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Spectral flow applied to solid state systems

Plan

• Review of classical spectral flow

• Laughlin arguments

• η-invariants and finite-volume calculation of indices

• Z2-valued spectral flow

• Application to a topological insulator (Kitaev chain)
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Review of spectral flow

H separable Hilbert space and B(H) bounded operators

T ∈ B(H) Fredolm ⇐⇒ Ker(T ), Ker(T ∗) finite dimensional

T = T ∗ Fredholm ⇐⇒ 0 6∈ σess(T )

Fsa = {T = T ∗ Fredholm } has 3 components which contract to

F∗sa = {T ∈ Fsa |σess(T ) = {−1, 1}}
F+

sa = {T ∈ Fsa |σess(T ) = {1}}
F−sa = {T ∈ Fsa |σess(T ) = {−1}}

Theorem (Atiyah-Singer 1969)

Homotopy groups of F∗sa are π2n(F∗sa) = 0 and π2n+1(F∗sa) = Z

Aim: spectral flow calculates π1(F∗sa)
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Intuitive notion of spectral flow

Given path t ∈ [0, 1] 7→ Tt = (Tt)
∗ of self-adjoint Fredholms on H
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Counting of eigenvalues passing 0 works if path analytic (APS)

For continuous paths need to go to ”generic position”, or:
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Phillips’ analytic approach (1996)
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∃ finite partition 0 = t0 < t1 < . . . < tN−1 < tN = 1 of [0, 1] and

an < 0 < bn with t ∈ [tn−1, tn] 7→ χ(Tt ∈ [an, bn]) continuous. Set:

SF(t ∈ [0, 1] 7→ Tt) =
N∑

n=1

TrH
(
χ(Ttn−1 ∈ [an, 0]) − χ(Ttn ∈ [an, 0])

)
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Theorem (Phillips 1996)

SF(t ∈ [0, 1] 7→ Tt) independent of partition and an < 0 < bn.

It is a homotopy invariant when end points are kept fixed.

It satisfies concatenation and normalization:

SF(t ∈ [0, 1] 7→ T + (1− 2t)P) = − dim(P) for TP = P

Theorem (Lesch 2004)

Homotopy invariance, concatenation, normalization characterize SF

Theorem (Perera 1993, Phillips 1996)

SF on loops establishes isomorphism π1(F∗sa) = Z

Theorem (Phillips 1996, based on Avron-Seiler-Simon 1994)

Let T1 = U∗T0U invertible with U unitary and [U,T0] compact

SF(t ∈ [0, 1] 7→ (1−t)T0+tT1) = −Ind(PUP|PH) , P = χ(T0 > 0)
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Example: Laughlin argument 1981

Theorem (Macris 2002, De Nittis, S-B 2016)

H disordered Harper-like operator on `2(Z2)⊗ CL with µ ∈ gap

Hα Hamiltonian with extra flux α ∈ [0, 1] through 1 cell of Z2

Then Tα = Hα − µ ∈ F∗sa and with P = χ(Hα ≤ µ), U = X1+iX2
|X1+iX2|

SF
(
α ∈ [0, 1] 7→ Hα through µ

)
= − Ind(PUP) = −Ch(P)



Spectral flow applied to solid state systems

Z2 invariant for QSH by spectral flow

TRS implemented by a real unitary Str with S2
tr = −1

S∗tr Hα Str = H−α = U∗H1−α U

Both for α = 0 (no flux) and α = 1
2 (half flux) one has TRS

Theorem (De Nittis, S-B 2016)

Ind2(PUP) = dim(ker(PUP))mod 2 = 1, namely non-trivial QSH
=⇒ H 1

2
has Kramers pair bound state in gap
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Spectral flow in a BdG-Hamiltonian

Flux tube in two-dimensional BdG Hamiltonian

S∗ph Hα Sph = −H−α , S2
ph = ±1

Then S∗ph Hα Sph = −U∗H1−αU so that

σ(Hα) = −σ(H−α) = −σ(H1−α)

PHS only for α = 0, 1
2 , 1 and thus Ind2(H 1

2
) wel-defined

Theorem (De Nittis, S-B 2016)

Ind(PUP)mod 2 = Ind2(H 1
2
)

or: odd Chern number implies existence of zero mode at defect

These zero modes are Majorana fermions (Read-Green 2000)

Worth noting: S2
ph = −1 =⇒ Ind(PUP) even =⇒ no zero mode
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Laughlin arguments in other dimensions
(in preparation with Carey)

d = 1: chiral spectral flow in SSH leads to bound state of H 1
2
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−

On `2(Zd)⊗ CL with d ≥ 3: insert non-abelian Wu-Yang monopol

A =
i

2

[D, γ]

D2
, D =

d∑
j=1

γjXj

into non-abilian translations (say without magnetic field):

Sα
k = e i∇

α
k = Uα(X )Sk , ∇α

k = i∂k + αAk

Then study (chiral) spectral flow for Hα = P(Sα
1 , . . . ,S

α
d )
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Spectral flow and η-invariant

B = B∗ invertible operator on H with compact resolvent. Then

η(B) = Tr(B|B|−s−1)|s=0 =
1

Γ( s+1
2 )

∫ ∞
0

dt t
s−1

2 Tr(B e−tB
2
)
∣∣∣
s=0

provided it exists! If dim(H) <∞, then η(B) = 2Sig(B)

Proposition

Given D > 0 and A bounded, and B with η-invariant

B =

(
D A

A∗ −D

)
=⇒ η(B) = 0

Proposition (Corollary of result in Getzler, 1993)

λ ∈ [0, 1] 7→ B(λ)− B(0) ∈ L1, B(0) and B(1) have η-invariants

η(B(1))− η(B(0)) = 2SF
(
λ ∈ [0, 1] 7→ B(λ)

)
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η-Invariant for chiral Hamiltonian

Chiral Hamiltonian H =

(
0 A

A∗ 0

)
in d = 1 on `2(Z)⊗ C2N

Introduce operator with compact resolvent:

B = (κX + iH)J =

(
κX −iA
iA∗ −κX

)
, J =

(
1 0

0 −1

)
Proposition (in preparation with Loring)

If [H,X ] bounded, η(B) exists

Use path λ ∈ [0, 1] 7→ H(λ) splitting H on `2(N+)⊕ `2(N−)

Leads to path λ ∈ [0, 1] 7→ B(λ) with B(0) = B and

B(1) =

(
κX+ −iA+

iA∗+ −κX+

)
⊕
(
κX− −iA−
iA∗− −κX−

)
Thus η(B(1)) = 0 by above proposition!
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Finite-volume calculation of index

η(B) = 2 SF(λ ∈ [0, 1] 7→ B(λ))

Calculation: spectral flow equal to Ind(ΠAΠ) where Π Hardy

Moreover, signature stabilizes for finite volume approximation of B

Theorem (with Loring, in preparation)

Let BΛ restriction of B to `2([−Λ,Λ])⊗ C2N

If 1
Λ and κ > 0 sufficiently small,

1
2 Sig(BΛ) = Ind(ΠAΠ)

Similar results for all d , but K -theoretic proofs (fuzzy spheres)

Symmetries can be implemented and lead to Pfaffians
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Basics on skew-adjoint Fredholm operators

HR real Hilbert space with complexification HC = HR ⊕ iHR

T ∈ B(HR) extends to complex linear operator (e.g. for spectrum)

T ∗ = −T skew-adjoint =⇒ σ(T ) = σ(T ) ⊂ i R
T ∗ = −T Fredholm ⇐⇒ 0 6∈ σess(T )

Theorem (Atiyah Singer 1969)

Fsk = {T = −T ∗ Fredholm } has two connected components

distinguished by: Ind2(T ) = dim(Ker(T ))mod 2

Homotopy groups satisfy πn(Fsk) = πn+8(Fsk) and are given by

n 0 1 2 3 4 5 6 7

πn(Fsk) Z2 Z2 0 2Z 0 0 0 Z

Aim: define Z2-valued spectral flow calculating π1(F∗sa)

Note: SF(t ∈ [0, 1] 7→ Tt ∈ Fsk) = 0
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Start with example in HR = R2

Tt = (2t − 1)

(
0 −1

1 0

)
, T̃t = |2t − 1|

(
0 −1

1 0

)

Spectra identical σ(Tt) = σ(T̃t) = {(1− 2t)i , (2t − 1)i}, but

T̃t(s) = |2ts − 1|
(

0 −1

1 0

)
∈ Fsk

homotopy of paths with T̃t(1) = T̃t and T̃t(0) constant

No such homotopy for Tt !

Obstruction is change of orientation of eigenfunctions:

T1 = A∗T0A A =

(
0 1

1 0

)
Then sgn(det(A)) < 0
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Definition

dim(HR) <∞ and T0,T1 ∈ Fsk with nullity dim(HR)mod 2

If T1 = A∗T0A for some invertible A, then

SF2(T0,T1) = sgn(det(A)) ∈ Z2

Now similar as Phillips: path t 7→ Tt ∈ Fsk with Ind2(Tt) = 0

t t t
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0

i

−i

t
4



Spectral flow applied to solid state systems

Definition of Z2-valued spectral flow

For a > 0 set Qa(t) = χ(Tt ∈ (−ia, ia))

∃ finite partition 0 = t0 < t1 < . . . < tN−1 < tN = 1 and an > 0

• t ∈ [tn−1, tn] 7→ Qan(t) continuous and constant finite rank
• ‖Qan(t)− Qan(t ′)‖ < ε ∀ t, t ′ ∈ [tn−1, tn]
• ‖π(Tt)− π(Tt′)‖Q < ε ∀ t, t ′ ∈ [tn−1, tn]

for some ε ≤ 1
5

Vn : Ran(Qan(tn−1))→ Ran(Qan(tn)) orthogonal projection,

namely Vnv = Qan(tn)v . Check: Vn is a bijection.

Define T
(a)
t = Qa(t)Tt Qa(t) + Rt with Rt lifting kernel

Definition

SF2(t ∈ [0, 1] 7→ Tt) =
N∑

n=1

SF2

(
T

(an)
tn−1

,V ∗nT
(an)
tn Vn

)
mod 2
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Basic properties

Theorem

SF2(t ∈ [0, 1] 7→ Tt ∈ Fsk) independent of partition and an > 0.

It is a homotopy invariant when end points are kept fixed.

It satisfies concatenation.

It satisfies a normalization (later).

SF2 has characterizing properties of SF, but no ”spectral flowing”

Theorem

SF2 on loops establishes isomorphism π1(Fsk) = Z2
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Reformulation

J ∈ B(HR) complex structure ⇐⇒ J∗ = −J and J2 = −1

Theorem

J0, J1 complex structures with ‖π(J0)− π(J1)‖Q < 1. Then

SF2(t ∈ [0, 1] 7→ tJ0 +(1−t)J1 ∈ Fsk) = 1
2 dim(Ker(J0 +J1))mod 2

Proof: Both sides are homotopy invariants... 2

Theorem

For above partition of path t ∈ [0, 1] 7→ Tt , set Jn = Ttn |Ttn |−1

Then

SF2(t ∈ [0, 1] 7→ Tt) =

(
N∑

n=1

1
2 dim(Ker(Jn−1 + Jn))

)
mod 2

For classical spectral flow similar with index of pairs of projections
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An index formula and canonical example

Theorem

J complex structure, O = (O∗)−1 orthogonal with [O, J] compact

SF2(t ∈ [0, 1] 7→ (1− t)J + tO∗JO) = dimKer(POP|PH)mod 2

where P = χ(iJ > 0) Hardy

Example:

HR = L2
R(S1)⊗ R2 and HC = L2

C(S1)⊗ C2

Fourier F : HC → `2
C(Z)⊗ C2

J = F∗ĴF where Ĵ = i sgn(X )⊗ 12 + |0〉〈0| ⊗ iσ2

O = (O(k))k∈S1 fibered with 2× 2 rotation matrix O(k) by k

SF2(t ∈ [0, 1] 7→ (1− t)J + tO∗JO) = 1 = dimKer(POP|PHC)
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Skew-adjoint Fredholm = gapped BdG

Fermionic quadratic Hamiltonian H = (a a∗)H
( a
a∗

)
on F−(H)

BdG Hamiltonian H ∈ B(H⊕H) satisfies even PHS

σ∗1Hσ1 = −H σ1 =

(
0 1

1 0

)
Then Majorana representation:

HMaj = C ∗HC = −HMaj = i T , C =
1√
2

(
1 − i

1 i

)
Then: T = T and T ∗ = −T and

T ∈ Fsk ⇐⇒ 0 in gap of H

Thus: paths of BdG’s have a Z2-valued spectral flow
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Kitaev chain with flux (disorder suppressed)

Here H = `2(Z)⊗ C2 and with shift S and µ ∈ R:

H =
1

2

(
S + S∗ + 2µ i(S − S∗)

i(S − S∗) −(S + S∗ + 2µ)

)

= S0 + S∗0 + µ 1⊗ σ3 , S0 = S ⊗ 1

2

(
1 i

i −1

)
Insert flux: Hα = Sα + S∗α + µ 1⊗ σ3

Sα = S0 + |1〉〈0| ⊗ 1

2

(
e−iπα − 1 i(e−iπα − 1)

i(e iπα − 1) −(e iπα − 1)

)

−1−2 0 1 2 3

πα

πα
+

−
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Spectral flow and bound states at defect

Proposition

For |µ| < 1,
SF2(α ∈ [0, 1] 7→ Hα) = 1

Time-reversal symmetry σ3Hσ3 = H, hence in CAZ Class BDI

Also holds for half flux: σ3H 1
2
σ3 = H 1

2

Proposition

For |µ| < 1, H 1
2

has odd number of evenly degenerate zero modes:

1
2 dimC(KerC(H 1

2
)) mod 2 = 1

Proof: Symmetry σ(Hα) = σ(H1−α) and above Proposition


