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Bulk-boundary correspondence for d “ 1
SSH model (Su-Schrieffer-Heeger 1980, polyacetelyn polymer)

H “ 1
2pσ1 ` iσ2q b S ` 1

2pσ1 ´ iσ2q b S˚ ` µσ2 b 1

where S bilateral shift on `2pZq, µ P R mass and Pauli matrices
In their grading

H “

˜

0 S ´ iµ
S˚ ` iµ 0

¸

on `2pZq b C2

Off-diagonal – chiral symmetry σ˚3Hσ3 “ ´H. In Fourier space:

H “

ż ‘

r´π,πq
dk Hk , Hk “

˜

0 e´ik ´ iµ
eik ` iµ 0

¸

Topological invariant for µ “ ´1,1

Windpk P r´π, πq ÞÑ eik ` iµq “ δpµ P p´1,1qq
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Chiral bound states
Half-space Hamiltonian

pH “

˜

0 pS ´ iµ
pS˚ ` iµ 0

¸

on `2pNq b C2

where pS unilateral right shift on `2pNq

Still chiral symmetry σ˚3 pHσ3 “ ´
pH

If µ “ 0, simple bound state at E “ 0 with eigenvector ψ0 “
`

|0y
0

˘

Perturbations, e.g. in µ, cannot move or lift this bound state ψµ!

Positive chirality conserved: σ3ψµ “ ψµ

Theorem (Basic bulk-boundary correspondence (BBC))

If pP projection on bound states of pH, then

Windpk ÞÑ eik ` iµq “ TrppPσ3q
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Generalizations

Theorem (Disordered Noether-Gohberg-Krein Theorem)

If H “
`0 A˚

A 0

˘

and Π Hardy projection on half-line, then P-almost surely

i Eω Tr x0|A´1
ω irX ,Aωs|0y “ ´ IndpΠAωΠq “ TrppPσ3q

‚ Even mobility gap regime can be attained (Graf-Shapiro)

‚ K -theoretic interpretation via boundary maps of Toeplitz extension

‚ Leads to higher dimensional generalizations (book with Prodan)

In this talk:

2d graphene Hamiltonian is also chiral

but has only pseudogap (vanshing DOS at Fermi level)

This semimetal can have flat band of edge states!

Similar BBC? How about even higher dimension?
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Model for graphene
On honeycomb lattice “ decorated triangular lattice, so on `2pZ2q b C2

H “

˜

0 S1 ` S˚1 S2 ` 1
S˚1 ` S˚2 S1 ` 1 0

¸

where S1,S2 shifts on `2pZ2q. Clearly chiral σ3Hσ3 “ ´H. Fourier:

H –

ż ‘

T2
dk

˜

0 eik1 ` eipk2´k1q ` 1
e´ik1 ` e´ipk2´k1q ` 1 0

¸

Dirac points k˘ “ p
p3˘1qπ

3 ,0q DOS vanishes at E “ 0 (pseudogap)
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Edges

Zigzag boundary – replace S1 by unilateral shift pS1

Armchair boundary – replace S2 by unilateral shift pS2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag
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Edge states and BBC for surface DOS

ξ “
`

ξ1
ξ2

˘

P S1 direction perpendicular to boundary (possibly irrational)

pH “ Πξ H Πξ half-space restriction of graphene Hamiltonian

Kernel projection pP “ pP` ` pP´ on flat band of surface states
pT trace per unit volume along the boundary

bulk Fermi unitary U “ pS1 ` S˚1 S2 ` 1q|S1 ` S˚1 S2 ` 1|´1

Theorem (with Tom Stoiber)

i T pU´1∇ξUq “ pT ppP`q ´ pT ppP´q

where T pBq “ E Trpx0|B|0yq and ∇ξ “ ξ ¨∇ with ∇jB “ irXj ,Bs

Moreover, result stable under chiral surface disorder

Proves existence of edge states (generalizes Feffermann, Weinstein)
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Singularities of Fermi unitary and Besov spaces
Fourier U –

ş

dk Upkq with

Upkq “
eik1 ` eipk2´k1q ` 1
|eik1 ` eipk2´k1q ` 1|

Vorticities at Dirac points, not even continuous, so U R CpT2q

But U lies in Besov B1
1,1pT

2q, namely for all ξ:

ż 1

0

dt
t2

ż

dk
ˇ

ˇUpk ` ξtq ` Upk ´ ξtq ´ 2 Upkq
ˇ

ˇ ă 8

Similarly U P B1{2
2,2 pT

2q “ H1{2pT2q. Enough for index theory because:

Peller (1980’s):
Hankel operators on T1 with Besov symbols have traceclass properties

f P B1{p
p,p pT1q ðñ Πf p1´ Πq P Lp Schatten ideal pΠ Hardy proj.)

Implication: weak invariant i T pU´1∇Uq well-defined and index thm
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Further remarks

i T pU´1∇ξUq “ i T pU´1∇1Uq ξ1 ` i T pU´1∇2Uq ξ2 “
1
3
ξ2

Latter in graphene (ùñ difference zigzag ξ2 “ 1 and armchair ξ2 “ 0)

Value 1
3 is not topological (it is relative distance between Dirac points)!

Pairing xrξ ¨X s, rUs1y “ i T pU´1∇ξUq over huge algebra C˚pB1{2
2,2 X L8q

Thus values not in discrete range of rUs1 P K1pAq ÞÑ xrξ ¨ X s, rUs1y

Changing H continuously, changes value of i T pU´1∇ξUq continuously

Only BBC equality always holds and is hence topological

Similar situation: Levinson’s theorem for scattering on hypersurfaces

Next: extension to disordered chiral systems and higher dimension

Hypothesis: pseudo-gap or Anderson localization at E “ 0
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Higher dimension and disorder
Disordered d-dimensional rotation C˚-algebra A “ CpΩq ¸B Zd

Trace per unit volume T ; M “ L8pA, T q. Derivations p∇1, . . . ,∇dq

ξ P Sd´1 direction perpendicular to hypersurface, pT trace along it

Theorem (with Tom Stoiber)
H P M2LpAq with chiral symmetry σ3Hσ3 “ ´H

Suppose bulk H either has pseudo-gap at 0, namely γ ą 1 with

T
`

χp|H| ď εq
˘

ď Cγ ε
γ

and or has mobility gap in p´ε0, ε0q, that is, for some s P p0,1q

sup
|ε|ďε0

E }x0|pH ´ ε` i 0q´1|my}s ď Cs e´βs|m|

Then, for Fermi unitary U and kernel projection pP “ pP`` pP´ as above,

i T pU´1∇ξUq “ pT ppP`q ´ pT ppP´q
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Structural elements of proof

‚ harmonic analysis on semifinite W˚-algebras with Rd -action

‚ based on (dynamical) Arveson spectrum

‚ construction of non-commutative Besov spaces

‚ Peller criteria for traceclass properties

‚ index theorems for invariants with Besov symbols (beyond Ck )

‚ reformulation of Breuer-Fredholm indices as boundary invariants

‚ pseudogap and mobility gap imply Besov properties

rather heavy artillery - but intrinsically interesting pure math

Covers gapped models, but applies to others, e.g. Weyl semimetals

10 slides on proof, first numerics and spectral localizer in semimetals
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Stacked SSH as chiral 2d toy model
SSH in direction 1 with coupling in direction 2 and chiral randomness

H “

˜

0 S1 ´ µ

S˚1 ´ µ 0

¸

´ δ

˜

0 S2 ` S˚2
S2 ` S˚2 0

¸

` λ
ÿ

nPZ2

vn

˜

0 1
1 0

¸

where vn i.i.d. random variables with uniform distribution in r´1
2 ,

1
2 s

(2 or 4) Dirac points for periodic model if k1 “ 0, π, 2δ cospk2q ` µ “ ˘1
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λ “ 0.2, µ “ 1.3, δ “ 0.3 and volume r´ρ, ρs2 with ρ “ 20
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Central DOS and one of the edge states
Zoom into the central DOS Same parameters as above
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Central DOS Ham

There are 28 “ 2 ¨ 14 (approximate) zero modes of H

Corresponding eigenstates only on two opposite edges

(edges weakly coupled, edge states vanish on other edges!)

Edge state dens. “ 14
41 « iT pU´1∇1Uq “

ş dk2
2π χpµ` 2δ cospk2q ă 1q « 1

3

Here first « is precisely the equality in the theorem (1 chiral sector)
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Spectral localizer (with Terry Loring)

Lκ “

˜

´H κD˚

κD H

¸

where D “
řd

j“1 ΓjXj Dirac and κ ą 0 tuning parameter

Lκ,ρ finite volume restriction to r´ρ, ρsd with Dirichlet conditions

Theorem (with Terry Loring)
d even and Γd “ i 1 (so D “ X1 ` iX2 for d “ 2)
Suppose H has gap g around 0 and let P “ χpH ă 0q Fermi projection

ChdpPq “
1
2

SigpLκ,ρq

provided that
κ ă

12 g3

}H} }rD,Hs}
ρ ą

2 g
κ

Localizes topological information in spectral manner by Dirac trap
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Variations of spectral localizer

In odd dimension for chiral systems (first paper with Terry Loring)

Also works in mobility gap regime
(numerics with Lozano-Viesca and Schober, no proof yet)

Works for spin Chern numbers and alike
(”approximate conservation laws and symmetries”, with Nora Doll)

Works for Z2-indices (guessed by Terry Loring)
(”signs of Pfaffians of skew spectral localizer”, with Nora Doll)

Extends to semifinite setting for weak invariants (with Tom Stoiber)

Allows to study invariants in semimetals (explained next):

Compute weak winding numbers for above theorem

Counts Dirac and Weyl points in disordered semimetals
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Weak spectral localizer for weak winding numbers

Lweak
κ “

˜

κX1 A˚per

Aper ´κX1

¸

Hper “

˜

0 A˚per

Aper 0

¸

Hper stacked SSH H periodized in 2-direction κ “ 0.1
As above λ “ 0.2, µ “ 1.3, δ “ 0.3 and volume r´ρ, ρs2 with ρ “ 20

-3 -2 -1 0 1 2 3
0

10

20

30

40

50

DOS WeakSpecLoc

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

2.0

Central DOS WeakSpecLoc

Half-signature of Lweak
κ,ρ « 14

weak winding number iT pU´1∇1Uq “half-signature density« 14
41 «

1
3
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Approximate zero modes of spectral localizer

Lκ “

˜

´H κ12 b pX1 ` ıX2q

κ12 b pX1 ´ ıX2q H

¸

“ ´σ1 b 1 Lκ σ1 b 1

Vanishing signature (Chern number vanishes due to chiral symmetry)
Lκ,ρ restriction to r´ρ, ρs2 Stacked SSH as above and κ “ 0.07
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Low-lying DOS of Spectral Localizer

Approximate kernel of multiplicity 2 = number of Dirac points
Very large gap to first excited «

?
κ « 0.26 (as for Dirac Ham.)

Gap above groundstate as for Dirac Hamiltonian (explicit computation)
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Ground states of spectral localizer

Plot of modulus (over 4-dim fiber) of one of the two ground states:
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Low-lying DOS of Spectral Localizer

lowest eigenvalue ν « C λ with C very small (perturbation theory)

For λ “ 0, one has ν « e´1{κ (phase space tunnelling)

Approximate kernel dimension counts number of Dirac points

Conclusion: Concept of number of Dirac points stable under disorder

Moreover: existence of Dirac points ùñ non-vanishing weak windings
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Why it works so well (for general dimension d):

In Fourier space:

FL2
κF˚ “ ´κ2

d
ÿ

j“1

B2
kj
`

˜

pHk q
2 κ

řd
j“1 ΓjpBkj Hk q

κ
řd

j“1 ΓjpBkj Hk q pHk q
2

¸

Second oder differential operator on L2pT2,C2Lq

As in semi-classical analysis with ~ “ κ

IMS localization isolates Dirac points

At each Dirac point explicitly solvable Dirac Hamiltonians

Each Dirac Hamiltonian has simple zero mode and a gap of order κ

Theorem
Lκ has as many eigenvalues ď κ as H has Dirac points
Next excited level is Op

?
κq
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Weyl points of 3d systems (same strategy)

H “ Hp`ip ` δ

˜

0 S3 ` S˚3
S3 ` S˚3 0

¸

` HWeyl shift ` λHdis

HWeyl shift shifts Weyl points to different energies (no pseudogap)
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Low-lying DOS of Spectral Localizer

ρ “ 7, so cube of size 15, δ “ 0.6, µ “ 1.2, λ “ 0.5, κ “ 0.1

Approximate kernel dimension counts number of Weyl points

Existence of Weyl points ùñ non-vanishing weak Chern numbers

ùñ surface currents (as in QHE, extension of Besov techniques)
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Constructions for definition of Besov spaces:

Semifinite trace T gives von Neumann algebra M

Non-commutative spaces X “ LppMq, p ě 1, Banach spaces

L2pMq is GNS-Hilbert space of T

Rn-action α on M which leaves T invariant

T -invariance ùñ α extends isometrically to action β on X “ LppMq

For f P L1pRnq and x P X define βf pxq as Riemann integral

βf pxq “
ż

Rn
f p´tqβtpxqdt

Then for f P FApRnq “ FL1pRnq define Fourier multiplier pf ˚ P BpX q by

pf ˚ x “ βF´1f pxq

σpxq “ Arveson spectrum “ tλ P R̂ : f pλq “ 0 if pf ˚ x “ 0, f P FL1u
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Non-commutative Besov spaces:
X Banach space with isometric Rn-action β on X (above X “ LppMq)

Given smooth ϕ : RÑ r0,1s supported by r´2,´2´1s Y r2´1,2s and
ÿ

jPZ
ϕp2´jxq “ 1

Littlewood-Payley dyadic decomposition pWjqjPN by

Wj “ ϕp|2´j ¨ |q for j ą 0 , W0 “ 1´
ÿ

ją0

Wj

Now:

Bs
qpX q “

!

x P X : }x}Bs
qpXq “

´

ÿ

jě0

2qsj ‖xWj ˚ x‖q
X

¯
1
q
ă 8

)

Set
Bs

p,qpMq “ Bs
qpL

ppMqq
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Properties of Besov spaces:
Proposition
Definition of Bs

qpX q independent of choice of ϕ
pBs

qpX q, } . }Bs
qpXqq Banach space for s P R and q P r1,8q

An equivalent norm is given by

}x}
rBs

qpXq
“ }x}X `

˜

ż

r0,1s
t´sq ωN

X px , tq
q dt

t

¸
1
q

where

ωN
X px , tq “ sup

|r |ďt
}∆N

r pxq}X , N ě s

with finite difference operator ∆t : X Ñ X given by

∆tpxq “ βtpxq ´ x

Corollary
For Bs

p,qpMq “ Bs
qpLppMqq and s P r0,1s, Bs

p,qpMq XM is a ˚-algebra
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More constructions:
Crossed product M¸α Rn with semifinite trace pT (via Hilbert algebras)

In application n “ 1: pT is trace per unit volume along the boundary

W ˚-crossed product defined in regular representation on L2pRn,Hq

N “ L8pM¸α Rn, pT q “ M¸α Rn Ă BpL2pRn,Hqq

Contains bd. Borel functions of D “ pD1, . . . ,Dnq “ iBt on L2pRn,Hq

Furthermore: Lp-spaces LppN , pT q for p ě 1

Irrep of complex Clifford algebra generated by Γ1, . . . , Γn P M2N with

tΓi , Γju “ 0 , Γ2
j “ 1

Introduce Dirac operator affiliated with M2NpN q

D “

n
ÿ

j“1

Γj b Dj
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Peller criterion for Hankel operators:
Hardy projection Π “ χpD ą 0q in M2NpN q, but not LppM2NpN q,Trb pT q

Now for ”symbol” A PM, Toeplitz and Hankel operators in M2NpN q are

TA “ Π A Π , HA “ Π A p1´ Πq

Theorem

For all p ą n and A PMX Bn{p
p,p pMq, one has HA P LppM2NpN q,Trb pT q

For n “ 1, also p “ 1 is sufficient

Proof: explicit calculations for p “ 1

L2-estimates for weighted Hankels with symbol Bp{2
2,2 for p ą 2

Involved estimates on weighted Hankels for p “ 8

Intricate application à la Peller of analytic interpolation (e.g. Lunardi) l

Classical case is n “ 1 and M “ L8pRq with αtpf qpyq “ f py ` tq
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Index theorem

Theorem
pM, T q semifinite von Neumann with Rn-action α leaving T invariant

Generators of α on M denoted by ∇1, . . . ,∇n

Let n be odd and unitary U PM with U ´ 1 P Bn{pn`1q
n`1,n`1, then

cn
ÿ

σPSn

p´1qσ T
´

n
ź

j“1

U´1∇σpjqU
¯

“ pT -Ind
`

Π U Π` p1´ Πq
˘

where semifinite index of pT -Breuer-Fredholm T P M2NpN q is

pT -IndpT q “ pT pKerpT qq ´ pT pKerpT ˚qq

Similar results for n even

Important: no differentiability assumption (as Lesch, Wahl for n “ 1)
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Comments:
Proof: uses Peller criterion
Geometric identities like Connes’ triangle identity
Semi-finite Calderon-Fedosov formula for index l

Application: solid state systems with disorder probability space

M “ L8pCpΩq ¸B Zd ,Pq

with action α given by n-dimensional subgroup of dual Td -action

Case n “ d : previous index theorem for strong invariants
(uses Takai-Takesaki duality)

For n “ 1: geometric interpretation of Π as half-space projection
ùñ surface states (next slide)

For 1 ă n ă d : still under investigation, but likely general BBC
(as in Prodan/Schulz-Baldes)
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Surface states via index theorem
H chiral Hamiltonian and pH “ ΠHΠ with polar decompositions

sgnpHq “

˜

0 U
U˚ 0

¸

, sgnppHq “

˜

0 pU
pU˚ 0

¸

If (i) U P B1{2
2,2 pMq , (ii) pU ´ ΠUΠ is pT -compact , (iii) physical rep.,

pT ppP` ´ pP´q “ pT pσ3 KerppHqq “ pT -IndppUq “ pT -IndpΠUΠq

and then index theorem implies Theorem in first part

Tough analytical issue: pseudogap or mobility gap imply (i) and (ii)

One main idea is that γ-pseudogap condition implies for p ą 0

H´1 P LppMq and }H´1 ´ pH ` zq´1}p ď C|=mpzq|pγ´pq{p

Used to estimate Π sgnpHqΠ´ sgnppHq after functional calculus
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Constructions for definition of Besov spaces:

Semifinite trace T gives von Neumann algebra M

Non-commutative spaces X “ LppMq, p ě 1, Banach spaces

L2pMq is GNS-Hilbert space of T

Rn-action α on M which leaves T invariant

T -invariance ùñ α extends isometrically to action β on X “ LppMq

For f P L1pRnq and x P X define βf pxq as Riemann integral

βf pxq “
ż

Rn
f p´tqβtpxqdt

Then for f P FApRnq “ FL1pRnq define Fourier multiplier pf ˚ P BpX q by

pf ˚ x “ βF´1f pxq

σpxq “ Arveson spectrum “ tλ P R̂ : f pλq “ 0 if pf ˚ x “ 0, f P FL1u

Flat bands of surface states 29 / 36



Non-commutative Besov spaces:
X Banach space with isometric Rn-action β on X (above X “ LppMq)

Given smooth ϕ : RÑ r0,1s supported by r´2,´2´1s Y r2´1,2s and
ÿ

jPZ
ϕp2´jxq “ 1

Littlewood-Payley dyadic decomposition pWjqjPN by

Wj “ ϕp|2´j ¨ |q for j ą 0 , W0 “ 1´
ÿ

ją0

Wj

Now:

Bs
qpX q “

!

x P X : }x}Bs
qpXq “

´

ÿ

jě0

2qsj ‖xWj ˚ x‖q
X

¯
1
q
ă 8

)

Set
Bs

p,qpMq “ Bs
qpL

ppMqq
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Properties of Besov spaces:
Proposition
Definition of Bs

qpX q independent of choice of ϕ
pBs

qpX q, } . }Bs
qpXqq Banach space for s P R and q P r1,8q

An equivalent norm is given by

}x}
rBs

qpXq
“ }x}X `

˜

ż

r0,1s
t´sq ωN

X px , tq
q dt

t

¸
1
q

where

ωN
X px , tq “ sup

|r |ďt
}∆N

r pxq}X , N ě s

with finite difference operator ∆t : X Ñ X given by

∆tpxq “ βtpxq ´ x

Corollary
For Bs

p,qpMq “ Bs
qpLppMqq and s P r0,1s, Bs

p,qpMq XM is a ˚-algebra
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More constructions:
Crossed product M¸α Rn with semifinite trace pT (via Hilbert algebras)

In application n “ 1: pT is trace per unit volume along the boundary

W ˚-crossed product defined in regular representation on L2pRn,Hq

N “ L8pM¸α Rn, pT q “ M¸α Rn Ă BpL2pRn,Hqq

Contains bd. Borel functions of D “ pD1, . . . ,Dnq “ iBt on L2pRn,Hq

Furthermore: Lp-spaces LppN , pT q for p ě 1

Irrep of complex Clifford algebra generated by Γ1, . . . , Γn P M2N with

tΓi , Γju “ 0 , Γ2
j “ 1

Introduce Dirac operator affiliated with M2NpN q

D “

n
ÿ

j“1

Γj b Dj

Flat bands of surface states 32 / 36



Peller criterion for Hankel operators:
Hardy projection Π “ χpD ą 0q in M2NpN q, but not LppM2NpN q,Trb pT q

Now for ”symbol” A PM, Toeplitz and Hankel operators in M2NpN q are

TA “ Π A Π , HA “ Π A p1´ Πq

Theorem

For all p ą n and A PMX Bn{p
p,p pMq, one has HA P LppM2NpN q,Trb pT q

For n “ 1, also p “ 1 is sufficient

Proof: explicit calculations for p “ 1

L2-estimates for weighted Hankels with symbol Bp{2
2,2 for p ą 2

Involved estimates on weighted Hankels for p “ 8

Intricate application à la Peller of analytic interpolation (e.g. Lunardi) l

Classical case is n “ 1 and M “ L8pRq with αtpf qpyq “ f py ` tq

Flat bands of surface states 33 / 36



Index theorem

Theorem
pM, T q semifinite von Neumann with Rn-action α leaving T invariant

Generators of α on M denoted by ∇1, . . . ,∇n

Let n be odd and unitary U PM with U ´ 1 P Bn{pn`1q
n`1,n`1, then

cn
ÿ

σPSn

p´1qσ T
´

n
ź

j“1

U´1∇σpjqU
¯

“ pT -Ind
`

Π U Π` p1´ Πq
˘

where semifinite index of pT -Breuer-Fredholm T P M2NpN q is

pT -IndpT q “ pT pKerpT qq ´ pT pKerpT ˚qq

Similar results for n even

Important: no differentiability assumption (as Lesch, Wahl for n “ 1)

Flat bands of surface states 34 / 36



Comments:
Proof: uses Peller criterion
Geometric identities like Connes’ triangle identity
Semi-finite Calderon-Fedosov formula for index l

Application: solid state systems with disorder probability space

M “ L8pCpΩq ¸B Zd ,Pq

with action α given by n-dimensional subgroup of dual Td -action

Case n “ d : previous index theorem for strong invariants
(uses Takai-Takesaki duality)

For n “ 1: geometric interpretation of Π as half-space projection
ùñ surface states (next slide)

For 1 ă n ă d : still under investigation, but likely general BBC
(as in Prodan/Schulz-Baldes)
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Surface states via index theorem
H chiral Hamiltonian and pH “ ΠHΠ with polar decompositions

sgnpHq “

˜

0 U
U˚ 0

¸

, sgnppHq “

˜

0 pU
pU˚ 0

¸

If (i) U P B1{2
2,2 pMq , (ii) pU ´ ΠUΠ is pT -compact , (iii) physical rep.,

pT ppP` ´ pP´q “ pT pσ3 KerppHqq “ pT -IndppUq “ pT -IndpΠUΠq

and then index theorem implies Theorem in first part

Tough analytical issue: pseudogap or mobility gap imply (i) and (ii)

One main idea is that γ-pseudogap condition implies for p ą 0

H´1 P LppMq and }H´1 ´ pH ` zq´1}p ď C|=mpzq|pγ´pq{p

Used to estimate Π sgnpHqΠ´ sgnppHq after functional calculus
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