AVRONFEST: CONGRATULATING YOSI Invariants for J-unitaries on Real Krein spaces and classification of transfer operators

AVRONFEST: CONGRATULATING YOSI Invariants for *J*-unitaries on Real Krein spaces and classification of transfer operators

Hermann Schulz-Baldes

Erlangen

Harper operator

On
$$\ell^2(\mathbb{Z}^2)$$

 $H = U_1^* + U_1 + U_2 + U_2^*$
where $U_1 = e^{i\varphi X_2}S_1$ and $U_2 = S_2$ with $\varphi \in \mathbb{R}$ and $S_{1,2}$ shifts
Jacobi operator with operator coefficients on $\mathcal{H} = \ell^2(\mathbb{Z})$
 $H = e^{-i\varphi X_2}S_1^* + (S_2 + S_2^*) + e^{i\varphi X_2}S_1$

Transfer operators on $\mathcal{H} \oplus \mathcal{H}$ at energy $E \in \mathbb{R}$:

$$T^E = \begin{pmatrix} (E \mathbf{1} - S_2 - S_2^*) e^{i \varphi X_2} & -e^{i \varphi X_2} \\ e^{i \varphi X_2} & 0 \end{pmatrix}$$

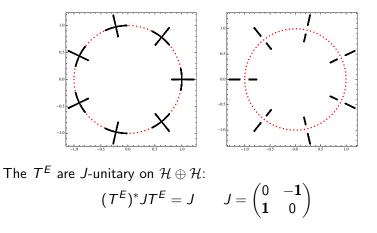
For $\psi = (\psi_n)_{n \in \mathbb{Z}}$ with $\psi_n \in \ell^2(\mathbb{Z})$ and $\Psi_n = \begin{pmatrix} \psi_{n+1} \\ \psi_n \end{pmatrix}$

$$H\psi = E\psi \qquad \Longleftrightarrow \qquad T^E \Psi_n = \Psi_{n+1}$$

Spectra of transfer operators

Proposition: $E \notin \sigma(H) \iff \sigma(T^E) \cap \mathbb{S}^1 = \emptyset$

Example: With flux $\varphi = 2\pi \frac{3}{7}$ and E = 2.2 as well as E = 1.9



Half-space restirctions

 $\widehat{H} = H$ with Dirichlet conditions on $\ell^2(\mathbb{Z} \times \mathbb{N})$ $\widehat{H} = e^{-iarphi X_2} \, \widehat{S}_1^* + (\widehat{S}_2 + \widehat{S}_2^*) + e^{iarphi X_2} \, \widehat{S}_1$ with partial isometry $\widehat{S}_{2}^{*}\widehat{S}_{2} = \mathbf{1} - |0\rangle\langle 0|$ Discrete Fourier decomposition in 1-direction $\widehat{H} \cong \int_{-\pi}^{\pi} dk_1 \, \widehat{H}(k_1)$ where $\widehat{H}(k_1) = \widehat{S}_2 + \widehat{S}_2^* + 2\cos(k_1 + \varphi X_2)$ half-sided Jacobi matrix $\widehat{H}(k_1) \oplus \widehat{H}_l(k_1)$ compact perturbation of periodic $H(k_1)$ on $\ell^2(\mathbb{Z})$ **Definition:** edge spectrum of $\widehat{H} = \bigcup_{k_1 \in [-\pi,\pi]} \sigma_{dis}(\widehat{H}(k_1))$ *J*-unitary transfer operators $\widehat{\mathcal{T}}^{\mathcal{E}}$ on $\widehat{\mathcal{H}} \oplus \widehat{\mathcal{H}}$ where $\widehat{\mathcal{H}} = \ell^2(\mathbb{N})$ $\hat{T}^{E} \oplus \hat{T}^{E}_{L}$ compact perturbation of T^{E} **Proposition:** \hat{T}^E has unit eigenvalue $\iff E$ in edge spect. of \hat{H}

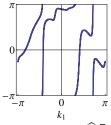
Edge state calculation

 $T_2^E(k_1)$ transfer matrices of $H(k_1)$ in 2-direction, J-unitary

 $\theta(k_1)$ = angle between the contracting direction of $T_2^E(k_1)$ and the Dirichlet boundary condition

$$E \in \sigma_{ ext{dis}}(\widehat{H}(k_1)) \Longleftrightarrow heta(k_1) = 0$$

Example: Harper flux $\varphi = 2\pi \frac{3}{7}$ and E = 1.9



Resumé: J-unitary transfer operators \widehat{T}^E with eigenvalues on \mathbb{S}^1 linked to edge states

Krein stability theory

Definition: Krein space (\mathcal{K}, J) is a complex Hilbert space \mathcal{K} with fundamental symmetry $J = \overline{J}$, $J^* = J^{-1}$, $J^2 = \eta \mathbf{1}$ with $\eta = \pm 1$ Normal form: $\mathcal{K} = \mathcal{H} \oplus \mathcal{H}'$ and $J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ **Definition:** $T \in \mathcal{B}(\mathcal{K})$ *J*-unitary $\iff T^*JT = J$ **Example:** $\mathcal{K} = \mathbb{C}^n \oplus \mathbb{C}^m$, $J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies \{J \text{-unitaries}\} = U(n, m)$ **Proposition:** Then $\sigma(T) = (\overline{\sigma(T)})^{-1}$ reflection on \mathbb{S}^1 **Proof:** $J^*(T - \lambda \mathbf{1})J = (T^*)^{-1} - \lambda \mathbf{1}$ and spectral mapping **Krein stability analysis:** Given a (continuous) path $t \mapsto T_t$ of J-unitaries, discrete eigenvalues can leave \mathbb{S}^1 only during collisions through eigenvalues with inertia of indefinite sign.

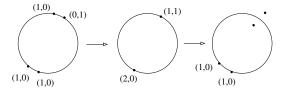
Krein inertia

For $\lambda \in \sigma_{ ext{dis}}(\mathcal{T})$, generalized eigenspace

$$\mathcal{E}_{\lambda} = \operatorname{span} \oint_{\partial B_{\epsilon}(\lambda)} \frac{dz}{2\pi i} (z \mathbf{1} - T)^{-1}$$

$$\begin{split} \nu(\lambda) \ &= \ (\nu_+(\lambda), \nu_-(\lambda)) \ &= \ \# \text{ pos./neg. eigenvalues of } \sqrt{\eta} \ J|_{\mathcal{E}_\lambda} \\ \text{and signature } \ &\mathrm{Sig}(\lambda) = \nu_+(\lambda) - \nu_-(\lambda) \end{split}$$

Definite sign $\iff \nu_+(\lambda) = 0$ or $\nu_-(\lambda) = 0$. Otherwise indefinite. **Facts:** For $\lambda \notin \mathbb{S}^1$, inertia on $\mathcal{E}_{\lambda} \oplus \mathcal{E}_{(\overline{\lambda})^{-1}}$ is $(\dim(\mathcal{E}_{\lambda}), \dim(\mathcal{E}_{\lambda}))$ Sum of inertia is continuous at eigenvalue collisions



Global signature

Definition: Essentially S^1 -gapped *J*-unitaries

$$\mathbb{G}(\mathcal{K}) = \{T \; J ext{-unitary} \, | \, \sigma_{ ext{ess}}(T) \cap \mathbb{S}^1 = \emptyset\}$$

with $\sigma_{ ext{ess}}(T) = \sigma(T) \setminus \sigma_{ ext{dis}}(T)$. Then
 $\operatorname{Sig}(T) = \sum_{\lambda \in \sigma(T) \cap \mathbb{S}^1} \operatorname{Sig}(\lambda)$

Theorem: $\mathbb{G}(\mathcal{K})$ open and Sig homotopy invariant

Remarks: Similar to Fredholm index, each component non-trivial

Theorem: $T \in \mathbb{G}(\mathcal{K})$ has path in resolvent set $\rho(T)$ from ∞ to \mathbb{S}^1 $\mathcal{K} = -J^*\mathcal{K}J$ compact $\Longrightarrow Te^{\mathcal{K}} \in \mathbb{G}(\mathcal{K})$

Proof: analytic Fredholm theory

S¹-Fredholm operators

Example:
$$\mathcal{K} = \ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z}), J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. For $r < 1$ and shift S

$$T_t = \begin{pmatrix} rS & 0\\ 0 & r^{-1}S \end{pmatrix} \exp t \begin{pmatrix} 0 & |0\rangle\langle 0|\\ -|0\rangle\langle 0| & 0 \end{pmatrix}$$

Then

$$\sigma(T_t) = \begin{cases} \text{ filled ring, } t = \frac{\pi}{2}, \frac{3\pi}{2}, \\ r \mathbb{S}^1 \cup r^{-1} \mathbb{S}^1, \text{ otherwise.} \end{cases}$$

Definition: With $\sigma'_{ess}(T) = \{\lambda \in \mathbb{C} \mid T - \lambda \mathbf{1} \text{ not Fredholm}\}\$

$$\mathbb{F}(\mathcal{K}) = \{ extsf{T} \; J extsf{-unitary} \, | \, \sigma_{ extsf{ess}}'(extsf{T}) \cap \mathbb{S}^1 = \emptyset \}$$

Remarks: $\mathbb{F}(\mathcal{K})$ open and stable under compact perturbations, $\mathbb{G}(\mathcal{K}) \subset \mathbb{F}(\mathcal{K})$ but not equal, $\operatorname{Ind}(\mathcal{T} - \lambda \mathbf{1}) = 0$ for $\lambda \in \mathbb{S}^1$ **Theorem:** $\pi_1(\mathbb{F}(\mathcal{K})) \supset \mathbb{Z}$, given by Conley-Zehnder index

Spectral flow and calculation of signature

Theorem:
$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ *J*-unitary. Then

$$V(T) = \begin{pmatrix} (a^*)^{-1} & bd^{-1} \\ -d^{-1}c & d^{-1} \end{pmatrix}$$

is unitary on ${\mathcal K}$ and

(i) geom. mult. of 1 as EV of T = mult. of 1 as EV of V(T)
(ii) T ∈ 𝔅(𝔅) ⇔ 1 ∉ σ_{ess}(V(T))
Spectral flow of t ↦ V(T_t) by 1 = Conley-Zehnder index
(iii) 𝔅(𝔅) 𝔅(𝔅)

(iii) For $T \in \mathbb{G}(\mathcal{K})$,

 $\operatorname{Sig}(\mathcal{T}) = \operatorname{spectral}$ flow of $t \in [0, 2\pi) \mapsto V(e^{-it}\mathcal{T})$ through 1

Real symmetries on Krein space

Fundamental symmetry $J_{
m F}$ real unitary with $J_{
m F}^2=\eta_{
m F}\,{f 1}$

Real symmetry $J_{\rm R}$ real unitary with $J_{\rm R}^2 = \eta_{\rm R} \mathbf{1}$ and $J_{\rm F} J_{\rm R} = \eta_{\rm FR} J_{\rm R} J_{\rm F}$ kind $(\eta_{\rm F}, \eta_{\rm R}, \eta_{\rm FR}) \in \{-1, 1\}^3$

connection to Clifford groups

Fact: After real unitary basis change, normal forms (real Pauli) **Definition:** $J_{\rm F}$ -unitaries with Real symmetry $J_{\rm R}$

$$\mathbb{U}(\mathcal{K}, J_{\mathrm{F}}, J_{\mathrm{R}}) = \left\{ T \ J_{\mathrm{F}}\text{-unitary} \ \middle| \ J_{\mathrm{R}}^* \, \overline{T} \ J_{\mathrm{R}} = T \right\}$$
$$\mathbb{G}(\mathcal{K}, J_{\mathrm{F}}, J_{\mathrm{R}}) = \left\{ T \in \mathbb{G}(\mathcal{K}, J_{\mathrm{F}}) \ \middle| \ J_{\mathrm{R}}^* \, \overline{T} \ J_{\mathrm{R}} = T \right\}$$

Invariants with Real symmetries

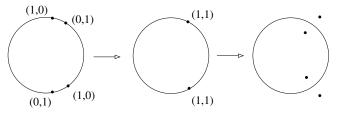
$\eta_{ m F}$	$\eta_{ m R}$	$\eta_{ m FR}$	Class. Group	$\pi_0 \supset$	Invariant
1	1	1	O(<i>N</i> , <i>M</i>)	$\mathbb{Z} \times \mathbb{Z}_2$	$\operatorname{Sig} \times \operatorname{Sec}$
-1	1	-1		$\mathbb{Z} \times \mathbb{Z}_2$	$\operatorname{Sig} \times \operatorname{Sec}$
-1	1	1	$SP(2N,\mathbb{R})$	1	
1	1	-1		1	
-1	-1	1	SO*(2 <i>N</i>)	\mathbb{Z}_2	Sig ₂
1	-1	-1		\mathbb{Z}_2	$Sig_2 Sig_2$
1	-1	1	SP(2 <i>N</i> , 2 <i>N</i>)	Z	$\frac{1}{2}$ -Sig
-1	-1	-1		\mathbb{Z}	$\frac{1}{2}$ -Sig

Theorem: For $T \in \mathbb{U}(\mathcal{K}, J_{\mathrm{F}}, J_{\mathrm{R}})$.

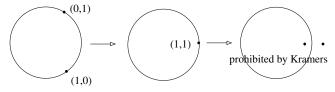
(i) $\sigma(T) = \overline{\sigma(T)}$ spectral quadrouples (ii) $\nu_{\pm}(\lambda) = \nu_{\pm\eta_{\rm F}\eta_{\rm FR}}(\overline{\lambda})$ and $\operatorname{Sig}(\lambda) = \eta_{\rm F}\eta_{\rm FR}\operatorname{Sig}(\overline{\lambda})$ (iii) $\eta_{\rm R} = -1 \implies$ Kramers degeneracy for real eigenvalues (iv) Invariants labelling $\pi_0 = \pi_0(\mathbb{G}(\mathcal{K}, J_{\rm F}, J_{\rm R}))$ AVRONFEST: CONGRATULATING YOSI Invariants for J-unitaries on Real Krein spaces and classification of transfer operators

Invariants for $\eta_{\rm F}\eta_{\rm FR}=-1$

Krein collisions



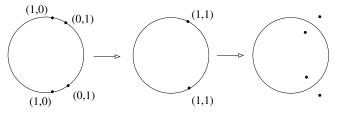
Tangent bifurcation prohibited for $\eta_{\rm R}=-1$



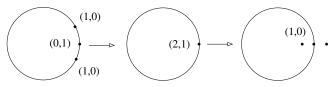
 $\operatorname{Sig}_2(\mathcal{T}) = \sum_{\lambda \in \mathbb{S}^1} \nu_+(\lambda) \operatorname{mod} 2 \in \mathbb{Z}_2.$

Invariants for $\eta_{\scriptscriptstyle \mathrm{F}}\eta_{\scriptscriptstyle \mathrm{FR}}=1$

Krein collisions



Mediated tangent bifurcation for kind $\eta_{
m R}=1$



 $\operatorname{Sec}(T) = \operatorname{Sig}(1) \operatorname{mod} 2 \in \mathbb{Z}_2$.

Back to discrete Schrödinger operators

Next-nearest hopping and fiber \mathbb{C}^{L} (spin, isospin, particle-hole)

$$H = \sum_{i=1}^{r} (W_i^* U_i + W_i U_i^*) + V \quad \text{on } \ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^L$$

with $U_3 = U_1^* U_2$ and $U_4 = U_1 U_2$, further W_i and $V = V^*$ matrices

Jacobi operator with operator coefficients A, B on $\mathcal{H} = \ell^2(\mathbb{Z}) \otimes \mathbb{C}^L$

$$H = AS_1^* + B + A^*S_1$$

If A invertible, transfer operators on $\mathcal{H} \oplus \mathcal{H}$ at energy $E \in \mathbb{R}$:

$$T^{E} = \begin{pmatrix} (E \mathbf{1} - B)A^{-1} & -A^{*} \\ A^{-1} & 0 \end{pmatrix} \in \mathbb{G}(\mathcal{H} \oplus \mathcal{H}) \quad \text{for } E \notin \sigma(H)$$

Half-space restrictions: \hat{H} and \hat{T}^{E}

 $\widehat{\mathcal{T}}^{\mathcal{E}} \not\in \mathbb{G}(\widehat{\mathcal{H}} \oplus \widehat{\mathcal{H}}) \Longleftrightarrow \mathbb{S}^1 \subset \sigma_{\rho}(\widehat{\mathcal{T}}^{\mathcal{E}}) \Longleftrightarrow \mathsf{flat} \mathsf{ band of edge states}$

Calculation of unit eigenvalues of \widehat{T}^{E}

 $\widehat{H} = \int_{-\pi}^{\pi} dk_1 \,\widehat{H}(k_1)$ with matrix-valued Jacobi operators $T_2^E(k_1)$ transfer matrices of $\widehat{H}(k_1)$ in 2-direction, *J*-unitary $\Phi^E(k_1)$ contracting directions of $T_2^E(k_1)$, *J*-Lagrangian in \mathbb{C}^{2L} $E \in \sigma_{dis}(\widehat{H}(k_1)) \iff$ intersect. $\Phi^E(k_1) \cap$ bound. cond. non-trivial Bott-Maslov intersection theory for Lagrangian planes in \mathbb{C}^{2L} :

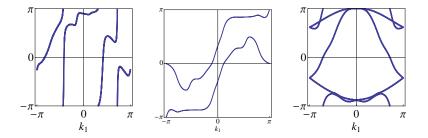
$$U^{E}(k_{1}) = {\binom{1}{-\imath 1}}^{*} \Phi^{E}(k_{1}) \left({\binom{1}{\imath 1}}^{*} \Phi^{E}(k_{1}) \right)^{-1} \qquad L \times L \text{ unitary}$$

Proposition: e^{ik_1} eigenvalue of $\widehat{T}^E \iff 1$ eigenvalue of $U^E(k_1)$ **Proposition:** Krein inertia of $e^{ik_1} = \text{sign}(\partial_{k_1}\theta(k_1)|_0)$

New technique for calculating the Chern numbers

Theorem: $\widehat{\mathcal{T}}^{E}$ essentially gapped \Longrightarrow Sig $(\widehat{\mathcal{T}}^{E}) = Ch(P_{E})$

Ex: Harper model, p + ip wave supercond, Kane-Mele model



Implementing symmetries

Time reversal symmetry:

even: $\overline{H} = H \implies \overline{T^E} = T^E$ odd: $I_s^* \overline{H} I_s = H$ with $I_s = e^{i\pi s^y} \implies (\mathbf{1} \otimes I_s)^* \overline{T^E} (\mathbf{1} \otimes I_s) = T^E$ Example: Kane-Mele (\mathbb{Z}_2 -topological insulator, quantum spin Hall) Particle-hole symmetry ($K_{ph}^2 = \pm \mathbf{1}$ even or odd):

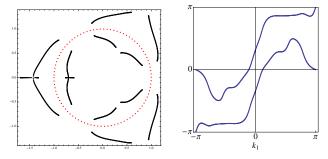
$$\begin{split} & \mathcal{K}_{\rm ph}^* \,\overline{\mathcal{H}} \,\mathcal{K}_{\rm ph} \,=\, -\mathcal{H} \\ \implies (J \otimes \mathcal{K}_{\rm ph})^* \,\overline{\mathcal{T}^E} \,(J \otimes \mathcal{K}_{\rm ph}) = \mathcal{T}^E \quad \text{with } J = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} - \mathbf{1} \end{pmatrix} \\ \\ & \text{Fundamental symmetry: } (\mathcal{T}^E)^* (I \otimes \mathbf{1}) \mathcal{T}^E = (I \otimes \mathbf{1}) \text{ with } I = \begin{pmatrix} \mathbf{0} - \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \end{split}$$

Majorana fermions at the edge

(p + ip)-wave superconductor in (Hartree-Fock) BdG-description:

$$H = \begin{pmatrix} U_1 + U_1^* + U_2 + U_2^* - \mu & \delta_p (S_1 - S_1^* \pm i(S_2 - S_2^*)) \\ \delta_p (S_1^* - S_1 \pm i(S_2 - S_2^*)) & -\overline{U}_1 - \overline{U}_1^* - \overline{U}_2 - \overline{U}_2^* + \mu \end{pmatrix}$$

Even particle-hole $K_{\rm ph} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. For $\mu = \delta_p = 0.2$ and $\varphi = 2\pi \frac{1}{3}$



Eigenvector at ± 1 is real \implies self-adjoint creation operators

Resumé

- 1) J-unitaries on Krein spaces with Real symmetries
- 2) Krein signatures lead to new homotopy invariants
- 3) Applied to transfer operators allow to distinguish different phases of topological insulators

References

H. Schulz-Baldes,
Signature and spectral flow of J-unitary S¹-Fredholm operators,
arXiv 1210.0184
H. Schulz-Baldes, C. Villegas,
Invariants for J-unitaries on Real Krein spaces and the classification of transfer operators,

arXiv 1306.1816