Topological insulators from the perspective of non-commutative geometry and index theory

Hermann Schulz-Baldes Erlangen

main collaborators:

Prodan, Loring, Carey, Grossmann, Phillips De Nittis, Villegas, Kellendonk, Richter, Bellissard

> Graduiertenkolleg 1838 Freudenstadt February 2017

Plan for the lectures

- What is a topological insulator?
- What are the main experimental facts?
- What are the main theoretical elements?
- Almost everything in a one-dimensional toy model (SSH model)
- Toy models for higher dimension
- Algebraic formalism (crossed product C*-algebras)
- Measurable quantities as topological invariants
- Bulk-edge correspondence
- Index theorems for invariants
- Implementation of symmetries (periodic table of topological ins.)

Math tools: *K*-theory, index theory and non-commutative geometry

- 1. Experimental facts
- 2. Elements of basic theory
- 3. One-dimensional toy model
- 4. K-theory krash kourse
- 5. Observable algebra for tight-binding models
- 6. Topological invariants in solid state systems
- 7. Invariants as response coefficients
- 8. Bulk-boundary correspondence
- 9. Implementation of symmetries
- 10. Laughlin arguments
- 11. Dirty superconductors

1 Experimental facts

What is a topological insulator?

 d-dimensional disordered system of independent Fermions with a combination of basic symmetries

TRS, PHS, CHS = time reversal, particle hole, chiral symmetry

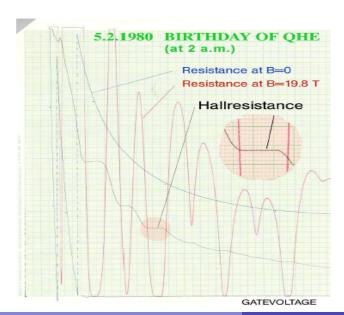
- Fermi level in a Gap or Anderson localization regime
- Topology of bulk (in Bloch bundles over Brillouin torus):

winding numbers, Chern numbers, \mathbb{Z}_2 -invariants, higher invariants

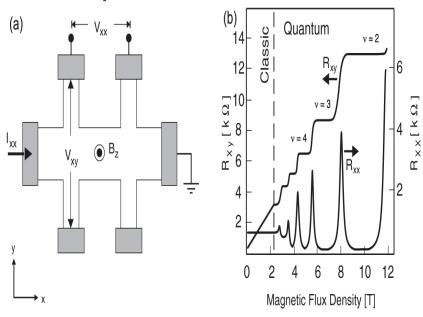
- Delocalized edge modes with non-trivial topology
- Bulk-edge correspondence
- Topological bound states at defects (zero modes)
- Toy models: tight-binding Hamiltonians
- Wider notions include interactions, bosons, spins, photonic crys.

Topological insulators 1. Experimental facts 4 / 111

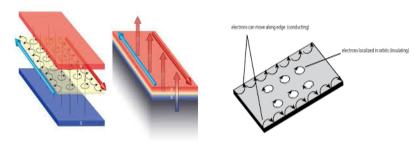
Quantum Hall Effect: first topological insulator



Schematic representation of IQHE



Most important facts for IQHE



Two-dimensional electron gas between two doted semiconductors (Spot error in picture!) Measure of macroscopic (!) Hall tension

$$\sigma = \frac{I_{x,x}}{V_{x,y}} = n \frac{e^2}{h}$$
 with $n \in \mathbb{N}$

Integer quantization with relative error 10^{-8} with fundamental constant Strong magnetic field and electron density can be modified Anderson localizated states can be filled without changing conductivity

Topological insulators 1. Experimental facts 7 / 11:

Prizes and further advances on the QHE

Nobel prizes:

- Klitzing (1985)
- Störmer-Tsui-Laughlin (1998) for fractional QHE
- Thouless (2016) explanation of integer QHE & Thouless-Kosterlitz
- Haldane (2016) anomalous QHE & Haldane spin chain
 NO exterior magnetic field, only magnetic material
- QHE in graphene at room temperature
 Novoselov, Geim et al 2007 (Nobel 2005)
- Anomalous QHE at room temperature in SnGe (Chinese group 2016)
 Review: Ren, Qiao, Niu 2016

Quantum spin Hall systems

Prior to 2005: no (local) magnetic field, no topology

Kane-Mele (2005):

 \mathbb{Z}_2 -topology in two-dimensional systems with time-reversal symmetry

First erronous proposal: spin orbit coupling in graphene (too small)

Theoretical prediction by Bernevig and Zhang (2006): look into HgTe

Measurement by Molenkamp group in Würzburg

Complicated samples, inconsistencies with theory, so still disputed

Measurement in more conventional Si-semiconductor by Du group (Rice 2014) Surprise: stability w.r.t. magnetic field

Majorana zero modes

First proposal (Read-Green 2000): attached to flux tubes in 2d (p + ip)-wave superconductors

Second proposal (Kitaev, Beenacker group, Alicea, etc.): at ends of dirty superconductor wires placed on a semiconductor

Measurement in C. Marcus group (2014-2016 Bohr Inst., Kopenhagen)

Further measurements in Delft and Princeton groups

2017: http://www.seethroughthe.cloud/2017/01/23/

Headline is: Microsoft Steps Away From The Chalk Board to Create Quantum Computer

Mysterious citation:

The magic recipe involves a combination of semiconductors and superconductors

Higher dimensional topological insulators?

J. Phys. Soc. Jpn. 82 (2013) 102001

INVITED REVIEW PAPERS

Y. Ando

Table I. Summary of topological insulator materials that have bee experimentally addressed. The definition of (1;111) etc. is introduced in Sect. 3.7. (In this table, S.S., P.T., and SM stand for surface state, phase transition, and semimetal, respectively.)

Type	Material	Band gap	Bulk transport	Remark	Reference 31	
2D, $v = 1$	CdTe/HgTe/CdTe	<10meV	insulating	high mobility		
2D, $v = 1$	AlSb/InAs/GaSb/AlSb	\sim 4 meV	weakly insulating	gap is too small	73	
3D (1;111)	$Bi_{1-x}Sb_x$	<30meV	weakly insulating	complex S.S.	36, 40	
3D (1;111)	Sb	semimetal	metallic	complex S.S.	39	
3D (1;000)	Bi_2Se_3	0.3 eV	metallic	simple S.S.	94	
3D (1;000)	Bi ₂ Te ₃	0.17 eV	metallic	distorted S.S.	95, 96	
3D (1;000)	Sb_2Te_3	0.3 eV	metallic	heavily p-type	97	
3D (1;000)	Bi ₂ Te ₂ Se	~0.2 eV	reasonably insulating	ρ_{xx} up to 6Ω cm	102, 103, 105	
3D (1;000)	(Bi,Sb)2Te3	<0.2 eV	moderately insulating	mostly thin films	193	
3D (1;000)	$Bi_{2-x}Sb_xTe_{3-y}Se_y$	<0.3 eV	reasonably insulating	Dirac-cone engineering	107, 108, 212	
3D (1;000)	$Bi_2Te_{1.6}S_{1.4}$	0.2 eV	metallic	n-type	210	
3D (1;000)	$Bi_{1.1}Sb_{0.9}Te_2S$	0.2 eV	moderately insulating	ρ_{xx} up to 0.1Ω cm	210	
3D (1;000)	Sb_2Te_2Se	?	metallic	heavily p-type	102	
3D (1;000)	$Bi_2(Te,Se)_2(Se,S)$	0.3 eV	semi-metallic	natural Kawazulite	211	
3D (1;000)	TlBiSe ₂	~0.35 eV	metallic	simple S.S., large gap	110-112	
3D (1;000)	TlBiTe ₂	~0.2 eV	metallic	distorted S.S.	112	
3D (1;000)	TlBi(S,Se)2	<0.35 eV	metallic	topological P.T.	116, 117	
3D (1;000)	PbBi ₂ Te ₄	~0.2 eV	metallic	S.S. nearly parabolic	121, 124	
3D (1;000)	PbSb ₂ Te ₄	?	metallic	p-type	121	
3D (1;000)	GeBi ₂ Te ₄	0.18 eV	metallic	n-type	102, 119, 120	
3D (1;000)	PbBi ₄ Te ₇	0.2 eV	metallic	heavily n-type	125	
3D (1;000)	$GeBi_{4-x}Sb_xTe_7$	0.1-0.2 eV	metallic	n (p) type at $x = 0$ (1)	126	
3D (1;000)	$(PbSe)_5(Bi_2Se_3)_6$	0.5 eV	metallic	natural heterostructure	130	
3D (1:000)	(Bi ₂)(Bi ₂ Se ₂ 6S _{0.4})	semimetal	metallic	(Bi ₂) _n (Bi ₂ Se ₃) _m series	127	

2 Elements of basic theory

First for QHE in continuous physical space:

Landau-operator with disordered potential

$$H = \frac{1}{2m} (i \, \partial_{x_1} - eA_1)^2 + \frac{1}{2m} (i \, \partial_{x_2} - eA_2)^2 + \lambda V_{\text{dis}}$$

on Hilbert space $L^2(\mathbb{R}^2)$. Landau gauge $A_1=0$ and $A_2=BX_1$

If there is no disorder $\lambda = 0$, Fourier transform in 2-direction works

$$\mathcal{F}_2 H \mathcal{F}_2^* = \int_{\mathbb{R}}^{\oplus} dk_2 \, H(k_2)$$

with $H(k_2) = H(k_2)^*$ shifted one-dimensional harmonic oscillator \implies infinitely degenerate so-called Landau bands.

Projection P on lowest band has integral kernel with Hall conductance

$$\operatorname{Ch}(P) = 2\pi i \langle 0 | P[i[X_1, P], i[X_2, P]] | 0 \rangle
 = \pi \int_{\mathbb{C}} dx \int_{\mathbb{C}} dy \ e^{-\frac{1}{2}(|x|^2 + |y|^2 - x\overline{y})} (x\overline{y} - y\overline{x}) = -1$$

Effect of disorder

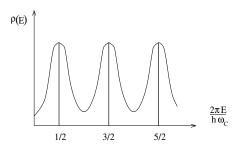
Typical model from i.i.d. $\omega_n \in [-1, 1]$ and $v \in \mathcal{D}$ with $||v||_{\infty} \leq 1$

$$V_{\text{dis}}(x) = \sum_{n \in \mathbb{Z}^2} \omega_n v(x-n)$$

Landau band widens by $\lambda \neq 0$. Gap closes at $\lambda \approx 1$

Expectation: all states Anderson localized, except at one energy

Proof at band edges by Barbaroux, Combes, Hislop 1997, others...



Spectrum of edge states

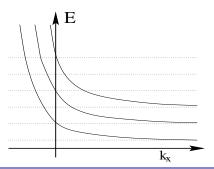
 \widehat{H}_L half-space restriction on $L^2(\mathbb{R}_{\geqslant 0} \times \mathbb{R})$ with Dirichlet

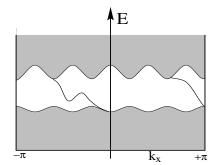
Still without disorder, Fourier transform works also for half-space:

$$\mathcal{F}_2 \widehat{H} \mathcal{F}_2^* = \int_{\mathbb{R}}^{\oplus} dk_2 \, \widehat{H}(k_2)$$

with $\widehat{H}(\mathit{k}_2) = \widehat{H}(\mathit{k}_2)^*$ cut off shifted harmonic oscillator on $L^2(\mathbb{R}_{\geqslant 0})$

Read off basic bulk-edge correspondence (right pic for generic gap)





Harper model

This is a lattice or tight-binding model on $\ell^2(\mathbb{Z}^2)$

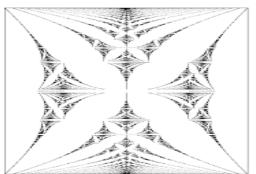
$$H = U_1 + U_1^* + U_2 + U_2^*$$

Here $U_1 = S_1$ shift in 1-direction, and $U_2 = e^{iBX_1}S_2$ (Landau gauge)

Plotted: spectrum as a function of *B* (Hofstadter's butterfly)

Spectrum fractal for irrational B. Most gaps close with $V_{
m dis}$

In each gap there are edge state bands (on $\ell^2(\mathbb{Z}\times\mathbb{N})$, Hatsugai 1993)



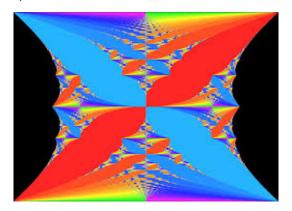
Coloured Hofstadter butterfly (Avron, Osadchy)

For each Fermi energy μ one has $P = \chi(H \leqslant \mu)$

If μ in gap, then Chern number well-defined

$$Ch(P) = 2\pi i \langle 0|P[i[X_1, P], i[X_2, P]]|0 \rangle \in \mathbb{Z}$$

Different values, different colours



Haldane model for anomalous QHE

 M/t_2

On honeycomb lattice = decorated triangular lattice, so on $\ell^2(\mathbb{Z}^2)\otimes\mathbb{C}^2$

$$H_{\text{Hal}} = M \begin{pmatrix} 0 & S_1 + S_2 + 1 \\ S_1^* + S_2^* + 1 & 0 \end{pmatrix} + t_2 \sum_{j=1}^{3} \begin{pmatrix} e^{i\phi_j} S_j + (e^{i\phi_j} S_j)^* & 0 \\ 0 & e^{-i\phi_j} S_j + (e^{-i\phi_j} S_j)^* \end{pmatrix}$$

Here $S_3 = S_1^* S_2$ and $\phi_1 = -\phi_2 = \phi_3 = \phi$. Only periodic magnetic field

Then central gap with $P = \chi(H \leqslant 0)$ and Chern number $C_1 = \operatorname{Ch}(P)$

$$3\sqrt{3}$$

$$C_{1} = -1$$

$$-3\sqrt{3}$$

$$C_{1} = -1$$

$$C_{1} = +1$$

$$C_{1} = 0$$

$$C_{1} = +1$$

$$C_{1} = 0$$

Topological insulators 2. Elements of basic theory

Kane-Mele model for SQHE

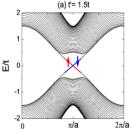
On honeycomb lattice with spin $\frac{1}{2},$ so on $\ell^2(\mathbb{Z}^2)\otimes \mathbb{C}^4$

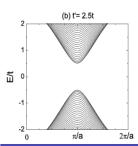
$$H_{\text{KM}} = \begin{pmatrix} H_{\text{Hal}} & 0 \\ 0 & \overline{H_{\text{Hal}}} \end{pmatrix} + H_{\text{Ras}}$$

First term comes from spin-orbit coupling to next nearest neighbors Second Rashba spin-orbit term is off-diagonal breaks chiral symmetry If H_{Ras} small, central gap still open

Chern number vanishes (TRS), but non-trivial \mathbb{Z}_2 -invariant

This leads to edge states





Discrete symmetries (invoking real structure)

Given commuting real, skew- or selfadjoint unitaries J_{ch} , S_{tr} , S_{ph}

chiral symmetry (CHS) :
$$J_{ch}^* H J_{ch} = -H$$

time reversal symmetry (TRS) : $S_{tr}^* \overline{H} S_{tr} = H$
particle-hole symmetry (PHS) : $S_{ph}^* \overline{H} S_{ph} = -H$

$$S_{\rm tr}=e^{i\pi s^y}$$
 orthogonal on \mathbb{C}^{2s+1} with $S_{\rm tr}^2=\pm 1$ even or odd

$$\mathcal{S}_{\scriptscriptstyle ph}$$
 orthogonal on $\mathbb{C}^2_{\scriptscriptstyle ph}$ with $\mathcal{S}^2_{\scriptscriptstyle ph}=\pm 1$ even or odd

So typical Hamiltonian acts on
$$\ell^2(\mathbb{Z}^d)\otimes\mathbb{C}^N\otimes\mathbb{C}^{2s+1}\otimes\mathbb{C}^2_{_{\mathrm{ph}}}$$

Note: TRS + PHS
$$\implies$$
 CHS with $J_{ch} = S_{tr}S_{ph}$

Further distinction in each of the 10 classes: topological insulators

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008: just strong invariants

j∖d	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				2 Z		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2 Z		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				22
5	-1	_1	1	2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	_1	0		2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	_1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

3 One-dimensional toy model (SSH, see [PS])

Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)

$$H = \frac{1}{2}(\sigma_1 + i\sigma_2) \otimes S + \frac{1}{2}(\sigma_1 - i\sigma_2) \otimes S^* + m\sigma_2 \otimes \mathbf{1}$$

where S bilateral shift on $\ell^2(\mathbb{Z})$, $m \in \mathbb{R}$ mass and Pauli matrices In their grading

$$H = \begin{pmatrix} 0 & S - im \\ S^* + im & 0 \end{pmatrix}$$
 on $\ell^2(\mathbb{Z}) \otimes \mathbb{C}^2$

Off-diagonal \cong chiral symmetry $\sigma_3^* H \sigma_3 = -H$. In Fourier space:

$$H = \int^{\oplus} dk \, H_k \qquad H_k = \begin{pmatrix} 0 & e^{-ik} - im \\ e^{ik} + im & 0 \end{pmatrix}$$

Topological invariant for $m \neq -1, 1$

Wind
$$(k \mapsto e^{ik} + im) = \delta(m \in (-1, 1))$$

Chiral bound states

Half-space Hamiltonian

$$\widehat{H} \; = \; \begin{pmatrix} 0 & \widehat{S} - im \\ \widehat{S}^* + im & 0 \end{pmatrix} \qquad \text{on } \ell^2(\mathbb{N}) \otimes \mathbb{C}^2$$

where \hat{S} unilateral right shift on $\ell^2(\mathbb{N})$

Still chiral symmetry $\sigma_3^* \hat{H} \sigma_3 = -\hat{H}$

If m = 0, simple bound state at E = 0 with eigenvector $\psi_0 = {|0\rangle \choose 0}$.

Perturbations, *e.g.* in *m*, cannot move or lift this bound state ψ_m !

Positive chirality conserved: $\sigma_3 \psi_m = \psi_m$

Theorem 3.1 (Basic bulk-boundary correspondence)

If \hat{P} projection on bound states of \hat{H} , then

$$\operatorname{Wind}(k \mapsto e^{ik} + im) = \operatorname{Tr}(\widehat{P}\sigma_3)$$

Disordered model

Add i.i.d. random mass term $\omega = (m_n)_{n \in \mathbb{Z}}$:

$$H_{\omega} = H + \sum_{n \in \mathbb{Z}} m_n \sigma_2 \otimes |n\rangle\langle n|$$

Still chiral symmetry $\sigma_3^* H_\omega \sigma_3 = -H_\omega$ so

$$H_{\omega} = \begin{pmatrix} 0 & A_{\omega}^* \\ A_{\omega} & 0 \end{pmatrix}$$

Bulk gap at $E = 0 \Longrightarrow A_{\omega}$ invertible

Non-commutative winding number, also called first Chern number:

Wind =
$$Ch_1(A) = i \mathbf{E}_{\omega} \operatorname{Tr} \langle 0 | A_{\omega}^{-1} i[X, A_{\omega}] | 0 \rangle$$

where \mathbf{E}_{ω} is average over probability measure \mathbb{P} on i.i.d. masses

Index theorem and bulk-boundary correspondence

Theorem 3.2 (Disordered Noether-Gohberg-Krein Theorem)

If Π is Hardy projection on positive half-space, then \mathbb{P} -almost surely

Wind =
$$Ch_1(A) = -Ind(\Pi A_{\omega}\Pi)$$

For periodic model as above, $A_{\omega} = e^{ik} \in C(\mathbb{S}^1)$

Fredholm operator is then standard Toeplitz operator

Theorem 3.3 (Disoreded bulk-boundary correspondence)

If \hat{P}_{ω} projection on bound states of \hat{H}_{ω} , then

Wind =
$$Ch_1(A) = Ch_0(\hat{P}_{\omega}) = Tr(\hat{P}_{\omega}\sigma_3)$$

Structural robust result:

holds for chiral Hamiltonians with larger fiber, other disorder, etc.

Index in linear algebra

Rank theorem for $T \in Mat(N \times M, \mathbb{C})$

$$\begin{split} \textbf{\textit{M}} &= \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Ran}(T)) \\ &= \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Ker}(T^*)^{\perp}) \\ &= \dim(\operatorname{Ker}(T)) + \left(\textbf{\textit{N}} - \dim(\operatorname{Ker}(T^*))\right) \end{split}$$

Hence stability of index defined by

$$Ind(T) = dim(Ker(T)) - dim(Ker(T^*))) = M - N$$

Homotopy invariance: under continuous perturbation $t \in \mathbb{R} \mapsto \mathcal{T}_t$

$$t \in \mathbb{R} \mapsto \operatorname{Ind}(T_t)$$
 konstant

For quadratic matrices, i.e. N = M, always Ind(T) = 0

Index in infinite dimension

Definition 3.4

 $T \in \mathcal{B}(\mathcal{H})$ continuous Fredholm operator on \mathcal{H}

$$\Longleftrightarrow \mathcal{TH} \text{ closed, } \dim(\mathrm{Ker}(\mathcal{T})) < \infty, \dim(\mathrm{Ker}(\mathcal{T}^*)) < \infty$$

Then: $Ind(T) = dim(Ker(T)) - dim(Ker(T^*))$

Theorem 3.5 (Dieudonné, Krein)

Ind is a compactly stable homotopy invariant:

$$Ind(T) = Ind(T + K) = Ind(T_t)$$

Example: shift
$$\hat{S}: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$$
 by $\hat{S}\psi = (\psi_{n-1})_{n \in \mathbb{N}}$ on $\psi = (\psi_n)_{n \in \mathbb{N}}$

$$\operatorname{Ker}(\widehat{\boldsymbol{S}}) \ = \ \operatorname{span}\{(1,0,0,\ldots)\} \qquad . \qquad \operatorname{Ker}(\widehat{\boldsymbol{S}}) \ = \ \{0\}$$

Thus $Ind(\hat{S}) = 1$

Index theorems connect index to a topological invariant

Structure: Toeplitz extension (no disorder)

 ${\mathcal S}$ bilateral shift on $\ell^2({\mathbb Z}),$ then $C^*({\mathcal S})\cong {\mathcal C}({\mathbb S}^1)$

 \hat{S} unilateral shift on $\ell^2(\mathbb{N})$, only partial isometry with a defect:

$$\hat{S}^*\hat{S} = 1$$
 $\hat{S}\hat{S}^* = 1 - |0\rangle\langle 0|$

Then $C^*(\hat{S}) = \mathcal{T}$ Toeplitz algebra with exact sequence:

$$0 \ \to \ \mathcal{K} \ \stackrel{i}{\hookrightarrow} \ \mathcal{T} \ \stackrel{\pi}{\to} \ \textit{\textbf{C}}(\mathbb{S}^1) \ \to \ 0$$

K-groups for any C*-algebra \mathcal{A} (only rough definition):

$$K_0(A) = \{[P] - [Q] : \text{ projections in some } M_n(A)\}$$

 $K_1(A) = \{[U] : \text{ unitary in some } M_n(A)\}$

Abelian group operation: Whitney sum

Example: $K_0(\mathbb{C}) = \mathbb{Z} = K_0(\mathcal{K})$ with invariant $\dim(P)$

Example: $K_1(C(\mathbb{S}^1)) = \mathbb{Z}$ with invariant given by winding number

6-term exact sequence for Toeplitz extension

C*-algebra short exact sequence $\Longrightarrow K$ -theory 6-term sequence

Here:
$$[A]_1 \in \mathcal{K}_1(C(\mathbb{S}^1))$$
 and $[\hat{P}\sigma_3]_0 = [\hat{P}_+]_0 - [\hat{P}_-]_0 \in \mathcal{K}_0(\mathcal{K})$
$$\operatorname{Ind}([A]_1) = [\hat{P}_+]_0 - [\hat{P}_-]_0 \qquad \text{(bulk-boundary for K-theory)}$$

$$\operatorname{Ch}_0(\operatorname{Ind}(A)) = \operatorname{Ch}_1(A) \qquad \text{(bulk-boundary for invariants)}$$

Disordered case: analogous

4 K-theory krash kourse [RLL, WO]

K-theory developed to classify vector bundles over topological space X

Swan-Serre Theorem: {vector bundles} \cong {projections in $M_n(C(X))$ }

Replace C(X) by non-commutative C*-algebra A

Definition 4.1

 $(A, +, \cdot, \| \cdot \|)$ Banach algebra over \mathbb{C} if $\|AB\| \leq \|A\| \|B\|$, etc.

Then: \mathcal{A} is C*-algebra $\iff ||A^*A|| = ||A||^2$

Gelfand: commutative C^* algebras are $A = C_0(X)$ with spectrum X

GNS: For any state on $\mathcal{A} \exists$ Hilbert \mathcal{H} and irrep $\pi : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$

Example 1: $A = \mathbb{C}$ or $A = M_n(\mathbb{C})$

Example 2: Calkin's exact sequence over a Hilbert space \mathcal{H} :

$$0 \to \mathcal{K}(\mathcal{H}) \stackrel{i}{\hookrightarrow} \mathcal{B}(\mathcal{H}) \stackrel{\pi}{\to} \mathcal{Q}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H}) \to 0$$

Definition of $K_0(A)$

Unitization $\mathcal{A}^+ = \mathcal{A} \oplus \mathbb{C}$ of C*-algebra \mathcal{A} by

$$(A, t)(B, s) = (AB + As + Bt, ts)$$
, $(A, t)^* = (A^*, \bar{t})$

Natural C*-norm $\|(A, t)\| = \max\{\|A\|, |t|\}$. Unit $\mathbf{1} = (0, 1) \in \mathcal{A}^+$

Exact sequence of C*-algebras $0 \to \mathcal{A} \stackrel{i}{\hookrightarrow} \mathcal{A}^+ \stackrel{\rho}{\to} \mathbb{C} \to 0$

 ρ has inverse i'(t)=(0,t), then $s=i'\circ \rho:\mathcal{A}^+\to\mathcal{A}^+$ scalar part

$$\mathcal{V}_0(\mathcal{A}) \ = \ \left\{ V \in \bigcup_{n \geqslant 1} M_{2n}(\mathcal{A}^+) \ : \ V^* \ = \ V \ , \ V^2 \ = \ 1 \ , \ s(V) \sim_0 E_{2n}
ight\}$$

where $s(V)\sim_0 E_{2n}$ means homotopic to $E_{2n}=E_2^{\oplus^n}$ with $E_2=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Equivalence relation \sim_0 on $\mathcal{V}_0(\mathcal{A})$ by homotopy and $\textit{V} \sim_0 \left(\begin{smallmatrix} \textit{V} & 0 \\ 0 & \textit{E}_2 \end{smallmatrix} \right)$

Then $K_0(A) = \mathcal{V}_0(A) / \sim_0$ abelian group via $[V]_0 + [V']_0 = [\begin{pmatrix} V & 0 \\ 0 & V' \end{pmatrix}]_0$

Definition of $K_0(A)$ is equivalent to standard one via V = 2P - 1:

$$K_0(A) \cong \widehat{K}_0(A) = \{[P] - [s(P)] : \text{projections in some } M_n(A^+)\}$$

Satz 4.2 (Stability of K_0)

$$K_0(\mathcal{A}) = K_0(M_n(\mathcal{A})) = K_0(\mathcal{A} \otimes \mathcal{K})$$

Example 1: $K_0(\mathbb{C}) = K_0(\mathcal{K}) = \mathbb{Z}$, invariant $\dim(P) = \dim(\operatorname{Ker}(V - 1))$

Example 2: $K_0(\mathcal{B}(\mathcal{H})) = 0$ for every separable \mathcal{H} by [RLL] 3.3.3

Example 3: $K_0(C(\mathbb{S}^1)) = \mathbb{Z}$ and $K_0(\mathcal{T}) = \mathbb{Z}$ for Toeplitz (also dim)

Satz 4.3 (0-cocyles paired with $K_0(A)$)

If $\mathcal T$ tracial state on $\mathcal A$, then class map $\mathcal T: K_0(\mathcal A) \to \mathbb R$ defined by

$$\mathcal{T}[V]_0 = \mathcal{T}(P) = \frac{1}{2}\mathcal{T}(V-1)$$

Definition of $K_1(A)$

For definition of $K_1(A)$ set

$$\mathcal{V}_1(\mathcal{A}) = \left\{ U \in \bigcup_{n \geqslant 1} M_n(\mathcal{A}^+) : U^{-1} = U^* \right\}$$

Equivalence relation \sim_1 by homotopy and $U \sim_1 \begin{pmatrix} U & 0 \\ 0 & 1 \end{pmatrix}$

Then $K_1(\mathcal{A}) = \mathcal{V}_1(\mathcal{A})/\sim_1$ with addition $[U]_1 + [U']_1 = [U \oplus U']_1$

If $\mathcal A$ unital, one can work with $M_n(\mathcal A)$ instead of $M_n(\mathcal A^+)$ in $\mathcal V_1(\mathcal A)$

Example 1: $K_1(\mathbb{C}) = K_1(\mathcal{K}) = 0$

Example 2: $K_1(C(\mathbb{S}^1)) = \mathbb{Z}$ with invariant "winding number"

Example 3: $K_1(A^+) = K_1(A)$

Example 4: $K_1(\mathcal{B}(\mathcal{H})) = 0$ by Kuipers' theorem (holds for all W*'s)

Example 5: For Calkin $K_1(\mathcal{Q}(\mathcal{H})) = \mathbb{Z}$ with invariant index of Fredholm

Suspension and Bott map

Definition 4.4

Suspension of a C*-algebra $\mathcal A$ is the C*-algebra $\mathcal S\mathcal A=\mathcal C_0(\mathbb R)\otimes\mathcal A$

Alternatively upon rescaling: $SA \cong C_0((0,1), A)$

Satz 4.5 (Suspension)

One has isomorphism $\theta: K_1(\mathcal{A}) \to K_0(\mathcal{SA})$

Theorem 4.6 (Bott map)

One has isomorphism $\beta: K_0(\mathcal{A}) \cong \widehat{K}_0(\mathcal{A}) \to K_1(S\mathcal{A})$ given by

$$\beta([P]_0 - [s(P)]_0) = [t \in (0,1) \mapsto (1-P) + e^{2\pi it}P]_1$$

Note that r.h.s. indeed a unitary in $(SA)^+$

Korollar 4.7 (Bott periodicity)

$$K_0(SSA) = K_0(A)$$

Construction of $\theta^{-1}: K_0(SA) \to K_1(A)$ with adiabatic evolution:

$$0 \longrightarrow \mathcal{SA} \stackrel{i}{\longrightarrow} \mathcal{C}(\mathbb{S}^1, \mathcal{A}) \stackrel{\text{ev}}{\longrightarrow} \mathcal{A} \longrightarrow 0$$

After rescaling is given a loop $t \in [0, 2\pi) \mapsto P_t = \frac{1}{2}(V_t + 1) \in M_N(A)$

With P_0 viewed as constant loop, $[P]_0 - [P_0]_0 \in \mathcal{K}_0(\mathcal{SA})$

Indeed $ev(\lceil P \rceil_0 - \lceil P_0 \rceil_0) = 0$ so identified with element in $K_0(SA)$

Aim: find preimage under θ in $K_1(A)$

For $H_t=H_t^*\in M_N(\mathcal{A})$ satisfying $[H_t,P_t]=0$ unitary solution $U_t\in\mathcal{A}^+$ of

$$i \partial_t U_t = (H_t + i[\partial_t P_t, P_t]) U_t, \qquad U_0 = \mathbf{1}_N$$

Then $P_t = U_t P_0 U_t^*$ and $U_{2\pi} P_0 U_{2\pi}^* = P_0$

$$\theta^{-1}([P]_0 - [P_0]_0) = [P_0 U_{2\pi} P_0 + \mathbf{1}_N - P_0]_1$$

R.h.s. is unitary! Choice of H_t determines lift. Details in [PS]

Natural push-forwards maps in K-theory

Associated to an exact sequence of C*-algebras

$$0 \ \rightarrow \ \mathcal{K} \ \stackrel{i}{\hookrightarrow} \ \mathcal{A} \ \stackrel{\pi}{\rightarrow} \ \mathcal{Q} \ \rightarrow \ 0$$

there are natural push-forward maps:

$$i_*$$
 : $K_j(\mathcal{K}) \to K_j(\mathcal{A})$, π_* : $K_j(\mathcal{A}) \to K_j(\mathcal{Q})$

given $i_*[V]_0 = [i(V)]_0$, $\pi_*[V]_0 = [\pi(V)]_0$, etc.

 $Ker(\pi_*) = Ran(i_*)$, so short exact sequences of abelian groups:

$$K_0(\mathcal{K}) \stackrel{i_*}{ o} K_0(\mathcal{A}) \stackrel{\pi_*}{ o} K_0(\mathcal{Q})$$

and

$$K_1(\mathcal{Q}) \stackrel{\pi_*}{\leftarrow} K_1(\mathcal{A}) \stackrel{i_*}{\leftarrow} K_1(\mathcal{K})$$

Connecting maps close diagram to a cyclic 6-term diagram

Connecting maps from $K_j(Q)$ to $K_{j+1}(K)$

Definition 4.8 (Exponential map: $K_0(Q) \rightarrow K_1(K)$)

Let $B = B^* \in M_n(\mathcal{A}^+)$ be contraction lift of unitary $V = V^* \in M_n(\mathcal{Q}^+)$

Definition 4.9 (Index map: $K_1(\mathcal{Q}) \to K_0(\mathcal{K})$)

Let $B \in M_n(\mathcal{A}^+)$ be contraction lift of unitary $U \in M_n(\mathcal{Q}^+)$, namely $\pi^+(B) = U$ and $\|B\| \le 1$. Then define

Ind
$$[U]_1 = \begin{bmatrix} 2BB^* - 1 & 2B\sqrt{1 - B^*B} \\ 2B^*\sqrt{1 - BB^*} & 1 - 2B^*B \end{bmatrix}_0$$

Index map versus index of Fredholm operator

B unitary up to compact on $\mathcal{H} \iff \mathbf{1} - B^*B$, $\mathbf{1} - BB^* \in \mathcal{K}(\mathcal{H})$

 \implies B Fredholm operator and $U = \pi(B) \in \mathcal{Q}(\mathcal{H})$ unitary

Fedosov formula if $\mathbf{1} - B^*B$ and $\mathbf{1} - BB^*$ are traceclass:

$$\begin{split} & \operatorname{Ind}(B) \ = \ \operatorname{dim}(\operatorname{Ker}(B)) \ - \ \operatorname{dim}(\operatorname{Ker}(B^*)) \\ & = \ \operatorname{Tr}(\mathbf{1} - B^*B) \ - \ \operatorname{Tr}(\mathbf{1} - BB^*) \\ & = \ \operatorname{Tr}\left(\frac{BB^* - \mathbf{1}}{(\mathbf{1} - B^*B)^{\frac{1}{2}}B^*} \quad \mathbf{1} - B^*B\right)^{\frac{1}{2}} \\ & = \ \operatorname{Tr}\left(\frac{1}{2}(V - \mathbf{1})\right) \\ & = \ \frac{1}{2} \operatorname{Sig}(V) & \text{if } \mathbf{1} - B^*B, \ \mathbf{1} - BB^* \ \text{projections} \\ & = \ \operatorname{Tr}\left(\frac{1}{2}(\operatorname{Ind}[U]_1 - \mathbf{1})\right) \\ & = \ \operatorname{Tr}\left(\operatorname{Ind}^{\sim}[U]_1\right) \end{split}$$

if $\operatorname{Ind}^{\sim}[U]_1$ is the projection-valued version of index map

6-term exact sequence

Theorem 4.10

For every $0 \to \mathcal{K} \stackrel{i}{\hookrightarrow} \mathcal{A} \stackrel{\pi}{\to} \mathcal{Q} \to 0$, above definitions lead to

Proof in the books...

Example 4.11

Toeplitz extension
$$0 \to \mathcal{K}(\ell^2(\mathbb{N})) \overset{i}{\hookrightarrow} \mathcal{T} \overset{\pi}{\to} \textit{C}(\mathbb{S}^1) \to 0$$

Bilateral shift
$$S \in C(\mathbb{S}^1)$$
 gives class $[S]_1 \in K_1(C(\mathbb{S}^1))$

Contraction lift is unilateral shift
$$\hat{S} \in \mathcal{T} \subset \mathcal{B}(\ell^2(\mathbb{N}))$$
 with $\hat{S}\hat{S}^* = \mathbf{1} - P_0$

From definition
$$\operatorname{Ind}[S]_1 = [\operatorname{diag}(\mathbf{1} - 2P_0, -\mathbf{1})]_0$$

Exact sequence of the sphere

$$0 \to \mathbb{D}^{d+1} \hookrightarrow \overline{\mathbb{D}^{d+1}} \overset{\pi}{\to} \mathbb{S}^d \to 0$$

leads to an exact sequence of C*-algebras

$$0 \ \to \ \textit{$C_0(\mathbb{D}^{d+1})$} \cong \textit{$C_0(\mathbb{R}^{d+1})$} \ \stackrel{\textit{i}}{\hookrightarrow} \ \textit{$C(\overline{\mathbb{D}^{d+1}})$} \ \stackrel{\pi}{\to} \ \textit{$C(\mathbb{S}^d)$} \ \to \ 0$$

All K-groups are well-known [WO]. For for d = 2n + 1 odd

while for d = 2n even

Aim: analyze one of the connecting maps, say Ind for d odd

Bott element

Let us write out Ind : $K_1(C(\mathbb{S}^{2n-1})) = \mathbb{Z} \to K_0(C_0(\mathbb{D}^{2n})) = \mathbb{Z}$

For n = 1, generator is function $z : \mathbb{S}^1 \to \mathbb{S}^1$ with unit winding number

Lift is $z: \overline{\mathbb{D}^1} \to \overline{\mathbb{D}^1}$ which is *not* invertible, but a contraction

Bott element is "the" non-trivial projection on \mathbb{D}^2 :

$$\operatorname{Ind}([z]_1) \ = \ \left[\begin{pmatrix} 2|z|^2 - 1 & 2z\sqrt{1 - |z|^2} \\ 2\overline{z}\sqrt{1 - |z|^2} & 1 - 2|z|^2 \end{pmatrix} \right]_0 \ \in \ \mathcal{K}_0(C(\mathbb{D}^2))$$

For higher odd d, irrep $\gamma_1, \ldots, \gamma_d$ of Clifford \mathbb{C}_d . Generator of $K_1(\mathbb{S}^d)$

$$U = \sum_{j=1,...,d} x_j \gamma_j + i x_{d+1}$$
, $x = (x_1,...,x_{d+1}) \in \mathbb{S}^d$

Lift $B \in C(\overline{\mathbb{D}^{d+1}})$ same formula. Then with r = ||x||

$$\operatorname{Ind}[U]_{1} = \begin{bmatrix} 2r^{2} - 1 & 2(1 - r^{2})^{\frac{1}{2}}B \\ 2B^{*}(1 - r^{2})^{\frac{1}{2}} & -(2r^{2} - 1) \end{bmatrix}_{0}$$

Fuzzy spheres and their index map

Definition 4.12

 $\mathcal A$ unital C*-algebra. A fuzzy d-sphere of width $\delta < 1$ is a collection of self-adjoints $X_1, \ldots, X_{d+1} \in \mathcal A$ with spectrum in [-1, 1] such that

$$\|\mathbf{1} - \sum_{j=1,...,d+1} (X_j)^2\| < \delta$$
 , $\|[X_j, X_i]\| < \delta$

Proposition 4.13

If d is odd, a fuzzy d-sphere in $\mathcal Q$ specifies an element $[A]_1 \in K_1(\mathcal Q)$ via

$$A = \sum_{j=1,\dots,d} X_j \gamma_j + i X_{d+1}$$

Theorem 4.14

For $0 \to \mathcal{K} \stackrel{i}{\hookrightarrow} \mathcal{A} \stackrel{\pi}{\to} \mathcal{Q} \to 0$ and with B is lift of A and $B^*B = R^2$

$$\operatorname{Ind}[A]_1 = \begin{bmatrix} 2R^2 - 1 & 2(1 - R^2)^{\frac{1}{2}}B \\ 2B^*(1 - R^2)^{\frac{1}{2}} & -(2R^2 - 1) \end{bmatrix}_0$$

... and there is Real KR-theory (Karoubi,...)

Requires the data of a real structure in form of an anti-linear involution

$$\tau: \mathcal{A} \to \mathcal{A}$$
 , $\tau(\mathbf{A} + \lambda \mathbf{B}) = \tau(\mathbf{A}) + \overline{\lambda}\tau(\mathbf{B})$, $\tau^2 = \mathbf{1}$

Then

$$\mathcal{V}_0^\tau(\mathcal{A}) \ = \ \Big\{ \ \textit{V} \in \cup_{\textit{n} \geqslant 1} \textit{M}_{2\textit{n}}(\mathcal{A}^+) \ : \ \textit{V}^* = \ \textit{V} = \tau(\textit{V}), \ \textit{V}^2 = \textit{1}, \ \textit{s}(\textit{V}) \sim_0 \textit{E}_{2\textit{n}} \Big\}$$

Now homotopy \sim_0 within $\mathcal{V}_0^{\tau}(\mathcal{A})$

Then
$$\mathit{KR}_0(\mathcal{A}) = \mathcal{V}_0^{\tau}(\mathcal{A})/\sim_0$$
 abelian group via $[\mathit{V}]_0 + [\mathit{V}']_0 = [\left(\begin{smallmatrix}\mathit{V} & 0 \\ 0 & \mathit{V}'\end{smallmatrix}\right)]_0$

Going on from here there 7 further groups $KR_1(A), \dots, KR_7(A)$

One has $KR_i(A) = KR_0(S^iA)$ for Real suspension

Bott periodicity is $\mathit{KR}_0(\mathcal{A}) = \mathit{KR}_0(\mathit{S}^8\mathcal{A})$

Hence KR-theory is 8 periodic

For exact sequence of Real algebras there is 64-term diagram (= $8 \cdot 3$)

Here no further details because possibly not so important for physics

Topological insulators 4. K-theory krash kourse 42 / 111

5 Observable algebra for tight-binding models

One-particle Hilbert space $\ell^2(\mathbb{Z}^d)\otimes \mathbb{C}^L$

Fiber $\mathbb{C}^L=\mathbb{C}^{2s+1}\otimes\mathbb{C}^r$ with spin s and r internal degrees e.g. $\mathbb{C}^r=\mathbb{C}^2_{_{\mathrm{ph}}}\otimes\mathbb{C}^2_{_{\mathrm{sl}}}$ particle-hole space and sublattice space Typical Hamiltonian

$$H_{\omega} = \Delta^B + W_{\omega} = \sum_{i=1}^d (t_i^* S_i^B + t_i (S_i^B)^*) + W_{\omega}$$

Magnetic translations $S_j^B S_i^B = e^{iB_{i,j}} S_i^B S_j^B$ in Laudau gauge:

$$S_1^B = S_1$$
 $S_2^B = e^{iB_{1,2}X_1}S_2$ $S_3^B = e^{iB_{1,3}X_1 + iB_{2,3}X_2}S_3$

 t_i matrices $L \times L$, e.g. spin orbit coupling, (anti)particle creation matrix potential $W_\omega = W_\omega^* = \sum_{n \in \mathbb{Z}^d} |n\rangle \omega_n \langle n|$ with i.i.d. matrices ω_n Configurations $\omega = (\omega_n)_{n \in \mathbb{Z}^d} \in \Omega$ compact probability space (Ω, \mathbb{P}) \mathbb{P} invariant and ergodic w.r.t. $T: \mathbb{Z}^d \times \Omega \to \Omega$

Covariant operators (generalizes periodicity)

Covariance w.r.t. to dual magnetic translations $V_a = S_j^B V_a (S_j^B)^*$

$$V_a H_\omega V_a^* = H_{T_a \omega}$$
, $a \in \mathbb{Z}^d$

$$\| extbf{ extit{A}} \| = \sup_{\omega \in \Omega} \| extbf{ extit{A}}_{\omega} \| \ \ \text{is C*-norm on}$$

$$\mathcal{A}_d = C^* \{ A = (A_\omega)_{\omega \in \Omega} \text{ finite range covariant operators} \}$$

 $\cong \text{ twisted crossed product } C(\Omega) \rtimes_B \mathbb{Z}^d$

Fact: Suppose Ω contractible

 \Longrightarrow rotation algebra $\mathrm{C}^*(S^B_1,\ldots,S^B_d)$ is deformation retract of \mathcal{A}_d

In particular: K-groups of $C^*(S_1^B, \dots, S_d^B)$ and A_d coincide

Theorem 5.1 (Pimsner-Voiculescu 1980)

$$K_0(\mathcal{A}_d) = \mathbb{Z}^{2^{d-1}}$$
 and $K_1(\mathcal{A}_d) = \mathbb{Z}^{2^{d-1}}$

Generators of $K_i(A_d)$

Pimsner-Voiculescu also showed that there are short exact sequences:

$$0 \ \to \ \textit{K}_0(\mathcal{A}_{d-1}) \ \stackrel{\textit{i}_*}{\to} \ \textit{K}_0(\mathcal{A}_d) \ \stackrel{\text{Exp}}{\to} \ \textit{K}_1(\mathcal{A}_{d-1}) \ \to \ 0$$

$$0 \to K_1(\mathcal{A}_{d-1}) \stackrel{i_*}{\to} K_1(\mathcal{A}_d) \stackrel{\text{Ind}}{\to} K_0(\mathcal{A}_{d-1}) \to 0$$

Both lines read $K_j(\mathcal{A}_d) = K_0(\mathcal{A}_{d-1}) \oplus K_1(\mathcal{A}_{d-1}) = \mathbb{Z}^{2^{d-2}} \oplus \mathbb{Z}^{2^{d-2}}$

Iterative construction of generators using inverse of Ind and Exp

Explicit generators $[G_I]$ of K-groups labelled by subsets $I \subset \{1, \ldots, d\}$

Top generator I = $\{1, ..., d\}$ identified with Bott in $K_j(C(\mathbb{S}^d))$

Example $G_{\{1,2\}}$ Powers-Rieffel projection and $C^*(S_1^B, S_2^B)$

In general, any projection $P \in M_n(A_d)$ can be decomposed as

$$[P]_0 = \sum_{I \subset \{1,\dots,d\}} n_I [G_I]_0$$
 $n_I \in \mathbb{Z}, |I| \text{ even}$

Questions: calculate $n_l = c_l \operatorname{Ch}_l(P)$, physical significance?

K-group elements of physical interest

Fermi level $\mu \in \mathbb{R}$ in spectral gap of H_{ω}

$$P_{\omega} = \chi(H_{\omega} \leqslant \mu)$$
 covariant Fermi projection

Hence: $P = (P_{\omega})_{\omega \in \Omega} \in \mathcal{A}_d$ fixes element in $[P]_0 \in \mathcal{K}_0(\mathcal{A}_d)$

If chiral symmetry present: Fermi unitary $U = A|A|^{-1}$ from

$$H_{\omega} = -J_{\mathrm{ch}}^* H_{\omega} J_{\mathrm{ch}} = \begin{pmatrix} 0 & A_{\omega} \\ A_{\omega}^* & 0 \end{pmatrix} , \qquad J_{\mathrm{ch}} = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix}$$

If $\mu = 0$ in gap, $A = (A_{\omega})_{\omega \in \Omega} \in \mathcal{A}_d$ invertible and $[U]_1 = [A]_1 \in K_1(\mathcal{A}_d)$

Remark Sufficient to have an approximate chiral symmetry

$$H_{\omega} = \begin{pmatrix} B_{\omega} & A_{\omega} \\ A_{\omega}^* & C_{\omega} \end{pmatrix}$$
 with invertible A_{ω}

Strong and weak invariants

Fermi level $\mu \Longrightarrow {\sf Fermi}$ projection ${\it P}$ or Fermi unitary ${\it A}$ Decompositions

$$[P]_0 = \sum_{I \subset \{1,...,d\}} n_I [G_I]_0$$
 , $[A]_1 = \sum_{I \subset \{1,...,d\}} n_I [G_I]_1$

Invariants n_I , top invariant $n_{\{1,\dots,d\}}\in\mathbb{Z}$ called strong, others weak A systems with $n_{\{1,\dots,d\}}\neq 0$ is called a strong topological insulator If $n_{\{1,\dots,d\}}=0$, but some other $n_I\neq 0$, weak topological insulator For Class A (no symmetry) and Class AIII (chiral symmetry):

	dimension d	1	2	3	4	5	6	7	8
Α	strong invariant	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	strong invariant	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0

 \mathbb{Z} -entries are parts of the K-groups. Calculation of number later

Non-commutative analysis tools [BES, PS]

Definition 5.2 (Non-commutative integration and derivatives)

Tracial state T on A_d given by

$$\mathcal{T}(A) = \mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{L} \langle 0 | A_{\omega} | 0 \rangle$$

Derivations $\nabla = (\nabla_1, \dots, \nabla_d)$ densely defined by

$$\nabla_j A_{\omega} = i[X_j, A_{\omega}]$$

Then define $C^k(A)$, $C^{\infty}(A)$, etc.

Usual rules: $\mathcal{T}(AB) = \mathcal{T}(BA)$, $\nabla(AB) = \nabla(A)B + A\nabla(B)$, etc.

Also: $\mathcal{T}(\nabla(A)) = 0$, so partial integration $\mathcal{T}(\nabla(A)B) = -\mathcal{T}(A\nabla(B))$

Proposition 5.3 (Birkhoff theorem for translation group)

 \mathcal{T} is \mathbb{P} -almost surely the trace per unit volume

$$\mathcal{T}(A) = \lim_{\Lambda \to \mathbb{Z}^d} \frac{1}{|\Lambda|} \sum_{n \in \Lambda} \operatorname{Tr}_L \langle n | A_{\omega} | n \rangle$$

Periodic systems

For simplicity 1-periodic in all directions and no magnetic field Then $\mathcal{A}_d = C(\mathbb{T}^d) \otimes \mathbb{C}^{L \times L}$ commutative up to matrix degree

non-commutative	Α	$\nabla_j(A)$	\mathcal{T}
commutative	$k \mapsto A(k)$	$\partial_{\pmb{k_j}}\pmb{A}$	$\int_{\mathbb{T}^d} dk \operatorname{Tr}$

With dictionary: rewrite many formulas from solid state literature

Example: Kubo formula for conductivity at relaxation time τ

$$\int dk \sum_{n,m} \left(\partial_{k_i} f_{\beta,\mu}(E_n(k)) \left(E_n(k) - E_m(k) + \frac{1}{\tau} \right)^{-1} \partial_{k_j} E_m(k) \right)$$

$$= \mathcal{T} \left(\nabla_i (f_{\beta,\mu}(H)) \left(\mathcal{L}_H + \frac{1}{\tau} \right)^{-1} (\nabla_j (H)) \right)$$

where $\mathcal{L}_H = i[H, .]$ Liouville operator

6 Topological invariants in solid state systems

For invertible $A \in \mathcal{A}_d$ and odd |I|, with $\rho : \{1, \dots, |I|\} \rightarrow I$:

$$\operatorname{Ch}_{I}(A) \ = \ \frac{i(i\pi)^{\frac{|I|-1}{2}}}{|I|!!} \ \sum_{\rho \in S_{I}} (-1)^{\rho} \ \mathcal{T} \left(\prod_{j=1}^{|I|} A^{-1} \nabla_{\rho_{j}} A \right) \in \ \mathbb{R}$$

where $\mathcal{T}(A) = \mathbf{E}_{\mathbb{P}} \operatorname{Tr}_{L} \langle 0 | A_{\omega} | 0 \rangle$ and $\nabla_{j} A_{\omega} = i[X_{j}, A_{\omega}]$ For even |I| and projection $P \in \mathcal{A}_{d}$:

$$\operatorname{Ch}_{I}(P) = \frac{(2i\pi)^{\frac{|I|}{2}}}{\frac{|I|}{2}!} \sum_{\rho \in \mathcal{S}_{I}} (-1)^{\rho} \mathcal{T} \left(P \prod_{j=1}^{|I|} \nabla_{\rho_{j}} P \right) \in \mathbb{R}$$

Theorem 6.1 (Connes 1985, [Con])

 $\operatorname{Ch}_{l}(A)$ and $\operatorname{Ch}_{l}(P)$ homotopy invariants; pairings with $K(\mathcal{A}_{d})$

Link to Volovik-Essin-Gurarie invariants

Express the invariants in terms of Green function/resolvent

Consider path $z:[0,1] \to \mathbb{C} \backslash \sigma(H)$ encircling $(-\infty,\mu] \cap \sigma(H)$

Set

$$G(t) = (H - z(t))^{-1}$$

Theorem 6.2 ([PS])

For |I| even and with $\nabla_0 = \partial_t$,

$$\operatorname{Ch}_{I}(P_{\mu}) = \frac{(i\pi)^{\frac{|I|}{2}}}{i(|I|-1)!!} \sum_{\rho \in S_{I \cup \{0\}}} (-1)^{\rho} \int_{0}^{1} dt \, \mathcal{T}\left(\prod_{j=0}^{|I|} G(t)^{-1} \nabla_{\rho_{j}} G(t)\right)$$

Isomorphism via Bott map $\beta: K_0(\mathcal{A}_d) \to K_1(\mathcal{S}\mathcal{A}_d)$ leads to

$$\beta[P_{\mu}]_0 = [t \in [0,1] \mapsto G(t)]_1$$

Combine with suspension result on cyclic cohomology side Similar results for odd pairings

Generalized Streda formulæ

In QHE: integrated density of states grows linearly in magnetic field integrated density of states: $\mathbf{E}\langle 0|P|0\rangle=\mathrm{Ch}_{\varnothing}(P)$

$$\partial_{\mathcal{B}_{1,2}}\operatorname{Ch}_{\varnothing}(P) \ = \ \frac{1}{2\pi}\operatorname{Ch}_{\{1,2\}}(P)$$

Theorem 6.3 ([PS])

$$\partial_{B_{i,j}} \operatorname{Ch}_{I}(P) = \frac{1}{2\pi} \operatorname{Ch}_{I \cup \{i,j\}}(P) \qquad |I| \text{ even, } i, j \notin I$$

$$\partial_{B_{i,j}} \operatorname{Ch}_{I}(A) = \frac{1}{2\pi} \operatorname{Ch}_{I \cup \{i,j\}}(A) \qquad |I| \text{ odd }, i,j \notin I$$

Application: magneto-electric effects in d = 3

Time is 4th direction needed for calculation of polarization

Non-linear response is derivative w.r.t. B given by $Ch_{\{1,2,3,4\}}(P)$

Index theorem for strong invariants and odd d

 $\gamma_1, \ldots, \gamma_d$ irrep of Clifford C_d on $\mathbb{C}^{2^{(d-1)/2}}$

$$D = \sum_{j=1}^{d} X_{j} \otimes \mathbf{1} \otimes \gamma_{j} \quad \text{Dirac operator on } \ell^{2}(\mathbb{Z}^{d}) \otimes \mathbb{C}^{L} \otimes \mathbb{C}^{2^{(d-1)/2}}$$

Dirac phase $F = \frac{D}{|D|}$ provides odd Fredholm module on A_d :

$$F^2 = \mathbf{1}$$
 $[F, A_{\omega}]$ compact and in $\mathcal{L}^{d+\epsilon}$ für $A = (A_{\omega})_{\omega \in \Omega} \in \mathcal{A}_d$

Theorem 6.4 (Local index = generalizes Noether-Gohberg-Krein)

Let $\Pi = \frac{1}{2}(F + 1)$ be Hardy Projektion for F. For invertible A_{ω}

$$Ch_{\{1,\ldots,d\}}(A) = Ind(\Pi A_{\omega}\Pi)$$

The index is \mathbb{P} -almost surely constant.

Local index theorem for even dimension d

As above $\gamma_1, \dots, \gamma_d$ Clifford, grading $\Gamma = -i^{-d/2}\gamma_1 \cdots \gamma_d$

Dirac
$$D=-\Gamma D\Gamma=|D|\begin{pmatrix} 0&F\\F^*&0\end{pmatrix}$$
 even Fredholm module

Theorem 6.5 (Connes d = 2, Prodan, Leung, Bellissard 2013)

Almost sure index $\operatorname{Ind}(P_{\omega}FP_{\omega})$ equal to $\operatorname{Ch}_{\{1,\ldots,d\}}(P)$

Special case
$$d=2$$
: $F=\frac{X_1+iX_2}{|X_1+iX_2|}$ and
$$\operatorname{Ind}(P_{\omega}FP_{\omega}) = 2\pi i \, \mathcal{T}(P[[X_1,P],[X_2,P]])$$

Proofs: geometric identity of high-dimensional simplexes

Advantages: phase label also for dynamical localized regime implementation of discrete symmetries (CPT)

Bott operator (Loring and Hastings 2008, [Lor, LSB])

For tuning parameter $\kappa > 0$ and invertible local A:

$$B_{\kappa} = \begin{pmatrix} \kappa D & A \\ A^* & -\kappa D \end{pmatrix} = \kappa D \otimes \sigma_3 + H$$

where $H = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$ chiral Hamiltonian. Clearly B_{κ} selfadjoint

D unbounded with discrete spectrum, A viewed as perturbation

A may lead to spectral asymmetry of B_{κ} , but not for A = 1

Measured by signature, already on finite volume approximation!

 A_{ρ} restriction of A (Dirichlet b.c.) to $\mathbb{D}_{\rho} = \{x \in \mathbb{Z}^d : |x| \leqslant \rho\}$

$$B_{\kappa,\rho} = \begin{pmatrix} \kappa D_{
ho} & A_{
ho} \\ A_{
ho}^* & -\kappa D_{
ho} \end{pmatrix}$$

Finite volume calculation of topological invariants

Theorem 6.6 ([LSB])

Let $g = ||A^{-1}||^{-1}$ be the invertibility gap. Provided that

$$\|[D,A]\| \leqslant \frac{g^3}{18\|A\|\kappa} \tag{*}$$

and

$$\frac{2g}{\kappa} \leqslant \rho \tag{**}$$

the matrix $B_{\kappa,\rho}$ is invertible and strong invariant is

$$\frac{1}{2}\operatorname{Sig}(B_{\kappa,\rho}) = \operatorname{Ind}(\Pi A \Pi + (\mathbf{1} - \Pi))$$

How to use: form (*) infer κ , then ρ from (**)

If A unitary, g = ||A|| = 1 and $\kappa = (18||[D, A]||)^{-1}$ and $\rho = 2/\kappa$

Hence **small** matrix of size ≤ 100 sufficient! Great for numerics!

Why it can work:

Proposition 6.7

If (*) and (**) hold (which includes the case $\rho = \infty$),

$$B_{\kappa,\rho}^2 \geqslant \frac{g^2}{2}$$

Proof:

$$B_{\kappa,\rho}^{2} = \begin{pmatrix} A_{\rho}^{*}A_{\rho} & 0 \\ 0 & A_{\rho}A_{\rho}^{*} \end{pmatrix} + \kappa^{2} \begin{pmatrix} D_{\rho}^{2} & 0 \\ 0 & D_{\rho}^{2} \end{pmatrix} + \kappa \begin{pmatrix} 0 & [D_{\rho}, A_{\rho}] \\ [D_{\rho}, A_{\rho}]^{*} & 0 \end{pmatrix}$$

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)

Now
$$A^*A\geqslant g^2$$
, but $(A^*A)_
ho \mp A_
ho^*A_
ho$

This issue can be dealt with by tapering argument:

Proposition 6.8 (Bratelli-Robinson)

For $f: \mathbb{R} \to \mathbb{R}$ with Fourier transform defined without $\sqrt{2\pi}$,

$$||[f(D), A]|| \leq ||\widehat{f'}||_1 ||[D, A]||$$

Lemma 6.9 (Tapering function)

$$\exists$$
 even function $f: \mathbb{R} \to [0,1]$ with $f(x) = 0$ for $|x| \geqslant \rho$ and $f(x) = 1$ for $|x| \leqslant \frac{\rho}{2}$ such that $\|\hat{f'}\|_1 = \frac{8}{\rho}$

With this,
$$f = f(D) = f(|D|)$$
 and $\mathbf{1}_{\rho} = \chi(|D| \leq \rho)$:

$$A_{\rho}^{*}A_{\rho} = \mathbf{1}_{\rho}A^{*}\mathbf{1}_{\rho}A\mathbf{1}_{\rho} \geqslant \mathbf{1}_{\rho}A^{*}f^{2}A\mathbf{1}_{\rho}$$

$$= \mathbf{1}_{\rho}fA^{*}Af\mathbf{1}_{\rho} + \mathbf{1}_{\rho}([A^{*}, f]fA + fA^{*}[f, A])\mathbf{1}_{\rho}$$

$$\geqslant g^{2}f^{2} + \mathbf{1}_{\rho}([A^{*}, f]fA + fA^{*}[f, A])\mathbf{1}_{\rho}$$

So indeed $A_{\rho}^*A_{\rho}$ positive close to origin

Then one can conclude... but TEDIOUS

η-invariant (Atiyah-Patodi-Singer 1977)

Definition 6.10

 $B = B^*$ invertible operator on \mathcal{H} with compact resolvent. Then

$$\eta(B) \; = \; \mathrm{Tr}(B|B|^{-s-1})|_{s=0} \; = \; \frac{1}{\Gamma(\frac{s+1}{2})} \int_0^\infty dt \; t^{\frac{s-1}{2}} \; \mathrm{Tr}(B\,e^{-tB^2}) \Big|_{s=0}$$

provided it exists!

If $dim(\mathcal{H}) < \infty$, then $\eta(B) = Sig(B)$

Usually existence of η -invariant for ψ -Diffs difficult issue

Proposition 6.11

If (*) holds, B_{κ} has well-defined η -invariant

Proof. Integral for large *t* controlled by gap (Proposition above)

For small *t* appeal to Dyson series (iteration of DuHamel):

$$e^{-tB_{\kappa}^2} = e^{-t\Delta} + t \int_0^1 dr \, e^{-(1-r)t\Delta} Re^{-rtB_{\kappa}^2}$$

where $B_{\kappa}^2 = \Delta + R$ with

$$\Delta = \kappa^2 \begin{pmatrix} D^2 & 0 \\ 0 & D^2 \end{pmatrix} \qquad , \qquad R = \begin{pmatrix} AA^* & \kappa[D,A] \\ \kappa[D,A]^* & A^*A \end{pmatrix}$$

Now replacing $B_{\kappa} = \kappa D \otimes \sigma_3 + H$

$$\operatorname{Tr}(B_{\kappa}e^{-t\Delta}) \ = \kappa\operatorname{Tr}\left(\begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix}e^{-t\Delta}\right) \ + \ \operatorname{Tr}\left(\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}e^{-t\Delta}\right) \ = \ 0$$

Second term has supplementary factor t

Theorem 6.12 (follows from Getzler 1993, Carey-Phillips 2004)

Suppose (*) so that B_{κ} has well-defined η -invariant

For path $\lambda \in [0,1] \mapsto B_{\kappa}(\lambda) = \kappa D \otimes \sigma_3 + \lambda H$ of selfadjoints

$$2\,\text{SF}\big(\lambda\in[0,1]\mapsto B_\kappa(\lambda)\big)\ =\ \eta(B_\kappa(1))\ -\ \eta(B_\kappa(0))\ =\ \eta(B_\kappa)$$

Consequence: As spectral flow homotopy invariant, so is $\eta(B_{\kappa})$

Using this, **first proof** of Theorem 6.6 for dimension d = 1:

By homotopy invariance sufficient: $A = S^n$ for $n \in \mathbb{Z}$ and S shift

Then calculate spectrum of $B_{\kappa}(\lambda)$ explicitly using XS = (X+1)S:

$$\sigma(B_{\kappa}(\lambda)) = \left\{ \frac{\kappa}{2} \left(n \pm \left((n - 2k)^2 + \frac{4\lambda^2}{\kappa^2} \right)^{\frac{1}{2}} \right) : k \in \mathbb{Z} \right\}$$

Now carefully follow eigenvalues to calculate spectral flow

Localizing index map for index pairings

Suppose now $U = \pi \big(\Pi A \Pi + (\mathbf{1} - \Pi) \big) \in \mathcal{Q}$ as in Theorem 6.6 but first A unitary. Then contraction lift $B = \Pi A \Pi + (\mathbf{1} - \Pi)$ Modify Π and $\mathbf{1} - \Pi$ to p = p(D) smooth and n = n(D) where

$$p(x) = \begin{cases} 0, & x \leq -\rho \\ p(x), & |x| \leq \rho \\ 1, & x \geq \rho \end{cases}, \quad n(x) = \begin{cases} 1, & x \leq -\rho \\ 0, & x \geq -\rho \end{cases}$$

Now $p-\Pi$, $n-(\mathbf{1}-\Pi)$ compact, np=pn=0 and $n+p|_{\mathbb{D}_p^c}=\mathbf{1}_{\mathbb{D}_p^c}$ With notation $A_p=pAp$ acting only on $\ell^2(\mathbb{D}_p)\otimes\mathbb{C}^N$:

$$Ind[U] = Ind[pAp + n] = Ind[A_p + n]$$

$$= \begin{bmatrix} 2A_pA_p^* - \mathbf{1} & 2A_p(\mathbf{1} - A_p^*A_p)^{\frac{1}{2}} \\ 2(\mathbf{1} - A_p^*A_p)^{\frac{1}{2}}A_p^* & \mathbf{1} - 2A_p^*A_p \end{bmatrix} \oplus \begin{pmatrix} \mathbf{1}_{\mathbb{D}_p^c} & 0 \\ 0 & -\mathbf{1}_{\mathbb{D}_p^c} \end{pmatrix}$$

Summand on \mathbb{D}_{ρ}^{c} trivial (as equal to E_{2}). Thus:

$$\operatorname{Ind}[U] = \left[\begin{pmatrix} 2A_{p}A_{p}^{*} - \mathbf{1} & 2A_{p}(\mathbf{1} - A_{p}^{*}A_{p})^{\frac{1}{2}} \\ 2(\mathbf{1} - A_{p}^{*}A_{p})^{\frac{1}{2}}A_{p}^{*} & \mathbf{1} - 2A_{p}^{*}A_{p} \end{pmatrix} \right]$$

Numerical index is signature of this finite-dimensional matrix! Modify to self-adjoint matrix without spoiling invertibility

$$||A_{p}A_{p}^{*}-p^{4}|| = ||pAp^{2}A^{*}p-p^{3}AA^{*}p|| \leq ||[p^{2},A]||$$

 $\leq \frac{C}{\rho}||[D,A]|| < \frac{1}{4}$

by the smoothness of p and for ρ sufficiently large. Similarly

$$\|A_{\rho}(\mathbf{1}-A_{\rho}^{*}A_{\rho})^{\frac{1}{2}}-(\mathbf{1}-\rho^{4})^{\frac{1}{4}}\rho A\rho(\mathbf{1}-\rho^{4})^{\frac{1}{4}}\| \leqslant \frac{C}{\rho}\|[D,A]\| < \frac{1}{4}$$

Thus just replace matrix entries without changing signature!

Proposition 6.13

If (*) and (**) hold,

$$\begin{split} & \operatorname{Ind} \left(\Pi A \Pi + (\mathbf{1} - \Pi) \right) \\ &= \operatorname{Sig} \left(\begin{aligned} 2 p^4 - \mathbf{1} & 2 (\mathbf{1} - p^4)^{\frac{1}{4}} p A p (\mathbf{1} - p^4)^{\frac{1}{4}} \\ 2 (\mathbf{1} - p^4)^{\frac{1}{4}} p A^* p (\mathbf{1} - p^4)^{\frac{1}{4}} & \mathbf{1} - 2 p^4 \end{aligned} \right) \end{split}$$

Last tasks:

- 1) replace $2p^4 1$ by κD_{ρ}
- 2) replace $\sqrt{2}(\mathbf{1}-p^4)^{\frac{1}{4}}p$ by $\mathbf{1}_{\rho}$ indicator on \mathbb{D}_{ρ} . Then $\mathbf{1}_{\rho}A\mathbf{1}_{\rho}=A_{\rho}$

Both follows again by a tapering argument

UUuuuffff

7 Invariants as response coefficients

- Hall conductance via Kubo formula: $Ch_{\{i,j\}}$ with $i \neq j$
- ullet polarization for periodically driven systems: $Ch_{\{0,j\}}$ with 0 time
- orbital magnetization at zero temperature
- magneto-electric effect: Ch_{0,1,2,3} with 0 time
- chiral polarization: $Ch_{\{j\}}$

Current operator $J = (J_1, \dots, J_d)$ in d dimension:

$$J = \dot{X} = i[H, X] = \nabla H$$

Current density at equilibrium expressed by Fermi-Dirac state:

$$j_{\beta,\mu} = \mathcal{T}(f_{\beta,\mu}(H)J)$$
 , $f_{\beta,\mu}(H) = (1 + e^{\beta(H-\mu)})^{-1}$

Proposition 7.1 ([BES])

If
$$H = H^* \in C^1(\mathcal{A})$$
 and $f \in C_0(\mathbb{R})$, then $\mathcal{T}(f(H)\nabla H) = 0$

Proof: Leibniz implies $0 = \mathcal{T}(\nabla H^n) = n\mathcal{T}(H^{n-1}\nabla H)$ for all $n \ge 1$

Hence no current at equilibrium! Add external electric field $\mathcal{E} \in \mathbb{R}^d$

$$H_{\mathcal{E}} = H + \mathcal{E} \cdot X$$

Then $H_{\mathcal{E}}$ neither bounded nor homogeneous and thus not in \mathcal{A} Nevertheless associated time evolution remains in the algebra \mathcal{A} In the Schrödinger picture it is governed by the Liouville equation:

$$\partial_t \, \rho \; = \; - \, i \, [H_{\mathcal{E}}, \rho] \; = \; - \, i \, [H + \mathcal{E} \cdot X, \rho] \; = \; - \, \mathcal{L}_H(\rho) \; + \; \mathcal{E} \cdot \nabla(\rho)$$

Now Dyson series with Liouville \mathcal{L}_H as perturbation is iteration of

$$e^{t\mathcal{L}_{H_{\mathcal{E}}}} = e^{t\mathcal{E}\cdot\nabla} + \int_{0}^{t} ds \ e^{(t-s)\mathcal{E}\cdot\nabla} \mathcal{L}_{H} e^{s\mathcal{L}_{H_{\mathcal{E}}}}$$

This shows:

Proposition 7.2

 $\pm \mathcal{L}_H + \mathcal{E} \cdot \nabla$ are generators of automorphism groups in \mathcal{A}

Next time-averaged current under the dynamics with \mathcal{E} :

$$j_{\beta,\mu,\mathcal{E}} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, \mathcal{T} \big(f_{\beta,\mu}(H) \, e^{t\mathcal{L}_{H_{\mathcal{E}}}}(J) \big)$$

As trace \mathcal{T} invariant under both ∇ and \mathcal{L}_H ,

$$j_{\beta,\mu,\mathcal{E}} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, \mathcal{T} \left(J e^{-t\mathcal{L}_{H_{\mathcal{E}}}} (f_{\beta,\mu}(H)) \right)$$

(Schrödinger picture ← Heisenberg picture). Now

Proposition 7.3 (Bloch Oscillations)

Time-averaged current $j_{\beta,\mu,\mathcal{E}}$ along direction of \mathcal{E} vanishes

Proof.
$$\mathcal{E} \cdot J(t) = e^{t\mathcal{L}_{H_{\mathcal{E}}}} (\mathcal{E} \cdot \nabla(H)) = e^{t\mathcal{L}_{H_{\mathcal{E}}}} (\mathcal{L}_{H_{\mathcal{E}}}(H)) = \frac{dH(t)}{dt}$$

Taking the time average gives us

$$\frac{1}{T} \int_0^T dt \, \mathcal{E} \cdot J(t) = \frac{H(T) - H}{T}$$

Since *H* bounded and ||H(t)|| = ||H||, r.h.s. vanishes as $T \to \infty$

Topological insulators 7. Invariants as response coefficients

67 / 111

Modify dynamics by bounded linear collision term (like Boltzmann eq.):

$$\partial_t \rho + \mathcal{L}_H(\rho) - \mathcal{E} \cdot \nabla(\rho) = -\Gamma(\rho)$$

Main property is invariance of equilibrium: $\Gamma(f_{\beta,\mu}(H)) = 0$

Again Dyson series shows existence of dynamics:

$$\rho(t) \ = \ \boldsymbol{e}^{-t(\mathcal{L}_H - \mathcal{E} \cdot \nabla + \Gamma)}(\rho(\mathbf{0}))$$

Initial state chosen to be $\rho(0) = f_{\beta,\mu}(H)$

Exponential time-averaged current density shows:

$$j_{\beta,\mu,\mathcal{E}} = \lim_{\delta \to 0} \delta \int_{0}^{\infty} dt \ e^{-\delta t} \ \mathcal{T}(J\rho(t))$$
$$= \lim_{\delta \to 0} \delta \ \mathcal{T}\left(J \ \frac{1}{\delta + \Gamma + \mathcal{L}_{H} - \mathcal{E} \cdot \nabla}(f_{\beta,\mu}(H))\right)$$

By Proposition 7.1 and $(\mathcal{L}_H + \Gamma)(f_{\beta,\mu}(H)) = 0$ no current at equilibrium:

$$0 \ = \ \delta \ \mathcal{T} \left(J \ \frac{1}{\delta} \ f_{\beta,\mu}(H) \right) \ = \ \delta \ \mathcal{T} \left(J \ \frac{1}{\delta + \mathcal{L}_H + \Gamma} \left(f_{\beta,\mu}(H) \right) \right)$$

Subtract this from $j_{\beta,\mu,\mathcal{E}}$ and use resolvent identity

$$j_{\beta,\mu,\mathcal{E}} = \lim_{\delta \to 0} \mathcal{T} \left(J \frac{1}{\delta + \Gamma + \mathcal{L}_H - \mathcal{E} \cdot \nabla} \mathcal{E} \cdot \nabla \frac{\delta}{\delta + \Gamma + \mathcal{L}_H} (f_{\beta,\mu}(H)) \right)$$

Now, again $(\mathcal{L}_H + \Gamma)(f_{\beta,\mu}(H)) = 0$,

$$j_{\beta,\mu,\mathcal{E}} = \lim_{\delta \to 0} \sum_{j=1}^{d} \mathcal{E}_{j} \ \mathcal{T} \left(J \frac{1}{\delta + \Gamma + \mathcal{L}_{H} - \mathcal{E} \cdot \nabla} (\nabla_{j} f_{\beta,\mu}(H)) \right)$$

This contains all non-linear terms in the electric field Limit $\delta \to 0$ can be taken, if inverse exists Linear coefficients of $j_{\beta,\mu,\mathcal{E}}$ in \mathcal{E} give conductivity tensor In **relaxation time approximation** (RTA) on replaces Γ by $\frac{1}{\pi} > 0$

Theorem 7.4 (Kubo formula in RTA [BES])

$$\sigma_{i,j}(\beta,\mu,\tau) = \mathcal{T}\left(\nabla_i H \frac{1}{\frac{1}{\tau} + \mathcal{L}_H} (\nabla_j f_{\beta,\mu}(H))\right)$$

Hall conductance $i \neq j$ at zero temperature $\beta = \infty$ and $\tau = \infty$ exists

$$\sigma_{i,j}(\beta = \infty, \mu, \tau = \infty) = \mathcal{T}\left((\mathcal{L}_H)^{-1}(\nabla_i H) \nabla_j P\right)$$

where $P = \chi(H \leqslant \mu)$. As

$$\nabla_{j}P \ = \ P\nabla_{j}P(\mathbf{1}-P) \ + \ (\mathbf{1}-P)\nabla_{j}PP$$

and

$$(\mathcal{L}_H)^{-1}(P\nabla_j H(\mathbf{1} - P)) = -iP\nabla_j P(\mathbf{1} - P)$$
$$(\mathcal{L}_H)^{-1}((\mathbf{1} - P)\nabla_j HP) = i(\mathbf{1} - P)\nabla_j PP$$

Hence

$$\sigma_{i,j}(\beta = \infty, \mu, \tau = \infty) = i\mathcal{T}(P[\nabla_i P, \nabla_j P]) = \frac{1}{2\pi} \operatorname{Ch}_{\{i,j\}}(P)$$

R.h.s. is integer-valued in dimension d = 2 and d = 3 (3D QHE) This result holds also in a mobility gap regime [BES]

Electric polarization

 $t \in [0, 2\pi) \cong \mathbb{S}^1 \mapsto H(t)$ periodic gapped Hamiltonian (changes dyn.) Change ΔP in polarization is integrated induced current density:

$$\Delta P = \int_0^{2\pi} dt \, \mathcal{T}(\rho(t) J(t))$$
, $\rho(0) = P_0 = \chi(H \leqslant \mu)$

with J(t) = i[H(t), X]. Algebraic reformulation:

$$\Delta P = \int_0^{2\pi} dt \, \mathcal{T}(\rho(t) [\partial_t \rho(t), [X, \rho(t)]])$$

However, $\rho(t)$ unknown. So adiabatic limit of slow time changes:

Theorem 7.5 (Kingsmith-Vanderbuilt and [ST])

 $t \in \mathbb{S}^1 \mapsto H(t)$ smooth with gap open for all t

With
$$\rho(0) = P_0(0)$$
 and $\varepsilon \partial_t \rho(t) = \imath [\rho(t), H(t)]$, for any $N \in \mathbb{N}$

$$\Delta P = i \int_0^{2\pi} dt \, \mathcal{T} \big(P_0(t) \left[\partial_t P_0(t), [X, P_0(t)] \right] \big) + \mathcal{O}(\varepsilon^N)$$

Now add time to algebra: $C(\mathbb{S}^1, \mathcal{A}_d)$ is like \mathcal{A}_{d+1} 0th component is time and $\nabla_0 = \partial_t$ Also trace on $C(\mathbb{S}^1, \mathcal{A}_d)$ is $\frac{1}{2\pi} \int_0^{2\pi} dt \, \mathcal{T}$

Korollar 7.6

Polarization of periodically driven system is topological:

$$\Delta P_j = 2\pi \operatorname{Ch}_{\{0,j\}} + \mathcal{O}(\varepsilon^N)$$

For d = 1, 2 and j = 1, one hence has $\Delta P_1 \in 2\pi \mathbb{Z}$ up to $\mathcal{O}(\varepsilon^N)$

However, in d=3 one does **not** have $\Delta P_j \in 2\pi \mathbb{Z}$, but due to generalized Streda formula, magneto-electric response satisfies

$$\alpha_{1,2,3} = \partial_{B_{2,3}} \Delta P_1 = 2\pi \operatorname{Ch}_{\{0,1,2,3\}} \in 2\pi \mathbb{Z}$$

Similarly: IDOS on gaps satisfies gap labelling

Chiral polarization

Chiral Hamiltonian $H = -\sigma_3 H \sigma_3$, typically due to sub-lattice symmetry chiral polarization = difference between two electric dipole moments

$$P_{\text{c}} = \mathbf{E} \operatorname{Tr} \langle 0 | P \sigma_3 X P | 0 \rangle = i \mathcal{T} (P \sigma_3 \nabla P)$$

due to $X|0\rangle = 0$. Let U be Fermi unitary of P

Proposition 7.7 ([PS])

$$P_{c,j} = -\frac{1}{2} \operatorname{Ch}_{\{j\}}(U)$$
 , $j = 1, ..., d$

Proof. Expressing *P* in terms of *U*

$$P_{\rm c} \,=\, \frac{i}{4}\,\mathcal{T}\left(\begin{pmatrix}\mathbf{1} & U^* \\ -U & -\mathbf{1}\end{pmatrix}\begin{pmatrix}\mathbf{0} & -\nabla U^* \\ -\nabla U & \mathbf{0}\end{pmatrix}\right) \,=\, \frac{i}{4}\,\mathcal{T}(-U^*\nabla U + U\nabla U^*)$$

Now use $U\nabla U^* = -(\nabla U)U^*$ and cyclicity

8 Bulk-boundary correspondence and applications

Toeplitz extension
$$T(\mathcal{A}_d) = C^*(S_1^B, \dots, S_{d-1}^B, \widehat{S}_d^B, W_\omega)$$

Moreover:

$$\mathcal{E}_d \cong \mathcal{A}_{d-1} \otimes \mathcal{K}(\ell^2(\mathbb{N}))$$

Theorem 8.1 ([KRS, PS])

$$\mathrm{Ch}_{I\cup\{d\}}(A) \ = \ \mathrm{Ch}_I(\mathrm{Ind}(A)) \qquad |I| \ \mathrm{even} \ , \ [A] \in K_1(\mathcal{A}_d)$$

$$\mathrm{Ch}_{I\cup\{d\}}(P) \ = \ \mathrm{Ch}_I(\mathrm{Exp}(P)) \qquad |I| \text{ odd }, \ [P] \in K_0(\mathcal{A}_d)$$

Proof: loooong **Example:** d = 1 was exactly the SSH model

Physical implication in d = 2: QHE

P Fermi projection below a bulk gap $\Delta \subset \mathbb{R}$. Kubo formula:

Hall conductance =
$$Ch_{\{1,2\}}(P)$$

Bulk-boundary:

$$Ch_{\{1,2\}}(\textbf{\textit{P}}) \ = \ Ch_{\{1\}}(Exp(\textbf{\textit{P}})) \ = \ Wind(Exp(\textbf{\textit{P}}))$$

With continuous g(E) = 1 for $E < \Delta$ and g(E) = 0 for $E > \Delta$:

$$\operatorname{Exp}(P) = \exp(-2\pi i g(\widehat{H})) \in T(\mathcal{A}_2)$$

as indeed $\pi(g(\hat{H})) = g(H) = P$ so that $\pi(\text{Exp}(P)) = 1$ trivial

Theorem 8.2 (Quantization of boundary currents [KRS, PS])

$$\mathrm{Ch}_{\{1,2\}}(P) \ = \ \mathbb{E} \sum_{n_2\geqslant 0} \langle 0, n_2 | g'(\widehat{H}) i[X_1, \widehat{H}] | 0, n_2 \rangle$$

The r.h.s. is current density flowing along the boundary

Proof: With $\widehat{\mathcal{T}}(A)=\mathcal{T}_1\operatorname{Tr}_2(A)=\mathbf{E}_{\mathbb{P}}\sum_{n_2\geqslant 0}\langle 0,n_2|\widehat{A}_{\omega}|0,n_2\rangle$, r.h.s. is

$$\textit{j}^{\text{e}}(\textit{g}) \ = \ \mathbb{E} \sum_{\textit{n}_{2} \geqslant 0} \langle 0, \textit{n}_{2} | \textit{g}'(\widehat{\textit{H}}) \textit{i}[\textit{X}_{1}, \widehat{\textit{H}}] | 0, \textit{n}_{2} \rangle \ = \ \widehat{\mathcal{T}} \big(\widehat{\textit{J}}_{1} \; \textit{g}'(\widehat{\textit{H}}) \big)$$

Summability in n_2 has to be checked

Let $\Pi:\ell^2(\mathbb{Z}^2)\to\ell^2(\mathbb{Z}\times\mathbb{N})$ surjective partial isometry,

namely $\Pi\Pi^*$ identity on $\ell^2(\mathbb{Z}\times\mathbb{N})$

Then $\hat{H} = \Pi H \Pi^*$

Proposition 8.3

For $G \in C^{\infty}(\mathbb{R})$ with supp $(G) \cap \sigma(H) = \emptyset$

Then the operator $G(\hat{H})$ is \hat{T} -traceclass

Proof based on functional calculus often attributed to Helffer-Sjorstrand

Proposition 8.4 (Functional calculus à la Dynkin 1972)

 $\chi \in C_0^\infty((-1,1),[0,1])$ even and equal to 1 on $[-\delta,\delta]$

For $N \geqslant 1$ let quasi-analytic extension $\widetilde{G} : \mathbb{C} \to \mathbb{C}$ of G by

$$\widetilde{G}(x,y) = \sum_{n=0,\dots,N} G^{(n)}(x) \frac{(iy)^n}{n!} \chi(y)$$
, $z = x + iy$

Then with norm-convergent Riemann sum

$$G(H) = \frac{-1}{2\pi} \int_{\mathbb{R}^2} dx \, dy \, \partial_{\overline{z}} \widetilde{G}(x,y) \, (z-H)^{-1}$$

Proof. Crucial identity is

$$\partial_{\overline{z}}\widetilde{G}(x,y) = G^{(N+1)}(x) \frac{(iy)^N}{N!} \chi(y) + i \sum_{n=0,\dots,N} G^{(n)}(x) \frac{(iy)^n}{n!} \chi'(y)$$

In particular, uniformly in x, y, one has $|\partial_{\overline{z}} \widetilde{G}(x, y)| \leq C |y|^N$ Hence also $\partial_{\overline{z}} \widetilde{G}(x, 0) = 0$. Now resolvent bound. Details.... **Proof** of Proposition 8.3. Geometric resolvent identity

$$\frac{1}{z - \hat{H}} \; = \; \Pi \, \frac{1}{z - H} \, \Pi^* \; + \; \frac{1}{z - \hat{H}} \, (\hat{H} \, \Pi^* - \Pi \, H) \, \frac{1}{z - H} \, \Pi^*$$

in Dynkin for $G(\hat{H})$ together with G(H) = 0 leads to

$$\begin{split} G(\widehat{H}) &= \Pi \, G(H) \, \Pi^* \, + \, \widehat{K} \\ &= \, \frac{-1}{2\pi} \, \int_{\mathbb{R}^2} dx \, dy \, \, \partial_{\overline{z}} \widetilde{G}(x,y) \, \frac{1}{z - \widehat{H}} \, (\widehat{H} \, \Pi^* - \Pi \, H) \, \frac{1}{z - H} \, \Pi^* \end{split}$$

Resolvents have fall-off of their matrix elements off the diagonal:

$$(n_j - m_j)^k \langle n | (z - H)^{-1} | m \rangle = i^k \langle n | \nabla_j^k (z - H)^{-1} | m \rangle ,$$

Expand $\nabla^k (z - H)^{-1}$ by Leibniz rule. As $\|\nabla^k H\| \leqslant C$

$$|\langle n|(z-H)^{-1}|m\rangle| \leq \frac{1}{|y|^{k+1}} \frac{C_k}{1+|n_j-m_j|^k}$$

Same bound holds for resolvent of \hat{H} (improvement: Combes-Thomas)

 $k \in \mathbb{N}$

If finite range, $\hat{H}\Pi^* - \Pi H$ has matrix elements only on boundary. Then

$$\begin{split} |\langle 0, n_{2} | \widehat{K} | 0, n_{2} \rangle| \\ \leqslant \sum_{m \in \mathbb{Z} \times \mathbb{N}} \sum_{k \in \mathbb{Z}^{2}} \frac{1}{2\pi} \int_{\mathbb{R}^{2}} dx \, dy \, |\partial_{\overline{z}} \widetilde{G}(x, y)| \, |\langle 0, n_{2} | (z - H)^{-1} | m \rangle| \\ |\langle m | \widehat{H} \Pi^{*} - \Pi H | k \rangle| \, |\langle k | (z - H)^{-1} | 0, n_{2} \rangle| \\ \leqslant C \sum_{m_{1} \geqslant 0} \int_{\mathbb{R}^{2}} dx \, dy \, |\partial_{\overline{z}} \widetilde{G}(x, y)| \, \frac{1}{|y|^{2k+2}} \, \frac{1}{1 + |n_{2}|^{2k}} \, \frac{1}{1 + |m_{1}|^{2k}} \end{split}$$

Now above bound on resolvent for $N \ge 2k + 2$

As integral over bounded region, sum can be carried out

$$|\langle 0, n_2|\widehat{K}|0, n_2\rangle| \leqslant \frac{C}{1 + |n_2|^{2k}}$$

But this implies desired $\hat{\mathcal{T}}$ -traceclass estimate

Proof of Theorem 8.2. Set $\hat{U} = \operatorname{Exp}(P) = \exp(-2\pi i \, g(\hat{H}))$ and

Ind =
$$i \hat{\mathcal{T}}((\hat{U}^* - \mathbf{1})\nabla_1 \hat{U})$$

Express \hat{U} as exponential series and use Leibniz rule:

Ind
$$= \sum_{m=0}^{\infty} \frac{(2\pi i)^m}{m!} \sum_{l=0}^{m-1} \widehat{\mathcal{T}}\left((\widehat{U}^* - \mathbf{1}) g(\widehat{H})^l \nabla_1 g(\widehat{H}) g(\widehat{H})^{m-l-1}\right)$$

where trace and sum exchange by $\widehat{\mathcal{T}}$ -traceclass property of $\widehat{U}-\mathbf{1}$ Due to cyclicity and $[\widehat{U},g(\widehat{H})]=0$, each summand equal to

$$\widehat{\mathcal{T}}((\widehat{\textbf{\textit{U}}}^*-1)\, \textbf{\textit{g}}(\widehat{\textbf{\textit{H}}})^{m-1}\, \nabla_1 \textbf{\textit{g}}(\widehat{\textbf{\textit{H}}}))$$

Exchanging sum and trace, summing up again:

Ind =
$$-2\pi \, \hat{\mathcal{T}} \left((\mathbf{1} - \hat{U}) \, \nabla_1 g(\hat{H}) \right)$$

Now same argument for $\hat{U}^k = \exp(-2\pi i k g(\hat{H}))$ for $k \neq 0$,

Ind =
$$\frac{i}{k} \widehat{\mathcal{T}} ((\widehat{U}^k - \mathbf{1})^* \nabla_1 \widehat{U}^k) = -2\pi \widehat{\mathcal{T}} ((\mathbf{1} - \widehat{U}^k) \nabla_1 g(\widehat{H}))$$

Writing $g(E) = \int dt \, \tilde{g}(t) \, e^{-E(1+it)}$ with adequate \tilde{g} , by DuHamel

$$\operatorname{Ind} = 2\pi \int dt \, \tilde{g}(t) \, (1+it) \int_0^1 dq \, \hat{\mathcal{T}} \left((\hat{U}^k - \mathbf{1}) \, e^{-(1-q)(1+it)\hat{H}} (\nabla_1 \hat{H}) e^{-q(1+it)\hat{H}} \right)$$

With $g'(E) = -\int dt (1 + it) \, \tilde{g}(t) \, e^{-E(1+it)}$ for $k \neq 0$,

Ind =
$$2\pi \, \hat{\mathcal{T}} \left((\hat{U}^k - \mathbf{1}) \, g'(\hat{H}) \, \nabla_1 \hat{H} \right)$$

For k=0, the r.h.s. vanishes. To conclude, let $\phi \in C_0^\infty((0,1),\mathbb{R})$ Fourier coefficients $a_k = \int_0^1 dx \ e^{-2\pi i k x} \phi(x)$ satisfy $\sum_k a_k e^{2\pi i k x} = \phi(x)$ In particular, $\sum_k a_k = 0$ and

$$a_0 \text{ Ind } = -\sum_{k \neq 0} a_k \text{ Ind } = 2\pi \sum_k a_k \widehat{\mathcal{T}} \left((\mathbf{1} - \widehat{U}^k) g'(\widehat{H}) \nabla_1 \widehat{H} \right)$$
$$= 2\pi \widehat{\mathcal{T}} \left((0 - \phi(g(\widehat{H}))) g'(\widehat{H}) \nabla_1 \widehat{H} \right)$$

As $\phi \to \chi_{[0,1]}$ also $a_0 \to 1$ and $\phi(g(\widehat{H}))g'(\widehat{H}) \to g'(\widehat{H})$ (no Gibbs)

As $J_1 = \nabla_1 \hat{H}$ proof is concluded

Chiral system in d = 3: anomalous surface QHE

Chiral Fermi projection P (off-diagonal) \Longrightarrow Fermi unitary A

$$\text{Ch}_{\{1,2,3\}}(\textit{\textbf{A}}) \ = \ \text{Ch}_{\{1,2\}}(\text{Ind}(\textit{\textbf{A}}))$$

Magnetic field perpendicular to surface opens gap in surface spec.

With $\hat{P} = \hat{P}_+ + \hat{P}_-$ projection on central surface band, as in SSH:

$$Ind(A) = [\hat{P}_+] - [\hat{P}_-]$$

Theorem 8.5 ([PS])

Suppose either $\hat{P}_{+}=0$ or $\hat{P}_{-}=0$ (conjectured to hold). Then:

 $Ch_{\{1,2,3\}}(\emph{A}) \neq 0 \Longrightarrow \textit{surface QHE, Hall cond. imposed by bulk}$

Actually only approximate chiral symmetry needed Experiment? No (approximate) chiral topological material known

Delocalization of boundary states

Hypothesis: bulk gap at Fermi level μ

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem 8.6 ([PS])

For even d, if strong invariant $\mathrm{Ch}_{\{1,\dots,d\}}(P) \neq 0$, then no Anderson localization of boundary states in bulk gap Technically: Aizenman-Molcanov bound for no energy in bulk gap

Theorem 8.7 ([PS])

For odd $d \geqslant 3$, if strong invariant $Ch_{\{1,...,d\}}(A) \neq 0$, then no Anderson localization at $\mu = 0$

BBC for periodically driven systems

In time direction: stroboscopics Here: in spacial direction Lift $t \in \mathbb{S}^1 \cong [0, 2\pi) \mapsto \widehat{H}(t)$ of $t \in \mathbb{S}^1 \mapsto H(t)$ in

$$0 \longrightarrow C(\mathbb{S}^1, \mathcal{E}_d) \stackrel{i}{\longrightarrow} C(\mathbb{S}^1, \widehat{\mathcal{A}}_d) \stackrel{\mathrm{ev}}{\longrightarrow} C(\mathbb{S}^1, \mathcal{A}_d) \longrightarrow 0$$

Then for polarization in direction d with adiabatic projection P_A :

$$\Delta P_d = 2\pi \operatorname{Ch}_{\{0,d\}}(P_A) = 2\pi \operatorname{Ch}_{\{0\}}(U_\Delta)$$

where 0-th component still time and $[U_{\Delta}]_1 = \operatorname{Exp}[P_A]_0$. Now

$$\operatorname{Ch}_{\{0\}}(U_{\Delta}) = -2\pi \int_0^{2\pi} dt \, \widehat{\mathcal{T}}\Big(g'\big(\widehat{H}(t)\big) \, \partial_t \widehat{H}(t)\Big)$$

For d=1, this is 2π times spectral flow of boundary eigenvalues. Thus

$$\Delta P_1 = -2\pi \operatorname{SF}(t \in \mathbb{S}^1 \mapsto \widehat{H}(t) \operatorname{by} \mu)$$

namely charge pumped from valence to conduction states For d > 1, spectral flow is in sense of Breuer-Fredholm operators

9 Implementation of symmetries

This invokes real structure simply denoted by bar on $\mathcal H$ and $\mathcal B(\mathcal H)$

chiral symmetry (CHS):
$$J_{ch}^* H J_{ch} = -H$$

time reversal symmetry (TRS): $S_{tr}^* \overline{H} S_{tr} = H$
particle-hole symmetry (PHS): $S_{hh}^* \overline{H} S_{ph} = -H$

$$S_{\rm tr}=e^{i\pi s^y}$$
 orthogonal on \mathbb{C}^{2s+1} with $S_{\rm tr}^2=\pm 1$ even or odd

$$\mathcal{S}_{_{ph}}$$
 orthogonal on $\mathbb{C}^2_{_{ph}}$ with $\mathcal{S}^2_{_{ph}}=\pm \textbf{1}$ even or odd

Note: TRS + PHS
$$\implies$$
 CHS with $J_{ch} = S_{tr}S_{ph}$

Further distinction in each of the 10 classes: topological insulators

Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008: just strong invariants

j∖d	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	0	0	0		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
1	0	0	1	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
0	+1	0	0				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				2 Z		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				2 Z		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2ℤ	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2ℤ
5	-1	-1	1	2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	_1	0		2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	_1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Periodic table: real classes only

64 pairings = 8 KR-cycles paired with 8 KR-groups

j∖d	TRS	PHS	CHS	1	2	3	4	5	6	7	8
0	+1	0	0				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
1	+1	+1	1	\mathbb{Z}				2 Z		\mathbb{Z}_2	\mathbb{Z}_2
2	0	+1	0	\mathbb{Z}_2	\mathbb{Z}				$2\mathbb{Z}$		\mathbb{Z}_2
3	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z	
4	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				22
5	-1	_1	1	2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
6	0	_1	0		2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
7	+1	-1	1			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	

Focus on system in d=2 with odd TRS $S=S_{tr}$:

$$S^2 = -1$$
 $S^* \overline{H}S = H$

\mathbb{Z}_2 index for odd TRS and d=2

Rewrite
$$S^*\overline{H}S = H = S^*H^tS$$
 with $H^t = (\overline{H})^*$

$$\implies$$
 $S^*(H^n)^tS = H^n$ for $n \in \mathbb{N} \implies S^*P^tS = P$

For
$$d=2$$
, Dirac phase $F=\frac{X_1+iX_2}{|X_1+iX_2|}=F^t$ and $[S,F]=0$

Hence Fredholm operator T = PFP of following type

Definition T odd symmetric $\iff S^*T^tS = T \iff (TS)^t = -TS$

Theorem 9.1 (Atiyah-Singer 1969)

 $\mathbb{F}_2(\mathcal{H}) = \{ \text{odd symmetric Fredholm operators} \}$ has 2 connected components labelled by compactly stable homotopy invariant

$$\mathsf{Ind}_2(\textit{T}) = dim(\mathsf{Ker}(\textit{T})) \bmod 2 \ \in \ \mathbb{Z}_2$$

Application: \mathbb{Z}_2 phase label for Kane-Mele model if dyn. localized

Existence proof of \mathbb{Z}_2 -indices via Kramers arg.

First of all: Ind(T) = 0 because $Ker(T^*) = S \overline{Ker(T)}$

Idea: $Ker(T) = Ker(T^*T)$

and positive eigenvalues of T^*T have even multiplicity

Let $T^*Tv = \lambda v$ and $w = S\overline{Tv}$ (N.B. $\lambda \neq 0$). Then

$$T^*T w = S(S^*T^*S)(S^*TS)\overline{Tv}$$

= $S\overline{T}\overline{T^*Tv} = \lambda S\overline{T}\overline{v} = \lambda w$.

Suppose now $\mu \in \mathbb{C}$ with $v = \mu$ w. Then

$$\mathbf{v} \ = \ \mu \, \mathbf{S} \, \overline{\mathbf{T}} \, \overline{\mathbf{v}} \ = \ \mu \, \mathbf{S} \, \overline{\mathbf{T}} \, \overline{\mu} \, \mathbf{S} \, \mathbf{T} \, \mathbf{v} \ = \ -|\mu|^2 \, \mathbf{T}^* \, \mathbf{T} \, \mathbf{v} \ = \ -|\mu|^2 \, \lambda \, \mathbf{v}$$

Contradiction to $v \neq 0$.

Now span $\{v, w\}$ is invariant subspace of T^*T .

Go on to orthogonal complement

Symmetries of the Dirac operator

$$D = \sum_{j=1}^d X_j \otimes \mathbf{1} \otimes \gamma_j$$

 γ_1,\ldots,γ_d irrep of C_d with $\gamma_{2j}=-\overline{\gamma_{2j}}$ and $\gamma_{2j+1}=\overline{\gamma_{2j+1}}$ In even d exists grading $\Gamma=\Gamma^*$ with $D=-\Gamma D\Gamma$ and $\Gamma^2=\mathbf{1}$ Moreover, exists real unitary Σ (essentially unique) with

d=8-i	8	7	6	5	4	3	2	1
Σ^2	1	1	-1	-1	-1	-1	1	1
$\Sigma^* \overline{D} \Sigma$	D	-D	D	D	D	-D	D	D
ΓΣΓ	Σ		$-\Sigma$		Σ		$-\Sigma$	

 (D, Γ, Σ) defines a KR^i -cycle (spectral triple with real structure) (Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Index theorems for periodic table

Symmetries of *KR*-cycles **and** Fermi projection/unitary lead to:

Theorem 9.2

Index theorems for all strong invariants in periodic table

Remarks:

Result holds also in the regime of strong Anderson localization $2\mathbb{Z}$ entries result from quaternionic Fredholm (even Ker, CoKer) Links to Atiyah-Singer classifying spaces Formulation as Clifford valued index theorem possible

Physical implications: case by case study necessary!

Example: focus on TRS d = 2 quantum spin Hall system (QSH)

Spin Chern numbers [Pro]

Approximate spin conservation \implies spin Chern numbers SCh(P)

Kane-Mele Hamiltonian has small commutator $[H, s_z]$

Also $[P,s_z]$ small and thus $Ps_zP|_{\operatorname{Ran}(P)}$ spectrum close to $\{-1,1\}$

 \implies spectral gap! Let P_{\pm} be two associated spectral projections

Proposition 9.3 ([Pro])

 P_{\pm} have off-diagonal decay so that Chern numbers can be defined

Hence $P = P_+ + P_-$ decomposes in two *smooth* projections

Definition 9.4

Spin Chern number of P is $SCh(P) = Ch(P_+)$

By TRS, Ch(P) = 0 and thus $SCh(P) = -Ch(P_{-})$

Theorem 9.5 ([SB3])

 $Ind_2(PFP) = SCh(P) \mod 2$

Spin filtered helical edge channels for QSH

Remarkable: Non-trivial topology SCh(P) persists TRS breaking!

General strategy: approximately conserved quantities lead to integer-valued invariants which persist breaking of real symmetry

Further example:

Kitaev chain (Class D with \mathbb{Z}_2 -invariant) has a winding number

Theorem 9.6

If $SCh(P) \neq 0$, spin filtered edge currents in $\Delta \subset gap$ are stable w.r.t. perturbations by magnetic field and disorder:

$$\textbf{E} \, \operatorname{Tr} \big\langle 0 | \chi_{\Delta}(\widehat{H}) \, \tfrac{1}{2} \big\{ i[\widehat{H}, X_1], s_z \big\} | 0 \big\rangle \; = \; |\Delta| \, \operatorname{SCh}(P) \; + \; \textit{correct}.$$

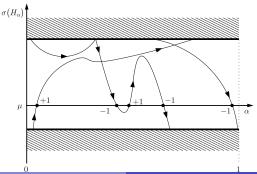
Resumé: $Ind_2(PFP) = 1 \Longrightarrow no$ Anderson loc. for edge states Rice group of Du (since 2011): QSH stable w.r.t. magnetic field

10 Laughlin arguments

Satz 10.1 ([DS])

H disordered Harper-like operator on $\ell^2(\mathbb{Z}^2)\otimes \mathbb{C}^L$ with $\mu\in gap$ H_α Hamiltonian with extra flux $\alpha\in [0,1]$ through 1 cell of \mathbb{Z}^2 Then for $P=\chi(H\leqslant \mu)$

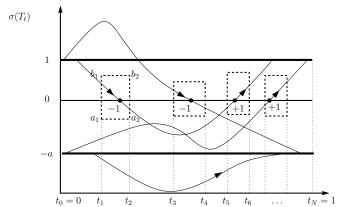
$$SF(\alpha \in [0, 1] \mapsto H_{\alpha} \text{ through } \mu) = -Ch_{\{1,2\}}(P)$$



Topological insulators

10. Laughlin arguments

Phillips' analytic definition (1996)



 \exists finite partition $0 = t_0 < t_1 < \ldots < t_{N-1} < t_N = 1$ of [0,1] and $a_n < 0 < b_n$ with $t \in [t_{n-1}, t_n] \mapsto \chi(T_t \in [a_n, b_n])$ continuous. Set:

$$SF(t \in [0, 1] \mapsto T_t) = \sum_{n=1}^{N} Tr_{\mathcal{H}} \left(\chi(T_{t_{n-1}} \in [a_n, 0]) - \chi(T_{t_n} \in [a_n, 0]) \right)$$

Theorem 10.2 (Phillips 1996)

 $SF(t \in [0,1] \mapsto T_t)$ independent of partition and $a_n < 0 < b_n$.

It is a homotopy invariant when end points are kept fixed.

It satisfies concatenation and normalization:

$$SF(t \in [0, 1] \mapsto T + (1 - 2t)P) = -\dim(P)$$
 for $TP = P$

Theorem 10.3 (Lesch 2004)

Homotopy invariance, concatenation, normalization characterize SF

Theorem 10.4 (Perera 1993, Phillips 1996)

SF on loops establishes isomorphism $\pi_1(\mathbb{F}_{sa}^*) = \mathbb{Z}$

Theorem 10.5 (Avron-Seiler-Simon 1994, Phillips 1996)

0 gap of $H=H^*$ and $P=\chi(H\leqslant 0)$. If $t\in [0,1]\mapsto H_t$ with

- (i) $H_1 = UH_0U^*$ for unitary U
- (ii) 0 in essential gap of H_t for all $t \in [0, 1]$

then

$$SF(t \in [0, 1] \mapsto H_t \text{ through } 0) = -Ind(PUP)$$

Exact sequence interpretation: Mapping cone associated to U:

$$\mathcal{M} \ = \ \{t \in [0,1] \mapsto A_t \in \mathcal{A} + \mathcal{K} \ : \ A_0 = U^*A_1U, \ A_t - A_0 \in \mathcal{K} \ \}$$

with 0
$$\to$$
 $S\mathcal{K} \hookrightarrow \mathcal{M} \stackrel{\text{ev}}{\to} \mathcal{A} \to 0$. Now $K_1(S\mathcal{K}) = K_0(\mathcal{K}) = \mathbb{Z}$ and

$$\operatorname{Exp}[P]_0 = [\exp(2\pi i \operatorname{Lift}(P)_t)]_1 = [\exp(2\pi i (P + t U^*[P, U]))]_1$$

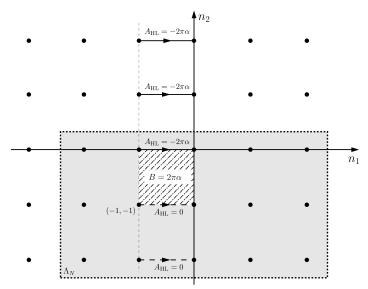
Then

$$\langle (\mathcal{H}, F), [P]_0 \rangle = \langle (\int dt \otimes \operatorname{Tr}, \partial_t), \operatorname{Exp}[P]_0 \rangle = \operatorname{SF}(2P - 1 + t U^*[2P - 1, U])$$

Topological insulators 10. Laughlin arguments 97 / 111

Proof of bulk-boundary in d = 2 (idea Macris 2002)

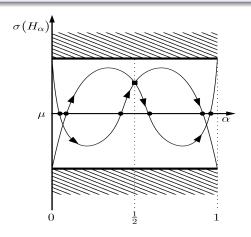
Based on gauge invariance and compact stability



\mathbb{Z}_2 invariant and \mathbb{Z}_2 spectral flow for QSH

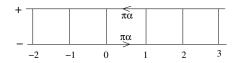
Theorem 10.6

 $\alpha \in [0,1] \mapsto H(\alpha)$ inserted flux in Kane-Mele model (breaks TRS) $\operatorname{Ind}_2(PFP) = 1 \implies H(\alpha = \tfrac{1}{2}) \text{ has TRS + Kramers pair in gap}$



Higher dimensional Laughlin arguments

d=1: chiral spectral flow in SSH leads to bound state of $H_{\frac{1}{2}}$



On $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L$ with $d \geqslant 3$: insert non-abelian Wu-Yang monopol

$$A = \frac{i}{2} \frac{[D, \gamma]}{D^2}$$
, $D = \sum_{j=1}^{d} \gamma_j X_j$

into non-abilian translations (say without magnetic field):

$$S_k^{\alpha} = e^{i\nabla_k^{\alpha}} = U^{\alpha}(X)S_k$$
, $\nabla_k^{\alpha} = i\partial_k + \alpha A_k$

Then study (chiral) spectral flow for $H_{\alpha} = P(S_1^{\alpha}, \dots, S_d^{\alpha})$

11 Dirty superconductors

Disordered one-electron Hamiltonian h on $\mathcal{H}=\ell^2(\mathbb{Z}^2)\otimes\mathbb{C}^{2s+1}$

 $\mathfrak{c}=(\mathfrak{c}_{\textit{n,l}})$ anhilation operators on fermionic Fock space $\mathcal{F}_{-}(\mathcal{H})$

Hamilt. on $\mathcal{F}_-(\mathcal{H})$ with mean field pair creation $\Delta^*=-\overline{\Delta}\in\mathcal{B}(\mathcal{H})$

$$\mathbf{H} - \mu \, \mathbf{N} = \mathbf{c}^* \, (h - \mu \, \mathbf{1}) \, \mathbf{c} + \frac{1}{2} \, \mathbf{c}^* \, \Delta \, \mathbf{c}^* - \frac{1}{2} \, \mathbf{c} \, \overline{\Delta} \, \mathbf{c}$$

$$= \frac{1}{2} \, \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^* \end{pmatrix}^* \begin{pmatrix} h - \mu & \Delta \\ -\overline{\Delta} & -\overline{h} + \mu \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^* \end{pmatrix}$$

Hence BdG Hamiltonian on $\mathcal{H}_{\mbox{\tiny ph}}=\mathcal{H}\otimes\mathbb{C}^2_{\mbox{\tiny ph}}$

$$H_{\mu} = \begin{pmatrix} h - \mu & \Delta \\ -\overline{\Delta} & -\overline{h} + \mu \end{pmatrix}$$

Even PHS (Class D)

$$S_{ ext{ph}}^*\,\overline{H_\mu}\,S_{ ext{ph}}\,=\,-H_\mu \qquad,\qquad S_{ ext{ph}}=egin{pmatrix} 0 & \mathbf{1} \ \mathbf{1} & 0 \end{pmatrix}$$

Class D systems

 $\operatorname{spec}(H_{\mu}) = -\operatorname{spec}(H_{\mu})$ and generically gap or pseudo-gap at 0

Satz 11.1

Gibbs (KMS) state for observable $\mathbf{Q} = d\Gamma(Q)$

$$\frac{1}{Z_{\beta,\mu}} \operatorname{Tr}_{\mathcal{F}_{-}(\mathcal{H})} \left(\mathbf{Q} \, e^{-\beta (\mathbf{H} - \mu \, \mathbf{N})} \right) \; = \; \operatorname{Tr}_{\mathcal{H}_{ph}} (f_{\beta}(\mathcal{H}_{\mu}) \, \mathcal{Q})$$

Example p + ip wave superconductor with $\mathcal{H} = \ell^2(\mathbb{Z}^2)$

$$h = S_1 + S_1^* + S_2 + S_2^* \qquad \Delta_{p+ip} \ = \ \delta \left(S_1 - S_1^* + i (S_2 - S_2^*) \right)$$

Then $P=\chi(H_{\mu}\leqslant 0)$ satisfies Ch(P)=1 for $\mu>0$ and $\delta>0$

Conjecture (Kubo missing) Quantized Wiedemann-Franz

$$\kappa_H = \frac{\pi}{8} \operatorname{Ch}(P) T + \mathcal{O}(T^2)$$

Spectral flow in a BdG-Hamiltonian

Flux tube in two-dimensional BdG Hamiltonian

$$\label{eq:Sph} \mathcal{S}_{\mbox{\tiny ph}}^* \, \overline{\mathcal{H}_{\alpha}} \; \mathcal{S}_{\mbox{\tiny ph}} \; = \; - \, \mathcal{H}_{-\alpha} \qquad , \qquad \mathcal{S}_{\mbox{\tiny ph}}^2 \, = \, \pm 1$$

Then $S_{\mathrm{ph}}^* \overline{H_{\alpha}} \, S_{\mathrm{ph}} = - U^* H_{1-\alpha} U$ so that

$$\sigma(H_{\alpha}) = -\sigma(H_{-\alpha}) = -\sigma(H_{1-\alpha})$$

PHS only for $\alpha=0,\frac{1}{2},1$ and thus $\mathrm{Ind}_2(H_{\frac{1}{2}})$ wel-defined

Theorem 11.2 ([DS])

 $\operatorname{Ind}(\textit{PUP})\operatorname{mod} 2 = \operatorname{Ind}_2(\textit{H}_{\frac{1}{2}})$

or: odd Chern number implies existence of zero mode at defect

These zero modes are Majorana fermions (Read-Green 2000)

Worth noting: $S_{nh}^2 = -1 \implies \operatorname{Ind}(PUP)$ even \implies no zero mode

Spin quantum Hall effect in Class C

Satz 11.3 (Altland-Zirnbauer 1997)

SU(2) spin rotation invariance $[\mathbf{H}, \mathbf{s}] = 0$

 $\implies H = H_{red} \otimes \mathbf{1}$ with odd PHS (Class C)

$$S_{
m ph}^* \, \overline{H_{
m red}} \, S_{
m ph} \, = \, -H_{
m red} \qquad , \qquad S_{
m ph} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$

Example d + id wave superconductor with h as above and

$$\Delta_{d+id} = \delta \left(i(S_1 + S_1^* - S_2 - S_2^*) \right. + (S_1 - S_1^*)(S_2 - S_2^*) \right) s^2$$

Again Ch(P) = 2 for $\delta > 0$ and $\mu > 0$

Satz 11.4

Spin Hall conductance (Kubo) and spin edge currents quantized

Current aims:

- analysis of topology associated to spacial reflections, etc.
- Index theory for weak invariants via KK-theory
- bulk-edge correspondence in real cases
- further investigation of physical implications of invariants
- stability of invariants w.r.t. interactions
- analysis of bosonic systems and photonic crystals

Physics References

- [KM] C. L. Kane, E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005), Z(2) topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95, 146802 (2005).
- [RSFL] S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).
- [Kit] A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conf. Proc. 1134, 22-30 (2009).
- [SSH] W. P. Su, J. R. Schrieffer, A. J. Heeger, Soliton excitations in polyacetylene, Phys. Rev. B 22, 2099-2111 (1980).
- [AZ] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142-1161 (1997).

General Mathematics References

- [BR] O. Bratteli, D. W. Robinson, *Operator Algebras and Quantum Statistical Mechanics 1*, (Springer, Berlin, 1979).
- [CP] A. L. Carey, J. Phillips, Spectral flow in Fredholm modules, eta invariants and the JLO cocycle, K-Theory 31, 135-194 (2004).
- [Con] A. Connes, *Noncommutative Geometry*, (Academic Press, San Diego, 1994).
- [GVF] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, *Elements of noncommutative geometry*, (Springer Science & Business Media, 2013).
- [RLL] M. Rordam, F. Larsen, N. Laustsen, *An Introduction to K-theory for C*-algebras*, (Cambridge University Press, Cambridge, 2000).
- [WO] N. E. Wegge-Olsen, *K-theory and C*-algebras*, (Oxford Univ. Press, Oxford, 1993).

References Schulz-Baldes et. al.

- [PS] E. Prodan, H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators: From K-theory to physics, (Springer Int. Pub., Szwitzerland, 2016).
- [BES] J. Bellissard, A. van Elst, H. Schulz-Baldes, *The non-commutative geometry of the quantum Hall effect*, J. Math. Phys. **35**, 5373-5451 (1994).
- [KRS] J. Kellendonk, T. Richter, H. Schulz-Baldes, *Edge current channels and Chern numbers in the integer quantum Hall effect*, Rev. Math. Phys. **14**, 87-119 (2002).
- [LSB] T. Loring, H. Schulz-Baldes, *Finite volume calculation of K-theory invariants*, arXiv 2017.
- [GS] J. Grossmann, H. Schulz-Baldes, Index pairings in presence of symmetries with applications to topological insulators, Commun. Math. Phys. 343, 477-513 (2016).

References Schulz-Baldes et. al.

- [SB1] H. Schulz-Baldes, Topological insulators from the perspective of non-commutative geometry and index theory, Jahresber Dtsch Math-Ver 118, 247273 (2016)
- [SB2] H. Schulz-Baldes, Persistence of spin edge currents in disordered quantum spin Hall systems, Commun. Math. Phys. 324, 589-600 (2013).
- [ST] H. Schulz-Baldes, S. Teufel, Orbital polarization and magnetization for independent particles in disordered media, Commun. Math. Phys. 319, 649-681 (2013).
- [DS] G. De Nittis, H. Schulz-Baldes, *Spectral flows associated to flux tubes*, Annales H. Poincare **17**, 1-35 (2016).
- [CPS] A. L. Carey, J. Phillips, H. Schulz-Baldes, *Spectral flow for real skew-adjoint Fredholm operators*, J. Spec. Theory, to appear.
- [SB3] H. Schulz-Baldes, \mathbb{Z}_2 -indices of odd symmetric Fredholm operators, Dokumenta Math. **20**, 1481-1500 (2015).

Topological insulators 15. Dirty superconductors 109 / 111

More Mathematical Physics References

- [Pro] E. Prodan, *Robustness of the spin-Chern number*, Phys. Rev. **B 80**, 125327 (2009).
- [BCR] C. Bourne, A. L. Carey, A. Rennie, *A noncommutative framework for topological insulators*, Rev. Math. Phys. **28**, 1650004 (2016).
- [BKR] C. Bourne, J. Kellendonk, A. Rennie, The K-Theoretic Bulk-Edge Correspondence for Topological Insulators, Ann. Henri Poincaré 18, 1-34 (2017).
- [Lor] T. A. Loring, K-theory and pseudospectra for topological insulators, Annals of Physics 356, 383-416 (2015).

Other groups (each with personal point of view)

- Bourne, Carey, Rennie, Kellendonk
- Mathai, Thiang, Hanabus
- Zirnbauer, Kennedy
- Panati, Monaco, Teufel, Cornean
- Katsura, Koma
- Hayashi, Furuta, Kotani
- Graf, Porta
- Gawedzki et. al.
- Kaufmann's, Li
- many theoretical physics groups