Analyticity properties of the scattering matrix for discrete matrix Schrödinger operators

Miguel Ballesteros (UNAM) Gerardo Franco Cordova (UNAM) Hermann Schulz-Baldes (Erlangen)
arXiv preprint very soon
OTAMP, IIMAS, Mexico
January 2020

Quasi-1d discrete Schrödinger (Jacobi matrix)

$$
(H u)(n)=u(n+1)+V(n) u(n)+u(n-1) \quad, \quad n \in \mathbb{Z}
$$

for $u: \mathbb{Z} \rightarrow \mathbb{C}^{L \times L}$ matrix-valued and with $V(n)=V(n)^{*} \in \mathbb{C}^{L \times L}$
View H as bounded selfadjoint operator on $\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{L}\right)$
Here: $V(n) \neq 0$ for only finitely many $n \in\left[K_{-}+1, K_{+}\right]$
H finite rank perturbation of discrete Laplacian $H_{0}=H-V$
Weyl essential spectrum theorem: $\sigma_{\text {ess }}(H)=[-2,2]=\sigma\left(H_{0}\right)$
Many contributions on scattering theory, e.g.:
Scalar half-space case: Hinton, Klaus and Shaw (1991)
Matrix Schrödinger: Klaus (1988) Aktosun, Klaus, Weder (2013-2020)
Discrete half-space case: Aktosun et al, Nuygen et al (2019)

Aims

- Analyticity of scattering matrix and time delay in complex energy E or rather z defined by $E=z+z^{-1}$, including thresholds
- Unitarity relation of scattering matrix extended to $z \in \mathbb{C}$
- Main tool: analyticity, \mathcal{J}-unitarity and multiplicativity of

plane wave transfer matrices

- Plane wave versus standard transfer matrices of Jacobi operators
- Application: Levinson-like theorem
(equality of total time delay to number of bound/half-bound states)
- Elementary algebraic proofs of the main results
(suited for an introductory course to quantum scattering theory)

Free solutions

Two free solutions u_{0}^{z} and $u_{0}^{1 / z}$ of $H_{0} u=E u$ are

$$
u_{0}^{z}(n)=z^{n} 1 \quad, \quad u_{0}^{1 / z}(n)=z^{-n} \mathbf{1}
$$

where $\mathbf{1} \in \mathbb{C}^{L \times L}$ identity and $z, z^{-1} \in \mathbb{C}$ given by

$$
E=z+z^{-1}
$$

NB: map $z \mapsto E$ two-to-one with $\mathbb{S}^{1} \mapsto[-2,2]$ and $\mathbb{R} \mapsto \mathbb{R} \backslash(-2,2)$
For $E \notin[-2,2]$, free solutions exponentially increasing or decreasing For $z \in \mathbb{S}^{1} \backslash\{-1,1\}$ plane wave, so of constant modulo in n For $z= \pm 1$, namely band edges $E= \pm 2$, only one free solutions $u_{0}^{ \pm 1}$ Second solution $v_{0}^{ \pm 1}$ of $H_{0} u= \pm 2 u$ given by $v_{0}^{ \pm 1}=(\pm 1)^{n} n$

Jost solutions and plane wave transfer matrix

Jost solutions $u_{ \pm}^{z}$ of perturbed $H u=E u$ with $E=z+z^{-1}$ fixed by

$$
u_{+}^{z}(n)=u_{0}^{z}(n) \quad, \quad u_{-}^{z}(-n)=u_{0}^{z}(-n) \quad, \quad n>\left|K_{ \pm}\right|
$$

Solutions $u_{ \pm}^{z}$ called outgoing/incoming if increasing/decreasing at $\pm \infty$

$\left(u_{ \pm}^{z}, u_{ \pm}^{1 / z}\right)$ both fundamental solutions for all $z \in \mathbb{C} \backslash\{-1,0,1\}$
Plane wave transfer matrix $\mathcal{M}^{z} \in \mathbb{C}^{2 L \times 2 L}$ is defined by

$$
\left(u_{-}^{z}, u_{-}^{1 / z}\right)=\left(u_{+}^{z}, u_{+}^{1 / z}\right) \mathcal{M}^{z}
$$

Scattering matrix

The $L \times L$ entries of transfer matrix are denoted by

$$
\mathcal{M}^{z}=\left(\begin{array}{ll}
M_{-}^{1 / z} & N_{-}^{z} \\
N_{-}^{1 / z} & M_{-}^{z}
\end{array}\right)
$$

Defining relation: $u_{-}^{z}=u_{+}^{z} M_{-}^{1 / z}+u_{+}^{1 / z} N_{-}^{1 / z}$ and $u_{-}^{1 / z}=u_{+}^{z} N_{-}^{z}+u_{+}^{1 / z} M_{-}^{z}$ If M_{-}^{z} invertible, rewrite to $u_{+}^{1 / z}=u_{+}^{z} N_{-}^{z}\left(M_{-}^{z}\right)^{-1}-u_{-}^{1 / z}\left(M_{-}^{z}\right)^{-1}$

For $z \in \mathbb{C}_{0}=\left\{z \in \mathbb{C} \backslash\{-1,0,1\}: M_{-}^{1 / z}\right.$ and M_{-}^{z} invertible $\}$ set

$$
\left(u_{-}^{z}, u_{+}^{1 / z}\right)=\left(u_{+}^{z}, u_{-}^{1 / z}\right) \mathcal{S}^{z}
$$

Expresses incoming in terms of outgoing Jost solutions
$L \times L$ entries are transmission and reflection coefficients

$$
\mathcal{S}^{z}=\left(\begin{array}{cc}
T_{+}^{z} & R_{-}^{z} \\
R_{+}^{z} & T_{-}^{z}
\end{array}\right)=\left(\begin{array}{cc}
\left(\left(M_{-}^{\bar{z}}\right)^{*}\right)^{-1} & -N_{-}^{z}\left(M_{-}^{z}\right)^{-1} \\
\left(M_{-}^{z}\right)^{-1} N_{-}^{1 / z} & \left(M_{-}^{z}\right)^{-1}
\end{array}\right)
$$

Left versus right action of \mathcal{S}^{z} and \mathcal{M}^{z}

In solid state physics literature rather action from left!
Connection: incoming solutions $u_{-}^{z} \psi_{+}$and $u_{+}^{1 / z} \phi_{-}$via $\psi_{+}, \phi_{-} \in \mathbb{C}^{L}$ Outgoing solutions $u_{-}^{1 / z} \psi_{-}$and $u_{+}^{z} \phi_{+}$given by $\psi_{-}, \phi_{+} \in \mathbb{C}^{L}$. Then

$$
\left(u_{-}^{z}, u_{+}^{1 / z}\right)\binom{\psi_{+}}{\phi_{-}}=\left(u_{+}^{z}, u_{-}^{1 / z}\right) \mathcal{S}^{z}\binom{\psi_{+}}{\phi_{-}}=\left(u_{+}^{z}, u_{-}^{1 / z}\right)\binom{\phi_{+}}{\psi_{-}}
$$

namely

$$
\begin{aligned}
& \mathcal{S}^{z}\binom{\psi_{+}}{\phi_{-}}=\binom{\phi_{+}}{\psi_{-}} \Longleftrightarrow \mathcal{M}^{z}\binom{\psi_{+}}{\psi_{-}}=\binom{\phi_{+}}{\phi_{-}}
\end{aligned}
$$

Basic algebraic facts

$$
\mathcal{K}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \mathcal{I}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad, \quad \mathcal{J}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Plane wave transfer matrix satisfies for $z \in \mathbb{C} \backslash\{-1,0,1\}$

$$
\left(\mathcal{M}^{1 / \bar{z}}\right)^{*} \mathcal{J} \mathcal{M}^{z}=\mathcal{J} \quad, \quad \mathcal{M}^{z} \mathcal{J}\left(\mathcal{M}^{1 / \bar{z}}\right)^{*}=\mathcal{J}
$$

\mathcal{J}-unitarity relation $\left(\mathcal{M}^{z}\right)^{*} \mathcal{J} \mathcal{M}^{z}=\mathcal{J}$ for $z \in \mathbb{S}^{1} \backslash\{-1,1\}$

- For $z \in \mathbb{R}$ so that $E \in \mathbb{R} \backslash(-2,2), \mathcal{M}^{z}$ is \mathcal{I}-unitary

$$
\left(\mathcal{M}^{z}\right)^{*} \mathcal{I} \mathcal{M}^{z}=\mathcal{I}
$$

- \mathcal{S}^{z} unitary for $z \in \mathbb{S}^{1} \backslash\{-1,1\}$. Extended relation for $z \in \mathbb{C}_{0}$:

$$
\left(\mathcal{S}^{1 / \bar{z}}\right)^{*} \mathcal{S}^{z}=1 \quad, \quad \mathcal{S}^{\bar{z}}=\mathcal{K}\left(\mathcal{S}^{z}\right)^{*} \mathcal{K}
$$

- If $V=0$, one has $\mathcal{M}^{z}=1$ and $\mathcal{S}^{z}=1$ for $z \in \mathbb{C}_{0}$
- Both \mathcal{M}^{z} and \mathcal{S}^{z} are meromorphic on \mathbb{C}

Passage from \mathcal{M}^{z} to \mathcal{S}^{z}

Proposition

The set of \mathcal{J}-unitaries $\left\{\mathcal{M} \in \mathbb{C}^{2 L \times 2 L}: \mathcal{M}^{*} \mathcal{J} \mathcal{M}=\mathcal{J}\right\}$ bijectively mapped by \mathcal{V} to unitaries from $\mathrm{U}(2 L)$ with invertible diagonals:

$$
\mathcal{M}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \quad \mapsto \quad \mathcal{V}(\mathcal{M})=\left(\begin{array}{cc}
\left(A^{*}\right)^{-1} & -B D^{-1} \\
B^{*}\left(A^{*}\right)^{-1} & D^{-1}
\end{array}\right)
$$

$\mathcal{V}(\mathcal{M})$ is the phase of Lagrangian graph of \mathcal{M}. It satisfies

$$
\mathcal{V}(\mathcal{M})=\mathcal{V}\left(\mathcal{M}^{-1}\right)^{*}=\mathcal{J} \mathcal{V}\left(\mathcal{M}^{*}\right)^{*} \mathcal{J}
$$

Here for $z \in \mathbb{S}^{1} \backslash\{-1,0,1\}$,

$$
\mathcal{V}\left(\mathcal{M}^{z}\right)=\mathcal{S}^{z}
$$

This relation is extended analytically away from \mathbb{S}^{1}

Analytic properties of matrix entry M_{-}^{z}

Recall

$$
\mathcal{M}^{z}=\left(\begin{array}{ll}
M_{-}^{1 / z} & N_{-}^{z} \\
N_{-}^{1 / z} & M_{-}^{z}
\end{array}\right)
$$

- M_{-}^{z} invertible for $|z| \leqslant 1$ except when

$$
z= \pm 1 \text { or } z \text { roots } z_{j} \text { of } E_{j}=z+z^{1} \in \sigma(H) \text { with } j=1, \ldots, J_{b}
$$

- Zeros of $z \mapsto \operatorname{det}\left(M_{-}^{z}\right)$ at z_{j} of order of eigenvalue E_{j} (difficult!)
- High energy asymptotics $\lim _{z \rightarrow 0} M_{-}^{z}=1$
- $\operatorname{det}\left(M_{-}^{z}\right)$ has poles at ± 1 of order $L-J_{h}^{ \pm}$where $J_{h}^{ \pm}$dimension of (half-) bounded solutions of $H u= \pm 2 u$
- If \mathbb{S}_{r}^{1} circle of radius r and $J_{h}=J_{h}^{+}+J_{h}^{-}$, then argument principle
$\oint_{\mathbb{S}_{1-\epsilon}^{1}} \frac{d z}{2 \pi i} \partial_{z} \log \operatorname{det}\left(M_{-}^{z}\right)=J_{b} \quad, \quad \oint_{\mathbb{S}_{1+\epsilon}^{1}} \frac{d z}{2 \pi i} \partial_{z} \log \operatorname{det}\left(M_{-}^{z}\right)=J_{b}+J_{h}$

Main results

Theorem
The scattering matrix extends analytically from \mathbb{C}_{0} to $\{-1,1\}$ It has poles at z_{j} for $j=1, \ldots, J_{b}$ in the diagonal entries It has a pole at $z=0$ in the off-diagonal entries

Theorem (Levinson-type theorem)

The number of bound states J_{b} and half-bound states J_{h} satisfy

$$
J_{b}+\frac{1}{2} J_{h}-L=\int_{-2}^{2} \frac{d E}{2 \pi i} \operatorname{Tr}\left(\left(\mathcal{S}^{E}\right)^{*} \partial_{E} \mathcal{S}^{E}\right)
$$

where $\mathcal{S}^{E}=\mathcal{S}^{z}$ if $E=z+z^{-1}$ and $\Im m(z)>0$
Based on:

$$
\operatorname{Tr}\left(\left(\mathcal{S}^{1 / z}\right)^{*} \partial_{z} \mathcal{S}^{z}\right)=\partial_{z} \log \operatorname{det}\left(M_{-}^{1 / z}\right)-\partial_{z} \log \operatorname{det}\left(M_{-}^{z}\right)
$$

Standard transfer matrix

$$
\mathcal{T}^{E}(n)=\left(\begin{array}{cc}
E-V(n) & -\mathbf{1} \\
\mathbf{1} & 0
\end{array}\right)
$$

over several sites

$$
\mathcal{T}^{E}(n, m)=\mathcal{T}^{E}(n) \cdots \mathcal{T}^{E}(m+1) \quad, \quad n>m
$$

Also $\mathcal{T}^{E}(n, n)=\mathbf{1}_{2 L}$ and $\mathcal{T}^{E}(m, n)=\mathcal{T}^{E}(n, m)^{-1}$. Then \mathcal{I}-unitarity

$$
\mathcal{T}^{\bar{E}}(n, m)^{*} \mathcal{I} \mathcal{T}^{E}(n, m)=\mathcal{I}
$$

For solution u of $H u=E u$, set

$$
\Phi(n)=\binom{u(n+1)}{u(n)}
$$

Then

$$
\Phi(n)=\mathcal{T}^{E}(n) \Phi(n-1)=\mathcal{T}^{E}(n, m) \Phi(m)
$$

Plane wave versus standard transfer matrix

$\mathcal{M}^{z}(n)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+i \nu^{z}\left(\begin{array}{cc}V(n) & z^{-2 n} V(n) \\ -z^{2 n} V(n) & -V(n)\end{array}\right) \quad, \quad \nu^{z}=\frac{i}{z-z^{-1}}$
Note $\mathcal{M}^{z}(n)=\mathbf{1}$ if $V(n)=0$, hence adapted to perturbation theory

Proposition

$$
\mathcal{M}^{z}(n)=\left(\mathcal{C}^{z} \mathcal{D}^{z}(n)\right)^{-1} \mathcal{T}^{E}(n)\left(\mathcal{C}^{z} \mathcal{D}^{z}(n-1)\right)
$$

where $E=z+z^{-1}$ and

$$
\mathcal{C}^{z}=\left(\begin{array}{cc}
z \mathbf{1} & z^{-1} \mathbf{1} \\
\mathbf{1} & \mathbf{1}
\end{array}\right) \quad, \quad \mathcal{D}^{z}(n)=\left(\begin{array}{cc}
z^{n} \mathbf{1} & 0 \\
0 & z^{-n} \mathbf{1}
\end{array}\right)
$$

One has $\mathcal{M}^{1 / \Sigma}(n)^{*} \mathcal{J M}^{z}(n)=\mathcal{J}$, hence \mathcal{J}-unitarity for $z \in \mathbb{S}^{1}$
Generalized Cayley transform passing from \mathcal{I} - to \mathcal{J}-unitaries

Multiplicativity of plane wave transfer matrices

As above, set $\mathcal{M}^{z}(n, n)=1$ and

$$
\mathcal{M}^{z}(n, m)=\mathcal{M}^{z}(n) \cdots \mathcal{M}^{z}(m+1) \quad, \quad n>m
$$

Then

$$
\mathcal{M}^{1 / \bar{z}}(n, m)^{*} \mathcal{J} \mathcal{M}^{z}(n, m)=\mathcal{J}
$$

Proposition

Plane wave transfer matrix \mathcal{M}^{z} of scattering theory is

$$
\mathcal{M}^{z}=\mathcal{M}^{z}\left(K_{+}, K_{-}\right)
$$

Thus

$$
\mathcal{M}^{z}=\left(\mathcal{C}^{z} \mathcal{D}^{z}\left(K_{+}\right)\right)^{-1} \mathcal{T}^{E}\left(K_{+}, K_{-}\right)\left(\mathcal{C}^{z} \mathcal{D}^{z}\left(K_{-}\right)\right)
$$

Due to different \mathcal{D}^{z}-factors not just change of representation
Other potential application: perturbation theory for Lyapunov exponent

Application: analyticity issues

$$
\mathcal{M}^{z}=\prod_{n=K_{-+1}}^{K_{+}}\left[\left(\begin{array}{ll}
\mathbf{1} & 0 \\
0 & \mathbf{1}
\end{array}\right)+i \nu^{z}\left(\begin{array}{cc}
V(n) & z^{-2 n} V(n) \\
-z^{2 n} V(n) & -V(n)
\end{array}\right)\right]
$$

At band edge $z \rightarrow \pm 1$ one has $\nu^{z}=\frac{i}{z-z^{-1}} \rightarrow \infty$. Very singular? No:

Proposition

With analytic \mathcal{G}^{z} in neighborhood of $z= \pm 1$,

$$
\mathcal{M}^{z}=\mathcal{G}^{z}+\nu^{z} \mathcal{F}
$$

Matrix \mathcal{F} contains all information at band edges, determines $L-J_{h}^{ \pm}$ In spite of singular factors, algebraic (semigroup) structure shows for lower right entry M_{-}^{z} of \mathcal{M}^{z} that

Proposition $\lim _{z \rightarrow 0} M_{-}^{z}=1$

Link to Green matrix

For $n, m \in \mathbb{Z}$ and $E \notin \sigma(H)$,

$$
G^{E}(n, m)=\pi_{n}(H-E)^{-1}\left(\pi_{m}\right)^{*} \in \mathbb{C}^{L \times L}
$$

where $\pi_{n}: \ell^{2}\left(\mathbb{Z}, \mathbb{C}^{L}\right) \rightarrow \mathbb{C}^{L}$ restriction to site n
Well-known link of Green matrices to entries of transfer matrices:

Proposition

M_{-}^{z} invertible for $E=z+z^{-1} \notin \sigma(H)$ with $|z|<1$ and

$$
M_{-}^{z}=\frac{z^{K_{+}-K_{-}}}{z-z^{-1}} G^{E}\left(K_{-}, K_{+}\right)^{-1}
$$

Moreover:
$\mathcal{S}^{z}=\frac{z^{K_{-}-K_{+}}}{z-z^{-1}}\left(\begin{array}{cc}G^{E}\left(K_{+}, K_{-}\right) & -z^{-K_{+}-K_{-}}\left(G^{E}\left(K_{+}, K_{+}\right)+i \nu^{z}\right) \\ -z^{K_{+}+K_{-}}\left(G^{E}\left(K_{-}, K_{-}\right)+i \nu^{z}\right) & G^{E}\left(K_{-}, K_{+}\right)\end{array}\right)$

Outlook: Extension to short range potentials

General procedure applies. Alternative: make sense out of

$$
\mathcal{M}^{z}=\prod_{n=-\infty}^{\infty}\left[\left(\begin{array}{ll}
\mathbf{1} & 0 \\
0 & 1
\end{array}\right)+i \nu^{z}\left(\begin{array}{cc}
V(n) & z^{-2 n} V(n) \\
-z^{2 n} V(n) & -V(n)
\end{array}\right)\right]
$$

Use

$$
\left\|\mathcal{M}^{z}(n)-1\right\| \leqslant 4\left|\nu^{z}\right|\|V(n)\|
$$

Slight extension of Wedderburn (1934):

Proposition

If

$$
\sum_{n=-\infty}^{\infty}\|V(n)\|<\infty
$$

then infinite product \mathcal{M}^{z} converges and analytic in $z \in \mathbb{C} \backslash\{-1,0,1\}$
Then \mathcal{S}^{z} obtained after same algebraic passage

