Flat bands of edge states via weak invariants of semimetals

Hermann Schulz-Baldes, Tom Stoiber Erlangen

December 2020

Flat bands of surface states

Bulk-boundary correspondence for d = 1

SSH model (Su-Schrieffer-Heeger 1980, polyacetelyn polymer)

$$H = \frac{1}{2}(\sigma_1 + i\sigma_2) \otimes S + \frac{1}{2}(\sigma_1 - i\sigma_2) \otimes S^* + \mu \sigma_2 \otimes \mathbf{1}$$

where S bilateral shift on $\ell^2(\mathbb{Z})$, $\mu \in \mathbb{R}$ mass and Pauli matrices In their grading

$$H = \begin{pmatrix} 0 & S - i\mu \\ S^* + i\mu & 0 \end{pmatrix} \quad \text{on } \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2$$

Off-diagonal \cong chiral symmetry $\sigma_3^*H\sigma_3 = -H$. In Fourier space:

$$H = \int_{[-\pi,\pi)}^{\oplus} dk \, H_k \qquad , \qquad H_k = \begin{pmatrix} 0 & e^{-ik} - i\mu \\ e^{ik} + i\mu & 0 \end{pmatrix}$$

Topological invariant for $\mu \neq -1, 1$

Wind
$$(k \in [-\pi, \pi) \mapsto \boldsymbol{e}^{ik} + i\mu) = \delta(\mu \in (-1, 1))$$

Chiral bound states

Half-space Hamiltonian

$$\widehat{H} = \begin{pmatrix} 0 & \widehat{S} - i\mu \\ \widehat{S}^* + i\mu & 0 \end{pmatrix} \quad \text{on } \ell^2(\mathbb{N}) \otimes \mathbb{C}^2$$

where \hat{S} unilateral right shift on $\ell^2(\mathbb{N})$ Still chiral symmetry $\sigma_3^* \hat{H} \sigma_3 = -\hat{H}$

If $\mu = 0$, simple bound state at E = 0 with eigenvector $\psi_0 = {\binom{|0\rangle}{0}}$ Perturbations, *e.g.* in μ , cannot move or lift this bound state ψ_{μ} ! Positive chirality conserved: $\sigma_3\psi_{\mu} = \psi_{\mu}$

Theorem (Basic bulk-boundary correspondence (BBC)) If \hat{P} projection on bound states of \hat{H} , then Wind($k \mapsto e^{ik} + i\mu$) = Tr($\hat{P}\sigma_3$)

Generalizations

Theorem (Disordered Noether-Gohberg-Krein Theorem) If $H = \begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}$ and Π Hardy projection on half-line, then \mathbb{P} -almost surely $i \mathbf{E}_{\omega} \operatorname{Tr} \langle 0 | A_{\omega}^{-1} i[X, A_{\omega}] | 0 \rangle = -\operatorname{Ind}(\Pi A_{\omega} \Pi) = \operatorname{Tr}(\widehat{P}\sigma_3)$

- Even mobility gap regime can be attained (Graf-Shapiro)
- K-theoretic interpretation via boundary maps of Toeplitz extension
- Leads to higher dimensional generalizations (book with Prodan)

In this talk:

- 2d graphene Hamiltonian is also chiral
- but has only pseudogap (vanshing DOS at Fermi level)
- This semimetal can have flat band of edge states!

Similar BBC? How about even higher dimension?

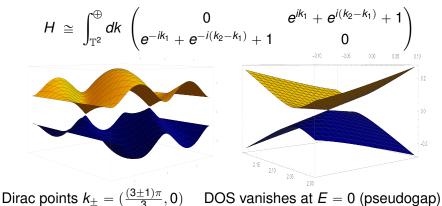
Flat bands of surface states

Model for graphene

On honeycomb lattice = decorated triangular lattice, so on $\ell^2(\mathbb{Z}^2)\otimes \mathbb{C}^2$

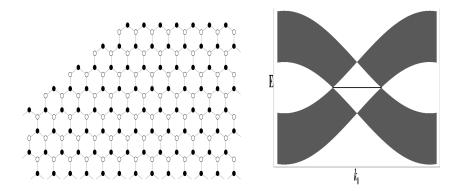
$$H = \begin{pmatrix} 0 & S_1 + S_1^* S_2 + 1 \\ S_1^* + S_2^* S_1 + 1 & 0 \end{pmatrix}$$

where S_1, S_2 shifts on $\ell^2(\mathbb{Z}^2)$. Clearly chiral $\sigma_3 H \sigma_3 = -H$. Fourier:



Flat bands of surface states

Edges



Zigzag boundary \cong replace S_1 by unilateral shift \hat{S}_1

Armchair boundary \cong replace S_2 by unilateral shift \widehat{S}_2

Fact (Saito, Dresselhaus et al. 1988): edge states only for Zigzag

Edge states and BBC for surface DOS

 $\xi = {\xi_1 \choose \xi_2} \in \mathbb{S}^1$ direction perpendicular to boundary (possibly irrational) $\hat{H} = \prod_{\xi} H \prod_{\xi}$ half-space restriction of graphene Hamiltonian Kernel projection $\hat{P} = \hat{P}_+ + \hat{P}_-$ on flat band of surface states \hat{T} trace per unit volume along the boundary bulk Fermi unitary $U = (S_1 + S_1^* S_2 + 1)|S_1 + S_1^* S_2 + 1|^{-1}$

Theorem (with Tom Stoiber)

$$i \mathcal{T}(U^{-1} \nabla_{\xi} U) = \hat{\mathcal{T}}(\hat{P}_{+}) - \hat{\mathcal{T}}(\hat{P}_{-})$$

where $\mathcal{T}(B) = \mathbf{E} \operatorname{Tr}(\langle 0|B|0 \rangle)$ and $\nabla_{\xi} = \xi \cdot \nabla$ with $\nabla_{j}B = i[X_{j}, B]$

Moreover, result stable under chiral surface disorder

Proves existence of edge states (generalizes Feffermann, Weinstein)

Singularities of Fermi unitary and Besov spaces Fourier $U \cong \int dk \ U(k)$ with

$$U(k) = \frac{e^{ik_1} + e^{i(k_2 - k_1)} + 1}{|e^{ik_1} + e^{i(k_2 - k_1)} + 1|}$$

Vorticities at Dirac points, not even continuous, so $U \notin C(\mathbb{T}^2)$ But *U* lies in Besov $B_{1,1}^1(\mathbb{T}^2)$, namely for all ξ :

$$\int_0^1 \frac{dt}{t^2} \int dk \left| U(k+\xi t) + U(k-\xi t) - 2 U(k) \right| < \infty$$

Similarly $U \in B_{2,2}^{1/2}(\mathbb{T}^2) = H^{1/2}(\mathbb{T}^2)$. Enough for index theory because: **Peller (1980's):**

Hankel operators on \mathbb{T}^1 with Besov symbols have traceclass properties $f \in B^{1/p}_{p,p}(\mathbb{T}^1) \iff \Pi f(\mathbf{1} - \Pi) \in \mathcal{L}^p$ Schatten ideal (Π Hardy proj.)

Implication: weak invariant $i \mathcal{T}(U^{-1} \nabla U)$ well-defined and index thm

Further remarks

 $i \mathcal{T}(U^{-1}\nabla_{\xi}U) = i \mathcal{T}(U^{-1}\nabla_{1}U)\xi_{1} + i \mathcal{T}(U^{-1}\nabla_{2}U)\xi_{2} = \frac{1}{3}\xi_{2}$

Latter in graphene (\Longrightarrow difference zigzag $\xi_2 = 1$ and armchair $\xi_2 = 0$) Value $\frac{1}{3}$ is **not** topological (it is relative distance between Dirac points)! Pairing $\langle [\xi \cdot X], [U]_1 \rangle = i \mathcal{T}(U^{-1} \nabla_{\xi} U)$ over huge algebra $C^*(B_{2,2}^{1/2} \cap L^{\infty})$ Thus values **not** in discrete range of $[U]_1 \in K_1(\mathcal{A}) \mapsto \langle [\xi \cdot X], [U]_1 \rangle$ Changing *H* continuously, changes value of $i \mathcal{T}(U^{-1} \nabla_{\xi} U)$ continuously Only BBC equality always holds and is hence topological

Similar situation: Levinson's theorem for scattering on hypersurfaces

Next: extension to disordered chiral systems and higher dimension

Hypothesis: pseudo-gap or Anderson localization at E = 0

Higher dimension and disorder

Disordered *d*-dimensional rotation C^* -algebra $\mathcal{A} = C(\Omega) \rtimes_{\mathbf{B}} \mathbb{Z}^d$ Trace per unit volume $\mathcal{T} \rightsquigarrow \mathcal{M} = L^{\infty}(\mathcal{A}, \mathcal{T})$. Derivations $(\nabla_1, \dots, \nabla_d)$ $\xi \in \mathbb{S}^{d-1}$ direction perpendicular to hypersurface, $\widehat{\mathcal{T}}$ trace along it

Theorem (with Tom Stoiber)

 $H \in M_{2L}(\mathcal{A})$ with chiral symmetry $\sigma_3 H \sigma_3 = -H$

Suppose bulk H either has pseudo-gap at 0, namely $\gamma > 1$ with

$$\mathcal{T}(\chi(|\mathcal{H}| \leq \epsilon)) \leq C_{\gamma} \epsilon^{\gamma}$$

and or has mobility gap in $(-\epsilon_0, \epsilon_0)$, that is, for some $s \in (0, 1)$

$$\sup_{|\epsilon| \leq \epsilon_0} \mathbf{E} \|\langle 0|(H-\epsilon+i0)^{-1}|m\rangle\|^s \leq C_s e^{-\beta_s|m|}$$

Then, for Fermi unitary U and kernel projection $\hat{P} = \hat{P}_+ + \hat{P}_-$ as above,

$$i \mathcal{T}(U^{-1} \nabla_{\xi} U) = \hat{\mathcal{T}}(\hat{P}_{+}) - \hat{\mathcal{T}}(\hat{P}_{-})$$

Structural elements of proof

- harmonic analysis on semifinite W*-algebras with \mathbb{R}^d -action
- based on (dynamical) Arveson spectrum
- construction of non-commutative Besov spaces
- Peller criteria for traceclass properties
- index theorems for invariants with Besov symbols (beyond C^k)
- reformulation of Breuer-Fredholm indices as boundary invariants
- pseudogap and mobility gap imply Besov properties

rather heavy artillery - but intrinsically interesting pure math

Covers gapped models, but applies to others, e.g. Weyl semimetals

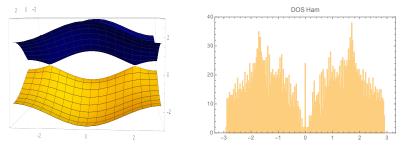
10 slides on proof, first numerics and spectral localizer in semimetals

Stacked SSH as chiral 2d toy model

SSH in direction 1 with coupling in direction 2 and chiral randomness

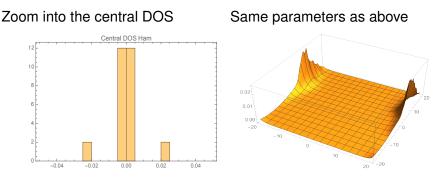
$$H = \begin{pmatrix} 0 & S_1 - \mu \\ S_1^* - \mu & 0 \end{pmatrix} - \delta \begin{pmatrix} 0 & S_2 + S_2^* \\ S_2 + S_2^* & 0 \end{pmatrix} + \lambda \sum_{n \in \mathbb{Z}^2} v_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where v_n i.i.d. random variables with uniform distribution in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (2 or 4) Dirac points for periodic model if $k_1 = 0, \pi, 2\delta \cos(k_2) + \mu = \pm 1$



 $\lambda = 0.2, \, \mu = 1.3, \, \delta = 0.3 \text{ and volume } [-\rho, \rho]^2 \text{ with } \rho = 20$

Central DOS and one of the edge states



There are $28 = 2 \cdot 14$ (approximate) zero modes of *H*

Corresponding eigenstates only on two opposite edges (edges weakly coupled, edge states vanish on other edges!)

Edge state dens. = $\frac{14}{41} \approx i\mathcal{T}(U^{-1}\nabla_1 U) = \int \frac{dk_2}{2\pi} \chi(\mu + 2\delta \cos(k_2) < 1) \approx \frac{1}{3}$

Here first \approx is precisely the equality in the theorem (1 chiral sector)

Spectral localizer (with Terry Loring)

$$L_{\kappa} = \begin{pmatrix} -H & \kappa D^* \\ \kappa D & H \end{pmatrix}$$

where $D = \sum_{j=1}^{d} \Gamma_j X_j$ Dirac and $\kappa > 0$ tuning parameter

 $L_{\kappa,\rho}$ finite volume restriction to $[-\rho,\rho]^d$ with Dirichlet conditions

Theorem (with Terry Loring)

d even and $\Gamma_d = i \mathbf{1}$ (so $D = X_1 + iX_2$ for d = 2)

Suppose H has gap g around 0 and let $P = \chi(H < 0)$ Fermi projection

$$\operatorname{Ch}_{d}(P) = \frac{1}{2}\operatorname{Sig}(L_{\kappa,\rho})$$

provided that

$$\kappa < \frac{12 g^3}{\|H\| \|[D, H]\|} \qquad \rho > \frac{2 g}{\kappa}$$

Localizes topological information in spectral manner by Dirac trap

Flat bands of surface states

Variations of spectral localizer

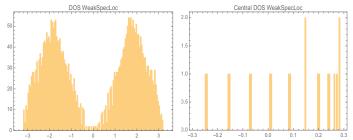
- In odd dimension for chiral systems (first paper with Terry Loring)
- Also works in mobility gap regime (numerics with Lozano-Viesca and Schober, no proof yet)
- Works for spin Chern numbers and alike ("approximate conservation laws and symmetries", with Nora Doll)
- Works for Z₂-indices (guessed by Terry Loring)
 ("signs of Pfaffians of skew spectral localizer", with Nora Doll)
- Extends to semifinite setting for weak invariants (with Tom Stoiber)
- Allows to study invariants in semimetals (explained next):
 Compute weak winding numbers for above theorem
 Counts Dirac and Weyl points in disordered semimetals

Weak spectral localizer for weak winding numbers

$$L_{\kappa}^{\text{weak}} = \begin{pmatrix} \kappa X_1 & A_{\text{per}}^* \\ A_{\text{per}} & -\kappa X_1 \end{pmatrix} \qquad \qquad H_{\text{per}} = \begin{pmatrix} 0 & A_{\text{per}}^* \\ A_{\text{per}} & 0 \end{pmatrix}$$

 $H_{\rm per}$ stacked SSH *H* periodized in 2-direction $\kappa = 0.1$

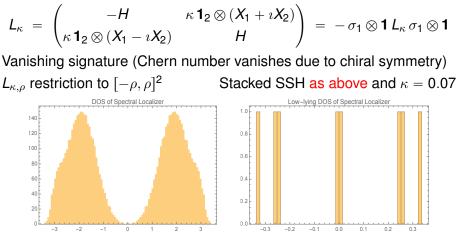
As above $\lambda = 0.2$, $\mu = 1.3$, $\delta = 0.3$ and volume $[-\rho, \rho]^2$ with $\rho = 20$



Half-signature of $L_{\kappa,\rho}^{\text{weak}} \approx 14$

weak winding number $i\mathcal{T}(U^{-1}\nabla_1 U) = \text{half-signature density} \approx \frac{14}{41} \approx \frac{1}{3}$

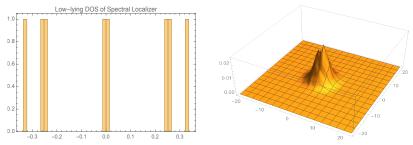
Approximate zero modes of spectral localizer



Approximate kernel of multiplicity 2 = number of Dirac points Very large gap to first excited $\approx \sqrt{\kappa} \approx 0.26$ (as for Dirac Ham.) Gap above groundstate as for Dirac Hamiltonian (explicit computation)

Ground states of spectral localizer

Plot of modulus (over 4-dim fiber) of one of the two ground states:



lowest eigenvalue $\nu \approx C \lambda$ with C very small (perturbation theory)

For $\lambda = 0$, one has $\nu \approx e^{-1/\kappa}$ (phase space tunnelling)

Approximate kernel dimension counts number of Dirac points Conclusion: Concept of number of Dirac points stable under disorder Moreover: existence of Dirac points \implies non-vanishing weak windings

Why it works so well (for general dimension *d*):

In Fourier space:

$$\mathcal{F}L^2_{\kappa}\mathcal{F}^* = -\kappa^2 \sum_{j=1}^d \partial^2_{k_j} + \begin{pmatrix} (H_k)^2 & \kappa \sum_{j=1}^d \Gamma_j(\partial_{k_j}H_k) \\ \kappa \sum_{j=1}^d \Gamma_j(\partial_{k_j}H_k) & (H_k)^2 \end{pmatrix}$$

Second oder differential operator on $L^2(\mathbb{T}^2, \mathbb{C}^{2L})$

As in semi-classical analysis with $\hbar = \kappa$

IMS localization isolates Dirac points

At each Dirac point explicitly solvable Dirac Hamiltonians

Each Dirac Hamiltonian has simple zero mode and a gap of order κ

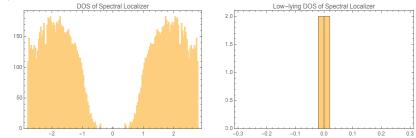
Theorem

 L_{κ} has as many eigenvalues $\leq \kappa$ as H has Dirac points Next excited level is $O(\sqrt{\kappa})$

Weyl points of 3d systems (same strategy)

$$H = H_{\rho+i\rho} + \delta \begin{pmatrix} 0 & S_3 + S_3^* \\ S_3 + S_3^* & 0 \end{pmatrix} + H_{Weyl shift} + \lambda H_{dis}$$

 $H_{Weyl shift}$ shifts Weyl points to different energies (no pseudogap)



 $\rho=$ 7, so cube of size 15, $\delta=$ 0.6, $\mu=$ 1.2, $\lambda=$ 0.5, $\kappa=$ 0.1

Approximate kernel dimension counts number of Weyl points Existence of Weyl points \implies non-vanishing weak Chern numbers \implies surface currents (as in QHE, extension of Besov techniques)

Constructions for definition of Besov spaces:

Semifinite trace ${\mathcal T}$ gives von Neumann algebra ${\mathcal M}$

Non-commutative spaces $X = L^{p}(\mathcal{M}), p \ge 1$, Banach spaces

 $L^2(\mathcal{M})$ is GNS-Hilbert space of \mathcal{T}

 \mathbb{R}^{n} -action α on \mathcal{M} which leaves \mathcal{T} invariant

 \mathcal{T} -invariance $\implies \alpha$ extends isometrically to action β on $X = L^{p}(\mathcal{M})$ For $f \in L^{1}(\mathbb{R}^{n})$ and $x \in X$ define $\beta_{f}(x)$ as Riemann integral

$$\beta_f(\mathbf{x}) = \int_{\mathbb{R}^n} f(-t) \, \beta_t(\mathbf{x}) \, dt$$

Then for $f \in FA(\mathbb{R}^n) = \mathcal{F}L^1(\mathbb{R}^n)$ define Fourier multiplier $\hat{f} * \in \mathcal{B}(X)$ by

$$\widehat{f} * \mathbf{X} = \beta_{\mathcal{F}^{-1}f}(\mathbf{X})$$

 $\sigma(\mathbf{x}) = \text{Arveson spectrum} = \{\lambda \in \hat{\mathbb{R}} : f(\lambda) = 0 \text{ if } \hat{f} * \mathbf{x} = \mathbf{0}, \ f \in \mathcal{F}L^1\}$

Non-commutative Besov spaces:

X Banach space with isometric \mathbb{R}^n -action β on *X* (above $X = L^p(\mathcal{M})$) Given smooth $\varphi : \mathbb{R} \to [0, 1]$ supported by $[-2, -2^{-1}] \cup [2^{-1}, 2]$ and

$$\sum_{j\in\mathbb{Z}}arphi(\mathbf{2}^{-j}x) = 1$$

Littlewood-Payley dyadic decomposition $(W_j)_{j \in \mathbb{N}}$ by

$$W_j = \varphi(|2^{-j} \cdot |) \text{ for } j > 0 , \qquad W_0 = 1 - \sum_{j>0} W_j$$

Now:

$$B_{q}^{s}(X) = \left\{ x \in X : \|x\|_{B_{q}^{s}(X)} = \left(\sum_{j \ge 0} 2^{qsj} \|\widehat{W}_{j} * x\|_{X}^{q} \right)^{\frac{1}{q}} < \infty \right\}$$

Set

$$B^s_{p,q}(\mathcal{M}) = B^s_q(L^p(\mathcal{M}))$$

Properties of Besov spaces:

Proposition

Definition of $B_q^s(X)$ independent of choice of φ $(B_q^s(X), \|.\|_{B_q^s(X)})$ Banach space for $s \in \mathbb{R}$ and $q \in [1, \infty)$ An equivalent norm is given by

$$\|x\|_{\widetilde{B}^{s}_{q}(X)} = \|x\|_{X} + \left(\int_{[0,1]} t^{-sq} \omega_{X}^{N}(x,t)^{q} \frac{dt}{t}\right)^{\frac{1}{q}}$$

where

$$\omega_X^N(x,t) = \sup_{|r| \leq t} \|\Delta_r^N(x)\|_X \quad , \quad N \geq s$$

with finite difference operator $\Delta_t : X \to X$ given by

$$\Delta_t(\mathbf{x}) = \beta_t(\mathbf{x}) - \mathbf{x}$$

Corollary

 $\textit{For } B^{s}_{\rho,q}(\mathcal{M}) = B^{s}_{q}(L^{\rho}(\mathcal{M})) \textit{ and } s \in [0,1], \textit{ } B^{s}_{\rho,q}(\mathcal{M}) \cap \mathcal{M} \textit{ is a *-algebra}$

More constructions:

Crossed product $\mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n}$ with semifinite trace $\hat{\mathcal{T}}$ (via Hilbert algebras) In application n = 1: $\hat{\mathcal{T}}$ is trace per unit volume along the boundary W^* -crossed product defined in regular representation on $L^2(\mathbb{R}^n, \mathcal{H})$

$$\mathcal{N} = L^{\infty}(\mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n}, \widehat{\mathcal{T}}) = \mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n} \subset \mathcal{B}(L^{2}(\mathbb{R}^{n}, \mathcal{H}))$$

Contains bd. Borel functions of $D = (D_1, ..., D_n) = i\partial_t$ on $L^2(\mathbb{R}^n, \mathcal{H})$ Furthermore: L^p -spaces $L^p(\mathcal{N}, \hat{\mathcal{T}})$ for $p \ge 1$

Irrep of complex Clifford algebra generated by $\Gamma_1, \ldots, \Gamma_n \in M_{2N}$ with

$$\{\Gamma_i,\Gamma_j\} = \mathbf{0} \qquad , \qquad \Gamma_j^2 = \mathbf{1}$$

Introduce Dirac operator affiliated with $M_{2N}(\mathcal{N})$

$$\mathbf{D} = \sum_{j=1}^n \Gamma_j \otimes D_j$$

Peller criterion for Hankel operators:

Hardy projection $\Pi = \chi(\mathbf{D} > \mathbf{0})$ in $M_{2N}(\mathcal{N})$, but not $L^p(M_{2N}(\mathcal{N}), \operatorname{Tr} \otimes \widehat{\mathcal{T}})$ Now for "symbol" $A \in \mathcal{M}$, Toeplitz and Hankel operators in $M_{2N}(\mathcal{N})$ are

$$T_A = \Pi A \Pi \qquad , \qquad H_A = \Pi A (\mathbf{1} - \Pi)$$

Theorem

For all p > n and $A \in \mathcal{M} \cap B_{p,p}^{n/p}(\mathcal{M})$, one has $H_A \in L^p(M_{2N}(\mathcal{N}), \operatorname{Tr} \otimes \widehat{\mathcal{T}})$ For n = 1, also p = 1 is sufficient

Proof: explicit calculations for p = 1

*L*²-estimates for weighted Hankels with symbol $B_{2,2}^{p/2}$ for p > 2Involved estimates on weighted Hankels for $p = \infty$ Intricate application à *la Peller* of analytic interpolation (*e.g.* Lunardi)

Classical case is n = 1 and $\mathcal{M} = L^{\infty}(\mathbb{R})$ with $\alpha_t(f)(\mathbf{y}) = f(\mathbf{y} + t)$

Index theorem

Theorem

 $(\mathcal{M}, \mathcal{T})$ semifinite von Neumann with \mathbb{R}^n -action α leaving \mathcal{T} invariant Generators of α on \mathcal{M} denoted by $\nabla_1, \dots, \nabla_n$

Let *n* be odd and unitary $U \in \mathcal{M}$ with $U - \mathbf{1} \in B_{n+1,n+1}^{n/(n+1)}$, then

$$c_n \sum_{\sigma \in S_n} (-1)^{\sigma} \mathcal{T} \Big(\prod_{j=1}^n U^{-1} \nabla_{\sigma(j)} U \Big) = \widehat{\mathcal{T}} \operatorname{-Ind} \big(\prod U \prod + (\mathbf{1} - \Pi) \big)$$

where semifinite index of $\widehat{\mathcal{T}}\text{-}Breuer\text{-}Fredholm\ T\in M_{2N}(\mathcal{N})$ is

$$\widehat{\mathcal{T}}$$
-Ind $(\mathcal{T}) = \widehat{\mathcal{T}}(\operatorname{Ker}(\mathcal{T})) - \widehat{\mathcal{T}}(\operatorname{Ker}(\mathcal{T}^*))$

Similar results for n even

Important: no differentiability assumption (as Lesch, Wahl for n = 1)

Comments:

Proof: uses Peller criterion

Geometric identities like Connes' triangle identity Semi-finite Calderon-Fedosov formula for index

Application: solid state systems with disorder probability space

$$\mathcal{M} = L^{\infty}(\boldsymbol{C}(\Omega) \rtimes_{\mathbf{B}} \mathbb{Z}^{\boldsymbol{d}}, \mathbb{P})$$

with action α given by *n*-dimensional subgroup of dual \mathbb{T}^d -action

Case n = d: previous index theorem for strong invariants (uses Takai-Takesaki duality)

For n = 1: geometric interpretation of Π as half-space projection \implies surface states (next slide)

For 1 < *n* < *d*: still under investigation, but likely general BBC (as in Prodan/Schulz-Baldes)

Surface states via index theorem

H chiral Hamiltonian and $\hat{H} = \Pi H \Pi$ with polar decompositions

$$\operatorname{sgn}(H) = \begin{pmatrix} 0 & U \\ U^* & 0 \end{pmatrix}$$
, $\operatorname{sgn}(\widehat{H}) = \begin{pmatrix} 0 & \widehat{U} \\ \widehat{U}^* & 0 \end{pmatrix}$

If (i) $U \in B^{1/2}_{2,2}(\mathcal{M})$, (ii) $\hat{U} - \Pi U \Pi$ is $\hat{\mathcal{T}}$ -compact, (iii) physical rep.,

$$\hat{\mathcal{T}}(\hat{P}_{+} - \hat{P}_{-}) = \hat{\mathcal{T}}(\sigma_{3}\operatorname{Ker}(\hat{H})) = \hat{\mathcal{T}}\operatorname{-Ind}(\hat{U}) = \hat{\mathcal{T}}\operatorname{-Ind}(\Pi U \Pi)$$

and then index theorem implies Theorem in first part Tough analytical issue: pseudogap or mobility gap imply (i) and (ii) One main idea is that γ -pseudogap condition implies for p > 0

$$H^{-1} \in L^{p}(\mathcal{M})$$
 and $\|H^{-1} - (H+z)^{-1}\|_{p} \leq C|\Im m(z)|^{(\gamma-p)/p}$

Used to estimate $\Pi \operatorname{sgn}(H) \Pi - \operatorname{sgn}(\widehat{H})$ after functional calculus

Constructions for definition of Besov spaces:

Semifinite trace ${\mathcal T}$ gives von Neumann algebra ${\mathcal M}$

Non-commutative spaces $X = L^{p}(\mathcal{M}), p \ge 1$, Banach spaces

 $L^2(\mathcal{M})$ is GNS-Hilbert space of \mathcal{T}

 \mathbb{R}^{n} -action α on \mathcal{M} which leaves \mathcal{T} invariant

 \mathcal{T} -invariance $\implies \alpha$ extends isometrically to action β on $X = L^{p}(\mathcal{M})$ For $f \in L^{1}(\mathbb{R}^{n})$ and $x \in X$ define $\beta_{f}(x)$ as Riemann integral

$$\beta_f(\mathbf{x}) = \int_{\mathbb{R}^n} f(-t) \, \beta_t(\mathbf{x}) \, dt$$

Then for $f \in FA(\mathbb{R}^n) = \mathcal{F}L^1(\mathbb{R}^n)$ define Fourier multiplier $\hat{f} * \in \mathcal{B}(X)$ by

$$\widehat{f} * \mathbf{X} = \beta_{\mathcal{F}^{-1}f}(\mathbf{X})$$

 $\sigma(\mathbf{x}) = \text{Arveson spectrum} = \{\lambda \in \hat{\mathbb{R}} : f(\lambda) = 0 \text{ if } \hat{f} * \mathbf{x} = \mathbf{0}, \ f \in \mathcal{F}L^1\}$

Non-commutative Besov spaces:

X Banach space with isometric \mathbb{R}^n -action β on *X* (above $X = L^p(\mathcal{M})$) Given smooth $\varphi : \mathbb{R} \to [0, 1]$ supported by $[-2, -2^{-1}] \cup [2^{-1}, 2]$ and

$$\sum_{j\in\mathbb{Z}}arphi(\mathbf{2}^{-j}x) = 1$$

Littlewood-Payley dyadic decomposition $(W_j)_{j \in \mathbb{N}}$ by

$$W_j = \varphi(|2^{-j} \cdot |) \text{ for } j > 0 , \qquad W_0 = 1 - \sum_{j>0} W_j$$

Now:

$$B_{q}^{s}(X) = \left\{ x \in X : \|x\|_{B_{q}^{s}(X)} = \left(\sum_{j \ge 0} 2^{qsj} \|\widehat{W}_{j} * x\|_{X}^{q} \right)^{\frac{1}{q}} < \infty \right\}$$

Set

$$B^s_{p,q}(\mathcal{M}) = B^s_q(L^p(\mathcal{M}))$$

Properties of Besov spaces:

Proposition

Definition of $B_q^s(X)$ independent of choice of φ $(B_q^s(X), \|.\|_{B_q^s(X)})$ Banach space for $s \in \mathbb{R}$ and $q \in [1, \infty)$ An equivalent norm is given by

$$\|x\|_{\widetilde{B}^{s}_{q}(X)} = \|x\|_{X} + \left(\int_{[0,1]} t^{-sq} \omega_{X}^{N}(x,t)^{q} \frac{dt}{t}\right)^{\frac{1}{q}}$$

where

$$\omega_X^N(x,t) = \sup_{|r| \leq t} \|\Delta_r^N(x)\|_X \quad , \quad N \geq s$$

with finite difference operator $\Delta_t : X \to X$ given by

$$\Delta_t(\mathbf{x}) = \beta_t(\mathbf{x}) - \mathbf{x}$$

Corollary

 $\textit{For } B^{s}_{\rho,q}(\mathcal{M}) = B^{s}_{q}(L^{\rho}(\mathcal{M})) \textit{ and } s \in [0,1], \textit{ } B^{s}_{\rho,q}(\mathcal{M}) \cap \mathcal{M} \textit{ is a *-algebra}$

More constructions:

Crossed product $\mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n}$ with semifinite trace $\hat{\mathcal{T}}$ (via Hilbert algebras) In application n = 1: $\hat{\mathcal{T}}$ is trace per unit volume along the boundary W^* -crossed product defined in regular representation on $L^2(\mathbb{R}^n, \mathcal{H})$

$$\mathcal{N} = L^{\infty}(\mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n}, \widehat{\mathcal{T}}) = \mathcal{M} \rtimes_{\alpha} \mathbb{R}^{n} \subset \mathcal{B}(L^{2}(\mathbb{R}^{n}, \mathcal{H}))$$

Contains bd. Borel functions of $D = (D_1, ..., D_n) = i\partial_t$ on $L^2(\mathbb{R}^n, \mathcal{H})$ Furthermore: L^p -spaces $L^p(\mathcal{N}, \hat{\mathcal{T}})$ for $p \ge 1$

Irrep of complex Clifford algebra generated by $\Gamma_1, \ldots, \Gamma_n \in M_{2N}$ with

$$\{\Gamma_i,\Gamma_j\} = \mathbf{0} \qquad , \qquad \Gamma_j^2 = \mathbf{1}$$

Introduce Dirac operator affiliated with $M_{2N}(\mathcal{N})$

$$\mathbf{D} = \sum_{j=1}^n \Gamma_j \otimes D_j$$

Peller criterion for Hankel operators:

Hardy projection $\Pi = \chi(\mathbf{D} > \mathbf{0})$ in $M_{2N}(\mathcal{N})$, but not $L^p(M_{2N}(\mathcal{N}), \operatorname{Tr} \otimes \widehat{\mathcal{T}})$ Now for "symbol" $A \in \mathcal{M}$, Toeplitz and Hankel operators in $M_{2N}(\mathcal{N})$ are

$$T_A = \Pi A \Pi \qquad , \qquad H_A = \Pi A (\mathbf{1} - \Pi)$$

Theorem

For all p > n and $A \in \mathcal{M} \cap B_{p,p}^{n/p}(\mathcal{M})$, one has $H_A \in L^p(M_{2N}(\mathcal{N}), \operatorname{Tr} \otimes \widehat{\mathcal{T}})$ For n = 1, also p = 1 is sufficient

Proof: explicit calculations for p = 1

*L*²-estimates for weighted Hankels with symbol $B_{2,2}^{p/2}$ for p > 2Involved estimates on weighted Hankels for $p = \infty$ Intricate application à *la Peller* of analytic interpolation (*e.g.* Lunardi)

Classical case is n = 1 and $\mathcal{M} = L^{\infty}(\mathbb{R})$ with $\alpha_t(f)(y) = f(y + t)$

Index theorem

Theorem

 $(\mathcal{M}, \mathcal{T})$ semifinite von Neumann with \mathbb{R}^n -action α leaving \mathcal{T} invariant Generators of α on \mathcal{M} denoted by $\nabla_1, \ldots, \nabla_n$

Let *n* be odd and unitary $U \in \mathcal{M}$ with $U - \mathbf{1} \in B_{n+1,n+1}^{n/(n+1)}$, then

$$c_n \sum_{\sigma \in S_n} (-1)^{\sigma} \mathcal{T} \Big(\prod_{j=1}^n U^{-1} \nabla_{\sigma(j)} U \Big) = \widehat{\mathcal{T}} \operatorname{-Ind} \big(\prod U \prod + (\mathbf{1} - \Pi) \big)$$

where semifinite index of $\widehat{\mathcal{T}}\text{-}Breuer\text{-}Fredholm\ T\in M_{2N}(\mathcal{N})$ is

$$\widehat{\mathcal{T}}$$
-Ind $(\mathcal{T}) = \widehat{\mathcal{T}}(\operatorname{Ker}(\mathcal{T})) - \widehat{\mathcal{T}}(\operatorname{Ker}(\mathcal{T}^*))$

Similar results for n even

Important: no differentiability assumption (as Lesch, Wahl for n = 1)

Comments:

Proof: uses Peller criterion

Geometric identities like Connes' triangle identity Semi-finite Calderon-Fedosov formula for index

Application: solid state systems with disorder probability space

$$\mathcal{M} = L^{\infty}(\boldsymbol{C}(\Omega) \rtimes_{\mathbf{B}} \mathbb{Z}^{\boldsymbol{d}}, \mathbb{P})$$

with action α given by *n*-dimensional subgroup of dual \mathbb{T}^d -action

Case n = d: previous index theorem for strong invariants (uses Takai-Takesaki duality)

For n = 1: geometric interpretation of Π as half-space projection \implies surface states (next slide)

For 1 < *n* < *d*: still under investigation, but likely general BBC (as in Prodan/Schulz-Baldes)

Surface states via index theorem

H chiral Hamiltonian and $\hat{H} = \Pi H \Pi$ with polar decompositions

$$\operatorname{sgn}(H) = \begin{pmatrix} 0 & U \\ U^* & 0 \end{pmatrix}$$
, $\operatorname{sgn}(\widehat{H}) = \begin{pmatrix} 0 & \widehat{U} \\ \widehat{U}^* & 0 \end{pmatrix}$

If (i) $U \in B_{2,2}^{1/2}(\mathcal{M})$, (ii) $\hat{U} - \Pi U \Pi$ is $\hat{\mathcal{T}}$ -compact, (iii) physical rep.,

$$\hat{\mathcal{T}}(\hat{P}_{+} - \hat{P}_{-}) = \hat{\mathcal{T}}(\sigma_{3}\operatorname{Ker}(\hat{H})) = \hat{\mathcal{T}}\operatorname{-Ind}(\hat{U}) = \hat{\mathcal{T}}\operatorname{-Ind}(\Pi U \Pi)$$

and then index theorem implies Theorem in first part Tough analytical issue: pseudogap or mobility gap imply (i) and (ii) One main idea is that γ -pseudogap condition implies for p > 0

$$H^{-1} \in L^{p}(\mathcal{M})$$
 and $\|H^{-1} - (H+z)^{-1}\|_{p} \leq C|\Im m(z)|^{(\gamma-p)/p}$

Used to estimate $\Pi \operatorname{sgn}(H) \Pi - \operatorname{sgn}(\widehat{H})$ after functional calculus