Vorlesung "Körpertheorie" (Sommersemester 2024)

Übungsblatt 12 (3.7.2024-10.7.2024)

Mit \mathbf{P} werden Präsenzaufgaben, mit \mathbf{H} Hausaufgaben bezeichnet.

Präsenzaufgaben

Aufgabe P56: Sei p eine Primzahl. Bestimme alle Unterkörper von $\mathbb{F}_{p^{24}}$ und erstelle ein zugehöriges Unterkörperdiagramm.

Aufgabe P57: (Staatsexamensaufgabe) Seien p eine Primzahl und n > 0 eine natürliche Zahl. Seien $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$ endliche Körper mit p bzw. p^n Elementen.

- (a) Sei zunächst n=2. Zeigen Sie: Für jedes $a \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ gilt $\mathbb{F}_p(a) = \mathbb{F}_{p^2}$.
- (b) Bestimmen Sie die Anzahl der Elemente $a \in \mathbb{F}_{p^2}$ mit $\mathbb{F}_{p^2} = \mathbb{F}(a)$.
- (c) Sei jetzt n=6. Zeigen Sie, dass die Anzahl der Elemente $a\in \mathbb{F}_{p^6}$ mit $\mathbb{F}_{p^6}=\mathbb{F}_p(a)$ genau $p^6-p^3-p^2+p$ beträgt.
- (d) Bestimmen Sie die Anzahl der irreduziblen, normierten Polynome $f \in \mathbb{F}_p[x]$ vom Grad 6.

Aufgabe P58: (Staatsexamensaufgabe) Sei p eine Primzahl, $n \in \mathbb{N}$ und $f \in \mathbb{F}_p[X]$ irreduzibel vom Grad n. Man bestimme diejenigen $m \in \mathbb{N}$, für die f über \mathbb{F}_{p^m} in Linearfaktoren zerfällt.

Aufgabe P59: (Staatsexamensaufgabe) Sei K ein endlicher Körper mit q Elementen. Man zeige, dass das Polynom $X^2 + X + 1$ genau dann irreduzibel über K ist, wenn $q \equiv -1 \pmod 3$.

Aufgabe P60: (Inspiriert von einer Staatsexamensaufgabe) Sei $f = x^4 + x + 2 \in \mathbb{F}_3[x]$, $\alpha \in \overline{\mathbb{F}}_3$ mit $f(\alpha) = 0$ und $K = \mathbb{F}_3(\alpha)$.

- (1) Zeige, dass f irreduzibel über \mathbb{F}_3 ist.
- (2) Warum ist $K|\mathbb{F}_3$ eine zyklische Erweiterung vom Grad 4? Wie lässt sich $Gal(K|\mathbb{F}_3)$ mit Hilfe des Frobenius-Automorphismus π beschreiben?
- (3) Schreibe die Elemente $\pi(\alpha)$, $\pi^2(\alpha)$ und $\pi^3(\alpha)$ als \mathbb{F}_3 -Linearkombination von $1, \alpha, \alpha^2, \alpha^3$.
- (4) Bestimme alle echten Zwischenkörper E der Erweiterung $K|\mathbb{F}_3$ und gib eine \mathbb{F}_3 -Basis für jeden echten Zwischenkörper E an, wobei die Basiselemente als \mathbb{F}_3 -Linearkombinationen von $1, \alpha, \alpha^2, \alpha^3$ geschrieben werden sollen.

Datei: kt_u12.tex. Version vom 1.7.2024

1

Hausaufgaben¹

Aufgabe H34: Sei p eine Primzahl. Bestimme alle Unterkörper von $\mathbb{F}_{p^{30}}$ und erstelle ein zugehöriges Unterkörperdiagramm.

Aufgabe H35: (Staatsexamensaufgabe) Es sei \mathbb{F}_{625} der endliche Körper mit 625 Elementen mit Primkörper P. Bestimmen Sie die Anzahl der Elemente $a \in \mathbb{F}_{625}$ mit $P(a) = \mathbb{F}_{625}$.

Aufgabe H36: (Inspiriert von einer Staatsexamensaufgabe) Sei $f = x^7 + x + 1 \in \mathbb{F}_2[x]$.

- (1) Zeige, dass f keine Nullstellen in den Körpern \mathbb{F}_2 , \mathbb{F}_4 und \mathbb{F}_8 besitzt. (Hinweis: Was kann man über $\alpha^{|\mathbb{F}_q^*|}$ für $\alpha \in \mathbb{F}_q^*$ sagen?)
- (2) Folgere aus (1), dass f irreduzibel in $\mathbb{F}_2[x]$ ist.

 $^{^1}$ Abgabe der Hausaufgaben bis 10.7.2024, 10:00 Uhr in den Übungskästen oder in den Übungsgruppen