies B = C.

If A is positive definite, then all its eigenvalues are positive, and a similar argument with
µj := log λj implies the existence of X as well as its uniqueness.

We have seen already that the unitary group is compact and that its Lie algebra consists
of skew-hermitian operators. On the other hand, every matrix X ∈ Mn(K) has a unique
decomposition

X =
1

2
(X +X†) +

1

2
(X −X†)

into a hermitian and a skew-hermitian part and now we want to derive a similar multiplica-
tive decomposition of certain matrix groups. Since this does not work without additional
hyptheses, we introduce the concept of a real algebraic group.

Definition 2.36. We call a subgroup G ⊆ GLn(R) real algebraic if there exists a family
(pj)j∈J of real polynomials

pj(x) = pj(x11, x12, . . . , xnn) ∈ R[x11, . . . , xnn]

in the entries of the matrix x ∈Mn(R) such that

G = {x ∈ GLn(R) : (∀j ∈ J) pj(x) = 0}.

A subgroup G ⊆ GLn(C) ⊆ GL2n(R) is called real algebraic if it is a real algebraic subgroup
of GL2n(R) (here we use the inclusion Mn(C) ↪→M2n(R)).

Proposition 2.37. (Polar decomposition for matrix groups) Let G ⊆ GLn(K) be a real
algebraic subgroup invariant under †, i.e. G = G†. Then K := G∩Un(K) is a compact group
and we put p := L(G) ∩Hermn(K). Then the map

m : K × p→ G, (k, x) 7→ kex

is a diffeomorphism.

Proof. (Sketch) The smoothness of the map m is clear.
m is surjective: Let g ∈ G. For 0 6= v ∈ Kn we then have

0 < 〈gv, gv〉 = 〈g†gv, v〉,

showing that g†g is positive definite. Let x := 1
2 log(g†g) and define u := ge−x. Then

uu† = ge−xe−xg† = ge−2xg† = g(g†g)−1g† = gg−1(g†)−1g† = 1

implies that u ∈ Un(K), and it is clear that uex = g. From the assumption that G is real
algebraic, on can derive that x ∈ p, so that m is surjective.
m is injective: If g = kex = hey, then g†g = e2x, so that x = 1

2 log(g†g) = y is the
unique hermitian logarithm of the positive definite matrix g†g. This implies that k = ge−x =
ge−y = h.
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It is easy to see that the invariance of G under † implies the same for L(G), so that

L(G) =
(
L(G) ∩ un(K)

)
⊕ p = L(K)⊕ p.

Therefore
dimG = dim L(G) = dim L(K) + dim p = dim(K × p).

Since m is bijective, in view of the Inverse Function Theorem, it suffices to show that all
differentials T(u,x)(m) are injective (hence bijective for dimension reasons). This can be done
by showing that the exponential map is regular on Hermn(K) (see [HN11] for details).

Corollary 2.38. The group GLn(C) is arcwise connected and the group GLn(R) has two
arc-components given by

GLn(R)± := {g ∈ GLn(R) : ± det g > 0}.

Proof. If X = A × B is a product space, then the arc-components of X are the sets of the
form C × D, where C ⊆ A and D ⊆ B are arc-components (easy Exercise!). The polar
decomposition of GLn(K) yields a homeomorphism

GLn(K) ∼= Un(K)×Hermn(K).

The vector space Hermn(K) is arcwise connected. Therefore the arc-components of GLn(K)
are in one-to-one correspondence with those of Un(K) which have been determined in Propo-
sition 2.33.

Example 2.39. Proposition 2.37 in particular applies to the following groups:
(a) G = SLn(R) is p−1(0) for the polynomial p(x) = detx− 1, and we obtain

SLn(R) = K exp p ∼= K × p

with
K = SOn(R) and p = {x ∈ Symn(R) : trx = 0}.

For SL2(R), we obtain in particular a homeomorphism

SL2(R) ∼= SO2(R)× R2 ∼= S1 × R2.

(b) G = Op,q := Op,q(R) is defined by the condition g>Ip,qg = Ip,q. These are n2

polynomial equations, one for each entry of the matrix. Moreover, g ∈ Op,q implies

Ip,q = I−1
p,q = (g>Ip,qg)−1 = g−1Ip,q(g

>)−1

and hence gIp,qg
> = Ip,q, i.e. g> ∈ Op,q. Therefore O>p,q = Op,q, and all the assumptions of

Proposition 2.37 are satisfied. In this case,

K = Op,q ∩On
∼= Op×Oq,

(Exercise 2.10) and we obtain a diffeomorphism

Op,q
∼= Op×Oq ×(op,q ∩ Symn(R)).
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In particular, we see that for p, q > 0 the group Op,q has four arc-components because Op

and Oq have two arc-components (Proposition 2.33).
For the subgroup SOp,q we have one additional polynomial equation, so that it is also

algebraic. Here we have

KS := K ∩ SOp,q
∼= {(a, b) ∈ Op×Oq : det(a) det(b) = 1}

∼=
(

SOp×SOq

)
∪̇
(

Op,−×Oq,−
)
,

so that SOp,q has two arc-components if p, q > 0 (cf. the discussion of the Lorentz group in
Subsection 2.8.3.

(c) We can also apply Proposition 2.37 to the subgroup SLn(C) ⊆ GLn(C) because the
equation det g−1 = 0 in the complex matrix entries can be viewed as a pair of real polynomial
equations in the real and imaginary parts of the matrix entries. We have

K = SLn(C) ∩Un(C) = SUn(C) and p = sln(C) ∩Hermn(C).

G K = G ∩Un(K) p = L(G) ∩Hermn(K) π0(G) = G/G0 = π0(K)

GLn(R) On(R) Symn(R) Z/2
SLn(R) SOn(R) X> = X, trX = 0 1
GLn(C) Un(C) Hermn(C) 1
SLn(C) SUn(C) X† = X, trX = 0 1
Op,q(R) Op(R)×Oq(R) Z/2× Z/2 for p, q > 0
SOp,q(R) S(Op(R)×Oq(R)) Z/2 for p, q > 0
SO1,n(R) On(R) Z/2
Sp2n(R) Un(C) Symn(C) 1

2.6 Integrating homomorphisms of Lie algebras

In Proposition 2.14 we have seen that every homomorphism of Lie groups ϕ : G→ H defines
by its derivative in the identity L(ϕ) = T1(ϕ) : L(G) → L(H) a homomorphism of Lie
algebras. In this section we briefly discuss the question to which extent ϕ is determined by
L(ϕ) and when there exists for a given homomorphism ψ : L(G) → L(H) of Lie algebras a
group homomorphism ϕ : G→ H with L(ϕ) = ψ.

Proposition 2.40. For any smooth homomorphism ϕ : G→ H of Lie groups, we have

expH ◦L(ϕ) = ϕ ◦ expG, (12)

i.e. the following diagram commutes

G
ϕ−−−−−−−−−→ HxexpG

xexpH

L(G)
L(ϕ)−−−−−−−−−→ L(H).

52



Proof. For x ∈ L(G) we consider the smooth homomorphism

γx ∈ Hom(R, G), γx(t) = expG(tx).

Then ϕ◦γx is a smooth one-parameter group of H with infinitesimal generator (ϕ◦γx)′(0) =
L(ϕ)γ′x(0) = L(ϕ)x. We conclude that

ϕ(γx(t)) = γL(ϕ)x(t), t ∈ R,

and for t = 1, this proves the lemma.

Lemma 2.41. The subgroup 〈expG(L(G))〉 of G generated by expG(L(G)) coincides with the
identity component G0 of G, i.e. the connected component containing 1.

Proof. Since expG is a local diffeomorphism in 0, expG(L(G)) is a neighborhood of 1, so that
the subgroup H := 〈expG(L(G))〉 generated by the exponential image is a 1-neighborhood.
According to Lemma 2.27, H is open and closed. Since G0 is connected and has a non-empty
intersection with H, it must be contained in H.

On the other hand, expG is continuous, so that it maps the connected space L(G) into
the identity component G0 of G, which leads to H ⊆ G0, and hence to equality.

Proposition 2.42. For two smooth morphisms ϕ1, ϕ2 : G → H of Lie groups we have
L(ϕ1) = L(ϕ2) if and only if ϕ1 and ϕ2 coincide on the identity component G0 of G.

Proof. If ϕ1|G0
= ϕ2|G0

, then we clearly have L(ϕ1) = T1(ϕ1) = T1(ϕ2) = L(ϕ2).
If, conversely, L(ϕ1) = L(ϕ2), then Proposition 2.40 implies that ϕ1(expx) = ϕ2(expx)

for every x ∈ L(G), so that the assertion follows from Lemma 2.41.

Remark 2.43. It is easy to see that Proposition 2.42 is optimal. If the Lie group G is not
connected, then its identity component is a proper normal subgroup and we may consider
π0(G) := G/G0 as a discrete group. Any discrete group is a 0-dimensional Lie group. Now the
trivial homomorphism ϕ1 : G→ G/G0 and the quotient homomorphism ϕ2 : G→ G/G0, g 7→
gG0 are different but coincide on G0.

A more concrete example is obtained from the homomorphism

det : On(R)→ R×

which is non-trivial but trivial on the identity component SOn(R) (Proposition 2.33).

The preceding proposition shows that the problem to construct a Lie group homomor-
phism ϕ : G→ H from a homomorphism ψ : L(G)→ L(H) of Lie algebras only makes sense
if G is connected. So assume that G is connected. By Lemma 2.41, every element g ∈ G can
be written as a product

g = expx1 · · · expxn,

and, whenever ϕ exists, it must satisfy

ϕ(g) = exp(ψx1) · · · exp(ψxn) (13)
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(Proposition 2.40). However, we cannot use this relation to define ϕ because the representa-
tion of g as a product of exponentials is highly non-unique. For ϕ to exist, ψ has to satisfy
the condition

(∀n ∈ N)(∀x1, . . . , xn ∈ L(G)) expx1 · · · expxn = 1 ⇒ exp(ψx1) · · · exp(ψxn) = 1.
(14)

If, conversely, (14) is satisfied, then (13) yields a well-defined smooth homomorphism ϕ : G→
H (Exercise). Therefore (14) is necessary and sufficient for ϕ to exist, but this condition is
impossible to verify in practise.

The main idea to turn (14) into a verifiable condition is to observe that any relation of
the form expx1 · · · expxn = 1 defines a closed piecewise smooth path γ : [0, 1]→ G by

γ(t) := expx1 · · · expxk−1 exp(nt− (k − 1))xk for
k − 1

n
≤ t ≤ k

n
.

Now let γ : [0, 1]→ G be any piecewise smooth path and

ξ(t) := γ(t)−1γ̇(t) ∈ L(G)

be its logarithmic derivative (which is, strictly speaking, only defined on each subinterval on
which γ is differentiable). Then the initial value problem

η(0) = 1 and η̇ = η · (ψ ◦ ξ)

has a unique piecewise smooth solution ηγ : [0, 1] → H (Remark 2.25). If ϕ exists, then
ηγ = ϕ ◦ γ follows from

(ϕ ◦ γ)′ = T (ϕ)γ′ = (ϕ ◦ γ) · L(ϕ)ξ = (ϕ ◦ γ) · (ψ ◦ ξ).

Here we have used that

T (ϕ)(g · x) = ϕ(g) L(ϕ)x for g ∈ G, x ∈ TG

(Exercise). We thus arrive at the necessary condition

γ(1) = 1 ⇒ ηγ(1) = 1.

This looks even worse than (14), because there are even more closed piecewise smooth paths
than exponential products representing the identity. However, the value ηγ(1) does not
change if γ is deformed with fixed endpoints. This leads us to the concept of homotopic
paths.

Definition 2.44. Let X be a topological space. We call two continuous paths α0, α1 : [0, 1]→
X starting in x0 and ending in x1 homotopic, written α0 ∼ α1, if there exists a continuous
map

H : I × I → X with H0 = α0, H1 = α1

(for Ht(s) := H(t, s)) and

(∀t ∈ I) H(t, 0) = x0, H(t, 1) = x1.
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It is easy to show that ∼ is an equivalence relation, called homotopy. The homotopy class of
α is denoted by [α].

For α(1) = β(0) we define the concatenation product α ∗ β as

(α ∗ β)(t) :=

{
α(2t) for 0 ≤ t ≤ 1

2
β(2t− 1) for 1

2 ≤ t ≤ 1.

It turns out that [α]∗ [β] := [α∗β] is a well-defined product on the set of homotopy classes
and that, for any x0 ∈ X, the set

π1(X,x0) := {[α] : α ∈ C([0, 1], X), α(0) = α(1) = x0}

is a group with respect to ∗. Here [γ]−1 is represented by t 7→ γ(1 − t) and the identity
element is the constant path. The group π1(X,x0) is called the fundamental group of X with
respect to x0. An arcwise connected space X is called simply connected if π1(X,x0) vanishes
for an x0 ∈ X.

After this interlude on homotopy classes, we can formulate the integrability condition for
Lie algebra homomorphisms.

Theorem 2.45. Let G and H be Lie groups and ψ : L(G) → L(H) be a homomorphism of
Lie algebras. Suppose that G is connected. Then we obtain a well-defined homomorphism

perψ : π1(G,1)→ H, [γ] 7→ ηγ(1).

A smooth homomorphism ϕ : G → H with L(ϕ) = ψ exists if and only if perψ is trivial. In
particular, ϕ always exists if G is simply connected.

Example 2.46. (a) We identify L(T) with R, so that expT(x) = eix. Then a linear map
ψ : L(T) → L(T) is given by multiplication with a real number λ. To see for which λ we
have a morphism ϕ : T→ T of Lie groups with L(ϕ) = ψ, we note that ϕ(eix) = eiλx is only
well-defined if λ2πZ ⊆ 2πZ, i.e. if λ = n ∈ Z. Then ϕ(z) = zn is the corresponding group
homomorphism.

(b) For the determinant function

det : Un(C)→ T

the relation det(ex) = etr x = ei(−i tr x) shows that L(det) = −i tr. This a homomorphism
of Lie algebras un(R) → R, and since R is abelian, this simply means that tr([x, y]) = 0 for
x, y ∈ un(C).

We thus obtain for each λ ∈ R a homomorphism ψ := −iλ tr : un(C) → R and can ask
under which conditions there exists a homomorphism ϕ : Un(C)→ T with L(ϕ) = ψ. Then
it would make sense to write ϕ = detλ. This is clearly the case for λ ∈ Z. That this condition
is actually necessary follows from the fact that, for x := iE11 ∈ un(C) with exp(2πx) = 1,
we have eiψ(2πx) = eλ tr(2πx) = eλ2πi = 1 only if λ ∈ Z. This implies in particular, that the
group Un(C) is not simply connected.

Remark 2.47. (a) Suppose that the topological space X is contractible, i.e. there exists a
continuous map H : I ×X → X and x0 ∈ X with H(0, x) = x and H(1, x) = x0 for x ∈ X.
Then π1(X,x0) = {[x0]} is trivial (Exercise).
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(b) π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0).
(c) π1(Rn, 0) = {0} because Rn is contractible.
More generally, if the open subset Ω ⊆ Rn is starlike with respect to x0, then H(t, x) :=

x+ t(x− x0) yields a contraction to x0, and we conclude that π1(Ω, x0) = {[x0]}.
(d) If G ⊆ GLn(K) is a linear Lie group with a polar decomposition, i.e. for K :=

G ∩ Un(K) and p := L(G) ∩ Hermn(K), the polar map p : K × p → G, (k, x) 7→ kex is a
homeomorphism, then the inclusion K → G induces an isomorphism

π1(K,1)→ π1(G,1)

because the vector space p is contractible.
(e) π1(S1) ∼= π1(C×) ∼= Z follows from the classification of homotopy classes of loops in

the punctured plane by their winding number with respect to the origin.
(f) The group

SU2(C) =
{(

a −b
b a

)
∈ GL2(C) : |a|2 + |b|2 = 1

}
is homeomorphic to the 3-sphere

{(a, b) ∈ C2 : ‖(a, b)‖ = 1} ∼= S3

which is simply connected (Exercise 2.20). One can show that the sphere Sn carries a Lie
group structure if and only if n = 0, 1, 3.

(g) With some more advanced tools from homotopy theory, one can show that the groups
SUn(C) are always simply connected. However, this is never the case for the groups Un(C).

To see this, consider the group homomorphism

γ : T→ Un(C), z 7→ diag(z, 1, . . . , 1)

and note that det ◦γ = idT. From that one easily derives that the multiplication map

µ : SUn(C)× T→ Un(C), (g, z) 7→ gγ(z)

is a homeomorphism, so that

π1(Un(C)) ∼= π(SUn(C))× π1(T) ∼= π1(T) ∼= Z.
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G K = G ∩Un(K) π1(G) = π1(K)

GLn(R) On(R)


Z/2 for n > 2

Z for n = 2

1 for n = 1.

SLn(R) SOn(R) Z/2 for n > 2
SL2(R) SO2(R) ∼= T Z
GLn(C) Un(C) Z
SLn(C) SUn(C) 1

SOp,q(R) S(Op(R)×Oq(R)) Z/2× Z/2 for p, q > 2

SO1,n(R) On(R)


Z/2 for n > 2

Z for n = 2

1 for n = 1

Sp2n(R) Un(C) 1

2.7 The adjoint representation

Definition 2.48. If V is a vector space andG a group, then a homomorphism ϕ : G→ GL(V )
is called a representation of G on V . If g is a Lie algebra, then a homomorphism of Lie
algebras ϕ : g→ gl(V ) is called a representation of g on V .

If V is an n-dimensional vector space, then GL(V ) carries a natural Lie group structure
for which it is isomorphic to GLn(R) (cf. Exercise 2.3). As a consequence of Proposition 2.14,
we therefore obtain:

Corollary 2.49. If ϕ : G → GL(V ) is a smooth representation of the linear Lie group G,
then L(ϕ) : L(G)→ gl(V ) = (End(V ), [·, ·]) is a representation of the Lie algebra L(G).

The representation L(ϕ) obtained in Corollary 2.49 from the group representation ϕ is
called the derived representation. This is motivated by the fact that for each x ∈ L(G) we
have

L(ϕ)x =
d

dt t=0
etL(ϕ)x =

d

dt t=0
ϕ(exp tx).

Definition 2.50. Let G be a Lie group and L(G) its Lie algebra. For g ∈ G we recall the
conjugation automorphism cg ∈ Aut(G), cg(x) = gxg−1, and define

Ad(g) := L(cg) ∈ Aut(L(G)).

Then
Ad(g1g2) = L(cg1g2) = L(cg1) ◦ L(cg2) = Ad(g1) Ad(g2)

shows that Ad: G→ Aut(L(G)) is a group homomorphism. It is called the adjoint represen-
tation of G. To see that it is smooth, we observe that for each x ∈ L(G) we have

Ad(g)x = T1(cg)x = T1(λg ◦ ρg−1)x = Tg−1(λg)T1(ρg−1)x = g · x · g−1
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in T (G). Since T (mG) is smooth, the representation Ad of G on L(G) is smooth (cf. Exer-
cise 2.14), and

L(Ad): L(G)→ gl(L(G))

is a representation of L(G) on L(G).

Lemma 2.51. If G is connected, then

ker Ad = Z(G) = {z ∈ G : (∀g ∈ G)gz = zg}

is the center of G.

Proof. In view of Proposition 2.42 and the connectedness of G, the relation L(cz) = Ad(z) =
1 is equivalent to cz = idG, which means that z ∈ Z(G).

The following lemma gives a formula for this representation. Here we use the notation

ad(x)y := [x, y]

for elements x, y of a Lie algebra.

Lemma 2.52. L(Ad) = ad, i.e. L(Ad)(x)(y) = [x, y].

Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector fields. For g ∈ G
we then have

((cg)∗yl)(h) = T (cg)yl(c
−1
g (h)) = g ·

(
(g−1hg) · y

)
· g−1 = hg · y · g−1 = (Ad(g)y)l(h).

On the other hand, the left invariance of yl leads to

(cg)∗yl = (ρ−1
g ◦ λg)∗yl = (ρ−1

g )∗(λg)∗yl = (ρ−1
g )∗yl.

Next we recall that Φxlt = ρexpG(tx) is the flow of the vector field xl, so that Theorem 1.59
implies that

[xl, yl] = Lxlyl =
d

dt t=0
(Φxl−t)∗yl =

d

dt t=0
(cexpG(tx))∗yl =

d

dt t=0

(
Ad(expG(tx))y

)
l
.

Evaluating in 1, we get

[x, y] = [xl, yl](1) =
d

dt t=0
Ad(expG(tx))y = L(Ad)(x)(y).

Example 2.53. For a linear Lie group G ⊆ GLn(R), the automorphisms cg(h) = ghg−1 are
restrictions of linear endomorphisms of the vector space Mn(R), which leads to

Ad(g)x = gxg−1 for g ∈ G, x ∈ L(G).

Accordingly, we find for ad = L(Ad) the concrete formula

adx(y) = xy − yx for x, y ∈ L(G).
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Example 2.54. We take a closer look at the adjoint representation of G = SU2(C). We
recall that

su2(C) = {x ∈ gl2(C) : x† = −x, trx = 0} =
{( ai b

−b −ai

)
: b ∈ C, a ∈ R

}
.

This is a three-dimensional real subspace of gl2(C). The hermitian matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are called the Pauli matrices. The matrices iσj , j = 1, . . . , 3 form a basis of the Lie algebra
su2(C) of SU2(C). The Pauli matrices satisfy the commutator relations

[iσ1, iσ2] = −2iσ3, [iσ2, iσ3] = −2iσ1, [iσ3, iσ1] = −2iσ2,

to that

ad(iσ1) =

0 0 0
0 0 2
0 −2 0

 , ad(iσ2) =

0 0 −2
0 0 0
2 0 0

 , ad(iσ3) =

 0 2 0
−2 0 0
0 0 0

 ,

showing that ad(iσj) = −2Jj ∈ so3(R) in the notation of Example 2.31. We conclude that
ad: su2(C) → so3(R) is a linear isomorphism. Since the exponential function of SU2(C) is
surjective (Proposition 2.33), we find with the relation Ad(expx) = ead x (Lemma 2.52 and
Proposition 2.40) that

Ad(SU2(C)) = Ad(exp su2(C)) = ead su2(C) = exp(so3(R)) = SO3(R)

(cf. Proposition 2.33). Next we observe that

ker Ad = Z(SU2(C)) = {±1}

(see Corollary 2.51 for the first equality and Exercise 2.16 for the center of SUn(C)), so that

SO3(R) ∼= SU2(C)/{±1}.

2.8 Semidirect products

In this subsection we introduce the concept of a semidirect product of two Lie groups. This
is a construction to create a new Lie group from two given ones that is more general than
the direct product construction. Semidirect products of Lie groups arise naturally as groups
of isometries of euclidean spaces and groups of automorphisms of affine spaces. Therefore we
start with the concept of an affine space. An affine space can be considered as a vector space
where no origin has been specified. This is closer to the physical concept of space, where no
point plays a preferred role.

59



2.8.1 Affine spaces

Definition 2.55. Let V be a vector space. An affine space with translation space V consists
of a set A and a map

+: A× V → A, (a,x) 7→ a+ x,

such that the following conditions are satisfied

(A1) a+ o = a for all a ∈ A.

(A2) a+ (x + y) = (a+ x) + y for a ∈ A,x,y ∈ V .

(A3) For a, b ∈ A there exists a unique x ∈ V with b = a + x. The element b − a := x is
called the translation vector from a to b.

A map ϕ : A1 → A2 between affine spaces with translation space V1, resp., V2 is called
affine, if there exists a linear map ψ : V1 → V2 with

ϕ(a+ x) = ϕ(a) + ψ(x) for a ∈ A,x ∈ V.

Example 2.56. (a) For every vector space V , we obtain an affine space A := V with respect
to vector addition.

(b) For V = Rn, the corresponding affine space is called n-dimensional affine space An.

Remark 2.57. Once a point o ∈ A is chosen, the map V → A,x 7→ o + x is bijective, so
that, as a set, the affine space cannot be distinguished from the vector space V . However,
conceptually, the notion of an affine space is different from that of a vector space. In view
of the preceding remark, we may think of an affine space A with translation group V as a
copy of V , where no origin is distinguished. Conversely, any choice of origin o ∈ A leads to
an identification with V and hence to a vector space structure of A.

The difference between A and V is also visible in the fact that the group Aut(A) of
affine automorphisms of A is larger than the group GL(V ) of linear automorphisms of V .
The translations τx(a) := a + x are also affine automorphisms and they form a subgroup
τA ⊆ Aut(A) isomorphic to V which acts simply transitively on A. On the other hand, for
every point o ∈ A, the stabilizer Aut(A)o is isomorphic to GL(V ) because it consists of maps

of the form ψ̃(o+ x) = o+ψ(x), ψ ∈ GL(V ). Since every automorphism ϕ ∈ Aut(A) can be
written in a unique fashion as

ϕ = τx ◦ ψ̃ with ϕ(o) = o+ x, ψ ∈ GL(V ),

we can think of affine automorphism as pairs (x, ψ) ∈ V × GL(V ). Composition of maps
then corresponds to

(x, ψ) ◦ (x′, ψ′) = (x + ψ(x′), ψψ′).

To deal with group structures of this form, we introduce the notion of a semidirect product.
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2.8.2 Affine automorphism groups as semidirect products

The easiest way to construct a new Lie group from two given Lie groups G and H, is to
endow the product manifold G×H with the multiplication

(g1, h1)(g2, h2) := (g1g2, h1h2).

The resulting group is called the direct product of the Lie groups G and H. Here G and H
can be identified with normal subgroups of G×H for which the multiplication map

(G× {1})× ({1} ×H)→ G×H, ((g,1), (1, h)) 7→ (g,1)(1, h) = (g, h)

is a diffeomorphism. Relaxing this condition in the sense that only one factor is assumed to
be normal, leads to the concept of a semidirect product of Lie groups, introduced below.

Definition 2.58. LetN andG be Lie groups and α : G→ Aut(N) be a group homomorphism
defining a smooth action (g, n) 7→ αg(n) of G on N .

Then the product manifold N ×G is a group with respect to the product

(n, g)(n′, g′) := (nαg(n
′), gg′) with inversion (n, g)−1 = (αg−1(n−1), g−1).

Since multiplication and inversion are smooth, this group is a Lie group, called the semidirect
product of N and G with respect to α. It is denoted by N oα G.

Example 2.59. A typical example of a semidirect product is the group Aff(An) of automor-
phisms of the n-dimensional affine space An, resp., the group Affn(R) of affine isomorphisms
ϕ(x) = Ax+ b of Rn. Writing the elements of this group as pairs (b, A), we have

(b, A)(b′, A′) = (b+Ab′, AA′),

so that Affn(R) ∼= Rn oα GLn(R) with α(g)x = gx.

Definition 2.60. The n-dimensional euclidean space En is the affine space An, endowed
with the euclidean metric

d(a, b) :=
( n∑
j=1

x2
j

)1/2

for b = a+ x.

The euclidean group is the group ISOn(R) of affine isometries of En; it is also called
En(R). Example 2.59 implies immediately that

ISOn(R) ∼= Rn oα On(R)

because an affine map is isometric if and only if its linear part is, which means that it
corresponds to an orthogonal matrix. Actually one can show that every isometry of a normed
space (V, ‖ · ‖) is an affine map (Exercise 2.21). This implies that all isometries of En are
affine.
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2.8.3 Lorentz and Poincaré group

We define the n-dimensional Minkowski space Mn as the affine space An, endowed with the
Lorentzian form

q(a, b) := x2
0 −

n−1∑
j=1

x2
j for b = a+ x,x = (x0, . . . , xn−1).

Its group of affine isometries is the Poincaré group

ISO1,n−1(R) ∼= Rn oα O1,n−1(R)

of all affine isomorphisms of An preserving the Lorentzian forn q. Accordingly, L := O1,n−1(R)
is called the Lorentz group.

We write

β(x, y) := x0y0 −
n−1∑
j=1

xjyj

for the symmetric bilinear form on Rn with signature (1, n − 1) and q(x) := β(x, x) for the
corresponding quadratic form. The Lorentz group has several subgroups:

L+ := SO1,n−1(R) := L ∩ SLn(R) and L↑ := {g ∈ L : g00 ≥ 1}.

The condition g00 ≥ 1 comes from

1 = β(e0, e0) = β(ge0, ge0) = g2
00 −

n−1∑
j=1

g2
j0,

which implies g2
00 ≥ 1. Therefore either g00 ≥ 1 or g00 ≤ −1. To understand geometrically

why L↑ is a subgroup, we observe that q is invariant under L, so that L preserves the double
cone

C := {x ∈ Rn : q(x) ≤ 0} = {x = (x0,x) ∈ Rn : |x0| ≥ ‖x‖}.

Let
C± := {x ∈ C : ± x0 ≥ 0} = {x = (x0,x) ∈ Rn : ± x0 ≥ ‖x‖}.

Then C = C+ ∪ C− with C+ ∩ C− = {0} and the sets C± are both convex cones, as follows
easily from the convexity of the euclidean norm function on Rn−1 (Exercise). Each element
g ∈ L preserves the set C \{0} which has the two arc-components C±\{0}. The continuity of
the map g : C \ {0} → C \ {0} now implies that we have two possibilities. Either gC+ = C+

or gC+ = C−. In the first case, g00 ≥ 1 and in the latter case g00 ≤ −1. 4

The proper orthochronous Poincaré group is the corresponding affine group

P := Rn o L↑+.

4In the physics literature one sometimes finds SO1,3(R) as the notation for the connected group L↑
+ :=

L+ ∩ L↑ (cf. Example 2.39), which is inconsistent with the standard notation for matrix groups.
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This group is the identity component of ISO1,n−1(R). 5

The topological structure of the Poincaré- and Lorentz group become transparent with
the polar decomposition (cf. Example 2.39). In particular, it shows that the Lorentz group
L has four arc-components

L+
↑, L+

↓, L−
↑ and L−

↓,

where
L± := {g ∈ L : det g = ±1}, L↓ := {g ∈ L : g00 ≤ −1}

and
L±
↑ := L± ∩ L↑, L±

↓ := L± ∩ L↓.
The element

T =

(
−1 0
0 1n−1

)
is called time reversal and

P =

(
1 0
0 −1n−1

)
is the parity transformation. Both are contained in L, and if n is even, we have

L = {1, T, P, TP} · L↑+.

Evaluating the condition defining the Lie algebra so1,n−1(R) in terms of (2 × 2)-block
matrices according to the decomposition Rn = R⊕ Rn−1, we obtain

so1,n−1(R) =
{(

0 v>

v D

)
: v ∈ Rn−1, D> = −D

}
.

In particular,

p = so1,n−1(R) ∩ Symn(R) =
{(

0 v>

v 0

)
: v ∈ Rn−1

}
∼= Rn−1.

To make the polar decomposition more explicit, we calculate expX for

X =

(
0 v>

v 0

)
.

This can be done explicitly because X3 = ‖v‖2X. This leads to

expX = 1 +
( 1

2!
+
‖v‖2

4!
+
‖v‖4

6!
+ . . .

)
X2 +

(
1 +
‖v‖2

3!
+
‖v‖4

5!
+ . . .

)
X

= 1 +
cosh ‖v‖ − 1

‖v‖2
X2 +

sinh ‖v‖
‖v‖

X

=

(
cosh ‖v‖ sinh ‖v‖

‖v‖ v>

sinh ‖v‖
‖v‖ v 1 + cosh ‖v‖−1

‖v‖2 vv>

)
=: L(v).

5Some people use the name Poincaré group only for the simply connected covering group of P which is
isomorphic to R4 o SL2(C) (cf. Exercise 2.19).
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The matrix L(v) is called a Lorentz boost in direction v with rapidity ‖v‖. Putting w :=
sinh ‖v‖
‖v‖ v, we obtain the slightly simpler form

L(v) =

(√
1 + ‖w‖2 w>

w 1 +

√
1+‖w‖2−1

‖w‖2 ww>

)
.

Let us assume, from now on, that n = 4. Then we obtain in particular

L(te1) =


cosh t sinh t 0 0
sinh t cosh t 0 0

0 0 1 0
0 0 0 1

 , L(te2) =


cosh t 0 sinh t 0

0 1 0 0
sinh t 0 cosh t 0

0 0 0 1

 ,

and

L(te3) =


cosh t 0 0 sinh t

0 1 0 0
0 0 1 0

sinh t 0 0 cosh t

 ,

resp., for s = sinh t:

L(te1) =


√

1 + s2 s 0 0

s
√

1 + s2 0 0
0 0 1 0
0 0 0 1

 etc.

Let

B1 :=


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , B2 :=


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , B3 :=


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


denote the generators of the one-parameter groups L(tej) and note that they form a basis for
p ∼= R3. To obtain a basis for so1,3(R) = so3(R)⊕ p, these elements have to be supplemented
by the generators on the rotations in {0} × R3 ⊆ R1,3:

R1 :=


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , R2 :=


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , R3 :=


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .

From (
0 0
0 A

)(
0 v>

v 0

)
−
(

0 v>

v 0

)(
0 0
0 A

)
=

(
0 −v>A
Av 0

)
=

(
0 (Av)>

Av 0

)
for v ∈ R3 and A = −A> ∈ so3(R) and(

0 v>

v 0

)(
0 w>

w 0

)
−
(

0 w>

w 0

)(
0 v>

v 0

)
=

(
0 0
0 vw> − wv>

)
,
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we obtain the commutator relations

[Ri, Rj ] =
∑
k

εijkRk, [Rj , Bj ] =
∑
k

εijkBk and [Bi, Bj ] = −
∑
k

εijkRk.

Exercises for Section 2

Exercise 2.1. Show that the natural group structure on T ∼= S1 ⊆ C× turns it into a Lie
group.

Exercise 2.2. Let G1, . . . , Gn be Lie groups and G := G1 × . . . × Gn, endowed with the
direct product group structure

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g

′
1, . . . , gng

′
n)

and the product manifold structure. Show that G is a Lie group with

L(G) ∼= L(G1)× . . .× L(Gn).

Exercise 2.3. Let V be an n-dimensional real vector space and fix a linear isomorphism
ι : Rn → V . Then we obtain a linear isomorphism

Φ: End(V )→Mn(R), Φ(ϕ)x = ι−1(ϕι(x))

which we consider as a chart of End(V ). Show that we thus obtain on the open subset GL(V )
the structure of a Lie group.

Exercise 2.4. On the tangent bundle TG of the Lie group G, we consider the multiplication

T (mG) : T (G×G) ∼= TG× TG→ TG, (vg, wh) 7→ g · w + v · h

(cf. Lemma 2.6). Show that this turns TG into a Lie group with neutral element 01 ∈ T1(G)
and inversion T (ηG).

If this is too abstract, consider the special case G = GLn(R) whose tangent bundle we
identify with the open subset T GLn(R) = GLn(R)×Mn(R) of Mn(R)×Mn(R).

Exercise 2.5. Let G be an n-dimensional Lie group and (ϕ,U) be a local chart of G with
1 ∈ U and ϕ(1) = 0. We then obtain a locally defined smooth function

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y))

defined in an open neighborhood of 0 in Rn × Rn. Show that:

(i) The Taylor polynomial of order 2 of ∗ is of the form x+y+b(x, y), where b : Rn×Rn → Rn
is bilinear. Hint: Use the relations x ∗ 0 = x and 0 ∗ y = y and that every quadratic
form

q : Rn × Rn → Rn, q(x, y) =

n∑
i,j=1

aijxixj +

n∑
i,j=1

bijyiyj +

n∑
i,j=1

cijxiyj

vanishing in all pairs (x, 0) and (0, y) is bilinear.

65



(ii) The first order Taylor polynomial of the left invariant vector field xl(z) in 0 is x+b(z, x).

(iii) [x, y] = b(x, y)− b(y, x).

(iii) Apply this to the chart ϕ(g) = g − 1 of GLn(R).

Exercise 2.6. Show that

γ : (R,+)→ GL2(R), t 7→
(

cos t sin t
− sin t cos t

)

is a continuous group homomorphism with γ(π) =

(
−1 0
0 −1

)
and im(γ) = SO2(R).

Exercise 2.7. Show that:
(a) exp(Mn(R)) is contained in the identity component GLn(R)+ of GLn(R). In particular
the exponential function of GLn(R) is not surjective because this group is not connected.
(b) The exponential function exp : M2(R)→ GL2(R)+ is not surjective.

Exercise 2.8. Every matrix X ∈ sl2(K) satisfies X2 = − detX1. Show that

eX =
( ∞∑
k=0

(−1)k

(2k)!
(detX)k

)
1 +

( ∞∑
k=0

(−1)k

(2k + 1)!
(detX)k

)
X.

Conclude further that:

(i) eX = 1 +X for detX = 0.

(ii) eX = cosh(
√
−detX)1 + sinh(

√
− detX)√
− detX

X for detX < 0.

(iii) eX = cos(
√

detX)1 + sin(
√

detX)√
detX

X for detX > 0.

(iv) exp
(
t

(
0 −1
1 0

))
=

(
cos t − sin t
sin t cos t

)
and exp

(
t

(
0 1
1 0

))
=

(
cosh t sinh t
sinh t cosh t

)
.

Exercise 2.9. On R3 we consider the vector product

v × w =

 v2w3 − v3w2

−(v1w3 − v3w1)
v1w2 − v2w1

 .

We define a linear map
ϕ : R3 →M3(R), ϕ(x)y = x× y.

Show that

(i) im(ϕ) = so3(R).

(ii) ϕ(x× y) = [ϕ(x), ϕ(y)] for x, y ∈ R3.

(iii) (R3,×) is a Lie algebra isomorphic to so3(R).
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Exercise 2.10. Show that for n = p+ q we have

Op,q(K) ∩On(K) ∼= Op(K)×Oq(K).

Exercise 2.11. SOn(K) is a closed normal subgroup of On(K) of index 2 and, for every
g ∈ On(K) with det(g) = −1,

On(K) = SOn(K) ∪ g SOn(K)

is a disjoint decomposition.

Exercise 2.12. Let β : V ×V → V be a symmetric bilinear form on the vector space V and

q : V → V, v 7→ β(v, v)

the corresponding quadratic form. Then for ϕ ∈ End(V ) the following are equivalent:

(1) (∀v ∈ V ) q(ϕ(v)) = q(v).

(2) (∀v, w ∈ V ) β(ϕ(v), ϕ(w)) = β(v, w).

Exercise 2.13. Let ϕ : G→ H be a smooth homomorphism of Lie groups. Show that:

(i) L(kerϕ) ∼= L(kerϕ).

(ii) ϕ has discrete kernel if and only if L(ϕ) is injective.

(iii) ϕ is a submersion if and only if L(ϕ) is surjective.

(iv) If G and H are connected and L(ϕ) is surjective, then ϕ is surjective.

(v) If G and H are connected of the same dimension and kerϕ is discrete, then ϕ is surjective.

Exercise 2.14. Let M be a manifold and V a finite-dimensional vector space with a basis
(b1, . . . , bn). Let f : M → GL(V ) be a map. Show that the following are equivalent:

(1) f is smooth.

(2) For each v ∈ V the map fv : M → V,m 7→ f(m)v is smooth.

(3) For each i, the map f : M → V,m 7→ f(m)bi is smooth.

Exercise 2.15. (The exponential function of SU2(C)) Show that:

(a) U2(C) = TSU2(C) = Z(U2(C)) SU2(C).

(b) If x ∈ su2(C) with eigenvalues ±iλ, λ ≥ 0, we have ‖x‖ = λ.

(c) For x, y ∈ su2(C), there exists an element g ∈ SU2(C) with y = Ad(g)x if and only if
‖x‖ = ‖y‖.

(d) No one-parameter group γ : R→ SU2(C) is injective, in particular, the image of γ(R) is
always circle group.
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Exercise 2.16. Show that

Z(Un(C)) = T1 and Z(SUn(C)) = {z1 : zn = 1} ∼= Cn.

Hint: Each g ∈ Z(Un(C)) satisfies Ad(g) = 1. Conclude from gln(C) = un(C) + iun(C) that
g commutes with all matrices. For g ∈ Z(SUn(C)), use gln(C) = sun(C) + i sun(C) + C1 is
a similar fashion.

Exercise 2.17. (a) Show that a matrix A ∈ Mn(C) is hermitian if and only if there exists
an orthonormal basis v1, . . . , vn for Cn and real numbers λ1, . . . , λn with Avj = λjvj .

(b) Show that a complex matrix A ∈ Mn(C) is unitary if and only if there exists an
orthonormal basis v1, . . . , vn for Cn and λj ∈ C with |λj | = 1 and Avj = λjvj .

(c) Show that a complex matrix A ∈ Mn(C) is normal, i.e. satisfies A†A = AA†, if and
only if there exists an orthonormal basis v1, . . . , vn for Cn and λj ∈ C with Avj = λjvj .

Exercise 2.18. Show that the groups On(C), SOn(C) and Sp2n(R) have polar decomposi-
tions and describe their intersections with Un(C), resp., O2n(R).

Exercise 2.19. On the four-dimensional real vector space V := Herm2(C) we consider the
symmetric bilinear form β given by

β(A,B) := 1
2 (trA trB − tr(AB)).

Show that:

(1) The corresponding quadratic form is given by q(A) := β(A,A) = detA.

(2) Show that the basis σj , j = 0, . . . , 3 with σ0 = 1 and where σj , j = 1, 2, 3, are the Pauli
matrices, is orthogonal with respect to β and that we thus obtain an isomorphism
(V, β) ∼= R1,3:

q(a0σ0 + a1σ1 + a2σ2 + a3σ3) = a2
0 − a2

1 − a2
2 − a2

3.

(3) For g ∈ GL2(C) and A ∈ Herm2(C) the matrix gAg† is hermitian and satisfies

q(gAg†) = |det(g)|2q(A).

(4) For g ∈ SL2(C) we define a linear map ρ(g) ∈ GL(Herm2(C)) ∼= GL4(R) by ρ(g)(A) :=
gAg†. Then we obtain a homomorphism

ρ : SL2(C)→ O(V, β) ∼= O3,1(R).

(5) Show that ker ρ = {±1}.

(6) L(ρ) : sl2(C) → so3,1(R) is an isomorphism of Lie algebras. Hint: Use that ker L(ρ) =
L(ker ρ) (Exercise 2.13) and compare dimensions.

(7) SO1,3(R)0
∼= SL2(C)/{±1} (see Example 2.54 for similar arguments).

(8) ρ(SU2(C)) = SO3(R) consists of those matrices fixing σ0 (cf. Example 2.54).
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Exercise 2.20. Show that for n > 1 the sphere Sn is simply connected. For the proof,
proceed along the following steps:
(a) Let γ : [0, 1] → Sn be continuous. Then there exists an m ∈ N such that
‖γ(t)− γ(t′)‖ < 1

2 for |t− t′| < 1
m .

(b) Define α̃ : [0, 1]→ Rn+1 as the piecewise affine curve with α̃( km ) = γ( km ) for k = 0, . . . ,m.
Then α(t) := 1

‖α̃(t)‖ α̃(t) defines a continuous curve α : [0, 1]→ Sn.

(c) α ∼ γ.
(d) α is not surjective. The image of α is the central projection of a polygonal arc on the
sphere.
(e) If β ∈ Ω(Sn, y0) is not surjective, then β ∼ y0 (it is homotopic to a constant map).
(f) π1(Sn, y0) = {[y0]} for n ≥ 2 and y0 ∈ Sn.

Exercise 2.21. [Isometries of euclidean spaces are affine maps] Let (X, d) be a euclidean
space. Show that each isometry ϕ : (X, d) → (X, d) is an affine map by using the following
steps:

(1) It suffices to assume that ϕ(0) = 0 and to show that this implies that ϕ is a linear map.

(2) ϕ(x+y
2 ) = 1

2 (ϕ(x) + ϕ(y)) for x, y ∈ X. Hint: Use that two points x, y ∈ X has a unique
midpoint z with d(x, z) = d(y, z) = 1

2d(x, y).

(3) ϕ is continuous.

(4) ϕ(λx) = λϕ(x) for λ ∈ 2Z ⊆ R.

(5) ϕ(x+ y) = ϕ(x) + ϕ(y) for x, y ∈ X.

(6) ϕ(λx) = λϕ(x) for λ ∈ R.

Exercise 2.22. Let G be a group, N ⊆ G a normal subgroup and

q : G→ G/N, g 7→ gN

be the quotient homomorphism. Show that:

(1) If G ∼= N oδ H for a subgroup H, then H ∼= G/N .

(2) There exists a subgroup H ⊆ G with G ∼= N oδ H if and only if there exists a group
homomorphism σ : G/N → G with q ◦ σ = idG/N .

Exercise 2.23. Let NoαG be a semidirect product of the Lie groups G and N with respect
to α : G→ Aut(N). On the manifold G×N we also obtain a Lie group structure by

(g, n)(g′, n′) := (gg′, α−1
g′ (n)n′),

and this Lie group is denoted Gnα N. Show that the map

Φ: N oα G→ Gnα N, (n, g) 7→ (g, α−1
g (n))

is an isomorphism of Lie groups.
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3 Geometric Structures on Manifolds

3.1 Geometric structures on vector spaces

In this subsection we introduce various types of structures on real vector spaces that will be
used below to define corresponding structures on manifolds. It will turn out that fixing an
ordered basisB determines the finest possible structure, namely an isomorphism ιB : Rn → V ,
and the only linear automorphism in GL(V ) preserving this structure is the identity. The
other geometric structures on V correspond to non-trivial subgroups of GL(V ), such as
GL(V )+ (for orientations), SL(V ) (for volume forms), O(V, β) (for symmetric bilinear forms)
and Sp(V, ω) (for symplectic structures). All these groups are Lie groups, and we shall take
a closer look at their structure and topology below.

Definition 3.1. (Oriented vector spaces)
(a) Let V be an n-dimensional real vector space. If B = (b1, . . . , bn) and C = (c1, . . . , cn) are
two ordered bases of V , then we write M = [id]CB for the transition matrix defined by

bj =

n∑
i=1

mijci.

We say that B and C are equally oriented, denoted B ∼or C if detM > 0. Then ∼or

is an equivalence relation on the set of all bases of V . The equivalence classes are called
orientations and we write or(V ) for the set of orientations on V . We write [B] for the
orientation defined by the basis B. Since we either have detM > 0 or detM < 0, there
are only two equivalence classes, i.e. V carries two orientations. Accordingly, we write −[B]
for the opposite orientation. If O is an orientation on V , then the pair (V,O) is called an
oriented vector space.

(b) If (V,O) and (V ′, O′) are oriented vector spaces, then an invertible linear map ϕ : V →
V ′ is said to be an isomorphism of oriented vector spaces or orientation preserving if ϕ(O) =
O′, where this expression is defined by ϕ([B]) = [ϕ(B)] for an ordered basis B of V .

Remark 3.2. (a) For ϕ ∈ GL(V ) and an orientation [B] of V , we have [ϕ(B)] = sgn(det(ϕ))[B]
In particular, ϕ preserves the orientation if and only if it belongs to the subgroup

GL(V )+ := {ϕ ∈ GL(V ) : detϕ > 0}.

For the canonical orientation [e1, . . . , en] of Rn, we thus obtain the matrix group

GLn(R)+ := {g ∈ GLn(R) : det g > 0}.

This is an open subgroup of GLn(R) so that it has the same Lie algebra as GLn(R) (Lemma 2.27).
(b) A vector space V has no preferred orientation. The group GL(V ) acts transitively on

the set of all orientations by ϕ[B] = [ϕ(B)].
(c) For an n-dimensional real vector space V , we write bas(V ) for the set of all ordered

bases B = (b1, . . . , bn) of V . Once an orientation [B] of V is fixed, it defines a function

s : bas(V )→ {±1}, ϕ(B) 7→ sgn(det(ϕ)).

70



This function satisfies the equation

s(ϕ(C)) = sgn(det(ϕ))s(C) for ϕ ∈ GL(V ), C ∈ bas(V ).

Conversely, any function bas(V ) → {±1} with this transformation behavior defines an ori-
entation of V by O = {[B] : s(B) = 1}.
Definition 3.3. Let V be an n-dimensional real vector space.

(a) A density on V is a function δ : bas(V )→ R×+ with the property

δ(ϕB) = |det(ϕ)|δ(B) for B ∈ bas(V ), ϕ ∈ GL(V ).

In particular, the density is preserved by the subgroup

VGL(V ) = {g ∈ GL(V ) : |det(g)| = 1}.

(b) A volume form on V is a non-zero n-linear alternating function µ : V n → R. It defines
a function

µ̃ : bas(V )→ R, B = (b1, . . . , bn)→ µ(b1, . . . , bn)

satisfying
µ̃(ϕB) = det(ϕ)µ̃(B) for B ∈ bas(V ), ϕ ∈ GL(V ).

For vectors vj =
∑
i ajibi and A = (aij), expansion of the n-linear form yields

µ(v1, . . . , vn) = (detA)µ(b1, . . . , bn) = (detA)µ̃(B),

so that µ is completely determined by the function µ̃. We conclude that a volume form µ on
V is preserved by the subgroup

SL(V ) := {g ∈ GL(V ) : det(g) = 1}.

Definition 3.4. A pair (V, β) of a K-vector space V and a symmetric bilinear form
β : V × V → K is called a quadratic vector space and

O(V, β) := {ϕ ∈ GL(V ) : (∀v, w ∈ V )β(ϕv, ϕw) = β(v, w)}

is called the isometry group or the orthogonal group of (V, β). The symmetric bilinear form
β is called degenerate if there exists a vector v ∈ V \ {0} with β(v, w) = 0 for all w ∈ V .
Otherwise it is called non-degenerate.

Remark 3.5. (a) For every non-degenerate symmetric bilinear form β on an n-dimensional
vector space V , there exists an ordered basis B = (b1, . . . , bn) of V such that

β(bi, bj) = εi δij , εi =

{
1 i ∈ {1, . . . , p}
−1 i ∈ {p+ 1, . . . , n}.

Such a basis is called an orthonormal basis for β. It is obtained from a given ordered
basis C = (c1, . . . , cn) by the generalised Gram–Schmidt process. The numbers p, n − p
are independent of the choice of orthonormal basis, and the pair (p, n − p) is is called the
signature of β.

(b) A symmetric non-degenerate bilinear form β of signature (n, 0) is called a scalar
product on V , and a vector space with a scalar product is called a Euclidean vector space.
A symmetric bilinear form β of signature (1, n− 1) on V is called a Minkowski metric on V
and V a Lorentzian vector space.
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Definition 3.6. A pair (V, ω) of a real vector space V and a non-degenerate alternating
bilinear form ω : V × V → K is called a symplectic vector space and

Sp(V, ω) := {ϕ ∈ GL(V ) : ω(ϕv, ϕw) = β(v, w) ∀v, w ∈ V }

is called the symplectic group of (V, ω).

Remark 3.7. (a) Every symplectic vector space (V, ω) is even-dimensional.6

(b) Let (V, ω) be a real a symplectic vector space of dimension 2n. A Darboux basis of V
is an ordered basis B = (b1, . . . .b2n) such that

ω(bi, bj) =


1 j = i+ n

−1 j = i− n
0 otherwise

.

Every symplectic vector space has a Darboux basis, and there is an algorithm which allows
one to transform a given ordered basis C = (c1, . . . , c2n) into a Darboux basis. This can be
viewed as the symplectic counterpart of the Gram–Schmidt process (see Exercise 3.1).

We summarise the relevant structures on an n-dimensional vector space V and the asso-
ciated structure preserving subgroups of GL(V ) in the following table:

Structure Data Structure Preserving Subgroup
G ⊂ GL(V )

orientation ordered basis on V GL+(V ) = {ϕ ∈ GL(V ) : detϕ > 0}

density function δ : bas(V )→ R×+ VGL(V ) = {ϕ ∈ GL(V ) : |detϕ| = 1}
∂(ϕB) = |detϕ|δ(B)

volume form non-zero n-linear alternating SL(V ) = {ϕ ∈ GL(V ) : detϕ = 1}
function µ : V n → R ∼= SLn(R)
µ ◦ (ϕ× . . .× ϕ) = det(ϕ) · µ

quadratic symmetric bilinear form isometry group
vector space β : V × V → R O(V, β) = {ϕ ∈ GL(V ) : β ◦ (ϕ× ϕ) = β}
special cases:

Euclidean positive definite symmetric O(V, β) ∼= On

vector space bilinear form β : V × V → R
Lorentzian non-degenerate symmetric O(V, β) ∼= O1,n−1

vector space bilinear form β : V × V → R
of signature (1, n− 1)

symplectic non-degenerate alternating symplectic group Sp(V, ω) = {ϕ ∈ GL(V ) :
vector space bilinear form ω : V × V → R ω ◦ (ϕ× ϕ) = ω} ∼= Spn(R)

6This is true more generally for symplectic vector spaces over a field K as long as K is of characteristic
char(K) 6= 2.
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Exercises for Section 3.1

Exercise 3.1. Show that every symplectic vector space (V, ω) is even-dimensional. Describe
an algorithm that transforms an ordered basis C = (c1, . . . , c2n) of V into a Darboux basis.

Exercise 3.2. Consider R2n with the standard symplectic form

ω(ei, ej) =


1 j = i+ n

−1 j = i− n
0 otherwise.

Show that every linear map ϕ ∈ Sp2n(R) is orientation preserving and volume preserving.
Compute the group Sp2n(R) explicitly for n = 1 and n = 2.

Exercise 3.3. Let β be a non-degenerate symmetric bilinear form of signature (1, n − 1),
n ≥ 1, on an n-dimensional vector space V . Show that the restriction of β to the orthogonal
complement

v⊥β = {w ∈ V : β(v, w) = 0}
of any vector v with β(v, v) > 0 is of signature (0, n− 1).

Exercise 3.4. Let (V, β) be a Lorentzian vector space. Show that there exist vectors v, w ∈ V
with

|β(v + w, v + w)| > |β(v, v)|+ |β(w,w)|.
In other words: there is no counterpart of the triangle inequality for Lorentzian vector spaces.

Exercise 3.5. Let (V, β) be a Lorentzian vector space.
(a) Show that the set M = {v ∈ V : β(v, v) > 0} of timelike vectors has two connected

components and that two timelike vectors v, w ∈ V are in the same connected component
if and only if β(v, w) > 0. Conclude that the relation v ∼ w if β(v, w) > 0 defines an
equivalence relation on the set of timelike vectors and that there are exactly two equivalence
classes.

(b) Let v ∈ V be a timelike vector. Show that each vector w ∈ V \ {0} with β(w,w) ≥ 0
satisfies either β(v, w) > 0 or β(v, w) < 0.

3.2 Geometric structures on manifolds

In this section, we show how the structures on vector spaces can be generalised to correspond-
ing structures on smooth manifolds. The general principle is the same as in Sections 1.1 to
1.4, where we defined the relevant structures locally by means of charts in such a way that
they did not depend on the choice of chart and then extended them to the whole manifold.

The only difference is that the structures in the previous subsection are associated with
vector spaces. Their generalisations to manifolds should therefore live on the tangent bundle
T (M) and be defined in terms of vector fields on M , which take the role of the charts in
Sections 1.1 to 1.4.

The basic idea is to use collections of smooth vector fields on open subsets U ⊂M which
define a basis of Tp(M) for each p ∈ U . By means of these vector fields, we can then identify
the tangent spaces Tp(M) with Rn and transport the structures on vector spaces to the
tangent bundle T (U).
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Definition 3.8. Let M be a smooth n-dimensional manifold. A local frame on M is an open
subset U ⊂ M together with an ordered n-tuple of smooth vector fields (X1, . . . , Xn) on U
such that X1(p), . . . ., Xn(p) form an ordered basis of Tp(M) for all p ∈ U . For two local
frames α = (U,X1, . . . , Xn), β = (V, Y1, . . . , Yn) with U ∩ V 6= ∅, we have

Yi(p) =

n∑
j=1

θβαji (p)Xj(p) ∀p ∈ U ∩ V.

with smooth matrix valued functions θα,β : U ∩V → GLn(R). The functions θα,β : U ∩V →
GLn(R) are called transition functions for the local frames α, β.

Remark 3.9. (a) A local frame α = (U,X1, . . . , Xn) on M induces a smooth map
Φα : T (U)→ Rn whose restriction to Tp(M) is the linear isomorphism

Φα|Tp(M) : Tp(M)→ Rn,
n∑
i=1

viXi(p) 7→
n∑
i=1

viei.

If α = (U,X1, . . . , Xn), β = (V, Y1, . . . , Yn) are local frames with U ∩ V 6= ∅, then the associ-
ated maps Φα|T (U∩V ),Φβ |T (U∩V ) : T (U ∩ V )→ Rn are related by the transition functions

Φβ |Tp(M) = θβα(p) · Φα|Tp(M) ∀p ∈ U ∩ V.

(b) For all local frames α = (U,X1, . . . , Xn), β = (V, Y1, . . . , Yn) with U ∩ V 6= ∅, we
have θαβ = ι ◦ θβα, where ι : GLn(R) → GLn(R), g 7→ g−1 denotes the inversion map. In
particular, we have θαα(p) = idRn for all p ∈ U .

(c) If (ϕ,U) is a chart onM , then the ϕ-basic vector fields form a local frame (U, bϕ1 , . . . , b
ϕ
n).

Remark 1.32 implies that the transition functions between the local frames α, β associated
with two charts (U,ϕ) and (V, ψ) are given by θαβ = dψ(p)(ϕ ◦ ψ−1).

Given a local frame α = (U,X1, . . . , Xn) on M and one of the structures from the previous
subsection on Rn, we can use the linear isomorphisms Φα|Tp(M) : Tp(M) → Rn to define a
corresponding structure on each tangent space. To illustrate the general pattern, we consider
the example of a quadratic form g : Rn × Rn → R. In this case, we obtain a quadratic form
gαp on each tangent space Tp(M), p ∈ U , by setting

gαp (v, w) := g(Φα(v),Φα(w)) ∀v, w ∈ Tp(M), p ∈ U.

Clearly, gp depends smoothly on p due to the smoothness of the vector fields X1, . . . , Xn ∈
V(U). We can now define quadratic form on Tp(M) for each p ∈ M by covering M
with the open domains of local frames. Given two local frames α = (U,X1, . . . , Xn),
β = (V, Y1, . . . , Yn) and a point p ∈ U ∩ V , it is natural to ask how the associated quadratic
forms gαp , gβp on Tp(M) are related on U ∩ V . From Remark 3.9 we obtain

gβp (v, w) = g(Φβ(v),Φβ(w)) = g(θβα(p)Φα(v), θβα(p)Φα(w))

gαp (v, w) = g(Φα(v),Φα(w)) ∀v, w ∈ Tp(M).

To ensure that the quadratic forms on the overlap of two local frames do not depend on
the choice of the frame, we have to require that the transition functions θβα : U ∩ V →
GLn(R) take values in the isometry group O(Rn, g) ⊂ GLn(R). This motivates the following
definition.
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Definition 3.10. (G-structure) Let M be an n-dimensional smooth manifold and G a sub-
group of GLn(R). Two local frames α = (U,X1, .., Xn), β = (V, Y1, . . . , Yn) on M are called
G-compatible if their transition functions θαβ : U ∩ V → GLn(R) take values in G. A G-

structure on M is a maximal family G = (αi)i∈I of local frames αi = (Ui, X
(i)
1 , . . . , X

(i)
n ) which

are pairwise G-compatible, and whose domains cover M : M =
⋃
i∈I Ui. Maximal means that

every local frame that is G-compatible with all local frames in G is already contained in G.

Example 3.11. (a) Every family of pairwise G-compatible local frames on M whose domains
cover M defines a unique G-structure on M . The proof is analogous to the one for for Ck-
atlases. In practice it is advantageous to use as few local frames as possible.

(b) It follows from Remark 3.9 (c) that every smooth n-dimensional manifold has a unique
GLn(R)-structure, which is defined by the local frames associated to the charts (ϕ,U) of M .

(c) A GL+(Rn)-structure on M is called an orientation on M . For each local frame
(U,X1, . . . , Xn) on M , the tangent vectors X1(p), . . . , Xn(p) define an orientation of Tp(M),
and the requirement that the transition functions between two local frames α = (U,X1, . . . , Xn)
and β = (V, Y1, . . . , Yn) take values in GL+(Rn) ensures that the orientations for α and β
agree on Tp(M) for all p ∈ U ∩ V .

(c) An {idRn}-structure on M is equivalent to the existence of a global frame, i. e. a frame
with domain M . This implies that the tangent bundle T (M) is diffeomorphic to M × Rn.

(d) An SLn(R)-structure on M is equivalent to the existence of a volume form on M ,
i. e. an assignment of an alternating n-form volp ∈ Altn(Tp(M),R) to each point p ∈M such
that for each chart (ϕ,U) of M the function volϕ : p 7→ volp(b

ϕ
1 , . . . , b

ϕ
n) is smooth.

The cases G = O(p, q) and G = Sp2n(R) are particularly relevant to physics, since they
are related, respectively, to the concepts of a semi-Riemannian manifold and an (almost)
symplectic manifold.

Definition 3.12. (a) A semi-Riemannian manifold is a smooth manifold M together with
an assignment g : p→ gp of a non-degenerate symmetric bilinear form gp on Tp(M) to each
point p ∈ M such that for all charts (ϕ,U) of M the coefficient functions gϕij : U → R,
p 7→ gp(b

ϕ
i , b

ϕ
j ) are smooth. The map g : p→ gp is called (semi-Riemannian) metric on M .

(b) An almost symplectic manifold is a smooth n-dimensional manifold with an assignment
ω : p 7→ ωp of a non-degenerate alternating bilinear form ωp on Tp(M) to each point of M
such that for all charts (ϕ,U) the coefficient functions ωϕij , p 7→ ωp(b

ϕ
i , b

ϕ
j ) are smooth. The

map ω : p 7→ ωp is called an almost symplectic form on M .

Remark 3.13. (a) The smoothness of the coefficient functions gϕij : U → R implies that
the non-degenerate symmetric bilinear form gp has the same signature for all p ∈ M . The
signature of the semi-Riemannian manifold (M, g) is defined as the signature of gp.

(b) A semi-Riemannian manifold (M, g) of signature (1, q) (q ≥ 1) is called a Lorentzian
manifold and g is called a Lorentzian metric on M . A semi-Riemannian manifold of signature
(q, 0) is called a Riemannian manifold and g is called a Riemannian metric on M .

(c) In the physics literature, the metric g of a semi-Riemannian manifold (M, g) is often
denoted by ds2, and on the domain of each chart (ϕ,U) one writes

ds2 = gϕijdx
idxj for gp(b

ϕ
i (p), bϕj (p)) = gϕij(p) ∀p ∈ U.
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Example 3.14. (a) We consider Sn ⊂ Rn+1. For p ∈ Sn, the tangent space Tp(Sn) is the
orthogonal complement p⊥ = {x ∈ Rn+1 : 〈p, x〉 = 0}, where 〈·, ·〉 is the Euclidean metric
on Rn+1. A Riemannian metric on Sn is given by the restriction of 〈·, ·〉 to p⊥:

gp(x, y) = 〈x, y〉 ∀x, y ∈ p⊥.

(b) More generally, for any submanifold M of Rn, the restriction of the Euclidean metric
on Rn to Tp(M) defines a Riemannian metric on M (see Exercise 3.7).

(c) We consider the n-dimensional hyperbolic space Hn = {x ∈ Rn+1 : 〈x, x〉M = 1, x0 >
0}, where 〈 , 〉M denotes the Minkowski metric on Rn+1: 〈x, y〉M = x0y0 −

∑n
i=1 xiyi. Then

the tangent space Tp(Hn) is the orthogonal complement

p⊥M = {x ∈ Rn+1 : 〈x, p〉M = 0},

and the restriction of the Minkowski metric to p⊥M defines a metric of signature (0,−n) on
Hn (see Exercise 3.6).

(d) Let M = {x ∈ R3 : 〈x, x〉M = 0, x0 > 0} with 〈x, y〉M = x0y0− x1y1− x2y2 be a cone
in R3. Then the tangent space Tp(M) can be identified with the plane

Tp(M) = {x ∈ R3 : 〈p, x〉M = 0} = span{p, (0,−p2, p1)}.

The Minkowski metric does not induce a metric onM because the restriction 〈·, ·〉|Tp(M)×Tp(M)

is degenerate: 〈p, y〉M = 0 for all y ∈ Tp(M).
(e) We consider the tangent bundle M = TN of an n-dimensional smooth manifold N .

Then in the domain of each chart (ϕ,U) of N we can identify TU ∼= U ×Rn and the tangent
space T(p,v)(T (U)) with T(p,v)(TU) ∼= Tp(U) × Rn ∼= Rn × Rn ∼= Tp(U) × Tp(U). The pairs
of ϕ-basic vector fields (bϕi , b

ϕ
j ), i, j ∈ {1, ..., n} form a local frame on TU ⊂ M . With the

definition
ω((bϕi , b

ϕ
j ), (bϕk , b

ϕ
l )) = δil − δjk

we obtain a symplectic form on TU ⊂ M . It is easy to show that this symplectic form is
independent of the choice of the chart and defines a symplectic form on M = TN .

As already suggested by the discussion at the beginning of this subsection, a semi-
Riemannian metric of signature (p, q) on M corresponds to an Op,q-structure on M and an
almost symplectic form on M to a Sp2m-structure on M . We have the following proposition.

Proposition 3.15. Let M be a smooth n-dimensional manifold. An Op,q-structure on M
with n = p+ q corresponds to a semi-Riemannican metric of signature (p, q) on M , and an
Sp2m(R)-structure with n = 2m to an almost symplectic form on M .

Proof. (1) Let M be equipped with a Op,q-structure and (U,X1, . . . , Xn) a local frame com-
patible with the Op,q-structure. Then we define for each p ∈ U a symmetric bilinear form of
signature (p, q) on Tp(M) by

gp(Xi(p), Xj(p)) = εi δij where εi =

{
1 i ∈ {1, . . . , p}
−1 i ∈ {p+ 1, . . . , n}

.

For each chart (ϕ,W ) of M with U ∩ W 6= ∅, the coefficient functions gϕij are given by
the expressions for the associated ϕ-basic vector fields in terms of the vector fields Xi. On
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U ∩W , we have bϕi (p) =
∑n
k=1 aij(p)Xj(p) with smooth functions aij ∈ C∞(U ∩W,R), and

the coefficient functions are given by

gϕij(p) = gp(b
ϕ
i (p), bϕj (p)) =

n∑
k,l=1

aik(p)ajl(p)gp(Xk(p), Xl(p)) =

n∑
k=1

aik(p)ajk(p)εk

This implies in particular that the coefficient functions are smooth. If (V, Y1, . . . , Yn) is
another local frame with U ∩V 6= ∅ that is Op,q-compatible to X , then we have for p ∈ U ∩V

gp(Yi(p), Yj(p)) = gp
(
θαβ(p)X(p), θαβ(p)Xj(p)

)
= gp(Xi(p), Xj(p)) = εi δij . (15)

The symmetric bilinear form on Tp(M) is thus independent of the choice of the local frame,
and we obtain a semi-Riemannian metric on M .

Conversely, given a semi-Riemannian metric on M and a chart (ϕ,U) on M , we apply for
each p ∈ U the Gram–Schmidt process to the ordered basis bϕ1 (p), . . . , bϕn(p). As the ϕ-basic
vector fields and the coefficient functions gϕij are smooth, this yields smooth vector fields
X1, . . . , Xn ∈ V(U) which satisfy gp(Xi(p), Xj(p)) = εi δij for all p ∈ U . On the overlap of
the domains of two local frames (U,X1, . . . , Xn), (V, Y1, . . . , Yn) with this property, equation
(15) then implies that the transition functions θαβ take values in Op,q.

(2) The proof for the almost symplectic case is analogous. Given a Sp2m(R)-structure on
M and a frame (U,X1, . . . , X2m) that is Sp2m(R)-compatible with this structure, we define
an almost symplectic form ωp on Tp(M) by setting

ωp(Xi(p), Xj(p)) =


1 j = i+m

−1 j = i−m
0 otherwise.

(16)

The required properties of the almost symplectic form ω : p 7→ ωp then follow as in the
semi-Riemannian case.

Conversely, given an almost symplectic form ω : p 7→ ωp on M and a chart (ϕ,U) on M ,
we apply for each p ∈ U the symplectic counterpart of the Gram–Schmidt process to the
ordered basis bϕ1 (p), . . . , bϕn(p) to obtain a Darboux basis (see Exercise 3.1). The smoothness
of the ϕ-basic vector fields and of the coefficient functions ωϕij ensures that the resulting
vector fields are smooth. This defines a local frame (U,X1, . . . , Xn) which satisfies (16). For
any two such frames with overlapping domains, one finds that the transition functions take
values in Sp2m(R).

Remark 3.16. It is also possible to consider subgroups G ⊂ GLn(R) that are obtained as
intersections G = G1 ∩ G2 of two subgroups introduced above. In that case, a manifold
M with a G-structure exhibits both structures associated with the subgroups G1 and G2.
For instance, we have SOn = GL+(Rn) ∩ On. A SOn-structure on M corresponds to a

metric and an orientation on M . Similarly, we have L+ = SO1,n−1 ∩GL+(Rn) and L↑+ =
L+ ∩ L↑. An L+-structure on M therefore consists of a Lorentzian metric on M together
with an orientation and an L↑+-structure on M of a Lorentzian metric on M together with
an orientation and a time orientation. Some examples are given in the following table.
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Group G Structure on manifold Structure on tangent spaces

G = GL+(Rn) orientation oriented bases of Tp(M)

G = Op,q semi-Riemannian manifold symmetric, non-degenerate
bilinear form gp : Tp(M)× Tp(M)→ R
of signature (p, q)

G = O1,n Lorentzian manifold symmetric, non-degenerate
bilinear form gp : Tp(M)× Tp(M)→ R
of signature (1, n)

G = On Riemannian manifold scalar product gp : Tp(M)× Tp(M)→ R

G = Sp2m(R) almost symplectic manifold almost symplectic form ωp : Tp(M)× Tp(M)→ R

G = SOn oriented Riemannian scalar product gp : Tp(M)× Tp(M)→ R
manifold and oriented bases of Tp(M)

G = L↑ Lorentzian manifold symmetric, non-degenerate
with time orientation bilinear form gp : Tp(M)× Tp(M)→ R

of signature (1, n) together with choice
of connected component of
{v ∈ Tp(M) : gp(v, v) > 0}.

G = L↑+ oriented Lorentzian symmetric, non-degenerate
manifold with time bilinear form gp : Tp(M)× Tp(M)→ R
orientation of signature (1, n) together with oriented

basis of Tp(M) and with choice
of connected component of
{v ∈ Tp(M) : gp(v, v) = 0}.

After developing the concept of a manifold with a G-structure, it is natural to investigate
smooth maps between manifolds with G-structures that preserve G-structures. Let (M,GM ),
(N,GN ) be manifolds with a G-structures and f : M → N a smooth map. If f is compatible
with the G-structures, it should relate the local frames in GM to the ones in GN . Concretely,
for all local frames (U,X1, . . . , Xn) of X there is a local frame (V, Y1, . . . , Yn) of N with
V ∩ f(U) 6= ∅ and Xi and Yi are f -related. As local frames are required to form a basis of
Tp(M) for all points in their domain, this implies already that Tp(f) : Tp(M)→ Tf(p)N is an
isomorphism for all p ∈M . By the Inverse Function Theorem, it follows that f : M → N is
a local diffeomorphism, i. e. that for every point p ∈M there exists an open neighbourhood
U of p such that f |U : U → f(U) is a diffeomorphism.

Definition 3.17. Let G ⊂ GLn(R) be a subgroup and M,N smooth manifolds with G-
structures GM , GN . A local isomorphism of G-structures is a smooth map f : M → N such
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that for all points p ∈ M there exists an open neighbourhood U such that f |U : U → f(U)
is a diffeomorphism and a local frame α = (U,X1, . . . , Xn) in GM such that

f∗α = (f(U), f∗X1, . . . , f∗Xn)

is a local frame in GN . An isomorphism of G structures is a local isomorphism of G-structures
that is a diffeomorphism. A (local) isomorphism of Op,q-structures is called a (local) isometry,
a (local) isomorphism of Sp2m-structures a symplectomorphism.

Remark 3.18. (a) For any smooth manifold M with a G-structure, the isomorphisms
f : M →M of G-structures form a group, denoted AutG(M). If M,N are smooth manifolds
with G-structures, then an isomorphism f : M → N of G-structures defines a group homo-
morphism Φf : AutG(M)→ AutG(N), ϕ 7→ f ◦ ϕ ◦ f−1. The group homomorphisms Φf are
functorial: if g : N → P is another isomorphism of G structures, then Φg◦f = Φg ◦ Φf .

(b) If M is a smooth manifold, N a smooth manifold with a G-structure GN and f : M →
N a local diffeomorphism, then there exists a unique G-structure on M such that f : M → N
is a (local) isomorphism of G-structures. This G-structure is called the pull-back of GN .

Example 3.19. (a) Let (M, g), (N,h) be semi-Riemannian manifolds. Then it follows from
the proof of Proposition 3.15 that a diffeomorphism f : M → N is a (local) isometry if and
only if the linear isomorphism Tp(f) : Tp(M)→ Tf(p)(N) is an isometry for all p ∈M :

hf(p)(Tp(f)v, Tp(f)w) = gp(v, w) ∀v, w ∈ Tp(M).

The group of isometries of a semi-Riemannian manifold (M, g) is called the isometry group
of M and denoted Isom(M). If M is a smooth manifold, (N,h) a semi-Riemannian manifold
of signature (p, q) and f : M → N a local diffeomorphism, then the pull-back of the Op,q-
structure on N determines a metric f∗h of signature (p, q) on M . This metric on M is called
the pull-back of h by f and given by

(f∗h)p(v, w) = h(Tp(f)v, Tp(f)w) ∀p ∈M, v,w ∈ Tp(M).

(b) Similarly, we find for almost symplectic manifolds (M,ω) and (N, η) that a local
diffeomorphism f : M → N is a symplectomorphism if and only if the linear isomorphism
Tp(f) : Tp(M)→ Tp(N) satisfies

ηf(p)(Tp(f)v, Tp(f)w) = ωp(v, w) ∀v, w ∈ Tp(M).

If M is a smooth manifold and (N, η) an almost symplectic manifold, then the pull-back of
the Sp2m-structure on N determines an almost symplectic form f∗η on M

(f∗η)p(v, w) = ηf(p)(Tp(f)v, Tp(f)w) ∀v, w ∈ Tp(M).

Example 3.20. (a) We consider the n-Sphere Sn with the Riemannian metric induced by
the Euclidean scalar product on Rn+1

gp(x, y) = 〈x, y〉 ∀x, y ∈ Tp(Sn) ∼= p⊥.

Then a smooth map f : Sn → Sn is an isometry if and only if

〈Tp(f)v, Tp(f)w〉 = 〈v, w〉 ∀p ∈ Sn, v, w ∈ p⊥.
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We will show later (see Lemma 3.44) that an isometry on a connected semi-Riemannian
manifold is determined uniquely by f(p) and Tp(f) : Tp(M) → Tp(M) for a given point
p ∈M . As On+1 acts transitively on Sn, there is a unique element A ∈ On+1 with f(p) = Ap
and Tp(f)x = Ax for all x ∈ Tp(M). This implies f(q) = Aq for all q ∈ Sn. Conversely, for
every A ∈ On+1, f : Sn → Sn, q 7→ Aq is an isometry. The isometry group of the sphere Sn
is therefore given by Isom(Sn) ∼= On+1.

(b) We consider n-dimensional hyperbolic space Hn with the metric of signature (0,−n)
induced by the Minkowski metric on Rn+1. Then a smooth map f : Hn → Hn is an isometry
if and only if

〈Tp(f)v, Tp(f)w〉M = 〈v, w〉M ∀p ∈ Hn, v, w ∈ p⊥M .

As in the case of the sphere, this implies that f is of the form f(x) = Ax with A ∈ O1,n.
To map the hyperboloid Hn to itself, f must preserve the time orientation, which implies
A ∈ L↑. Conversely, for every A ∈ L↑, f : Hn → Hn, f(q) = Aq is an isometry. This implies
that the isometry group of Hn is Isom(Hn) ∼= L↑.

Exercises for Section 3.2

Exercise 3.6. Show that the Minkowski metric on Rn+1

〈x, y〉M = x0y0 −
n∑
i=1

xiyi

induces a metric of signature (0,−n) on n-dimensional hyperbolic space

Hn = {x ∈ Rn+1 : 〈x, x〉M = 1, x0 > 0}.

Hint: It is sufficient to show that the restriction of 〈 , 〉M to

Tp(Hn) = {x ∈ Rn+1 : 〈p, x〉M = 0}

is non-degenerate and of signature (0,−n).

Exercise 3.7. Let M be a submanifold of Rn. Show that the restriction of the Euclidean
metric on Rn to Tp(M) defines a Riemannian metric on M . Hint: Recall Example 1.24.

Exercise 3.8. Let (M, g) be a Lorentzian manifold. A timelike vector field on M is a smooth
vector field X ∈ V(M) such that gp(X(p), X(p)) > 0 for all p ∈M . A Lorentzian manifold is
called time-orientable if it admits a timelike vector field. A time orientation of M is a choice
of a timelike vector field on M .

(a) Show that a Lorentzian manifold is time-orientable if and only if it has a L↑-structure
and that each time orientable manifold has exactly two time orientations.

(b) Construct an example of a Lorentzian manifold (M, g) that is not time-orientable.
Hint: Consider the Möbius strip M and construct a Lorentzian metric on M from the

Minkowski metric on R2.
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3.3 Semi-Riemannian geometry

In this subsection we will focus on structures associated with semi-Riemannian manifolds
(M, g). The first important concept is the notion of a (torsion-free and metric) connection
on M , which lies at the foundation of geometric notions such as parallel transport of vector
fields, geodesics and curvature. While torsion-free connections exist in the more general
context of smooth manifolds and are in general non-unique, the requirement of compatibility
with a semi-Riermannian metric selects a unique torsion-free and metric connection, the
Levi–Civita connection.

Definition 3.21. Let M be a n-dimensional smooth manifold. A connection on M is a map
∇ : V(M)× V(M)→ V(M), (X,Y ) 7→ ∇XY such that

(C1) is R-linear in both arguments: for all λ1, λ2 ∈ R and X1, X2, Y1, Y2 ∈ V(M)

∇λ1X1+λ2X2Y = λ1∇X1Y + λ2∇X2Y, ∇X(λ1Y1 + λ2Y2) = λ1∇XY1 + λ2∇XY2.

(C2) satisfies ∇fXY = f · ∇XY and ∇X(f · Y ) = f · ∇XY +LXf · Y for all f ∈ C∞(M,R)
and X,Y ∈ V(M).

A connection is called torsion-free if for all vector fields X,Y ∈ V(M)

∇XY −∇YX = [X,Y ].

A connection ∇ on a semi-Riemannian manifold (M, g) is called a metric connection if

LZg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) ∀X,Y, Z ∈ V(M).

An important property of a connection is its locality, which is guaranteed under an addi-
tional assumption on the smooth manifold, namely the the requirement of paracompactness.
Smooth manifolds without this property are generally considered pathological, and many
authors include this property in the definition of a smooth manifold. In the following, we
will assume without further mention that all smooth manifolds under consideration are para-
compact.

Definition 3.22. A topological space X is called paracompact if every open cover (Uα)α∈A
of X has a locally finite refinement. This means that there exists an open cover (Vβ)β∈B of
X such that for every β ∈ B there is an α ∈ A with Vβ ⊂ Uα and for every p ∈ X there is
an open neighbourhood Wp ⊂ X such that {β ∈ B : Vβ ∩Wp 6= ∅} is finite.

It can be shown, see for instance [Br93] or [HN11] p 397 ff, that any smooth paracompact
manifold M has smooth partitions of unity:

Lemma 3.23. Let M be a smooth paracompact manifold. Then for any open cover M ⊂⋃
α∈A Uα, there exists a smooth partition of unity. This is a set of smooth functions (fi)i∈I ,

fi ∈ C∞(M,R) such that

(P1) For all i ∈ I there exists an α ∈ A with supp(fi) ⊂ Uα.

(P2) For all p ∈M , we have fi(p) 6= 0 for only finitely many i ∈ I.

81



(P3) for all p ∈M the functions fi satisfy 0 ≤ fi(p) ≤ 1 for all i ∈ I and
∑
i∈I fi(p) = 1.

This implies that for all open subsets U1, U2 ⊂M with U1 ⊂ U2 compact, there exists a bump
function, e. g. a smooth function f ∈ C∞(M,R) with 0 ≤ f ≤ 1, f |U1

= 1 and f |M\U2
= 0.

Such a bump function is given by

f =
∑

i∈I,supp(fi)⊂U2

fi.

The existence of smooth partitions of unity and of bump functions implies that connec-
tions on a semi-Riemannian manifold (M, g) have a locality property, namely that the value
of ∇XY in a point p depends only on X(p) and the behaviour of the vector field Y in a small
neighbourhood of p. To prove this, we use the following lemma.

Lemma 3.24. (a) Let M be a smooth manifold and F : V(M)→ C∞(M,R) or F : V(M)→
V(M) a linear map that satisfies F (f ·X) = f ·F (X) for all X ∈ V(M) and f ∈ C∞(M,R).
Then F (X)(p) depends only on X(p).

(b) If (M, g) is a semi-Riemannian manifold and F : V(M) → C∞(M,R) a linear map
with F (f ·X) = f · F (X) for all X ∈ V(M) and f ∈ C∞(M,R), then there exists a unique
vector field Y ∈ V(M) with F (X) = g(Y,X) for all X ∈ V(M).

Proof. (a) We first show that F (X)(p) depends only on X|V for any open neighbourhood
V of p. Let V be an open neighbourhood of p such that X|V = 0. Then by means of
bump functions, we can construct a function f ∈ C∞(M,R) with f |U = 0 for an open
neighbourhood U ⊂ V of p and f |M\V = 1. This implies f ·X = X and therefore

F (X)(p) = F (f ·X)(p) = f(p) · F (X)(p) = 0.

Due to the linearity of F , this implies that F (X)(p) depends only on X|V .
Let now X be a vector field on M with X(p) = 0. Then there is a chart (ϕ,U) with

p ∈ U and F (X)(p) depends only on X|U . The vector field X|U is given uniquely in terms
of the ϕ-basic vector fields as X|U =

∑n
i=1 xib

ϕ
i with xi ∈ C∞(U), xi(p) = 0. This yields

F (X)(p) = F

(
n∑
i=1

xi · bϕi

)
(p) =

n∑
i=1

xi(p)F (bϕi ) = 0.

(b) To demonstrate that there is a vector field Y on M with F (X) = g(X,Y ) for all
X ∈ V(M), we consider a chart (ϕ,U) with p ∈ U . Denoting by gijϕ ∈ C∞(U,R) the
components of the matrix inverse of the coefficent matrix of g, we define a smooth vector
field Y ∈ V(U) by

Y (p) =

n∑
i,j=1

F (bϕj )gijϕ b
ϕ
i where

n∑
j=1

gijϕ (p)gϕjk(p) = δik ∀i, k ∈ {1, . . . , n}, p ∈ U.

Then we have for all vector fields X ∈ V(U)

g(X,Y ) =

n∑
i,j=1

F (bϕj )gijϕ g(X, bϕi ) =

n∑
i,j,k=1

xkF (bϕj )gijϕ g
ϕ
ki =

n∑
j=1

xjF (bϕj ) = F (X).

As g is non-degenerate, two vector fields Y ∈ V(U), Y ′ ∈ V(V ) with this property must agree
on U ∩V . We can therefore cover M with charts to obtain a smooth vector field Y on M .
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Using this lemma, we can now prove that any connection on a semi-Riemannian manifold
is local:

Lemma 3.25. Let (M, g) be a semi-Riemannian manifold. If ∇ is a connection on M , p ∈M
and X,Y ∈ V(M), then ∇XY (p) depends only on X(p) and Y |V for any neighbourhood V
of p. We obtain a bilinear map ∇ : TM × V(M)→ V(M), (v, Y ) 7→ ∇vY .

Proof. The property (C2) of a connection together with Lemma 3.24 implies that ∇XY (p)
depends only on X(p). To show the second statement, we consider an open neighbourhood
of p such that Y |V = 0. Then by means of bump functions, we can construct a function
f ∈ C∞(M,R) with f |U = 0 and f |M\V = 1 for an open neighbourhood U ⊂ V . This implies
f · Y = Y and therefore

∇XY (p) = ∇X(f · Y )(p) = LXf(p) · Y (p) + f(p) · ∇XY (p) = 0.

Hence ∇XY (p) depends only on Y |V for any neighbourhood V of p.

The locality properties of a connection allow one to characterise it as a sum of derivatives
of vector fields and a component that is function-linear in both arguments. This leads to the
notion of Christoffel symbols.

Definition 3.26. Let M be a smooth manifold and ∇ a connection on M . Then, in any
local chart, the Christoffel symbol associated with ∇ is the smooth bilinear map Γ : V(M)×
V(M)→ V(M) defined by

∇XY = dY ·X + Γ(X,Y ).

Remark 3.27. (a) Due to the properties of the connection and the derivative, we have for
all vector fields X,Y ∈ V(M)

Γ(f ·X,Y ) = f · ∇XY − f · dY ·X = f · Γ(X,Y ),

Γ(X, f · Y ) = f · ∇XY + LXf · Y − f · dY ·X − LXf · Y = f · Γ(X,Y ).

It follows from Lemma 3.24 that Γ(X,Y )(p) depends only on X(p) and Y (p) and hence
defines for each p ∈M a bilinear map Γp : Tp(M)× Tp(M)→ Tp(M).

(b) This implies in particular that we can characterise the Christffel symbols and hence
the connection uniquely in terms of the ϕ-basic vector fields associated with charts (ϕ,U)
on M . Let M be a smooth manifold and (ϕ,U) a chart on M . The Christoffel symbols
associated with (ϕ,U) are the smooth functions Γkij ∈ C∞(U,R) defined by

∇bϕi b
ϕ
j (p) = Γ(bϕi , b

ϕ
j ) =

n∑
k=1

Γkij(p)b
ϕ
k (p) ∀p ∈ U,

where bϕ1 , . . . , b
ϕ
n are the ϕ-basic vector fields on U . For vector fields

X =

n∑
i=1

xib
ϕ
i , Y =

n∑
i=1

yib
ϕ
i
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we obtain

∇XY =

n∑
j=1

 n∑
i=1

xi
∂yj
∂ϕi

+

n∑
i,k=1

Γjikxiyk

 bϕj .

In physics textbooks connections are often called covariant derivatives, and instead of this
formula, one often uses the shorthand notation yj;i = yj,i + Γjiky

k, where yj;i denotes coeffi-

cient functions of ∇bϕi Y , yj,i = ∂yj

∂ϕi
and the summation over repeated indices is understood

(Einstein summation convention).
(c) A short calculation (see Exercise 3.9) shows that a connection ∇ on M is torsion-free

if and only if its Christoffel symbols are symmetric

Γkij = Γkji ∀i, j, k ∈ {1, . . . , n}

for each chart (ϕ,U) of M . If (M, g) is a semi-Riemannian manifold, a connection on M is
a metric connection if and only if for each chart its Christoffel symbols satisfy

∂gij
∂ϕk

=

n∑
l=1

(Γlkjgli + Γlkiglj) ∀i, j, k ∈ {1, . . . , n}.

It turns out that the condition of metricity determines a torsion-free connection on a
semi-Riemannian manifold (M, g) uniquely and allows one to express the connection as a
function of the semi-Riemannian metric g, the Lie derivatives and the Lie bracket on M .

Theorem 3.28. Let (M, g) be a semi-Riemannian manifold. Then there exists a unique
torsion-free, metric connection on M . It is called the Levi–Civita connection and determined
by the Koszul-formula

2g(∇XY,Z) = LXg(Y,Z)+LY g(Z,X)−LZg(X,Y )−g(X, [Y,Z])+g(Y, [Z,X])+g(Z, [X,Y ]).

Proof. (a) Uniqueness: Let ∇ be a torsion-free, metric connection on M . Then we can verify
that it satisfies the Koszul-formula by a direct calculation:

LXg(Y,Z) + LY g(Z,X)− LZg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])

=g(∇XY, Z) + g(Y,∇XZ) + g(∇Y Z,X) + g(Z,∇YX)− g(∇ZX,Y )− g(X,∇ZY )

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])

=g(X,∇Y Z −∇ZY − [Y, Z]) + g(Y,∇XZ −∇ZX − [X,Z]) + g(∇XY +∇YX + [X,Y ], Z)

=2g(∇XY,Z).

As g is non-degenerate, ∇XY (p) is determined uniquely by gp(∇XY (p), Z(p)) for all vector
fields Z ∈ V(M). The Koszul formula thus characterises ∇XY (p) uniquely for all p ∈M .

(b) Existence: For X,Y ∈ V(M), we define a map FX,Y : V(M)→ C∞(M)

FX,Y (Z) = LXg(Y, Z) +LY g(Z,X)−LZg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]).

It follows from the linearity of g and the Lie derivative that FX,Y is linear. For f ∈ C∞(M,R),
we compute

FX,Y (f · Z) = LXf · g(Y,Z)+f · LXg(Y,Z)+LY f · g(Z,X)+f · LY g(X,Z)−f · LZg(X,Y )

−LY f · g(X,Z)−f · g(X, [Y,Z])−LXf · g(Y,Z)+f · g(Y, [Z,X])+f · g(Z, [X,Y ])

= f · FX,Y (Z).
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Lemma 3.24 then implies that FX,Y (Z)(p) depends only on Z(p) and that there exists a
unique vector field ∇XY ∈ V(M) with g(∇XY,Z) = FX,Y (Z). The properties of the con-
nection then follow by a direct calculation from the definition of ∇XY .

Remark 3.29. The Koszul formula allows one to explicitly compute the Christoffel symbols
of the Levi-Civita connection on a semi-Riemannian manifold (M, g) from the coefficient
functions of the metric. Let (ϕ,U) be a chart on M and denote by gijϕ ∈ C∞(U,R) the
components of the matrix inverse of the coefficient matrix of g with respect to ϕ:

n∑
j=1

gijϕ (p)gjk(p) = δik ∀p ∈ U.

Then the Koszul formula implies that the Christoffel symbols of the Levi–Civita connection
on M are given by

Γkij =
1

2

n∑
l=1

gklϕ

(
∂gjl
∂ϕi

+
∂gil
∂ϕj

− ∂gij
∂ϕl

)
.

Example 3.30. We consider the Euclidean metric on R2 and the chart (ϕ,U) defined by
polar coordinates

U = R2 \ {(x, y) ∈ R2 : y = 0, x ≥ 0}, ϕ−1(r, θ) = (r cos θ, r sin θ).

Then we have:

bϕr (r cos θ, r sin θ) = (cos θ, sin θ), bϕθ (r cos θ, r sin θ) = (−r sin θ, r cos θ)

and the coefficient functions of the Euclidean metric with respect to ϕ are given by

gϕrr = 〈bϕr , bϕr 〉 = 1, gϕθθ = 〈bϕθ , b
ϕ
θ 〉 = r2, gϕrθ = 〈bϕr , b

ϕ
θ 〉 = 0,

where we omitted the argument (r cos θ, r sin θ) to keep the notation simple. The inverse of
the coefficient matrix of g is given by

grrϕ = 1, gθθϕ =
1

r2
, grθϕ = 0,

and the Christoffel symbols of the Levi-Civita connection take the form

Γrθθ = −1

2

∂gϕθθ
∂r

= −r, Γθrθ = Γθθr =
1

2r2

∂gϕθθ
∂r

=
1

r
, Γkij = 0 otherwise.

In the following, we will always implicitly assume that a given connection on a semi-
Riemannian manifold is its Levi-Civita connection, and when we speak about Christoffel
symbols of a semi-Riemannian manifolds, this refers to the Christoffel symbols of its Levi-
Civita connection.

The name “connection” is motivated by the fact that a connection allows one to transport
tangent vectors between the tangent spaces in different points on M and hence “connects”
different tangent spaces. This leads to the concept of parallel transport. To see this, we
need the to introduce the notion of a vector field along a smooth curve c : I → M and its
derivative. This is essentially a vector field on M which is defined only on the image c(I).
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Definition 3.31. Let M be a semi-Riemannian manifold and c : I →M a smooth curve. A
vector field along c is a smooth map X : I → T (M) with πM ◦X = c. If X : I → T (M) is a
vector field along c, we define its derivative ∇ċX : T → T (M) by

(∇ċX)(t) = Ẋ(t) + Γ(ċ(t), X(t)),

where Γ denotes the Christiffel symbols of (M, g). A vector field X : I → T (M) along c is
called parallel if ∇ċX(t) = 0 for all t ∈ I.

Lemma 3.32. Let (M, g) be a semi-Riemannian manifold and c : I → M a smooth curve.
Then the derivative along c has the following properties:
(a) If (ϕ,U) is a chart of M , c : I → U a smooth curve and X a vector field along c, then

∇ċX(t) =

n∑
k=1

ẋk(t) +

n∑
i,j=1

Γkij(c(t))ċi(t)xj(t)

 bϕk (c(t)) ∀t ∈ I

where ci = ϕi ◦ c : I → R and X|c−1(U) =
∑n
i=1 xi · (b

ϕ
i ◦ c).

(b) It is linear in X: for all vector fields X,Y : I → T (M) along c and all λ, µ ∈ R :

∇ċ(λX + µY ) = λ∇ċX + µ∇ċY.

(c) For all vector fields X : I →M along c and all smooth functions f : I → R:

∇ċ(f ·X) = ḟ ·X + f · ∇ċX.

(d) For all vector fields X,Y : I → T (M) along c:

d

dt
gc(t)(X(t), Y (t)) = gc(t)(∇ċX(t), Y (t)) + gc(t)(X(t),∇ċY (t)).

(e) For all vector fields X ∈ V(M):

∇ċ(X ◦ c)(t) = (∇ċ(t)X)(c(t)).

Proof. (a) This follows by a direct computation from the formulas for the Christoffel symbols
in terms of the ϕ-basic vector fields for a chart (ϕ,U). Properties (b), (c) and (e) follow di-
rectly from the definition. To demonstrate (d), we compute d

dtgc(t)(X(t), Y (t)). The identity
then follows from the chain rule and the fact that ∇ is a metric connection.

Proposition 3.33. Let M be a semi-Riemannian manifold and c : I →M a smooth curve.
Then there exists for each t ∈ I and v ∈ Tc(t)M a unique parallel vector field Xv : I → T (M)
with Xv(t) = v. For t, t′ ∈ I, we define the parallel transport map

P ct′,t : Tc(t)(M)→ Tc(t′)M, v 7→ Xv(t
′)

The parallel transport map is a linear isometry and has properties analogous to the properties
of the flows in Section 1.4:

P ct,t = idTc(t)(M) P ct2,t1 ◦ P
c
t1,t = P ct2,t ∀t, t1, t2 ∈ I,

and for every vector field X : I → T (M) along c:

lim
t′→t

P ct,t′(X(t′))−X(t)

t′ − t
= ∇ċX(t).
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Proof. (a) Let (U,ϕ) be a chart of M with c(t) ∈ U . In local coordinates the condition that
X is parallel reads

ẋi(t) +

n∑
j,k=1

Γijk(c(t))xj(t)ċk(t) = 0 ∀t ∈ c−1(U),

where ci = ϕi ◦ c : c−1(U) → R are the coefficient functions of the curve c and xi ∈
C∞(c−1(U),R) the coefficient functions of X. This is a first order linear ODE in the co-
efficients of X and hence has a unique solution for every set of initial values xi(t) = vi,
i ∈ {1, . . . , n} on the connected component of c−1(U) which contains t. By covering c(I)
with charts we obtain a unique vector field Xv : I → T (M) along c with Xv(t) = v.

(b) That the parallel transport map is a linear isometry can be seen as follows from
Lemma 3.32 (d): If Xv : I → T (M) is the parallel vector field along c with Xv(t) = v, then

d

dt′
gc(t′)(X(t′), X(t′)) = 2gc(t′)(∇ċX(t′), X(t′)) = 0 ∀t′ ∈ I

and therefore gc′(t)(X(t′), X(t′)) = gc(t)(v, v) for all t′ ∈ I.
(c) The first two properties of the parallel transport follow directly from the uniqueness

property of parallel vector fields. To show the last one, we choose a chart (ϕ,U) of M with
c(t), c(t′) ∈ U and denote by Y =

∑n
i=1 yi · (b

ϕ
i ◦ c) the unique parallel vector field along c

with Y (t′) = X(t′). Then the mean value theorem implies that there exists an s ∈ [t, t′] with

yk(t′)− yk(t)

t′ − t
= ẏk(s) = −

n∑
i,j=1

Γkij(c(s))yi(s)ċk(s).

Using the smoothness of X and Y , we obtain

lim
t′→t

yk(t)− xk(t)

t′ − t
= lim
t′→t

yk(t)− yk(t′) + yk(t′)− xk(t)

t′ − t

= lim
s→t

n∑
i,j=1

Γkij(c(s))yi(s)ċj(s) + lim
t′→t

yk(t′)− xk(t)

t′ − t

= ẋk(t) +

n∑
i,j=1

Γkij(c(t))yi(t)ċj(t) = ẋk(t) +

n∑
i,j=1

Γkij(c(t))xi(t)ċj(t) = ∇ċX(t).

Example 3.34. Consider M = Rn with either the Euclidean or the Minkowski metric and let
c : I →M be a smooth curve. Then TpM ∼= Rn and a vector field X =

∑n
i=1 xiei : t→ T (M)

along c is parallel if and only if

ẋk(t) = 0 ∀t ∈ I, k ∈ {1, . . . , n}.

This implies that X is constant and the parallel transport map is given by

P ct′,t(v) = v ∀v ∈ Rn.
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Lemma 3.35. Let (M, g), (N,h) be semi-Riemannian manifolds, c : I →M a smooth curve
and f : M → N a local isometry. Then a vector field X : I → T (M) along c is parallel if
and only if the vector field X̄ = T (f) ◦X : I → T (N) along the curve f ◦ c is parallel. The
parallel transport map satisfies:

Tc(t′)(f) ◦ P ct′,t = P f◦ct′,t ◦ Tc(t)(f) ∀t, t′ ∈ I.

Proof. It is sufficient to prove this statement for vector fields in the domains of charts. Let
(ϕ,U) be a chart of M with f |U injective. Then (V = f(U), ψ = ϕ ◦ (f |U )) is a chart of N .
Since f |U : U → f(U) is an isometry, we have for the coefficient functions of the metrics g, h:

hψij(f(p)) = hf(p)(b
ψ
i (f(p)), bψj (f(p))) = hf(p)(Tp(f)(bϕi ), Tp(f)(bϕj )) = gp(b

ϕ
i , b

ϕ
j ) = gϕij(p),

where we used that the ϕ- and ψ-basic vector fields are f -related on U : bψi (f(p)) = Tp(f)bϕi (p).
Via the Koszul formula, we obtain for the Christoffel symbols Γkij on M and Ωkij on N :

Ωkij(f(p)) = Γkij(p) ∀p ∈ U.

A vector field Y =
∑n
i=1 yi · (b

ϕ
i ◦c) : I → T (M) along c is parallel if and only if its coefficient

functions satisfy the differential equation

ẏk(t) +

n∑
j,k=1

Γkij(c(t))yi(t)ċj(t) = 0.

Using the fact that the basic vector fields for ϕ and ψ are f -related and the relation between
the Christoffel symbols, we find that this is the case if and only if the vector field T (f) ◦Y =∑n
i=1 yi · (b

ψ
i ◦ f ◦ c) along f ◦ c satisfies

ẏk(t) +

n∑
j,k=1

Ωkij(f(c(t)))ẏi(t)ċj(t) = 0,

with ψi ◦ (f ◦ c) = (ϕi ◦ (f |U )−1) ◦ (f ◦ c) = ϕi ◦ c. This proves the claim.

The concept of vector fields along curves allows one in particular to consider the derivative
ċ : I → T (M) of each smooth curve c : I → M as a vector field along c. It is then natural
to ask for which curves this derivative is a parallel vector field along c. This leads to the
concept of a geodesic.

Definition 3.36. Let M be a semi-Riemannian manifold. A smooth curve c : I → M is
called a geodesic if the vector field ċ : I → T (M) along c is parallel.

Remark 3.37. (a) If (ϕ,U) is a chart of M with c(I) ⊂ U , then c is a geodesic if and only
if ∇ċċ = 0. This is the case if and only if its component functions ci = ϕi ◦ c : I → R satisfy
the second order differential equation

c̈i(t) +

n∑
j,k=1

Γijk(c(t))ċi(t)ċj(t) = 0 ∀t ∈ I.
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This implies in particular that for every p ∈M and v ∈ Tp(M) there exists a unique geodesic
c : (−ε, ε)→M with c(0) = p, ċ(0) = v.

(b) If (M, g) and (N,h) are semi-Riemannian manifolds and f : M → N is a local
isometry, then c : I → M is a geodesic of M if and only if f ◦ c : I → N is a geodesic of N .
This follows directly from Lemma 3.35.

(c) Uo to affine parameter transformations t 7→ at + b with a ∈ R \ {0}, b ∈ R, every
geodesic c : I → M on a semi-Riemannian manifold (M, g) is parametrised according to
arclength, because Lemma 3.32 implies:

d

dt
gc(t)(ċ(t), ċ(t)) = 2gc(t)(∇cċ(t), ċ(t)) = 0 ∀t ∈ I.

(d) If M = Rn and g a non-degenerate bilinear form on M , then the geodesics of (M, g)
are straight lines that are parametrised according to arclength. If one takes the standard
chart (id,Rn), all Christoffel symbols vanish, and the geodesic equation reduces to

c̈i(t) = 0 ∀t ∈ I.

This implies that all geodesics are of the form c(t) = p+ tv.

Example 3.38. In Einstein’s theory of general relativity, a universe is described by a four-
dimensional Lorentzian manifold (M, g) that solves Einstein’s equations. As gc(t)(ċ(t), ċ(t)) is
constant for each geodesic, one distinguishes three types of geodesics. A geodesic c : I →M
with ċ(t) 6= 0 is called timelike if gc(t)(ċ(t), ċ(t)) > 0, spacelike if gc(t)(ċ(t), ċ(t)) < 0 and
lightlike if gc(t)(ċ(t), ċ(t)) = 0 for all t ∈ I. Timelike geodesics describe the motion of point
masses in free fall, i. e. point masses that are not subject to external forces other than
the gravitational force. Lightlike geodesics describe the motion of light. The fact that
gc(t)(ċ(t), ċ(t)) is constant along each geodesic ensures that this description is consistent.

Although the differential equations in Remark 3.37 allow one in principle to determine
the geodesics of a manifold by covering it with charts and solving the geodesic equation on
the domain of each chart, in practice there are often better ways to determine geodesics. One
way is to use the fact that isometries map geodesics to geodesics together with the uniqueness
property of geodesics.

Example 3.39. We consider Sn with the metric induced by the Euclidean metric on Rn.
Then the unique geodesic c : R→ Sn with c(0) = p ∈ Sn and ċ(0) = x ∈ p⊥ \ {0} is given by

c(t) = p cos(t||x||) +
x

||x||
sin(t||x||)

and the unique geodesic with c(0) = p and ċ(0) = 0 by c(t) = p for all t ∈ R.
Proof: The case ċ(0) = 0 is obvious. Let c : [−ε, ε] → Sn be the unique geodesic with

c(0) = p ∈ Sn and ċ(0) = x ∈ p⊥ \ {0}. Consider the plane Ep,x = span{x, p} ⊂ Rn+1

and the reflection Rp,x : Rn+1 → Rn+1 on this plane. Then Rx,p ∈ On = Isom(Sn) is an
isometry and hence maps c to another geodesic d = Rx,p ◦ c : [−ε, ε]→ Sn. As Rp,xx = x and

Rp,xp = p, we have d(0) = c(0) = p and ḋ(0) = ċ(0) = x. Due to the uniqueness property of
geodesics this implies d(t) = Rx,pc(t) = c(t) for all t ∈ [−ε, ε]. Hence, for all t ∈ [−ε, ε] the
point c(t) must lie in the intersection Ex,t ∩ Sn. The geodesic c is then determined uniquely
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by its initial values and the requirement that it is parametrised according to arclength. The
curve

c(t) = p cos(t||x||) +
x

||x||
sin(t||x||).

satisfies these requirements and hence coincides with the geodesic c.

The fact that for every point p ∈ M and every tangent vector v ∈ Tp(M) there is a
unique geodesic cv : (−ε, ε) → M with cv(0) = p and ċv(0) = v can be used to construct
a diffeomorphism from an open neighbourhood of 0 in the tangent space Tp(M) to an open
neighbourhood U of p. The associated coordinates have particularly nice properties and can
be viewed as coordinates adapted to the geometry of M near p.

Definition 3.40. Let (M, g) be a semi-Riemannian manifold, p ∈M and define

Dp = {v ∈ Tp(M) : the geodesic c on M with c(0) = p and ċ(0) = v is defined on [0, 1]}.

The map expp : Dp → M , v 7→ cv(1) is called exponential map on M in p. It extends to a
smooth map exp : D =

⋃
p∈M Dp →M with exp |Tp(M) = expp for all p ∈M .

Remark 3.41. (a) The exponential map expp : Dp(M) → M satisfies expp(tv) = ctv(1) =
cv(t) for all t ∈ [0, 1] and v ∈ Dp. This follows directly from the uniqueness property of the
geodesics. In particular, this implies that Dp is star-shaped for all p ∈M : v ∈ Dp ⇒ tv ∈ Dp

for all t ∈ [0, 1].
(b) The tangent map T0(exp) : T0Tp(M) → Tp(M) is the canonical isomorphism from

Section 1.2.
(c) The Inverse Function Theorem for manifolds implies that there is an open subset

V ⊂ Tp(M) of 0 such that expp : V → expp(V ) is a diffeomorphism. However, in general Vp
is smaller than Dp and the map expp : Dp → exp(Dp) is not a diffeomorphism.

(d) If ϕ : M →M is an isometry, then the exponential map satisfies

ϕ ◦ expp = expϕ(p) ◦Tp(ϕ).

This is the semi-Riemannian analogue of formula (12) in Proposition 2.40 and can be seen
as follows: As ϕ is an isometry, for every geodesic γ : [0, 1] → M , γ(t) = expp(tv) with
γ(0) = p, v ∈ Dp ⊂ Tp(M), the image ϕ ◦ γ is a geodesic with ϕ ◦ γ(0) = ϕ(p) and
(ϕ ◦ γ)′(0) = Tp(ϕ) ◦ γ′(0) = Tp(ϕ)v. This implies

ϕ ◦ expp(v) = ϕ ◦ γ(1) = expϕ(p)((ϕ ◦ γ)′(0)) = expϕ(p)(Tp(ϕ)v).

Since for every v ∈ DpTp(M) there exists a geodesic γ : [0, 1] → M with γ(0) = p, γ̇(0) = v
this proves the claim.

We can use the exponential map to obtain a particularly nice set of coordinates around
each point p ∈ M . The idea is to exponentiate the coordinate axes associated with an
orthonormal basis of gp.

Definition 3.42. Let (M, g) be a semi-Riemannian manifold, p ∈ M and (v1, . . . vn) an
orthonormal basis of Tp(M). Consider the linear isomorphism A : Rn → Tp(M), x 7→∑n
i=1 xivi. Then there exist open neighbourhoods V of 0 ∈ Rn and U of p such that exp ◦A :

V → U is a diffeomorphism and (ψ := (expp ◦A)−1, U) is a chart on M . The associated
coordinate functions ψi : U → R are called normal coordinates around p.
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Proposition 3.43. Let (M, g) be a semi-Riemannian manifold, p ∈ M and (U,ψ) normal
coordinates around p. Then the coefficient functions of the metric and the Christoffel symbols
for (ψ,U) in p take the form

gψij(p) = εiδij , Γkij(p) = 0.

Proof. By definition the ψ-basic vector fields are given by bψi = T0(expp ◦A)ei = T0(expp)vi,
and we obtain for the coefficient functions of the metric

gψij(p) = gp(b
ψ
i , b

ψ
j )) = gp(T0(expp)vi, T0(expp)vj) = gp(vi, vj) = εiδij .

By definition, the unique geodesic c : (−ε, ε) → M with c(0) = 0 and ċ(0) =
∑n
i=1 wivi

is given by c(t) = expp ◦A(tw). We have ci(t) = ψi(c(t)) = twi and the geodesic equation
reduces to the equation

k∑
i,j=1

Γkij(p)wiwj = 0 ∀w ∈ Rn.

This implies that all Christoffel symbols in p vanish.

In particular, we can use the exponential map and normal coordinates to show that every
isometry of a connected semi-Riemannian manifold is determined uniquely by its value and
derivative in a single point.

Lemma 3.44. Let (M, g) be a connected semi-Riemannian manifold, p ∈M and
ϕ,ψ : M → M isometries with ϕ(p) = ψ(p) and Tp(ϕ) = Tp(ψ). Then the two isometries
agree on M : ϕ(q) = ψ(q) for all q ∈M .

Proof. We consider the set A = {q ∈ M : ϕ(q) = ψ(q)}. By assumption, A is nonempty.
Since ϕ,ψ are continuous, it follows that A ⊂ M is closed. If we can show that A is
also open, then the connectedness of M implies A = M . To show that A is open, let
q ∈ A and choose an ε > 0 such that expq |Bε(0) : Bε(0) ⊂ Tq(M) → expq(Bε(0)) and
expϕ(q) |Bε(0) ⊂ Tϕ(q) → expϕ(q)(Bε(0)) are diffeomorphisms. As ϕ and ψ are isometries and
every point w ∈ expp(Bε(0)) can be connected to q by a geodesic, Remark 3.41 implies

ϕ(w) = (expϕ(q) |Bε(0)) ◦ Tq(ϕ) ◦ (expq |Bε(0))
−1(w)

=ψ(w) = (expϕ(q) |Bε(0)) ◦ Tq(ψ) ◦ (expq |Bε(0))
−1(w)

for all w ∈ expq(Bε(0)) and therefore expq(Bε(0)) ⊂ A for all q ∈ A. Since Bε(0) is open and
expq |Bε(0) → expq(Bε(0)) is a diffeomorphism, expq(Bε(0)) is open. This implies that A is
open and proves the claim.

In addition to our characterisation of geodesics as smooth curves whose velocity field is
a parallel vector field along c, there is an alternative characterisation of geodesics as critical
points of a certain energy functional. In analogy to the kinetic energy Ekin = 1

2mv
2 = 1

2mẋ
2

in classical mechanics, we assign to each piecewise C2-curve c : I →M on a semi-Riemannian
manifold an energy which is determined by its velocity field.
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Definition 3.45. Let (M, g) be a semi-Riemannian manifold. The energy of a piecewise
C1-curve c : [0, 1]→M is defined as

E[c] =
1

2

∫ 1

0

gc(t)(ċ(t), ċ(t)) dt.

The idea is now to vary the energy with respect to the geodesic, i. e. to consider the
change of the energy when the curve c is deformed slightly in such a way that its endpoints
stay fixed. For this, we require the concept of a variation with fixed endpoints.

Definition 3.46. Let (M, g) be a semi-Riemannian manifold and c : [0, 1]→M a piecewise
C2-curve. A variation of c with fixed endpoints is a continuous map

h : [0, 1]× [−ε, ε]→M

with h(t, 0) = c(t) for all t ∈ [0, 1], h(0, s) = c(0) and h(1, s) = c(1) for all s ∈ [−ε, ε].
A variation of c with fixed endpoints is called piecewise C2 if there exists a subdivision
0 = t0 < t1 < . . . < tN−1 < tN = 1 such that h|[ti,ti+1]×[ε,−ε] is C2. If h is piecewise C2, then
the vector field

V (t) =
∂h

∂s
(t, s)

∣∣∣∣
s=0

along c is piecewise C1 and satisfies V (0) = V (1) = 0. It is called variation field of h.

Given two points p, q ∈M , it is natural to assign to each piecewise C2-curve that connects
p and q its energy and to attempt to determine the curves for which the energy is maximal
or minimal. Clearly, a curve of maximal or minimal energy should be a critical point of
the energy, i. e. the derivative of the energy with respect to the “deformation parameter” s
should vanish. Using the concept of a piecewise C2-variation with fixed endpoints, we can
give this intuition a precise meaning.

Definition 3.47. A piecewise C2-curve c : [0, 1] → M is called critical point of the energy,
if for all piecewise C2-variations h : [0, 1]× [−ε, ε]→M of c with fixed endpoints

d

ds

∣∣∣∣
s=0

E[cs] = 0, where cs : [0, 1]→M, cs(t) := h(t, s).

Theorem 3.48. Let (M, g) be a semi-Riemannian manifold and c : [0, 1]→M a pieceweise
C2-curve. If c is a critical point of the energy, then c is a geodesic.

Proof. (1) We consider first the case where c and h are C2. Let V be the variation field for h

V (t) =
∂h

∂s
(t, 0).
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Then the variation of the energy is given by

d

ds

∣∣∣∣
s=0

E[cs] =
d

ds

∣∣∣∣
s=0

1

2

∫ 1

0

gcs(t)(ċs(t), ċs(t)) dt =
1

2

∫ 1

0

∂

∂s

∣∣∣∣
s=0

gcs(t)(ċs(t), ċs(t)) dt

=
1

2

∫ 1

0

gc0(t)(∇ċ0V (t), ċ0(t)) + gc0(t)(ċ0(t),∇ċ0V (t)) dt =

∫ 1

0

gcs(t) (∇ċ0V (t), ċ0(t)) dt

=

∫ 1

0

d

dt
gc(t) (V (t), ċ(t))− gc(t) (V (t),∇ċċ(t)) dt

=
[
gc(t) (V (t), ċ(t))

]t=1

t=0
−
∫ 1

0

gc(t) (V (t),∇ċċ(t)) dt = −
∫ 1

0

gc(t) (V (t),∇ċċ(t)) dt,

where we used the metricity of the connection and the fact that the derivatives with respect
to s and t commute to obtain the first expression in the second line. If the curve c and the
variation h are only piecewiese C2, then there exists a subdivision 0 = t0 < t1 < . . . < tN−1 <
tN = 1 such that h|[ti,ti+1]×[ε,−ε] is C2. Applying the formula to the restriction c|[ti,ti+1] and
summing over the points in the subdivision points yields

d

ds

∣∣∣∣
s=0

E[cs] =−
∫ 1

0

gc(t)(V (t),∇ċċ(t)) dt+

N−1∑
i=1

gc(ti)(V (ti), ċ(t
+
i )− ċ(t−i )),

where ċ(t−i ) = limε↓0 ċ(ti − ε) and ċ(t+i ) = limε↓0 ċ(ti + ε).

(2) Let now W : [0, 1]→ T (M) be a piecewise C2-vector field along c and f : [0, 1]→ [0, 1]
a smooth function with f(0) = f(1) = 0. Then h : [0, 1]× [ε,−ε]→M ,

h(t, s) = expc(t)(sf(t)W (t))

is a piecewise C2-variation of c with fixed endpoints and

∂

∂s
h(t, s)

∣∣∣∣
s=0

= f(t)W (t).

If c is a critical point of the energy, we have

−
∫ 1

0

f(t)gc(t)(W (t),∇ċċ(t)) dt+

N−1∑
i=1

f(ti) · gc(ti)(W (ti), ċ(t
+
i )− ċ(t−i )) = 0.

By considering general piecewise C2 vector fields W along c and choosing the smooth function
f : [0, 1]→ [0, 1] in such a way that spt(f) ⊂ [T−δ, T+δ] for T ∈]ti, ti+1[ and δ > 0 suffiently
small, we can show that

∇ċċ(T ) = 0 ∀T ∈ [0, 1] \ {t0, . . . , tN}.

By considering general piecewise C2-vector fields W along c and choosing the smooth function
f : [0, 1]→ [0, 1] in such a way that spt(f) ⊂ [ti − δ, ti + δ] with δ > 0 sufficiently small, we
find ċ(t+i ) = ċ(t−i ) for all i ∈ {0, . . . , N}. This implies that c is not only piecewise C2 but C2

and ∇cċ(t) = 0 for all t ∈ [0, 1]. Thus c is a geodesic.
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This characterisation of geodesics is particularly intuitive in the Riemannian context,
where the metric is positive definite and there is a concept of length for each pieceweise
C1-curve on M . In this case, every curve of minimal length between two points p, q ∈ M
that is parametrised according to arclength is a geodesic.

Corollary 3.49. If (M, g) is a Riemannian manifold and c : [0, 1]→M a piecewise C2-curve
of minimal length from c(0) = p to c(1) = q

L[c] =

∫ 1

0

√
gc(t)(ċ(t), ċ(t)) dt = inf{L[d] : d : [0, 1]→M piecewise C2, d(0) = p, d(1) = q}

and parametrised according to arclength, then c is a geodesic.

Proof. The Cauchy–Schwarz inequality implies

L[c] =

∫ 1

0

√
gc(t)(ċ(t), ċ(t)) dt ≤

√∫ 1

0

gc(t)(ċ(t), ċ(t)) dt ·

√∫ 1

0

1 dt =
√

2E[c]

and L[c] =
√

2E[c] if and only if gc(t)(ċ(t), ċ(t)) is constant. This implies that any piecewise
C2-curve c of minimal length between p and q that is parametrised according to arclength
minimises the energy. If c minimises the energy, then for all piecewise C2-variations with
fixed endpoints the map E : s 7→ E[cs] is C1 and has a minimum in s = 0. This implies that
c is a critical point of the energy.

Exercises for Section 3.3

Exercise 3.9. Let (M, g) be a semi-Riemannian manifold and ∇ a connection on M . Show
that ∇ is torsion free if and only if for all charts (ϕ,U) the associated Christoffel symbols
satisfy

Γkij = Γkji ∀i, j ∈ {1, . . . , n}.

Show that it is a metric connection if and only if for all charts (ϕ,U) the Christoffel symbols
satisfy

∂gij
∂ϕk

=

n∑
l=1

(Γlkjgli + Γlkiglj) ∀i, j, k ∈ {1, . . . , n}.

Exercise 3.10. Let (M, g) be a semi-Riemannian manifold and (ϕ,U), (ψ, V ) charts of M
with U ∩ V 6= ∅. Derive a formula that expresses the Christoffel symbols with respect to
(V, ψ) in terms of the christiffel symbols with respect to (U,ϕ).

Exercise 3.11. Fill in the details in the proof of Lemma 3.32 and verify by explicit calcu-
lations the properties of the derivative ∇ċ stated there.

Exercise 3.12. Consider n-dimensional hyperbolic space Hn with the metric induced by the
Minkowski metric on Rn+1. Determine all of its geodesics by using suitable isometries.
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3.4 Curvature

After investigating the properties of isometries and geodesics, we will now introduce another
fundamental concept in semi-Riemannian geometry, namely the notion of curvature. While
there are many concepts of curvature, there is a fundamental one from which all other notions
can be derived and which determines them uniquely. This is the Riemann curvature tensor.

Definition 3.50. (Riemann curvature tensor) Let (M, g) be a semi-Riemannian manifold.
Then the map R : V(M)× V(M)× V(M)→ V(M), (X,Y, Z) 7→ R(X,Y )Z with

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is called the Riemann curvature (tensor) of M .

Lemma 3.51. Let (M, g) be a semi-Riemannian manifold. Then the Riemann curvature
tensor of M is a tensor: For all vector fields X,Y, Z ∈ V(M), the Riemann curvature tensor
R(X,Y )Z(p) depends only on X(p), Y (p), Z(p).

The Riemann curvature tensor has the following symmetries:

• Anti-symmetry in the first two arguments: R(X,Y )Z(p) = −R(Y,X)Z(p).

• first Bianchi identity: R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0

• g(R(X,Y )Z,W ) = −g(Z,R(X,Y )W )

• g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ) ∀X,Y, Z,W ∈ V(M).

Proof. To show that the Riemann curvature tensor is a tensor, we consider the second co-
variant derivative

∇2
X,Y Z = ∇X∇Y Z −∇∇XY Z.

Since ∇XY (p) depends only on X(p) and ∇X∇Y Z depends only on X(p), it follows that
∇2
X,Y depends only on the value of X in p. Moreover, we find for any function f ∈ C∞(M,R)

∇2
X,f ·Y = LXf · ∇Y Z + f · ∇X∇Y Z −∇LXf ·Y+f ·∇XY Z = f · ∇2

X,Y Z.

By applying Lemma 3.24 to the map FX,Z,W : V(M)→ R, Y 7→ g(∇2
X,Y Z,W ) we then find

that ∇2
X,Y Z(p) depends only on the value of Y in p. The Riemann curvature tensor is given

by
R(X,Y )Z = ∇2

X,Y Z −∇2
Y,XZ,

and it follows directly that R(X,Y )Z(p) depends only on the values of X and Y in p. To
determine its dependence on Z, we calculate

R(X,Y )(f · Z)

=∇X(LY f · Z + f · ∇Y Z)−∇Y (LXf · Z + f · ∇XZ)− L[X,Y ]f · Z − f · ∇[X,Y ]Z

=f · (∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z) + (LxLY f − LY LXf − L[X,Y ]f ) · Z
+LY f · ∇XZ + LXf · ∇Y Z − LXf · ∇Y Z − LY f · ∇XZ
=f ·R(X,Y )Z.
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Applying Lemma 3.24 to the map FX,Y,W : V(M) → R, Z 7→ g(R(X,Y )Z,W ) we then find
that R(X,Y )Z(p) depends only on the value of Z in p.

The antisymmetry of the Riemann curvature tensor in the first two arguments follows
directly from its definition. The first Bianchi identity is obtained from the fact that the
Levi–Civita connection is torsion free and from the Jacobi identity for the Lie bracket. To
prove the third identity, it is sufficient to show that g(R(X,Y )Z,Z) = 0 for all smooth vector
fields X,Y, Z. As ∇ is a metric connection, we have

g(∇WZ,Z) = 1
2LW g(Z,Z), g(∇2

X,Y Z,Z) = 1
2LXLY g(Z,Z)−g(∇Y Z,∇XZ)− 1

2L∇XY g(Z,Z).

Using the definition of the Riemann curvature tensor in terms of the second covariant deriva-
tive, we obtain after some computations the third identity. The forth identity follows from
the first three.

Remark 3.52. (a) If (M, g) is a semi-Riemannian manifold and (ϕ,U) a chart on M , the
Riemann curvature tensor on U is characterised uniquely through its component functions
Rlijk ∈ C∞(U,R)

R(bϕi , b
ϕ
j )bϕk =

n∑
l=1

Rlijkb
ϕ
l ,

which is given in terms of the Christoffel symbols by the following equation (see exercise
3.16)

Rlijk =
∂Γljk
∂ϕi

− ∂Γlik
∂ϕj

+

n∑
m=1

ΓmjkΓlim − ΓmikΓljm.

(b) If (M, g) and (N,h) are semi-Riemannian manifolds and f : M → N is a local
isometry, then the Riemann curvature tensor satisfies

Tp(f)(RM (x, y)z) = RN (Tp(f)x, Tp(f)y)Tp(f)z ∀p ∈M,x, y, z ∈ Tp(M).

This follows directly from the fact that local isometries preserve the metric and hence the
Levi–Civita connection.

Besides the Riemann curvature tensor, there are other notions of curvature which play an
important role in differential geometry and general relativity. They are all determined by the
Riemann curvature tensor and the most important ones are given in the following definition.

Definition 3.53. Let (M, g) be a semi-Riemannian manifold and p ∈M .
(a) Let E ⊂ Tp(M) be a plane for which the restriction gp|E×E is non-degenerate and

and x, y ∈ Tp(M) two vectors which span E. Then the sectional curvature of E is defined as

Kp(E) =
gp(R(x, y)y, x)

gp(x, x)gp(y, y)− gp(x, y)2
.

It depends only on E and not on the choice of x and y. If dim(M) = 2 the plane E coincides
with Tp(M) and the sectional curvature is called Gauß curvature.

(b) For x, y ∈ Tp(M), the Ricci curvature is defined as the trace of the linear map
Rx,y : Tp(M)→ Tp(M), z 7→ R(x, y)z

ricp(x, y) = Tr(Rx,y).
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It defines a non-degenerate symmetric bilinear form on Tp(M), and there exists a unique
linear map Ricp : Tp(M)→ Tp(M) with gp(Ricp(x), y) = ric(x, y) for all x, y ∈ Tp(M).

(c) The scalar curvature scal(p) of M in p is defined as the trace of the linear map
Ricp : Tp(M)→ Tp(M):

scal(p) = Tr(Ricp).

Remark 3.54. (a) That the sectional curvature does not depend on the choice of x and
y can be shown via a direct calculation: two vectors x′ = ax + by and y′ = cx + dy with
a, b, c, d ∈ R form a basis of E if and only if ad−bc 6= 0. Using the properties of the curvature
tensor, one obtains

gp(R(x′, y′)y′, x′)

= adcbgp(R(x, y)x, y) + (ad)2gp(R(x, y)y, x) + (bc)2gp(R(y, x)x, y) + adbcgp(R(y, x)y, x)

= (ad− bc)2gp(R(x, y)y, x)

and a short computation yields

gp(x
′, x′)gp(y

′, y′)− gp(x′, y′)2 = (ad− bc)2(gp(x, x)gp(y, y)− gp(x, y)2).

(b) The Riemann curvature tensor is determined uniquely by the sectional curvatures
Kp(E) for all planes E ⊂ Tp(M) for which gp|E×E is non-degenerate. The sectional curvature
is determined by the Ricci curvature only for dim(M) ≤ 3 and the Ricci curvature by the
scalar curvature only for dim(M) = 2.

(c) For every chart (ϕ,U) of M , the Ricci curvature on U is described uniquely by its
component functions ricij ∈ C∞(U,R), ricij = ricp(b

ϕ
i , b

ϕ
j ) which are given in terms of the

Riemann curvature tensor by

ricij =

n∑
k=1

Rkijk.

and the scalar curvature is given by

scal =

n∑
j,k=1

Rkijkg
ij
ϕ .

Example 3.55. In general relativity, a universe is described by a four-dimensional Lorentzian
manifold (M, g). The Lorentzian metric g on M is required to be a solution of the Einstein
equations

ricp(x, y)− 1
2gp(x, y) · scal(p) + Λgp(x, y) =

8πG

c4
tp(x, y) ∀p ∈M,x, y ∈ Tp(M),

where tp : Tp(M) × Tp(M) → R is a symmetric tensor called the stress-energy tensor. It
is determined by the matter content of the universe (massive matter and radiation). The
constant Λ ∈ R is called the cosmological constant and G ∈ R the gravitational constant.

A solution of Einstein’s equations for vanishing stress-energy tensor is called a vacuum
spacetime.

97



As the Riemann curvature and hence also the Ricci and scalar curvature depend non-
linearly on the metric and its derivatives, Einstein’s equations define a complicated system of
non-linear differential equations that can be solved only numerically for many configurations.

The situation simplifies considerably if one considers the three-dimensional version of the
theory and vacuum spacetimes. In that case, the Ricci tensor determines the Riemann cur-
vature completely and for any vacuum spacetime the Riemann curvature tensor is constant.

Exercises for Section 3.4

Exercise 3.13. Consider the two-sphere S2 with the metric induced by the Euclidean metric
on R3 and the chart given by

U = S2 \ {(x, y, z) : x ≥ 0, y = 0} ϕ−1(ψ, θ) = (cosψ · sin θ, sinψ · sin θ, cos θ).

Determine the coefficient functions of the metric, the Christoffel symbols and the coefficient
functions of the Riemann curvature tensor.

Exercise 3.14. Consider n-dimensional hyperbolic space Hn with the metric induced by the
Minkowski metric on Rn+1 and the chart given by

U = Hn ϕ(x0, . . . , xn) = (x1, . . . , xn).

Determine the coefficient functions of the metric, the Christoffel symbols and the coefficient
functions of the Riemann curvature tensor.

Exercise 3.15. Determine the number of independent components of the Riemann curvature
tensor and the of Ricci tensor on an n-dimensional manifold. Use your result to conclude
that the Ricci tensor determines the Riemann curvature tensor uniquely only in dimension
d ≤ 3.

Exercise 3.16. Prove the formula for the component functions of the Riemann curvature
in terms of the Christoffel symbols from Remark 3.52

Exercise 3.17. The gravitational field of a point of massm is described by the Schwartzschild
metric on R× (R3 \ {0}). In terms of a coordinate t on R and polar coordinates (r, θ, ϕ) on
R3, this metric is given by

g(t, r, θ, ϕ) =
(
1− 2m

r

)
dt2 − dr2

1− 2m
r

− r2gS2 ,

where gS2 is the metric on S2 and r > 2m

1. Determine the Christoffel symbols and the Riemann curvature tensor of g. Show that
the Ricci curvature of g vanishes and that the Schwartzschild metric is a solution of
the vacuum Einstein equations with vanishing cosmological constant.

2. Sketch the vector fields bt and br in a plane with θ = ϕ = const.
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4 The Geometric Structures of Classical Mechanics

In this section we study the mathematical, resp., geometric structures underlying classical
mechanics. Since the differential equation describing the time evolution of a mechanical
system is of second order, we first introduce second order vector fields on a manifold (Sec-
tion 4.1). A key point in mechanics is the passage between velocities and momenta. This
corresponds to the passage from the tangent bundle TQ of our configuration space Q, for
which the elements of Tp(Q) are interpreted as velocities, to the cotangent bundle T ∗Q, for
which the elements of T ∗p (Q) = Tp(Q)∗ are interpreted as momenta (Section 4.2). Before we
then turn to symplectic geometry, we recall some basic facts on differential forms and their
formulation in the context of general manifolds (Section 4.3). Symplectic manifolds are then
introduced in Section 4.4. These are almost symplectic manifolds (M,ω) satisfying the ‘inte-
grability condition’ dω = 0. From the perspective of physics, the key motivation for studying
Hamiltonian systems, which are certain flows on symplectic manifolds, is that one can give
up the distinction between space and momentum, resp., velocity coordinates. This leads to
a significant enlargement of the underlying symmetry group from the diffeomorphism group
of configuration space to the group of symplectic diffeomorphisms of the cotangent bundle.
Accordingly, cotangent bundles are the prototypes of symplectic manifolds. In Section 4.5
we introduce the formalism of symplectic geometry: Hamiltonian vector fields and Poisson
brackets. We eventually come full circle by a discussion of Lagrangian mechanics in Sec-
tion 4.6 and the Legendre transform in Section 4.7. The Legendre transform provides the
translation between Lagrangian mechanics based on the Euler–Lagrange equations in TQ to
Hamiltonian mechanics in T ∗Q. As a byproduct, this provides new insight in the geometry
of semi-Riemannian manifolds because it exhibits the velocity curves of geodesics as the so-
lutions of a Hamiltonian system where the Hamiltonian is the function H(v) := 1

2g(v, v) on
TQ.

4.1 Second order equations on manifolds

The movement of a point particle of mass m in a force field ~F : R3 → R3 is determined by
Newton’s Law, i.e., the second order equation

ma(t) = mẍ(t) = F (x(t)).

To model such equations on the level of manifolds, i.e., in a form independent of the choice
of coordinates leads to the concept of a second order vector field (Subsection 4.1).

Let M be a smooth manifold. If γ : I → M is a smooth curve, then its velocity curve
γ′ : I → TM is a smooth curve with values in the tangent bundle TM . Taking one more
derivative, we arrive at a curve γ′′ : I → TTM . To define second order differential equations
in the context of manifolds, we therefore have to consider vector fields on the tangent bundle.

Definition 4.1. Let M be a smooth manifold. A second order vector field on M is a vector
field F : TM → TTM on TM satisfying T (π) ◦ F = idTM , where π : TM → M is the
projection map. For the integral curves β : I → TM of F , this means that the corresponding
curve γ := π ◦ β : I →M satisfies

γ′(t) = T (π)β′(t) = T (π)F (β(t)) = β(t), t ∈ I.
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We thus obtain the relation
γ′′(t) = F (β(t)),

which justifies the terminology.

Remark 4.2. (a) To visualize the concepts locally, we consider an open subset U ⊆ Rn.
Then TU ∼= U × Rn, π(x, v) = x, TTU ∼= U × Rn × Rn × Rn, and T (π)(x, v, u, w) = (x, u).
Therefore a second-order vector field F : TU → TTU can be written as

F (x, v) =
(
x, v, v, f(x, v)

)
,

where f : U × Rn → Rn is a smooth map. Therefore it corresponds to the smooth function
U × Rn → Rn × Rn, (x, v) 7→ (v, f(x, v)) (cf. Remark 1.30).

(b) In the theory of ODEs of degree 2 on the open subset U ⊆ Rn, one observes that any
second order ODE

γ̈(t) = f(γ(t)) (17)

can be reduced to a first order ODE if one replaces the curve γ : I → U by the pair Γ :=
(γ, γ̇) : I → TU = U×Rn, which can be identified with the velocity curve γ′ : I → TU . Then
γ is a solution of (17) if and only if the curve Γ is a solution of

Γ̇(t) = F (Γ(t)), F (x, v) = (v, f(x)). (18)

In abstract terms, Γ is a curve in the tangent bundle TU ∼= U × Rn and the function
F : U × Rn → R2n defines a vector field XF such that the solutions of (18) are the integral
curves of XF .

Definition 4.3. A second order vector field F ∈ V(TM) has in local coordinates the form

F (x, v) =
(
x, v, v, f(x, v)

)
.

We call it a spray if the maps fx(v) := f(x, v) are quadratic, i.e., fx(sv) = s2fx(v) for s ∈ R,
v ∈ Rn.

Remark 4.4. (Local form of sprays) That the maps fx are quadratic implies the existence
of a unique symmetric bilinear map

Γx : Rn × Rn → Rn

with
fx(v) = Γx(v, v) for v ∈ Rn.

This means that
Γx(v, w) =

∑
k

Γkijek,

where the Γkij are smooth functions satisfying Γkij = Γkji.
If (ϕ,U) is the chart we use to obtain the local coordinates and bϕj , j = 1, . . . , n, are the

corresponding base fields, then

Γ(bϕi , b
ϕ
j ) =

∑
k

Γkijb
ϕ
k .
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Remark 4.5. (Sprays and torsion free connections) (a) If ∇ is a torsion free connection,
then it has in local coordinates on U ⊆ Rn the form

(∇XY )(x) = dY (x)X(x) + Γx(X(x), Y (x)),

where the bilinear forms Γx are symmetric. This defines a spray

F∇(x, v) := (x, v, v,−Γx(v, v)).

Conversely, every spray on U is of this form.
The integral curves β(t) = (γ(t), γ̇(t)) ∈ TU = U × Rn of F∇ are determined in local

charts by the relation
γ̈(t) = −Γγ(t)(γ̇(t), γ̇(t)),

which can also be written as ∇γ′γ′ = 0. Here we distinguish between γ′(t) = (γ(t), γ̇(t)) as
an element of the tangent bundle and the velocity vector γ̇(t) ∈ Rn.

Therefore the integral curves β : I → TM of F∇ are precisely the velocity curves β = γ′,
where γ : I →M is a geodesic for ∇.

(b) This correspondence between sprays and connections can be made global (cf. [La99]).
Here the main point is to verify that the transformation rule for the local forms Γϕ corre-
sponding to a connection ∇ by a chart (ϕ,U) of M are the same as the transformation rules
required for the corresponding local expressions of F∇ to define a global vector field on M .

So let ϕ : U → V be a diffeomorphism of open subsets of Rn and suppose that ∇ and ∇′
are connections on U , resp., V , related by ϕ in the sense that

ϕ∗∇YX = ∇′ϕ∗Xϕ∗Y for X,Y ∈ V(U) ∼= C∞(U).

Writing
∇XY = dY ·X + Γ(X,Y ) and ∇′X′Y ′ = dY ′ ·X ′ + Γ′(X ′, Y ′),

we obtain for X ′ = ϕ∗X and Y ′ = ϕ∗Y the relations

(∇′X′Y ′)ϕ(x) = dϕx((dY )xXx + Γx(Xx, Yx)) = dϕx(dY )xXx + dϕxΓx(Xx, Yx)

and

(∇′X′Y ′)ϕ(x) = (dY ′)ϕ(x)X
′
x + Γ′ϕ(x)(X

′
ϕ(x), Y

′
ϕ(x))

= d((dϕ · Y ) ◦ ϕ−1)ϕ(x)(dϕ)xXx + Γ′ϕ(x)((dϕ)xXx, (dϕ)xYx)

= d(dϕ · Y )xd(ϕ−1)ϕ(x)(dϕ)xXx + Γ′ϕ(x)((dϕ)xXx, (dϕ)xYx)

= d(dϕ · Y )xXx + Γ′ϕ(x)((dϕ)xXx, (dϕ)xYx)

= (d2ϕ)x(Yx, Xx) + (dϕ)x(dY )xXx + Γ′ϕ(x)((dϕ)xXx, (dϕ)xYx).

This leads to the transformation rule

Γ′ϕ(x)((dϕ)xv, (dϕ)xw) = (dϕ)xΓx(v, w)− (d2ϕ)x(v, w)

for the Christoffel symbols.
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For the corresponding second order vector fields

F (x, v, v,−Γx(v, v)) and F ′(x′, v′, v′,−Γ′x′(v
′, v′))

we obtain with the diffeomorphism

Tϕ : TU → TV, (Tϕ)(x, v) = (ϕ(x), dϕxv)

the condition for F and F ′ being Tϕ-related:

F ′(Tϕ(x, v)) = TTϕ(F (x, v)).

As
T 2ϕ(x, v, a, b) = (ϕ(x), dϕxv, dϕxa, (d

2ϕ)x(v, a) + dϕxb),

we have

TTϕ(x, v, v,−Γx(v, v)) = (ϕ(x), dϕxv, dϕxv,−dϕxΓx(v, v) + (d2ϕ)x(v, v)),

which leads to the condition

Γ′ϕ(x)(dϕxv, dϕxv) = dϕxΓx(v, v)− (d2ϕ)x(v, v).

Comparing both transformation formulas, we see that the Christoffel symbols of a connec-
tion are subject to the same transformation rules as the quadratic components of a spray.
Therefore the correspondence under (a) has an invariant meaning on a manifold, which leads
to a global one-to-one correspondence between sprays and torsion free connections.

(c) If the connection ∇ on M is given, then the value of the corresponding spray F∇ ∈
V(TM) in v ∈ TM can be calculated as follows. Let γ : I →M be a geodesic with γ′(0) = v.
Then

F∇(v) = F∇(γ′(t)) = γ′′(t) ∈ Tv(TM).

Since the integral curves of F∇ are the velocity fields of the geodesics, the corresponding
local flow on TM is called the geodesic flow of ∇.

Example 4.6. If (M, g) is a Riemannian manifold, then M carries a canonical spray, corre-
sponding to the Levi–Civita connection (Theorem 3.28). Its geodesic flow on TM preserves
the norm squared function q(v) = g(v, v). Below we shall see other interpretations of this
observation.

4.2 The cotangent bundle of a manifold

Let M be a smooth manifold and TM be its tangent bundle (cf. Definition 1.26). We know
already that TM is a smooth manifold and that any chart (ϕ,U) of M leads to a chart
(Tϕ, TU) of TM .

In a similar fashion we can treat the cotangent bundle T ∗M of M . As a set, it is defined
as

T ∗M :=
⋃̇

p∈M
Tp(M)∗.
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Here we write V ∗ := Hom(V,R) for the dual of the vector space V , i.e., the vector space of
linear maps V → R. If ϕ : V1 → V2 is a linear map, then the corresponding linear map

ϕ∗ : V ∗2 → V ∗1 , α 7→ α ◦ ϕ

is called its adjoint.

Remark 4.7. (a) We recall some facts from Linear Algebra: If b1, . . . , bn is a basis of the
finite-dimensional real vector space V , then the dual basis is defined by

b∗j (bk) := δjk.

Then every α ∈ V ∗ has a unique representation as

α = α1b
∗
1 + · · ·+ αnb

∗
n with αj = α(bj).

Therefore coordinates on V introduced by the choice of the basis automatically lead to
coordinates on the dual space V ∗.

(b) If Rn is considered as a space of column vectors Mn,1(R), i.e., matrices of size
n × 1, then it is most natural to consider the elements of the dual space (Rn)∗ as row
vectors M1,n(R), i.e., matrices of the form 1 × n. Then the evaluation of an element
α = (α1, . . . , αn) ∈ (Rn)∗ on x ∈ Rn corresponds to the matrix product

α(x) = α · x =

n∑
j=1

αjxj .

Here the entries xj of x are the coordinates of x with respect to the canonical basis e1, . . . , en
of Rn and the αj are the coordinates of α w.r.t. the dual basis e∗1, . . . , e

∗
n.

(c) If LA : Rn → Rn, x 7→ Ax is the linear map defined by the matrix, then its adjoint is
a linear map L∗A : (Rn)∗ ∼= M1,n(R) → (Rn)∗ corresponds to the map α 7→ α ◦ A given by
right multiplication with the matrix A.

On the level of coordinates we then have

x′i =
n∑
j=1

aijxj and α′i =

n∑
j=1

αjaji,

so that the matrix of the adjoint map L∗A with respect to the basis e∗j is the transposed

matrix A>.

For an open subset U ⊆ Rn we can identify T ∗U with the product set T ∗U = U×(Rn)∗ =
U × M1,n(R) ∼= U × Rn which carries a natural product manifold structure. After the
discussion in the preceding remark, it is clear how to glue these pieces together to obtain a
smooth manifold.

If (ϕ,U) and (ψ, V ) are two charts of M with U ∩ V 6= ∅, then the diffeomorphism
η := ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) defines the diffeomorphism

T (η) : ϕ(U ∩ V )× Rn → ψ(U ∩ V )× Rn, (x, v) 7→ (η(x), dη(x)v),

103



where we identify the linear map dη(x) with the corresponding matrix in Mn(R). We thus
obtain transitions functions

T ∗(η) : ϕ(U ∩ V )× (Rn)∗ → ψ(U ∩ V )× (Rn)∗, (x, α) 7→ (η(x), α ◦ (dη)−1
x ).

Now the same arguments that we used to obtain the manifold structure for the tangent
bundle leads to a canonical manifold structure for the cotangent bundle T ∗M , for which each
chart (ϕ,U) defines a chart

T ∗ϕ : T ∗U → T ∗(ϕ(U)) ∼= ϕ(U)× (Rn)∗ ∼= ϕ(U)× Rn, αp 7→ (ϕ(p), α ◦ Tp(ϕ)−1)

(cf. Definition 1.26).

4.3 Differential forms

Differential forms play a significant role in mathematical physics. In this subsection, we
describe a natural approach to differential forms on manifolds by defining them directly as
families of alternating multilinear functions on tangent spaces and not as sections of a vector
bundle.

Definition 4.8. (a) If M is a smooth manifold, then a (smooth) p-form ω on M is a family
(ωx)x∈M which associates to each x ∈ M a p-linear alternating map ωx : Tx(M)p → R such
that in local coordinates the map (x, v1, . . . , vp) 7→ ωx(v1, . . . , vp) is smooth. We write Ωp(M)
for the space of p-forms on M and identify Ω0(M) with the space C∞(M) of real-valued
smooth functions on M .

(b) The wedge product

Ωp(M)× Ωq(M)→ Ωp+q(M), (ω, η) 7→ ω ∧ η

is defined by (ω ∧ η)x := ωx ∧ ηx, where

(ωx ∧ ηx)(v1, . . . , vp+q) :=
1

p!q!

∑
σ∈Sp+q

sgn(σ)ωx(vσ(1), . . . , vσ(p))ηx(vσ(p+1), . . . , vσ(p+q)).

Taking into account that the forms are alternating, this product can also be written with(
p+q
p

)
summands, which are considerably less than (p+ q)!:

(ωx ∧ ηx)(v1, . . . , vp+q) :=
∑

σ∈Sh(p,q)

sgn(σ)ωx(vσ(1), . . . , vσ(p))ηx(vσ(p+1), . . . , vσ(p+q)),

where Sh(p, q) denotes the set of all (p, q)-shuffles in Sp+q, i.e., all permutations with

σ(1) < · · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).

An easy calculation shows that

ω ∧ η = (−1)pqη ∧ ω for ω ∈ Ωp(M), η ∈ Ωq(M). (19)
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If ω1, . . . , ωk are forms of degree p1, . . . , pk and p = p1 + . . . + pk, then we obtain by
induction

(ω1 ∧ · · · ∧ ωk)(v1, . . . , vp)

:=
∑

σ∈Sh(p1,p2,...,pk)

sgn(σ)ω1(vσ(1), . . . , vσ(p1)) · · ·ωk(vσ(p−pk+1), . . . , vσ(p)),

where Sh(p1, . . . , pk) denotes the set of all (p1, . . . , pk)-shuffles in Sp, i.e., all permutations
with

σ(1) < · · · < σ(p1), σ(p1 + 1) < · · · < σ(p1 + p2), . . . , σ(p− pk + 1) < · · · < σ(p).

For p1 = . . . = pk = 1 and k = p, we obtain in particular

(ω1 ∧ · · · ∧ ωk)(v1, . . . , vk) :=
∑
σ∈Sk

sgn(σ)ω1(vσ(1)) · · ·ωk(vσ(k)) = det(ωi(vj)).

Remark 4.9. To describe differential forms in local coordinates, we recall that every alter-
nating k-form ω on Rn has a unique description

ω =
∑

i1<...<ik

ωi1···ike
∗
i1 ∧ · · · ∧ e

∗
ik
, where ωi1···ik = ω(ei1 , . . . , eik).

Accordingly, we obtain for a chart (ϕ,U) of M and the base fields bϕj , j = 1, . . . , n, the

representation of a k-form ω ∈ Ωk(U) by

ω(v1, . . . , vk) =
∑

i1<...<ik

ωi1···ik dϕi1 ∧ · · · ∧ dϕik ,

where
ωi1···ik = ω(bϕi1 , . . . , b

ϕ
ik

)

are smooth functions. Here we use the relation dϕj(b
ϕ
k ) = δij .

Example 4.10. Differential forms of degree 1, so called Pfaffian forms, are smooth functions
α : TM → R that are fiberwise linear. Typical examples arise as α = df for smooth functions
f : M → R.

A key property of 1-forms is that they can be integrated over (piecewise) smooth paths
γ : [a, b]→M via ∫

γ

α :=

∫ b

a

αγ(t)(γ
′(t)) dt,

and it is easy to see that this integral does not change under reparametrization of the path
as long as the endpoints are fixed.

If α = df for a smooth function on M , then∫
γ

df =

∫ b

a

dfγ(t)(γ
′(t)) dt =

∫ b

a

(f ◦ γ)′(t) dt = f(γ(b))− f(γ(a))
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depends only on the endpoints of γ. Conversely, it a 1-form α has this property, M is arcwise
connected and x0 ∈M is fixed, then we obtain a smooth function

f : M → R, f(x) :=

∫
γ

α for γ(0) = x0, γ(1) = x.

In classical mechanics this situation arises as follows: The function U : M → R is called a
potential and the 1-form F := dU is interpreted as a force field. For a force field F ∈ Ω1(M),
the path integral

∫
γ
F is interpreted as the work it requires to move a particle in the force

field along the path γ. A potential U with dU = F exists if and only if this work only
depends on the endpoints of the path. Then F is called conservative.

Next we briefly discuss the exterior differential for differential forms in the context of
manifolds.

Definition 4.11. The exterior differential d : Ωp(M)→ Ωp+1(M) is determined uniquely by
the property that we have for X0, . . . , Xp ∈ V(M) in the space C∞(M) the identity

(dω)(X0, . . . , Xp) :=

p∑
i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xp)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp). (20)

To show the existence of d for general manifolds, the main point is to show that in a point
x ∈M the right hand side only depends on the values of the vector fields Xi in x.

Remark 4.12. In local coordinates the exterior differential takes a rather simple form. For
every chart (ϕ,U), the basic fields bϕj commute: [bϕj , b

ϕ
k ] = 0, which leads to

(dω)j0,...,jp =

p∑
i=0

(−1)i
∂ωj0,...,̂i,...,jp

∂ϕi
. (21)

For p = 0, this means that

(dω)j =
∂ω

∂ϕj
,

and for p = 1, we obtain for j < k:

(dω)j,k =
∂ωk
∂ϕj

− ∂ωj
∂ϕk

.

For ω = fdϕi1 ∧ · · · ∧ dϕik , formula (21) can also be written as

dω =

n∑
j=1

∂f

∂ϕj
dϕj ∧ dϕi1 ∧ · · · ∧ dϕik = df ∧ dϕi1 ∧ · · · ∧ dϕik . (22)
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Example 4.13. If α is a form of degree 0, i.e., a function f , then the definition of the
exterior derivative gives df(X) = Xf .

If α is of degree 1, then

dα(X,Y ) = X α(Y )− Y α(X)− α([X,Y ]).

If α is of degree 2, then

dα(X,Y, Z)

= Xα(Y,Z)− Y α(X,Z) + Zα(X,Y )− α([X,Y ], Z) + α([X,Z], Y )− α([Y,Z], X)

= Xα(Y,Z) + Y α(Z,X) + Zα(X,Y )− α([X,Y ], Z)− α([Z,X], Y )− α([Y,Z], X)

=
∑
cyc.

Xα(Y, Z)− α([X,Y ], Z).

Lemma 4.14. For every ω ∈ Ωp(M) we have d(dω) = 0.

Proof. In local coordinates, this is an easy consequence of (22) and the Schwarz Lemma on
the symmetry of second order partial derivatives.

Definition 4.15. Extending d to a linear map on the space Ω(M) :=
⊕

p∈N0
Ωp(M) of all

differential forms on M , the relation d2 = 0 implies that the space

ZpdR(M) := ker(d|Ωp(M))

of closed p-forms contains the space BpdR(M) := d(Ωp−1(M)) of exact p-forms, so that we
may define the de Rham cohomology space by

Hp
dR(M) := ZpdR(M)/BpdR(M).

Lemma 4.16. If α and β are differential forms of degree p and q, respectively, then

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

Proof. In local coordinates, this is an easy consequence of (22) and the Product Rule for
functions:

d(fg) = df · g + f · dg.

Definition 4.17. Let M and N be smooth manifolds and ϕ : M → N be a smooth map.
Given a differential form ω ∈ Ωk(N) we can define the pull-back ϕ∗ω by (ϕ∗ω)p := Tp(ϕ)∗ωf(p),
i.e.,

(ϕ∗ω)p(v1, . . . , vk) := ωf(p)(Tp(ϕ)v1, . . . , Tp(ϕ)vk).

The pull-back of ω is a differential form ϕ∗ω ∈ Ωk(M).

Proposition 4.18. The pull-back of differential forms is compatible with products and the
exterior differential. For a smooth map ϕ : M → N , we have:

(i) ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β for α, β ∈ Ω(N).

(ii) d(ϕ∗ω) = ϕ∗(dω) for ω ∈ Ωk(N).
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Proof. (i) is obvious from the definitions.
(ii) If ω = f ∈ C∞(N) = Ω0(N), then

ϕ∗(df) = df ◦ Tϕ = d(f ◦ ϕ) = d(ϕ∗f).

Now suppose that we can write ω as an exterior product of 1-forms:

ω = f · dyi1 ∧ . . . ∧ dyik . (23)

Then we obtain with (i):

d(ϕ∗ω) = d ((f ◦ ϕ)ϕ∗dyi1 ∧ . . . ∧ ϕ∗dyik) = d ((f ◦ ϕ)d(ϕ∗yi1) ∧ . . . ∧ d(ϕ∗yik))

= d(f ◦ ϕ) ∧ d(ϕ∗yi1) ∧ . . . ∧ d(ϕ∗yik) = ϕ∗df ∧ d(ϕ∗yi1) ∧ . . . ∧ d(ϕ∗yik)

= ϕ∗df ∧ ϕ∗dyi1 ∧ . . . ∧ ϕ∗dyik = ϕ∗(df ∧ dyi1 ∧ . . . ∧ dyik)

= ϕ∗(dω).

Locally all differential forms can be written as sums of terms of the type (23). Moreover, if
ω vanishes on an open subset U of N , then dω vanishes on U , and f∗ω vanishes on f−1(U).
But then also d(f∗ω) vanishes on U . Therefore the claim can indeed be checked locally.

Definition 4.19. (a) (The insertion operator) If X ∈ V(M) is a vector field and α ∈ Ωk(M)
is a differential form of degree k > 0 on a manifold M , we define the insertion operator, or
contraction, of α with respect to X to be a form iXα of degree k − 1 given by

(iXα)(X1, . . . , Xk−1) := α(X,X1, . . . , Xk−1)

for k > 0. For k = 0 we put iXα := 0.
One also finds the notation X α for iXα.
(b) (Lie derivative of differential forms) One defines the Lie derivative of a differential

form ω ∈ Ω(M) in the direction of a vector field X ∈ V(M) by using its local flow ΦXt :

LXω :=
d

dt t=0
(ΦXt )∗ω.

Proposition 4.20. We have the following relations for the operators on differential forms:

(i) LX(α ∧ β) = LXα ∧ β + α ∧ LXβ for α, β ∈ Ω(M).

(ii) iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ for α ∈ Ωk(M), β ∈ Ω(M).

(iii) (LXα)(X1, . . . , Xk) = X α(X1, . . . , Xk)−
∑k
i=1 α(X1, . . . , [X,Xi], . . . , Xk) for α ∈ Ωk(M)

and X,X1, . . . , Xk ∈ V(M).

(iv) Any vector field X satisfies the Cartan formula

d ◦ iX + iX ◦ d = LX on Ω(M).

(v) [LX , iY ] = i[X,Y ] for X,Y ∈ V(M).
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Proof. (i) follows from
(ΦXt )∗(α ∧ β) = (ΦXt )∗α ∧ (ΦXt )∗β

and the product rule.
(ii) is an easy calculation.
(iii) follows directly from

(ΦXt )∗(ω(X1, . . . , Xk)) = ((ΦXt )∗ω)((ΦX−t)∗X1, . . . , (Φ
X
−t)∗Xk)),

the product rule and LXY = [X,Y ] for X,Y ∈ V(M).
(iv) With (iii), this can directly be verified with the formula defining d.
(v) follows directly from (iii).

4.4 Symplectic manifolds

In Definition 3.12, an almost symplectic manifold was defined as a pair (M,ω), where M
is a smooth n-dimensional manifold and ω ∈ Ω2(M) is such that the alternating forms
ωp : Tp(M)2 → R are non-degenerate for every p ∈M .

Definition 4.21. An almost symplectic manifold (M,ω) is said to be symplectic if ω is
closed, i.e., dω = 0.

Example 4.22. Let (V, ω) be a symplectic vector space, i.e. ω is a non-degenerate skew-
symmetric form on V . We claim that the constant 2-form Ω, defined by Ωp := ω for every
p ∈ V , is closed. In fact, for constant vector fields X, Y and Z, we obtain

dΩ(X,Y, Z) = XΩ(Y,Z)− Y Ω(X,Z) + ZΩ(X,Y )

− Ω([X,Y ], Z) + Ω([X,Z], Y )− Ω([Y,Z], X) = 0

because the Lie brackets of constant vector fields vanish and the functions Ω(X,Y ) etc. are
constant, so that all terms of the form ZΩ(X,Y ) also vanish. This proves that dΩ = 0, hence
that (V,Ω) is a symplectic manifold.

Example 4.23. The most direct construction of symplectic vector spaces is to start with a
finite-dimensional vector space W and endow V := W ⊕W ∗ with the symplectic form given
by

ω
(
(v, α), (w, β)

)
:= β(v)− α(w).

For W = Rn, q = (q1, . . . , qn) ∈ Rn and p = (p1, . . . , pn) ∈ (Rn)∗ this leads to the canonical
symplectic form

ω((q, p), (q′, p′)) =

n∑
j=1

qjp
′
j − pjq′j

on R2n ∼= Rn ⊕ (Rn)∗.
The corresponding 2-form is given in terms of the coordinates (qi, pi) for elements (q, p) ∈

R2n by

Ω =
∑
i

dqi ∧ dpi.

We thus obtain by restriction for each open subset U ⊆ Rn a natural symplectic form on
T ∗U = U × (Rn)∗

109



Remark 4.24. There are many reasons for assuming the closedness of the form ω in the
definition of a symplectic manifold. One is that it implies, for each p ∈ M , the existence of
an open neighborhood U and a chart (ϕ,U) into R2n for which ϕ∗ωR2n = ω|U , i.e., (U, ω|U )
is symplectically isomorphic to an open subset of R2n (Darboux Theorem) (cf. Example 4.26
below). For this to hold it is clearly necessary for ω to be closed because the form ωR2n is
closed. Hence one may think of the closedness condition dω = 0 as necessary for the existence
of canonical coordinates (cf. Remark 4.46).

Remark 4.25. (Metric connections in the symplectic context) (a) Another reason is related
with the existence of a metric connection. Comparing with the semi-Riemannian context,
where the Levi–Civita connection plays a fundamental role, one could ask when a metric
torsion free connection ∇ exists for a presymplectic manifold (M,ω). Here the compatibility
with ω means that

Zω(X,Y ) = LZω(X,Y ) = ω(∇ZX,Y ) + ω(X,∇ZY ) ∀X,Y, Z ∈ V(M) (24)

and that it is torsion free means that

∇XY −∇YX = [X,Y ] for X,Y ∈ V(M).

This leads to the condition

Xω(Y, Z) + Y ω(Z,X) + Zω(X,Y )

= ω(∇XY,Z) + ω(Y,∇XZ) + ω(∇Y Z,X) + ω(Z,∇YX) + ω(∇ZX,Y ) + ω(X,∇ZY )

= ω(∇XY −∇YX,Z) + ω(∇ZX −∇XY, Y ) + ω(∇Y Z −∇ZY,X)

= ω([X,Y ], Z) + ω([Z,X], Y ) + ω([Y,Z], X).

which no longer includes ∇. That it is satisfied means that dω = 0 (cf. Example 4.13).
(b) (Existence of metric connections: The Hess trick) For a 2-form ω and a connection ∇

on M , we write

(∇Xω)(Y,Z) := Xω(Y, Z)− ω(∇XY,Z)− ω(X,∇Y Z),

so that ∇ is a metric connection (w.r.t. ω) if and only if ∇ω = 0.

If (M,ω) is symplectic and ∇̃ is a torsion free connection on M , then there exists a unique
connection ∇ on M defined by the relation

ω(∇XY, Z) = ω(∇̃XY,Z) +
1

3
(∇̃Xω)(Y,Z) +

1

3
(∇̃Y ω)(X,Z)

(see also Lemma 4.29 below). Then an easy calculation shows that ∇ω = 0, i.e., ∇ is a

metric connection, and since ∇̃XY − ∇̃XY is a symmetric function in X and Y , ∇ is also
torsion free.

(c) If ∇′ and ∇ are two metric torsion free connections for (M,ω), then BX(Y ) :=
∇′XY −∇XY is C∞(M)-bilinear, so that BX(Y )(p) = BX(p)(Y (p)) holds for endomorphisms
Bv ∈ End(Tp(M)), v ∈ Tp(M). We then have

ω(BXY,Z) + ω(Y,BXZ) = 0 for X,Y, Z ∈ V(M),

110



i.e., BX(p) ∈ sp(Tp(M), ωp) for every p ∈ M . The uniqueness of the Levi–Civita connection
in the Riemannian case implies that, in the semi-Riemannian case, any such B vanishes.
However, in the symplectic case such fields may exist, which implies that metric connections
are not unique.

For V = R2, non-zero maps of this type exist. They correspond to B1, B2 ∈ sl2(R) with
B1e2 = B2e1, so that

B1 =

(
a b
c −a

)
and B2 =

(
b d
−a −b

)
.

Therefore we obtain a 4-parameter family of linear maps B : R2 → sl2(R) ∼= sp2(R) defining
symmetric maps R2 × R2 → R2.

In Example 4.23 we have seen that, for any open subset U ⊆ Rn, the cotangent bundle
T ∗U ⊆ Rn × Rn ∼= R2n carries a canonical symplectic structure. This structure is actually
natural, i.e., compatible with diffeomorphisms, so that we can use it to obtain a canonical
symplectic structure on any cotangent bundle.

Example 4.26. (T ∗Q as a symplectic manifold) Let Q be a smooth manifold and
π : T ∗Q→ Q be the canonical projection. We define the Liouville 1-form Θ on T ∗Q by

Θα(v) := α(Tπ(v)) for v ∈ Tα(T ∗Q)

and consider the 2-form
Ω := −dΘ ∈ Ω2(T ∗Q).

We claim that (T ∗Q,Ω) is symplectic.
To verify this claim, we take a closer look at Θ and Ω in a local chart. From a chart (ϕ,U),

U ⊆ Q open, we obtain the corresponding cotangent chart T ∗ϕ : T ∗U → R2n ∼= Rn × Rn.
Writing elements of R2n as pairs (q, p), we obtain coordinates q1, . . . , qn; p1, . . . , pn on U .

In these coordinates we have

π(q, p) = q and Tπ(q, p, v, w) = (q, v).

For α = (q, p) ∈ T ∗Rn we thus obtain

Θα(v, w) = 〈p, v〉 =

n∑
i=1

vipi,

which can also be written as

Θα =

n∑
j=1

pidqi,

which leads to

Ωα =

n∑
j=1

dqi ∧ dpi.

This shows in particular that Ωα is non-degenerate in every α ∈ T ∗Q, and hence that
(T ∗Q,Ω) is a symplectic manifold.

111



Lemma 4.27. (Naturality of the Liouville form) If ϕ : M → N is a diffeomorphism, then

T ∗ϕ : T ∗M → T ∗N, αp 7→ αp ◦ Tp(ϕ)−1

also is a diffeomorphism and the Liouville forms ΘM ∈ Ω1(T ∗M) and ΘN ∈ Ω1(T ∗N) satisfy

(T ∗ϕ)∗ΘN = ΘM .

Proof. We write πN : T ∗N → N and πM : T ∗M → M for the canonical projections, so that
we have

πN ◦ T ∗ϕ = ϕ ◦ πM .

For α ∈ Tp(M)∗ we have

((T ∗ϕ)∗ΘN )α(v) = (ΘN )T∗ϕ(α)(T (T ∗ϕ)v) = (T ∗ϕ)(α)(T (πN )T (T ∗ϕ)v)

= (T ∗ϕ)(α)(T (πN ◦ T ∗ϕ)v) = (T ∗ϕ)(α)(T (ϕ ◦ πM )v)

= (α ◦ (Tϕ)−1 ◦ Tϕ ◦ TπM )v = α(T (πM )v) = ΘM (v).

Remark 4.28. Let M be a smooth manifold, Diff(M) be its group of diffeomorphisms and
Symp(T ∗M,ΩM ) be the group of symplectic diffeomorphisms of T ∗M . The preceding lemma
implies that

(T ∗ϕ)∗ΩM = −(T ∗ϕ)∗dΘM = −d(T ∗ϕ)∗ΘM = −dΘM = ΩM ,

so that T ∗ϕ ∈ Symp(T ∗M,ΩM ). Moreover, for ϕ,ψ ∈ Diff(M), we have

T ∗(ϕ ◦ ψ)αp = αp ◦ Tp(ϕ ◦ ψ)−1 = αp ◦ Tp(ψ)−1 ◦ Tψ(p)(ϕ)−1

= T ∗(ϕ)(αp ◦ Tp(ψ)−1) = T ∗(ϕ)T ∗(ψ)αp,

so that
Diff(M)→ Symp(T ∗M,ΩM ), ϕ 7→ T ∗ϕ

is a group homomorphism. That it is injective follows from the relation πM ◦ T ∗ϕ = ϕ ◦ πM .

4.5 Hamiltonian vector fields and Poisson brackets

We now turn to the formalism of Hamiltonian vector fields and Poisson brackets. Here
a key point is the passage from cotangent bundles T ∗Q on which the group Diff(Q) acts
naturally to symplectic manifolds (M,Ω). It provides an environment with more symmetries,
represented by the group Symp(M,Ω) of symplectic diffeomorphisms, also called canonical
transformations (cf. Remark 4.28). In the context of physics, where one is interested in the
solutions of the Hamilton equations

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
,

this allows one to work with coordinates in which these equations take a simpler form.
Sometimes this even leads to explicit solutions of the equations of motion. Following this
idea systematically leads to the notion of a completely integrable system, a concept which is
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connected to many branches of mathematics and physics. Here we shall simply scratch the
surface.

Let (M,Ω) be a symplectic manifold. Then each v ∈ Tp(M) defines an element

v[ ∈ T ∗p (M), v[(w) := Ωp(v, w).

This leads to an isomorphism Tp(M)→ T ∗p (M). Its inverse is denoted

T ∗p (M) 3 α 7→ α] ∈ Tp(M), ωp(α
], w) = α(w), w ∈ Tp(M).

Lemma 4.29. The maps [ and ] define diffeomorphisms

[ : T (M)→ T ∗(M) and ] : T ∗(M)→ T (M)

restricting to linear maps on each tangent, resp., cotangent space.

Proof. It clearly suffices to verify this locally, so that we may assume that M is an open
subset of Rn. Then ω is represented by a smooth function

Ω: M →Mn(R) by ωx(v, w) = v>Ωxw.

For v ∈ Tx(M) ∼= Rn we then have v[ = v>Ωx ∈ M1,n(R) (row vector) and, accordingly,
α] = (αΩ−1

x )> = −Ω−1
x α> for α ∈M1,n(R) ∼= (Rn)∗. It is clear that the map

[ : TM = M × Rn → T ∗M ∼= M × (Rn)∗, (x, v) 7→ (x, v>Ωx)

is smooth with inverse

] : T ∗M ∼= M × (Rn)∗ → TM = M × Rn, (x, α) 7→ (x,−Ω−1
x α>).

With the diffeomorphism [ : TM → T ∗M from Lemma 4.29 which is linear on each
tangent space, we obtain linear bijections

[ : V(M)→ Ω1(M), X[(p) := X(p)[ and ] : Ω1(M)→ V(M), α](p) := α(p)]

satisfying
iα]Ω = α. (25)

Definition 4.30. Let (M,Ω) be a symplectic manifold (M,Ω).
(a) For H ∈ C∞(M), the vector field

XH := (dH)]

is called the Hamiltonian vector field associated to the function H. It is uniquely determined
by the relation

iXHΩ = dH.

The corresponding local flow ΦXHt is called the Hamiltonian flow and

γ̇(t) = XH(γ(t))
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the corresponding Hamiltonian equation.
(b) A vector field X ∈ V(M) is called symplectic if LXΩ = 0, i.e., if Ω is invariant under

the corresponding local flow (Exercise 4.4).
(c) For F,G ∈ C∞(M) we define the Poisson bracket by

{F,G} := Ω(XF , XG) = dF (XG) = XGF

(cf. (25)).

Remark 4.31. The Poisson bracket of two functions can be used to describe the change of
the values of a function F on the integral curves γ of the Hamiltonian vector field XH :

d

dt
F (γ(t)) = dFγ(t)γ

′(t) = dFγ(t)XH(γ(t)) = (XHF )(γ(t)) = {F,H}(γ(t)),

i.e.,
Ḟ = {F,H}, (26)

in the sense that the change rate of the function F on any integral curve is given by this
differential equation.

Example 4.32. For an open subset U ⊆ R2n, endowed with the canonical symplectic form

Ω =

n∑
j=1

dqi ∧ dpi

we obtain for a vector field X = (Y,Z) the relation

iXΩ =

n∑
j=1

Yjdpj − Zjdqj .

In view of

dH =

n∑
j=1

∂H

∂qi
dqi +

∂H

∂pi
dpi,

we thus obtain for H ∈ C∞(R2n):

XH =
(∂H
∂p1

, . . . ,
∂H

∂pn
,−∂H

∂q1
, . . . ,−∂H

∂qn

)
.

In coordinates, we thus obtain for the Poisson bracket

{F,G} = XGF =

n∑
j=1

∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj
.

For the coordinate functions qi and pj we obtain in particular the canonical Poisson
relations

{qj , qi} = {pj , pi} = 0 and {qj , pi} = δij . (27)

For a curve γ(t) = (q(t), p(t)), the Hamiltonian equation associated to H ∈ C∞(U) now has
the form:

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
.
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The following proposition clarifies some of the relations between these concepts.

Proposition 4.33. The following assertions hold:

(i) LXfΩ = 0 for every f ∈ C∞(M), i.e., every Hamiltonian vector field is symplectic.

(ii) The Poisson bracket is a Lie bracket on C∞(M) and satisfies the Leibniz rule

{f, gh} = {f, g}h+ g{f, h}, f, g, h ∈ C∞(M).

(iii) [Xf , Xg] = X{g,f} for f, g ∈ C∞(M), so that

(C∞(M), {·, ·})→ V(M), f 7→ −Xf

is a homomorphism of Lie algebras.

Proof. (i) From the Cartan formula LX = d ◦ iX + iX ◦ d (Proposition 4.20), we derive

LXfΩ = d
(
iXfΩ

)
+ iXf dΩ = d(df) = 0.

(iii) From the other Cartan formula [LX , iY ] = i[X,Y ] (Proposition 4.20), we obtain with (i)

i[Xf ,Xg ]Ω = [LXf , iXg ]Ω = LXf
(
iXgΩ

)
= LXf dg

= d
(
iXf dg

)
+ iXf d(dg) = d

(
iXf dg

)
= d{g, f} = iX{g,f}Ω.

Since Ω is non-degenerate, this implies (iii).
(ii) It is clear that {·, ·} is bilinear and skew-symmetric, and from d(fg) = fdg + gdf we

conclude that it satisfies the Leibniz rule. So it remains to check the Jacobi identity. This is
an easy consequence of (iii):{

f, {g, h}
}

= X{g,h}f = −[Xg, Xh]f

= −Xg(Xhf) +Xh(Xgf) =
{
h, {g, f}

}
−
{
g, {h, f}

}
.

As a corollary, we obtain Jacobi’s great insight from about 1830 that was based on his
discovery of the Jacobi identity for the Poisson bracket.

Corollary 4.34. For H ∈ C∞(M) a function F ∈ C∞(M) is constant on the integral
curves of XH if and only if {F,H} = 0. The set of all these functions is a Lie subalgebra of
(C∞(M), {·, ·}).

Proof. This follows from

{{F1, F2}, H} = {F1, {F2, H}}+ {{F1, H}, F2}

for F1, F2 ∈ C∞(M).
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Symmetries and conserved quantities

Definition 4.35. We consider the flow of the Hamiltonian vector field XH on the symplectic
manifold (M,Ω) and call (M,Ω, H) the corresponding Hamiltonian system.

A smooth function F ∈ C∞(M) is called a constant of motion or conserved quantity if F
is constant along the integral curves of XH .

A vector field X is called an infinitesimal symmetry of the Hamiltonian system (M,Ω, H)
if LXΩ = 0 and XH = 0.

Theorem 4.36. (Hamilton Version of E. Noether’s Theorem) For each conserved quantity
F of the Hamiltonian system (M,Ω, H) the corresponding vector field XF is an infinitesimal
symmetry. Conversely, a Hamiltonian vector field XF is an infinitesimal symmetry if and
only if F is a conserved quantity.

Proof. This is a direct consequence of Corollary 4.34. If F is a conserved quantity, then the
Hamiltonian vector field XF satisfies XFH = {H,F} = 0, so that XF is a symmetry.

If, conversely, XF is a symmetry, then 0 = XFH = {H,F} = −XHF implies that F is a
conserved quantity.

Examples 4.37. We consider some examples of Hamiltonian systems on open subsets U ⊆
R2n = T ∗(Rn) and a Hamiltonian H ∈ C∞(U), corresponding to the energy of the related
mechanical system.

(a) The relation {H,H} = 0 means that H itself is a conversed quantity, i.e., energy is
preserved. The corresponding symmetry is represented by the vector field XH generating the
dynamics of the system. In this sense one can also say that the time-independence of XH

corresponds to the preservation of energy.
(b) If H is invariant under the translations τv : Rn → Rn, q 7→ q + v, resp., the induced

diffeomorphisms
τ∗v : R2n → R2n, (q, p) 7→ (q + v, p),

then the vector field X(q, p) = (v, 0) is a symmetry. As X = XPv for Pv(q, p) :=
∑n
j=1 vipi,

we see that the corresponding conserved quantity is the linear momentum Pv in direction v.
This means that translation invariance corresponds to the conservation of linear momenta.
A typical situation where all linear momenta are preserved is the force free motion of a

particle in R3, where

H(q, p) =
‖p‖2

2m
or, more generally, H(q, p) = f(p).

(c) On R3 we consider the vector fields

Lj : R3 → R3, Lj(x) = ej × x,

where × denotes the vector product on R3. These vector fields generate the rotations (Rti)t∈R,
i = 1, 2, 3, around the coordinate axes (cf. Example 2.31).

For each R ∈ O3(R) the corresponding diffeomorphism of R3 induces a natural symplectic
diffeomorphism

T ∗(R) : T ∗(R3) ∼= R6 → R6, T ∗(R)α = α ◦ T (R)−1, T ∗(R)(q, p) := (Rq,Rp)
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(cf. Lemma 4.27). The infinitesimal generator of the flow T ∗(Rti) on T ∗(R3) is therefore given
by the vector field

L̃i(q, p) = (Li(q), Li(p)), q, p ∈ R3.

The corresponding Hamiltonian function on T ∗Q ∼= R3 × R3 is

JLi(q, p) := 〈ei, q × p〉 = 〈ei × q, p〉 = det(ei, q, p) =
∑
j,k

εijkqjpk.

These functions are called the angular momenta.
That the vector field L̃i is an infinitesimal symmetry is equivalent to the invariance of

the Hamiltonian H under the rotation group

H(Rtiq,R
t
ip) = H(q, p) for all t ∈ R.

Therefore the angular momentum JLi with respect to the qi-axis is a conserved quantity if
and only if H is invariant under the corresponding rotations.

If H is invariant under the full group SO3(R), resp., under all T ∗(R), R ∈ SO3(R), then
all angular momenta are conserved. In this sense the vector

(JL1
, JL2

, JL3
)

is conserved and in particular its square length, the total angular momentum

J := J2
L1

+ J2
L2

+ J2
L3

is conserved.
A typical situation where all angular momenta are preserved is the motion of a particle

in R3 under a central force field

H(q, p) =
‖p‖2

2m
+ V (‖q‖), or, more generally, H(q, p) = f(‖q‖, ‖p‖).

Remark 4.38. If the symplectic manifold (M,Ω) is exact in the sense that there exists a
1-form Θ ∈ Ω1(M) with −dΘ = Ω, then it is easy to find for each X ∈ V(M) with LXΘ = 0
a corresponding Hamiltonian function:

d(iXΘ) = LXΘ− iX(dΘ) = iXΩ

implies that f := Θ(X) ∈ C∞(M) is a smooth function with Xf = X.

Definition 4.39. Let Q be a smooth manifold. Any vector field X ∈ V(Q) defines a smooth
function

PX : T ∗Q→ R, PX(αq) := αq(X(q)),

called the momentum of X.

Remark 4.40. The momentum PX of a vector field is a smooth function on the symplectic
manifold T ∗Q. To understand the structure of the corresponding Hamiltonian flow, note
that the local flow ΦXt of X on Q induces a local flow on T ∗Q by the maps T ∗(ΦXt ) (cf.
Lemma 4.27). We claim that this is the local flow defined by PX .
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Let

X̃α :=
d

dt t=0
T ∗(ΦXt )α =

d

dt t=0
α ◦ T (ΦX−t)

denote the generator of this flow. It is called the canonical lift of X to T ∗Q. Then Lemma 4.27
implies that LX̃Θ = 0, so that Remark 4.38 shows that Θ(X̃) is a Hamiltonian function for X̃.

As the construction of X̃ implies that T (π)X̃αp = Xp, it follows that Θ(X̃)(αp) = αp(Xp) =
PX(αp), and this proves our claim.

Now we show that

{PX , PY } = P[Y,X] for X,Y ∈ V(Q). (28)

This implies in particular, that

[X̃, Ỹ ] = [XPX , XPY ] = X{PY ,PX} = XP[X,Y ]
= [̃X,Y ].

In other words, V(Q)→ V(T ∗Q), X 7→ X̃ is a homomorphism of Lie algebras.
To verify (28), we first observe that, for ϕ ∈ Diff(Q), we have

Pϕ∗X(αq) = αq(Tϕ−1(p)(ϕ)Xϕ−1(p)) = (T ∗(ϕ)−1αq)(Xϕ−1(p)) = PX(T ∗(ϕ)−1αq),

which implies that
Pϕ∗X = PX ◦ T ∗(ϕ)−1.

Therefore

{PX , PY } = Ỹ PX =
d

dt t=0
PX ◦ ΦỸt =

d

dt t=0
PX ◦ T ∗(ΦYt ) =

d

dt t=0
P(ΦY−t)∗X

= P[Y,X].

Examples 4.41. (a) (Linear momenta) For Q = R3 and the constant vector fields Pj = ej
the corresponding momentum function on T ∗Q ∼= R3 × R3 is given by

JPj (q, p) := pj = 〈Pj(q), p〉.

(b) (Angular momenta) For Q = R3 and the linear vector fields Lj(q) = ej × q generating
the rotations around the coordinate axes (cf. Example 2.31), the corresponding momentum
function on T ∗Q ∼= R3 × R3 is given by

JLj (q, p) := 〈ej , q × p〉.

Darboux charts

In this subsection we briefly discuss Darboux charts of symplectic manifolds (cf. Remark 4.24).
Their existence is the main motivation for the introduction of symplectic manifolds in classical
mechanics because it shows that they provide a geometric structure which locally looks like
open subsets of R2n, endowed with its canonical symplectic structure. As we shall see, Dar-
boux charts correspond to local coordinates (qi, pi) satisfying the canonical Poisson relations

{qj , qi} = {pj , pi} = 0 and {qj , pi} = δij . (29)
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Lemma 4.42. Let (V, ω) and (W,ω′) be symplectic vector spaces and ψ : V →W be a linear
isomorphism. Then the following are equivalent:

(i) ϕ is symplectic, i.e., ϕ∗ω′ = ω.

(ii) ψ∗ ◦ [W ◦ ψ ◦ ]V = idV ∗ .

(iii) ]W = ψ ◦ ]V ◦ ψ∗.

(iv) {ψ∗α,ψ∗β} = ω((ψ∗α)], (ψ∗β)]) = ω′(α], β]) = {α, β} for α, β ∈W ∗.

Proof. (i) ⇔ (ii): That ψ is symplectic is equivalent to the coincidence of

α(v) = ω(α], v) and ω′(ψα], ψv) = (ψ∗ψ(α])[)(v)

for α ∈ V ∗, v ∈ V . This is equivalent to ψ∗ ◦ [W ◦ ψ ◦ ]V = idV ∗ .
(ii) ⇔ (iii): Since ψ is invertible, (ii) is equivalent to

[V ◦ ψ−1 ◦ ]W ◦ (ψ∗)−1 = idV ∗ ,

which in turn is equivalent to (iii).
(iii) ⇒ (iv): From (iii) we get

ω((ψ∗α)], (ψ∗β)]) = ω′(ψ ◦ ]V ◦ ψ∗α,ψ ◦ ]V ◦ ψ∗β) = ω′(α], β])

for α, β ∈W ∗.
(iv) ⇒ (iii): From (iv) we obtain

α
(
ψ((ψ∗β)])

)
= ω((ψ∗α)], (ψ∗β)]) = ω′(α], β]) = α(β])

for α, β ∈W ∗. This means that ψ ◦ ]V ◦ ψ∗ = ]W .

Definition 4.43. A smooth map ϕ : (M,Ω) → (M,Ω′) between symplectic manifolds is
called a Poisson map if

ϕ∗{F,G} = {ϕ∗F,ϕ∗G} for F,G ∈ C∞(M ′).

Lemma 4.44. If (M,Ω) and (M ′,Ω′) are symplectic manifolds and ϕ : M → M ′ is a sym-
plectic diffeomorphism, then ϕ is a Poisson map.

Proof. Applying Lemma 4.42 to the tangent maps Tp(ϕ) : Tp(M)→ Tp(N), we obtain

{ϕ∗F,ϕ∗G}(p) = Ωp((Tp(ϕ)∗dFϕ(p))
], ((Tp(ϕ)∗dGϕ(p))

])

= Ω′ϕ(p)((dF )]ϕ(p), (dG)]ϕ(p)) = {F,G}(ϕ(p)).

Remark 4.45. One may expect that the preceding lemma holds without the assumption of
ϕ being a diffeomorphism. A closer inspection shows that we actually used that it is a local
diffeomorphism, i.e., that all its tangent maps are injective. However, one cannot go beyond
that, as the following example shows.
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Consider the inclusion

ϕ : R2 → R4, (q1, p1) 7→ (q1, 0, p1, 0).

Then the canonical symplectic forms satisfy

ϕ∗ΩR4 = ΩR2 , ϕ∗
2∑
j=1

dqj ∧ dpj = dq1 ∧ dp1

but for the Poisson brackets we find

{ϕ∗q2, ϕ
∗p2} = {0, 0} = 0 6= 1 = ϕ∗1 = ϕ∗{q2, p2}.

Actually, one can fabricate a smaller example by the inclusion

ϕ : R0 = {0} → R2, 0 7→ (0, 0)

which satisfies
{ϕ∗q, ϕ∗p} = 0 6= 1 = ϕ∗1 = ϕ∗{q, p}.

Remark 4.46. (Darboux charts) A chart (ϕ,U) of the symplectic manifold (M,Ω) is a
chart ϕ : U → R2n for which Ω|U = ϕ∗ΩR2n . We want to give a criterion for a chart to be a
Darboux chart in terms of Poisson brackets of the coordinate functions Qi and Pi defined by
ϕ = (Q1, . . . , Qn, P1, . . . , Pn).

If ϕ is a Darboux chart, then Lemma 4.44 implies that

{Qj , Qi} = {Pj , Pi} = 0 and {Qj , Pi} = δij .

Suppose, conversely, that these relations are satisfied. Since the linear functions pj and qj
on R2n span the dual space, we obtain

Ωp(((Tpϕ)∗α)], ((Tpϕ)∗β)]) = {ϕ∗α,ϕ∗β} = {α, β} = ΩR2n(α], β])

for α, β ∈ (R2n)∗. Now Lemma 4.42 implies that ϕ∗ΩR2n = Ω|U , i.e., that Ω is a Darboux
chart.

Without proof we state the following key theorem of symplectic geometry (cf. [MR99]).
It implies in particular that (M,Ω) has an atlas consisting of Darboux charts, so that 2n-
dimensional symplectic manifolds can be considered as obtained by gluing open subsets of
R2n by symplectic diffeomorphisms of open subsets.

Theorem 4.47. (Darboux Theorem) Let (M,Ω) be a symplecitc manifold and p ∈M . Then
there exists a Darboux chart (ϕ,U) with p ∈ U .

4.6 Lagrangian mechanics

The idea behind the Lagrangian formulation of mechanics is that the equations of motion
encoded in Newton’s law

F = ma
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can be derived from variational principles which are based on the Lagrangian L of the system.
If q = (q1, . . . , qn) are the coordinates of an element of a configuration space Q ⊆ Rn, then
L is a function of the form

L(qi, q̇i, t) = L(q1, . . . , qn, q̇1, . . . , q̇n, t),

where q̇ = dq
dt = (q̇1, . . . , q̇n) is the system velocity. Hamilton’s variational principle

δ

∫ b

a

L(qi, q̇i, t) dt = 0

then leads to the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (30)

Example 4.48. (a) For a system of N particles moving in R3, the configuration space is an
open subset Q ⊆ R3N and L often has the form

L(qi, q̇i, t) =
1

2

N∑
i=1

mi‖q̇i‖2 − V (q1, . . . ,qn),

where qi ∈ R3 is the location of the ith particle. Then the Euler–Lagrange equations reduce
to Newton’s second law

d

dt
(miqi) = − ∂V

∂qi
, i = 1, . . . , N,

which is F = ma for the motion of particles in a potential field V .
(b) If the Lagrangian has the form

L(qi, q̇i, t) =
1

2

N∑
i=1

gij(q)q̇iq̇j ,

where (gij(q)) is a positive definite matrix, then g = (gij) defines a Riemannian metric on Q
and it turns out that the Euler–Lagrange equations coincide with the equations of geodesics
with respect to this Riemannian metric (cf. Example 4.57).

4.7 The Legendre Transform

In this subsection Q is a smooth manifold which should be interpreted as the configuration
space of a mechanical system. Its tangent bundle TQ is called the velocity phase space. Since
the time development of our system is described by a curve γ : I → Q that solves a second
order differential equation, it is uniquely determined by the element γ′(t0) ∈ TQ. Therefore
the elements of TQ describe the possible states of our system.

A kinetic energy is a function T : TQ → R of the form T (v) := 1
2gx(v, v) for v ∈ Tx(Q),

where g is a semi-Riemannian metric on Q. A potential energy is a function U ∈ C∞(TQ)
of the form U = π∗V = V ◦ π, where V ∈ C∞(Q,R) and π : TQ → Q is the canonical
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projection. In other words, U(vq) = V (q) depends only on the base point of vq ∈ Tq(Q). A
kinetic and a potential energy are combined in the corresponding Lagrange function

L := T − U ∈ C∞(TQ).

In general, any smooth function on TQ is called a Lagrange function. The elements of the
cotangent bundle T ∗Q are called momenta of Q and T ∗Q is called the momentum phase
space.

Example 4.49. For a rigid body rotating freely about its center of mass, the configuration
space is the Lie group G = SO3(R) of rotations of R3. Accordingly, the velocity phase space
is the tangent bundle TG = T SO3(R).

The connection between velocities and momenta is established in terms of the fiber deriva-
tive of the Legendre function:

Definition 4.50. (Fiber derivative) For a smooth function L : TQ → R we define its fiber
derivative

FL : TQ→ T ∗Q, (FL)(v)(w) := Tv(L)w =
d

dt t=0
L(v + tw).

Clearly, FL is a smooth function. It is also called the Legendre transform. We say that L is
hyperregular if FL is a diffeomorphism.

The function
E : TQ→ R, E(v) := (FL)v(v)− L(v)

is called the corresponding energy.

Example 4.51. Suppose that L = T − U , where T (v) = 1
2g(v, v) is a kinetic energy and

U = π∗V is a potential energy. Then FU = 0 because U is constant on the fibers TqQ and
FT = 2T . Therefore

E = 2T − L = T + U

is the sum of the kinetic and the potential energy, i.e., the total energy.

Remark 4.52. (a) For U ⊆ Rn open and TU ∼= U × Rn, the fiber derivative of a smooth
function is given by the partial derivative

(FL)(x, v)w = (x, dL(x, v)(0, w)) = (x, d2L(x, v)(w)),

where d2 denotes the partial differential with respect to the second argument.
In coordinates (qi, vi) on TU and (qi, pi) on T ∗U , it takes the form

(FL)(qi, vi) =
(
qi,

∂L

∂vi

)
, i.e., pi =

∂L

∂vi

are the momentum variables.
(b) The fiber derivative FL is fiber preserving, i.e., it maps Tq(Q) into T ∗q (Q). Therefore

L is hyperregular if and only if, for each q ∈ Q, the map Tq(Q) → T ∗q (Q), v 7→ FL(v) is a
diffeomorphism (Exercise 4.3).
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Example 4.53. (Movement of a point particle in Rn) For a point particle of mass m in Rn
moving with velocity v, the kinetic energy is given by

T (x, v) := 1
2m‖v‖

2.

The fiber derivative of this function is given by

(FT )(x, v)w = m〈v, w〉 = 〈mv,w〉,

so that we may identify (FT )(x, v) ∈ T ∗x (Rn) with the momentum p = mv.

Definition 4.54. We define the Lagrangian forms on TQ by

ΘL = FL∗Θ and ΩL = FL∗Ω

(cf. Example 4.26). Then ΩL = −dΘL, so that ΩL is an exact 2-form.
From the description of Θ and Ω in local coordinates

Θ =
∑
i

pidqi and Ω =
∑
i

dqi ∧ dpi,

we derive

ΘL =
∑
i

∂L

∂vi
dqi and ΩL =

∑
i,j

∂2L

∂vi∂qj
dqi ∧ dqj +

∂2L

∂vi∂vj
dqi ∧ dvj .

Proposition 4.55. ([MR99, Thm. 7.3.3]) Suppose that L is a hyperregular Lagrangian on
TQ. Then the 2-form ΩL := (FL)∗Ω obtained from the Liouville 2-form on T ∗Q is symplectic.
Let XE ∈ V(TQ) denote the Hamiltonian vector field corresponding to the energy function

E(v) := (FL)v(v)− L(v).

Then XE is a second order vector field on TQ and its integral curves are of the form β = γ′,
where γ := π ◦ β is a solution of the Euler–Lagrange equations

d

dt

∂L

∂vi
=
∂L

∂qi
, i = 1, . . . , n.

The vector field XE on TQ is called the Lagrangian vector field corresponding to L.

Proof. It clearly suffices to verify all that in local coordinates, so that we may assume that
Q is an open subset of Rn. We use coordinates (q, v) = (qi, vi) on TQ. Then

E(q, v) = (d2L)(q,v)(v)− L(v) =
∑
j

∂L

∂vj
vj − L

leads to

dE =
∑
i,j

∂2L

∂vj∂vi
vj dvi +

∑
i,j

∂2L

∂vj∂qi
vj dqi −

∑
i

∂L

∂qi
dqi.
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We also recall from Definition 4.54 that

ΩL =
∑
i,j

∂2L

∂vi∂qj
dqi ∧ dqj +

∂2L

∂vi∂vj
dqi ∧ dvj .

Since we want a second order vector field, we start with the ansatz

XE(q, v) = (v, b) = (v1, . . . , vn, b1, . . . , bn).

This leads

iXEΩL = −
∑
i,j

∂2L

∂vi∂vj
bj dqi +

∑
i,j

vi ·
( ∂2L

∂vi∂vj
dvj +

( ∂2L

∂vi∂qj
− ∂2L

∂vj∂qi

)
dqj

)
.

Comparing iXEΩL with dE now leads to the following equation for the bj :∑
i

∂2L

∂vi∂qj
vi −

∂L

∂qj
= −

∑
i

∂2L

∂vi∂vj
bi +

∑
i

vi

( ∂2L

∂vi∂qj
− ∂2L

∂vj∂qi

)
.

This in turn simplifies to

∂L

∂qj
−
∑
i

∂2L

∂vj∂qi
vi =

∑
i

∂2L

∂vi∂vj
bi.

Since XE is a second order vector field, its integral curves are of the form β(t) =
(γ(t), γ̇(t)), and γ̈(t) = b implies with β̇(t) = XE(β(t))

∂L

∂qj
=
∑
i

∂2L

∂vi∂vj
γ̈i +

∑
i

∂2L

∂vj∂qi
γ̇i =

d

dt

∂L

∂vj
.

We conclude that β is an integral curve of XE if and only if γ satisfies the Euler–Lagrange
equations.

Corollary 4.56. The energy E is constant along the solutions of the Euler–Lagrange equa-
tions.

Proof. If γ : I → Q is a solution of the Euler–Lagrange equations, then γ′ is an integral curve
of XE , so that the assertion follows from

Ė = XEE = {E,E} = 0.

Example 4.57. (Geodesics and force free motion) Let (Q, g) be a semi-Riemannian manifold
and consider the Lagrangian L(v) := 1

2g(v, v) on TQ. We claim that L is hyperregular and
that the integral curves of the Lagrangian vector field XE on TQ are the curves γ′, where
γ : I → Q is a geodesic. One can therefore interpret the geodesics as describing the motion
of a mechanical system under the absence of external forces (forcefree motion).

From Example 4.51 we know that E = L is the corresponding energy function. It suffices
to verify the assertion in local coordinates, where the Lagrangian has the form

L(q, v) =
1

2

∑
j,k

gjkvjvk.
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This leads to
∂L

∂qi
=

1

2

∑
j,k

∂gjk
∂qi

vjvk and
∂L

∂vi
=
∑
j

gjivj .

As ∂2L
∂vi∂vj

= gij is an invertible matrix, L is hyperregular.

On the other hand, we obtain for vj = γ̇j :

d

dt

∂L

∂vi
=

d

dt

∑
j

gjiγ̇j =
∑
j

gjiγ̈j +
∑
j,k

∂gji
∂qk

γ̇kγ̇j =
∑
j

gjiγ̈j +
1

2

∑
j,k

(∂gji
∂qk

+
∂gki
∂qj

)
γ̇kγ̇j ,

so that the Euler–Lagrange equations turn into∑
j

gjiγ̈j =
1

2

∑
j,k

(∂gjk
∂qi
− ∂gji
∂qk
− ∂gki

∂qj

)
γ̇kγ̇j ,

and thus

γ̈` =
1

2

∑
j,k,`

g`i
(∂gjk
∂qi
− ∂gji
∂qk
− ∂gki

∂qj

)
γ̇kγ̇j .

Comparing with the Koszul formula in local coordinats (Remark 3.29), we see that this is
the ODE for the geodesics on Q.

4.8 Exercises for Section 4

Exercise 4.1. Let M be a smooth manifold of dimension dimM > 0. Show that not every
smooth curve in M is a solution of a second order differential equation.

Exercise 4.2. Let G be a Lie group. Show that:

(i) There exists a unique connection ∇ such that ∇XY = 0 holds for left invariant vector
fields. Compute its torsion T (X,Y ) := ∇XY −∇YX − [X,Y ].

(ii) There exists a unique connection ∇ such that ∇XY = 1
2 [X,Y ] holds for left invariant

vector fields. Compute its torsion.

(iii) There exists a unique connection ∇ such that ∇XY = [X,Y ] holds for left invariant
vector fields. Show that ∇XY = 0 for right invariant vector fields X,Y on G.

Exercise 4.3. Let X, Y and Z be smooth manifolds and F : X × Y → X × Z a smooth
map of the form F (x, y) = (x,G(x, y)). Show that F is a diffeomorphism if and only if all
the maps Gx : Y → Z, y 7→ G(x, y) are diffeomorphisms. Hint: At some point one should use
the Inverse Function Theorem.

Exercise 4.4. Let X ∈ V(M) and ω ∈ Ωk(M). Show that the relation LXω = 0 is equivalent
to the invariance of ω under the local flow ΦXt generated by X in the sense that

(ΦXt )∗ω = ω|Dt ,

where Dt ⊆M is the domain of ΦXt .
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Exercise 4.5. Let X,Y ∈ V(M). Show that the associated operators LX on Ω(M) satisfy

L[X,Y ] = [LX ,LY ] = LXLY − LY LX .

Proceed along the following steps:

(i) D := [LX ,LY ] is a derivation of the algebra Ω(M), i.e.,

D(α ∧ β) = Dα ∧ β + α ∧Dβ, α, β ∈ Ω(M).

(ii) D commutes with the exterior differential d.

(iii) Verify D = L[X,Y ] on smooth functions f and their differentials df .

(iv) Now verify the assertion for forms of the type ω = fdϕ1 ∧ · · · ∧ dϕk and argue that this
proves the general assertion.

Exercise 4.6. Let Θ ∈ Ω1(T ∗Q) be the canonical 1-form. We consider a 1-form α ∈ Ω1(Q)
as a smooth map α : M → T ∗M . Show that

α∗Θ = α for any α ∈ Ω1(Q).

With a little extra work one can even show that this property determines Θ ∈ Ω1(T ∗Q)
uniquely.

Exercise 4.7. A submanifold L of a symplectic manifold (M,Ω) is said to be Lagrangian if
dimM = 2 dimL and Ω|L = 0.

Show that the zero section ζ : Q→ T ∗Q is a Lagrangian submanifold.

5 Hamiltonian Group Actions

5.1 Smooth Actions of Lie Groups

We already encountered smooth flows on manifolds in the first section. These can be viewed as
actions of the one-dimensional Lie group (R,+). In particular, we have seen that these actions
are in one-to-one correspondence with complete vector fields, which is the corresponding Lie
algebra picture. Now we describe the corresponding concept for general Lie groups.

Definition 5.1. Let M be a smooth manifold and G a Lie group. A (smooth) action of G
on M is a smooth map

σ : G×M →M, (g,m) 7→ g.m = σg(m)

with the following properties:

(A1) σ(1,m) = m for all m ∈M .

(A2) σ(g1, σ(g2,m)) = σ(g1g2,m) for g1, g2 ∈ G and m ∈M .
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We also write

g.m := σ(g,m), σg(m) := σ(g,m), σm(g) := σ(g,m) = g.m.

The map σm is called the orbit map.

For each smooth action σ, the map

σ̂ : G→ Diff(M), g 7→ σg

is a group homomorphism and any homomorphism γ : G→ Diff(M) for which the map

σγ : G×M →M, (g,m) 7→ γ(g)(m)

is smooth defines a smooth action of G on M .

Remark 5.2. What we call an action is sometimes called a left action. Likewise one defines
a right action as a smooth map σR : M ×G→M with

σR(m,1) = m, σR(σR(m, g1), g2) = σR(m, g1g2).

For m.g := σR(m, g), this takes the form

m.(g1g2) = (m.g1).g2

of an associativity condition.
If σR is a smooth right action of G on M , then

σL(g,m) := σR(m, g−1)

defines a smooth left action of G on M . Conversely, if σL is a smooth left action, then

σR(m, g) := σL(g−1,m)

defines a smooth left action. This translation is one-to-one, so that we may freely pass from
one type of action to the other.

Examples 5.3. (a) If X ∈ V(M) is a complete vector field and Φ: R ×M → M its global
flow, then Φ defines a smooth action of G = (R,+) on M .
(b) If G is a Lie group, then the multiplication map σ := mG : G×G→ G defines a smooth
left action of G on itself. In this case the (mG)g = λg are the left multiplications.

The multiplication map also defines a smooth right action of G on itself. The correspond-
ing left action is

σ : G×G→ G, (g, h) 7→ hg−1 with σg = ρ−1
g .

There is a third action of G on itself, the conjugation action:

σ : G×G→ G, (g, h) 7→ ghg−1 with σg = cg.
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(c) We have a natural smooth action of the Lie group GLn(R) on Rn:

σ : GLn(R)× Rn → Rn, σ(g, x) := gx.

We further have an action of GLn(R) on Mn(R):

σ : GLn(R)×Mn(R)→Mn(R), σ(g,A) = gAg−1.

(d) On the set Mp,q(R) of (p× q)-matrices we have an action of the direct product Lie group
G := GLp(R)×GLq(R) by σ((g, h), A) := gAh−1.

The following proposition generalizes the passage from flows of vector fields to actions of
general Lie groups.

Proposition 5.4. (Derived action) Let G be a Lie group and σ : G ×M → M a smooth
action of G on M . Then the assignment

σ̇ : L(G)→ V(M), σ̇(x)m := −T1(σm)(x)

is a homomorphism of Lie algebras.

Proof. First we observe that for each x ∈ L(G) the map σ̇(x) defines a smooth map M →
T (M), and since σ̇(x)m ∈ Tσ(1,m)(M) = Tm(M), it is a smooth vector field on M .

To see that σ̇ is a homomorphism of Lie algebras, we pick m ∈M and write

ϕm := σm ◦ ιG : G→M, g 7→ g−1.m

for the reversed orbit map. Then

ϕm(gh) = (gh)−1.m = h−1.(g−1.m) = ϕg
−1.m(h),

which can be written as
ϕm ◦ λg = ϕg

−1.m.

Taking the differential in 1 ∈ G, we obtain for each x ∈ L(G) = T1(G):

Tg(ϕ
m)xl(g) = Tg(ϕ

m)T1(λg)x = T1(ϕm ◦ λg)x = T1(ϕg
−1.m)x

= T1(σg
−1.m)T1(ιG)x = −T1(σϕ

m(g))x = σ̇(x)ϕm(g).

This means that the left invariant vector field xl on G is ϕm-related to the vector field σ̇(x)
on M . Therefore the Related Vector Field Lemma 1.41 implies that for x, y ∈ L(G) the
vector field [xl, yl] is ϕm-related to [σ̇(x), σ̇(y)], which leads for each m ∈M to

σ̇([x, y])m = T1(ϕm)[x, y]l(1) = T1(ϕm)[xl, yl](1) = [σ̇(x), σ̇(y)]ϕm(1) = [σ̇(x), σ̇(y)]m.

Without proof we state the analog of the integrability result for homomorphisms of Lie
algebras (cf. [HN11]).

Theorem 5.5. (Palais) Let G be a simply connected Lie group, M a smooth manifold and
β : L(G)→ V(M) be a homomorphism of Lie algebras such that, for a Lie generating subset
x1, . . . , xd ∈ L(G), the vector fields β(xj) are complete. Then there exists a unique smooth
left action σ : G×M →M with σ̇ = β.
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Clearly, the completeness of all vector fields β(x), x ∈ L(G), is necessary, so that it is a
major point of the theorem that this condition only has to be verified for a Lie generating
subset. For the Lie group G = R, the theorem simply asserts the existence of a global flow
for a complete vector field, so that it becomes a tautology.

Definition 5.6. (a) A group action σ : G×M → M is called transitive if, for m1,m2 ∈ M
there exists a g ∈ G with g.m1 = m2.

(b) Let G be a group and σ1 : G×M1 →M1 and σ2 : G×M2 →M2 two actions of G on
sets. A map f : M1 →M2 is called G-equivariant if

f(g.m) = g.f(m) holds for all g ∈ G,m ∈M1.

(c) Let σ : G ×M → M be an action of the group G on the set M . Fix m ∈ M . Then
the orbit map

σm : G→ Om ⊆M, g 7→ g.m

factors through a bijective map

σm : G/Gm = {gGm : g ∈ G} → Om, gGm 7→ g.m

which is equivariant with respect to the G-actions on G/Gm and M (Exercise).

Theorem 5.7. Let G be a Lie group and H ≤ G a closed subgroup. Then the coset space
G/H, endowed with the quotient topology, carries a natural manifold structure for which the
quotient map q : G→ G/H, g 7→ gH is a submersion, i.e., its differentials are surjective.

Moreover, σ : G×G/H → G/H, (g, xH) 7→ gxH defines a smooth action of G on G/H.

The following corollary shows that for each smooth group action, all orbits carry natural
manifold structures. Not all these manifold structures turn these orbits into submanifolds,
as the dense one-parameter groups

α : R→ T2, α(t) = (eit, ei
√

2t)

in the 2-torus shows.

Corollary 5.8. Let σ : G ×M → M be a smooth action of the Lie group G on M . Then
for each m ∈ M the orbit map σm : G → M, g 7→ g.m factors through a smooth bijective
equivariant map

ηm : G/Gm →M, gGm 7→ g.m,

whose image is the set Om.

The preceding corollary provides on each orbit Om of a smooth group action the structure
of a smooth manifold. Its dimension is given by

dim(G/Gm) = dimG− dimGm = dim L(G)− dim L(Gm) = dim σ̇(L(G))(m),

because L(Gm) is the kernel of the linear map

L(G)→ Tm(M), x 7→ σ̇(x)(m).
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In this sense we may identify the subspace σ̇(L(G))(m) ⊆ Tm(M) with the tangent space of
the orbit Om.

In some case the orbit Om may already have another manifold structure, f.i., if it is a
submanifold of M . In this case the following proposition says that this manifold structure
coincides with the one induced by identifying it with G/Gm.

Proposition 5.9. If Om is a submanifold of M , then the map

ηm : G/Gm → Om, gGm 7→ g.m

is a diffeomorphism.

Corollary 5.10. If σ : G ×M → M is a transitive smooth action of the Lie group G on
the manifold M and m ∈ M , then the orbit map ηm : G/Gm → M is a G-equivariant
diffeomorphism G/H →M .

Definition 5.11. The manifolds of the form M = G/H, where H is a closed subgroup of
a Lie group G, are called homogeneous spaces. We know already that the canonical action
of G on G/H is smooth and transitive, and the preceding corollary shows the converse, i.e.,
that each transitive action is equivalent to the action on some G/H because there exists an
equivariant diffeomorphism G/H →M .

5.2 Lie algebraic aspects of symplectic manifolds

Let (M,Ω) be a symplectic manifold. We write

symp(M,Ω) := {X ∈ V(M) : LXω = 0}

for the space of symplectic vector fields. As [LX ,LY ] = L[X,Y ] (Exercise 4.5), this is a Lie
subalgebra of V(M). The space

ham(M,Ω) := {Xf : f ∈ C∞(M)}

of Hamiltonian vector fields is contained in symp(M,Ω) (Proposition 4.33(i)), and the relation
[Xf , Xg] = X{g,f} implies that it also is a Lie subalgebra. For X ∈ symp(M,Ω) and f ∈
C∞(M) we even have

i[X,Xf ]Ω = [LX , iXf ]Ω = LX iXfΩ = LXdf = dLXf = d(Xf),

so that [X,Xf ] = XXf is also Hamiltonian. This means that

ham(M,Ω) E symp(M,Ω)

even is a Lie algebra ideal.
The subspace ham(M,ω) is the range of the linear map

Φ: C∞(M)→ symp(M,Ω), f 7→ Xf .

As Xf = (df)], the kernel of this map coincides of those functions f for which df = 0, i.e.,
which are locally constant. This means that

ker Φ = H0
dR(M).
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To identify the cokernel of Φ, we note that, for X ∈ V(M), the relation

LXΩ = d(iXΩ) + iXdΩ = d(iXΩ)

shows that X ∈ symp(M,Ω) is equivalent to the 1-form iXΩ being closed. By definition, X
is Hamiltonian, if iXΩ is exact. Therefore we have a linear map

Ψ: symp(M,Ω)→ H1
dR(M), X 7→ [iXΩ]

whose kernel coincides with im(Φ). Combining all this, we arrive at the following exact
sequence

0→ H0
dR(M) ↪→ C∞(M)

Φ−−→ ham(M,Ω)→ symp(M,Ω)
Ψ−−→H1

dR(M)→ 0.

This sequence can actually be interpreted as an exact sequence of homomorphisms of Lie
algebras if we endow H0

dR(M) and H1
dR(M) with the trivial Lie bracket. This is clear for the

inclusion of H0
dR(M) which is actually contained in the center of C∞(M):

{F,G} = 0 for F ∈ H0
dR(M), G ∈ C∞(M).

In particular, the subspace H0
dR(M) is an abelian Lie algebra.

For the map Ψ to be a homomorphism of Lie algebras, we have to verify that Ψ([X,Y ]) =
0. This follows from the exactness of the form

i[Xf ,Xg ]Ω = iX{g,f}Ω = d{g, f}.

5.3 Poisson manifolds

Definition 5.12. (a) A Poisson manifold is a pair (M, {·, ·}) consisting of a manifold M
and a Lie bracket {·, ·} on the algebra C∞(M) of smooth functions on M with the additional
property that the Leibniz rule

{f, gh} = {f, g}h+ g{f, h}

is satisfied. The bracket {·, ·} is called the Poisson bracket.
(b) A smooth map ϕ : (M, {·, ·}M ) → (N, {·, ·}N ) between Poisson manifolds is called a

Poisson map if the induced map ϕ∗ : C∞(N) → C∞(M), f 7→ f ◦ ϕ is a homomorphism of
Lie algebras, i.e. {f ◦ ϕ, g ◦ ϕ}M = {f, g}N ◦ ϕ.

Note that the Leibniz rule means that the operators

ad f : C∞(M)→ C∞(M), h 7→ {f, h}

are derivations for the natural algebra structure on C∞(M). That they are also derivations
for the Lie bracket is encoded in the Jacobi identity.

On each smooth manifold we can identify the Lie algebra der
(
C∞(M)

)
with the space of

smooth vector fields V(M) (cf. [HN11]). This correspondence is established by the bijection

V(M)→ Der(C∞(M)), X 7→ LX , LXf = Xf = df(X).
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Definition 5.13. In the special case of Poisson manifolds, we thus obtain a linear map
C∞(M) → V(M), f 7→ Xf , where Xf denotes the vector field representing the derivation
− ad f : g 7→ {g, f} of C∞(M). It follows from the Jacobi identity that the assignment
f 7→ −Xf is a homomorphism of Lie algebras. The vector field Xf ∈ V(M) is called the
Hamiltonian vector field associated to the function f .

Definition 5.14. A bivector field on M is a family Λ = (Λp)p∈M , where Λp ∈ Alt2(T ∗p (M))
is a skew-symmetric form on the cotangent space T ∗p (M), and, in local coordinates, the
functions

p 7→ Λp(α, β)

are smooth.

Lemma 5.15. If (M, {·, ·}) is a Poisson manifold, then there exists a bivector field Λ such
that

{f, g} = Λ(df, dg)

holds for f, g ∈ C∞(M).

For each p ∈M and α ∈ Tp(M)∗, we now associate a vector α] ∈ Tp(M) which is uniquely
determined by

β(α]) = Λ(β, α) for all β ∈ Tp(M)∗.

Thus we obtain a fiberwise linear map T ∗(M) → T (M), α 7→ α]. In terms of this bundle
map, we have

Xfg = {g, f} = Λ(dg, df) = dg(df ]) = (df)]g.

i.e. Xf = (df)].

Example 5.16. Let (M,Ω) be a symplectic manifold. We have already seen that

{F,G} := Ω(XF , XG) = dF (XG) = XGF

defines on M the structure of a Poisson manifold. As

{F,G} = Ω((dF )], (dG)]),

it follows that
Λp(α, β) := Ωp(α

], β])

defines the corresponding bivector field. The preceding discussion shows that the Hamiltonian
vector field XF associated to a smooth function F is defined consistently in both contexts.

Example 5.17. If (V,Λ) is a Poisson vector space, i.e. Λ: V ∗×V ∗ → R is a skew-symmetric
form which we do not assume to be non-degenerate, then

{f, g} := Λ(df, dg)

defines a Lie bracket on C∞(V ), hence turns V into a Poisson manifold.
In fact, it is clear that the bracket is skew-symmetric, bilinear and satisfies the Leibniz rule.

To check the Jacobi identity, we have to calculate d{f, g}. In the following calculation, we
view df as a function df : V → V ∗, write d2f for the corresponding function V → Hom(V, V ∗)
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and also d2fx(v, w) := d2fx(v)(w) for the symmetric bilinear form defined by f in each point
x ∈ V . In this sense, we obtain

d{f, g}v(w) = d
(
Λ(df, dg)

)
v
(w) = Λ

(
d2fv(w), dgv

)
+ Λ

(
dfv, d

2gv(w)
)

= d2fv
(
w, (dgv)

]
)
− d2gv

(
w, (dfv)

]
)

= d2fv
(
(dgv)

], w
)
− d2gv

(
(dfv)

], w
)
.

This means that d{f, g}v = −(d2f)v
(
(dgv)

]
)

+ (d2gv)
(
(dfv)

]
)
, and therefore{

{f, g}, h
}

(v) = Λ(d{f, g}, dh)(v) = Λ
(
d2fv(dgv)

]), dhv
)
− Λ

(
d2gv(dfv)

], dhv
)

= d2fv
(
(dgv)

], (dhv)
]
)
− d2gv

(
(dfv)

], (dhv)
]
)
.

Finally the symmetry of the second derivative shows that all terms in the Jacobi identity
cancel.

5.4 Hamiltonian group actions

Let M be a Poisson manifold, G a connected Lie group, and σ : G ×M → M a smooth
action. We also write g.p := σg(p) := σ(g, p). Then we have a homomorphism

σ̇ : g→ V(M) with σ̇(X)p =
d

dt t=0
σ
(

exp(−tX), p
)
.

Definition 5.18. (a) An action σ of G on the Poisson manifold M is called Hamiltonian
if there exists a homomorphism of Lie algebras ϕ : g → C∞(M) such that Xϕ(X) = −σ̇(X)
holds for all X ∈ g.

(b) If σ is a Hamiltonian action and ϕ : g→ C∞(M) the corresponding homomorphism,
then for each p ∈M the assignment X 7→ ϕ(X)(p) is linear, so that we obtain the momentum
map

Φ: M → g∗, with Φ(p)(X) = ϕ(X)(p).

Remark 5.19. The terminology momentum map comes from the following two examples.
(a) On Q = R3 we consider the action of the translation group G = R3 given by σgx =

g + x. This action lifts naturally to the action on T ∗(R3) by σ∗g(q, p) = (q + g, p). The
corresponding infinitesimal action is given by

−σ̇∗(x)(q, p) = (x, 0)

which is the Hamiltonian vector field of the function Px(q, p) =
∑3
j=1 xipi (see Exam-

ple 4.37(b)). We thus obtain the momentum map

Φ: T ∗(R3) ∼= R6 → L(G)∗ ∼= R3, Φ(q, p)(x) = Px(q, p), Φ(q, p) = p.

Therefore the momentum map Φ assigns to an element (q, p) in the phases space T ∗(R3) its
total linear momentum.

(b) On Q = R3 we consider the action of the rotation group G = SO3(R) given by
σRx = Rx. We identify its Lie algebra so3(R) with (R3,×) in such a way that

−σ̇(x)y = x× y
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(cf. Exercise 2.9).
The G-action on R3 lifts naturally to the action on T ∗(R3) by σ∗R(q, p) = (Rq,Rp). The

corresponding infinitesimal action is given by

−σ̇∗(x)(q, p) = (x× q, x× p)

which is the Hamiltonian vector field of the function

Jx(q, p) = det(x, q, p) = 〈x, q × p〉

(cf. also Example 4.37(c)). We thus obtain the momentum map

Φ: T ∗(R3)→ so3(R)∗ ∼= R3, Φ(q, p) = q × p.

Therefore the momentum map Φ assigns to an element (q, p) in the phases space its angular
momentum with respect to the origin.

Remark 5.20. (From symplectic actions to Hamiltonian actions) Let (M,Ω) be a connected
symplectic manifold and σ : G ×M → M be a smooth action of the Lie group G on M by
symplectic automorphisms, i.e., σ∗gΩ = Ω for every g ∈ G. For the corresponding vector
fields σ̇(x) we then have Lσ̇(x)Ω = 0, so that we have a homomorphism of Lie algebras

σ̇ : g = L(G)→ symp(M,Ω).

To obtain a Hamiltonian action requires to find a lift of this homomorphism to a Lie
algebra homomorphism

ϕ : g→ (C∞(M), {·, ·}).

A necessary condition for such a lift to exist is that im(σ̇(g)) ⊆ ham(M,Ω). Even if this is
the case, such a lift does not always exist. To understand the obstructions, we recall from
Subsection 5.2 that we have a short exact sequence

0→ R ∼= H0
dR(M,R)→ C∞(M)→ ham(M,Ω)→ 0.

AsM is connected, the Lie algebra C∞(M) is a one-dimensional central extension of ham(M,Ω).
Assuming that σ̇(g) ⊆ ham(M,Ω), we consider the subspace

ĝ := {(x, F ) ∈ g⊕ C∞(M) : σ̇(x) = −XF }

and observe that this is a Lie subalgebra of the direct sum g ⊕ C∞(M). Moreover, the
projection p(x, F ) := x is a surjective homomorphism whose kernel consists of all pairs
(0, F ), where F is a constant function. We thus obtain the central extension

R(0, 1)→ ĝ
p−−→g.

The existence of a homomorphic lift ϕ : g → C∞(M) is equivalent to the existence of a
splitting σ : g → ĝ. Therefore the obstruction to the existence of ϕ is a central R-extension
of g. Equivalence classes of such extensions can be measured by the Lie algebra cohomology
space H2(g,R).
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A typical example of a symplectic action which is not Hamiltonian is the translation
action

σ : R2 × R2 → R2, σg(q, p) = (q + g1, p+ g2).

This action is symplectic and the constant vector fields σ̇(x) are Hamiltonian. However, the
relation

{q, p} = 1

shows that there exists no Lie algebra homomorphism ϕ : R2 → C∞(R2) with Xϕ(x) = −σ̇(x)
for every x ∈ R2.

5.5 The Kirillov–Kostant–Souriau Poisson structure

Let g be a finite–dimensional real Lie algebra and g∗ its dual space. We will explain how to
put a Poisson structure on g∗ in such a way that the orbits Ad∗(G)α = α ◦ Ad(G) ⊆ g∗ of
the coadjoint action are symplectic submanifolds of g∗.

In the following, we will identify for f ∈ C∞(g∗) and α ∈ g∗ the derivative dfα with an
element of (g∗)∗ ∼= g.

Proposition 5.21. The assignment

{f, g}(α) := 〈α, [dfα, dgα]〉

for f, g ∈ C∞(g∗) and α ∈ g∗ defines a Poisson structure on g∗ such that

Λα(X,Y ) = α([X,Y ])

is the corresponding bivector field Λ.

Proof. It is clear that {·, ·} is skew-symmetric, bilinear, and that the Leibniz rule is satisfied.
We write

{f, g}(β) = 〈β ◦ ad(dfβ), dgβ〉 = −〈β ◦ ad(dgβ), dfβ〉.

Thus we obtain with the chain rule and the same convention as in Example 4.22 for second
derivatives:

d{f, g}β(γ) = 〈γ ◦ ad
(
dfβ
)
, dgβ〉+ 〈β ◦ ad

(
d2fβ

)
(γ), dgβ〉+ 〈β ◦ ad

(
dfβ
)
, d2gβ(γ)〉

= 〈γ, [dfβ , dgβ ]〉+ 〈β, [d2fβ(γ), dgβ)]〉+ 〈β ◦ ad
(
dfβ
)
, d2gβ(γ)〉

= 〈γ, [dfβ , dgβ ]〉 − 〈β ◦ ad
(
dgβ
)
, d2fβ(γ)〉+ 〈β ◦ ad

(
dfβ
)
, d2gβ(γ)〉

= 〈γ, [dfβ , dgβ ]〉 − d2fβ(γ)
(
β ◦ ad(dgβ)

)
+ d2gβ(γ)

(
β ◦ ad(dfβ)

)
.

This in turn leads to{
{f, g}, h

}
(β) = −〈d{f, g}β , β ◦ ad

(
dhβ

)
〉

= −〈β ◦ ad
(
dhβ

)
, [dfβ , dgβ ]〉+ d2fβ

(
β ◦ ad(dhβ)

)(
β ◦ ad(dgβ)

)
− d2gβ

(
β ◦ ad(dhβ)

)(
β ◦ ad(dfβ)

)
= −〈β,

[
dhβ , [dfβ , dgβ ]

]
〉+ d2fβ

(
β ◦ ad(dhβ)

)(
β ◦ ad(dgβ)

)
− d2gβ

(
β ◦ ad

(
dhβ

)
, β ◦ ad(dfβ)

)
.
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From this expression one reads off that the Jacobi identity for {·, ·} follows from the Jacobi
identity in g and the fact that second derivatives are symmetric bilinear forms in their last
two arguments.

Remark 5.22. We associate to X ∈ g the linear function HX : g∗ → R, α 7→ α(X). Then
dHX(α) = X for all α ∈ g∗ and therefore

{HX , HY } = [X,Y ] for X,Y ∈ g

holds for the corresponding Poisson bracket. Hence the natural map

g→ C∞(g∗), X 7→ HX

is a homomorphism of Lie algebras.
The corresponding Hamiltonian vector field is given by

XHX (α) = X](α)

and
〈X], Y 〉 = Λα(Y,X) = α([Y,X]) = (−α ◦ adX)(Y ),

so that
X] = −α ◦ adX.

The following proposition describes an interesting link between momentum maps for gen-
eral Hamiltonian actions and the Poisson structure on g∗.

Proposition 5.23. If M is a Poisson manifold, then a smooth map Φ: M → g∗ is a Poisson
map if and only if the map ϕ : g → C∞(M) defined by ϕ(X)(p) := Φ(p)(X) is a homomor-
phism of Lie algebras.

Proof. First we assume that Φ is a Poisson map. Then ϕ(X)(p) = Φ(p)(X) = (Φ∗HX)(p)
implies that

ϕ([X,Y ]) = Φ∗(H[X,Y ]) = Φ∗({HX , HY }) = {Φ∗HX ,Φ
∗HY } = {ϕ(X), ϕ(Y )},

so that ϕ is a homomorphism of Lie algebras.
Suppose, conversely, that ϕ is a homomorphism of Lie algebras and let f, g ∈ C∞(g∗).

For p ∈M we put X := dfΦ(p) and Y := dfΦ(p). Then

d(f ◦ Φ)p = dfΦ(p)dΦp = dHXdΦp = d(Φ∗HX)p = dϕ(X)p

and we thus obtain

{Φ∗f,Φ∗g}(p) = Λp
(
d(f ◦ Φ), d(g ◦ Φ)

)
= Λp

(
dϕ(X)p, dϕ(Y )p) = {ϕ(X), ϕ(Y )}(p)

= ϕ([X,Y ])(p) = 〈Φ(p), [X,Y ]〉 = {f, g}(Φ(p)).

This proves that Φ is a Poisson map.
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Corollary 5.24. If Φ: M → g∗ is a momentum map for a Hamiltonian group action, then
Φ is a Poisson map.

Corollary 5.25. If G is a Lie group with Lie algebra g, then the coadjoint action of G on
g∗ is Hamiltonian with momentum map idg∗ .

Proof. If σ(g, α) = Ad∗(g)α = α ◦Ad(g−1), then

σ̇(X)(α) = α ◦ adX = −X] = −(dHX)]

and therefore −σ̇(X) is the Hamiltonian vector field corresponding to the linear function HX

on g∗. Now the assertion follows from the fact that H[X,Y ] = {HX , HY }.

Let f ∈ g∗ and Of ⊆ g∗ the corresponding coadjoint orbit. If G is a connected group
with Lie algebra g, then we can think of Of as G/Gf , where Gf = {g ∈ G : Ad∗(g).f = f},
and thus obtain the structure of a homogeneous G-manifold on Of . The tangent space of
Of in α is given by ad∗(g).α = {α ◦ adX : X ∈ g}. We define a 2-form Ωf on Of by

Ωf (α)(α ◦ adX,α ◦ adY ) := α([X,Y ]).

Proposition 5.26. The pair (Of ,Ωf ) is a symplectic manifold and the coadjoint action of
G on Of is Hamiltonian with the inclusion Of → g∗ as momentum map.

Proof. Since α ◦ adX = 0 is equivalent to α([X, g]) = {0}, the form Ωf is non-degenerate.
We show that it is also closed.

Let q : G→ Of denote the orbit map. Then ω := q∗Ωf if a left invariant 2-form on G and
since q is a submersion, it suffices to prove that the form q∗(dΩf ) = d(q∗Ωf ) = dω vanishes,
i.e. that ω is closed. We have ω(1)(X,Y ) = f([X,Y ]). Hence dω is a left invariant 3-form

which for left invariant vector fields X̃, Ỹ , Z̃ on g with X̃(1) = X etc. satisfies

dω(X̃, Ỹ , Z̃) = X̃ω(Ỹ , Z̃)− Ỹ ω(X̃, Z̃) + Z̃ω(X̃, Ỹ )

− ω([X̃, Ỹ ], Z̃) + ω([X̃, Z̃], Ỹ )− ω([Ỹ , Z̃], X̃)

= X̃f([Y,Z])− Ỹ f([X,Z]) + Z̃f([Y,Z])

− f(
[
[X,Y ], Z

]
) + f(

[
[X,Z], Y

]
)− f(

[
[Y, Z], X

]
)

= −f(
[
[X,Y ], Z

]
+
[
[Z,X], Y

]
+
[
[Y,Z], X

]
) = 0.

Here we have used that the functions ω([X̃, Ỹ ]) = f([X,Y ]) are constant, hence annihilated
by all vector fields.

To see that the coadjoint action of G on Of is Hamiltonian with momentum map given
by Φ(α) = α for all α ∈ Of , we have to show that σ̇(X)(α) = − ad∗Xα coincides with the
Hamiltonian vector field associated to the function HX : α→ α(X). We have 〈X,α◦adY 〉 =
α([Y,X]) = Ωf (α)(α ◦ adY, α ◦ adX). Hence (dHX)] = α ◦ adX = − ad∗Xα. Further we
have

{HX , HY }(α) = Ω(dH]
X , dH

]
Y )(α) = (Ωf )α(α ◦ adX,α ◦ adY ) = α([X,Y ]),

i.e. {HX , HY } = H[X,Y ]. This proves that the action of G on Of is Hamiltonian with
momentum map given by Φ(α)(X) = α(X) for X ∈ g, α ∈ g∗.
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Corollary 5.27. If the coadjoint orbit Of is endowed with its natural symplectic structure,
then the inclusion Of → g∗ is a Poisson map.

Proof. In view of Proposition 5.26, this follows from Corollary 5.24.

Proposition 5.28. If σ is a Hamiltonian action of a connected Lie group G on the Poisson
manifold M and Φ: M → g∗ is the associated momentum map, then Φ is equivariant with
respect to the coadjoint action of G on g∗.

Proof. Since ϕ is a homomorphism of Lie algebras, the relation ϕ(Y ) = HY ◦ Φ yields
dϕ(Y )(p).v = 〈dΦ(p)v, Y 〉 for v ∈ Tp(M) and Y ∈ g. Hence

〈dΦ(p)σ̇(X)p, Y 〉 = 〈dΦpd
(
ϕ(X)

)]
p
, Y 〉 = d(ϕ(Y )

)
p

(
d(ϕ(X))]p

)
= {ϕ(X), ϕ(Y )}(p) = ϕ([X,Y ])(p) =

(
Φ(p) ◦ adX

)
(Y ) = −〈ad∗(X)

(
Φ(p)

)
, Y 〉,

i.e.
dΦ(p)σ̇(X)(p) = − ad∗(X)

(
Φ(p)

)
.

We conclude that the integral curves t 7→ (exp tX).p of the vector field −σ̇(X) on M are
mapped by Φ into integral curves of the linear vector field defined by ad∗(X) on g∗ via
t 7→ Ad∗(exp tX)p. For t = 1, we obtain Φ(expX.p) = Ad∗(expX)p, hence

Φ ◦ σexpX = Ad∗(expX) ◦ Φ.

Since G is connected, and therefore generated by exp g, we obtain Φ ◦ σg = Ad∗(g) ◦ Φ for
all g ∈ G, i.e. Φ is equivariant.

5.6 The affine Hamiltonian action of the Jacobi group

Let (V,Ω) be a symplectic vector space. The Heisenberg algebra h(V,Ω) associated with V
is defined by h(V,Ω) := V × R with the bracket

[(w, c), (w′, c′)] =
(
0,Ω(w,w′)

)
.

The associated group H(V,Ω) = V × R is given by the same set endowed with the multipli-
cation

(w, c) ∗ (w′, c′) =
(
w + w′, c+ c′ + 1

2Ω(w,w′)
)
.

Further let Sp(V,Ω) denote the group of all automorphisms of the symplectic vector space
(V,Ω), i.e.

Sp(V,Ω) = {g ∈ GL(V ) : (∀v, w ∈ V ) Ω(g.v, g.w) = Ω(v, w)}.

We call Sp(V,Ω) the symplectic group associated to (V,Ω). Then Sp(V,Ω) acts by automor-
phisms on H(V,Ω) via g.(w, c) := (g.w, c) and we thus obtain a semidirect product group

HSp(V,Ω) := H(V,Ω) o Sp(V,Ω)

called the Jacobi group associated to (V,Ω). Its Lie algebra hsp(V,Ω) is the corresponding
semidirect sum h(V,Ω) o sp(V,Ω).
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Proposition 5.29. The Jacobi group acts by σ
(
(w, c, g), v

)
:= w+ g.v on V . This action is

Hamiltonian with respect to the natural structure of a symplectic manifold on (V,Ω) and the
homomorphism ϕ : hsp(V,Ω)→ C∞(V ) given by

ϕ(w, c,A)(v) := 1
2Ω(A.v, v) + Ω(w, v) + c.

Proof. The formula for σ shows that σ̇(w, c,A)(v) = −w − A.v. For the quadratic function
F := ϕ(w, c,A), we have

dF (v)(x) = 1
2Ω(A.v, x) + 1

2Ω(A.x, v) + Ω(w, x) = Ω(A.v + w, x)

and therefore Xϕ(w,c,A)(v) = −A.v − w = σ̇(w, c,A)(v).
It remains to show that the map ϕ : hsp(V,Ω) → C∞(V ) is a homomorphism of Lie

algebras. We calculate

{ϕ(w, c,A), ϕ(w′, c′, A′)}(v) = dϕ(w′, c′, A′)
(
Xϕ(w,c,A)(v)

)
= Ω

(
A′.v + w′, Xϕ(w,c,A)(v)

)
= Ω(A′.v + w′,−A.v − w)

= Ω(A.v,A′.v) + Ω(w,A′.v) + Ω(A.v, w′) + Ω(w,w′)

= 1
2Ω
(
(AA′ −A′A).v, v

)
− Ω(A′.w, v) + Ω(A.w′, v) + Ω(w,w′)

= 1
2Ω([A,A′].v, v) + Ω(A.w′ −A′.w, v) + Ω(w,w′)

= ϕ(A.w′ −A′.w,Ω(w,w′), [A,A′])(v) = ϕ
(
[(w, c,A), (w′, c′, A′)]

)
.

This proves that ϕ is a homomorphism and hence that the action of HSp(V,Ω) on V is
Hamiltonian. Moreover, we see that hsp(V,Ω) is isomorphic to the algebra of quadratic
functions on V with respect to the Poisson bracket.

Corollary 5.30. If π : G→ Sp(V,Ω) is a linear representation of G on the symplectic vector
space and dπ : g→ sp(V,Ω) is the derived action, then the action of G on V is Hamiltonian
with momentum map given by Φ(v)(X) = 1

2Ω
(
dπ(X).v, v

)
for v ∈ V .

Proof. This follows by combining Proposition 5.29 with Lemma 5.31 below.

Lemma 5.31. If σ : G ×M → M is a Hamiltonian action of the group G on the Poisson
manifold M with momentum map ΦG and ϕ : H → G is a homomorphism of Lie groups,
then σH(h, p) := σ

(
ϕ(g), p

)
defines a Hamiltonian action of H on M with momentum map

ΦH = L(ϕ)∗ ◦ ΦG.

Proof. For X ∈ h, we have

σ̇H(X) = σ̇
(
L(ϕ)X

)
= Xϕ(L(ϕ)X) = XϕH(X),

where ϕH = ϕ ◦ L(phi) : h → C∞(M) is a homomorphism of Lie algebras such that ΦH =
L(ϕ)∗ ◦ Φ is the corresponding momentum map.
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