Analyticity properties of the scattering matrix for discrete matrix Schrödinger operators

Miguel Ballesteros (UNAM) Gerardo Franco Cordova (UNAM) Hermann Schulz-Baldes (Erlangen)

arXiv preprint very soon

OTAMP, IIMAS, Mexico January 2020

Quasi-1d discrete Schrödinger (Jacobi matrix)

 $(Hu)(n) = u(n+1) + V(n)u(n) + u(n-1) , n \in \mathbb{Z}$ for $u : \mathbb{Z} \to \mathbb{C}^{L \times L}$ matrix-valued and with $V(n) = V(n)^* \in \mathbb{C}^{L \times L}$ View *H* as bounded selfadjoint operator on $\ell^2(\mathbb{Z}, \mathbb{C}^L)$

Here: $V(n) \neq 0$ for only finitely many $n \in [K_{-} + 1, K_{+}]$ *H* finite rank perturbation of discrete Laplacian $H_{0} = H - V$

Weyl essential spectrum theorem: $\sigma_{ess}(H) = [-2, 2] = \sigma(H_0)$

Many contributions on scattering theory, e.g.:

Scalar half-space case: Hinton, Klaus and Shaw (1991) Matrix Schrödinger: Klaus (1988) Aktosun, Klaus, Weder (2013 - 2020) Discrete half-space case: Aktosun et al, Nuygen et al (2019)

Aims

- Analyticity of scattering matrix and time delay in complex energy *E* or rather *z* defined by $E = z + z^{-1}$, including thresholds
- Unitarity relation of scattering matrix extended to $z \in \mathbb{C}$
- Main tool: analyticity, \mathcal{J} -unitarity and multiplicativity of

plane wave transfer matrices

- Plane wave versus standard transfer matrices of Jacobi operators
- Application: Levinson-like theorem (equality of total time delay to number of bound/half-bound states)
- Elementary algebraic proofs of the main results (suited for an introductory course to quantum scattering theory)

Free solutions

Two free solutions u_0^z and $u_0^{1/z}$ of $H_0 u = Eu$ are

$$u_0^z(n) = z^n \mathbf{1}$$
 , $u_0^{1/z}(n) = z^{-n} \mathbf{1}$

where $\mathbf{1} \in \mathbb{C}^{L \times L}$ identity and $z, z^{-1} \in \mathbb{C}$ given by

$$E = z + z^{-1}$$

NB: map $z \mapsto E$ two-to-one with $\mathbb{S}^1 \mapsto [-2, 2]$ and $\mathbb{R} \mapsto \mathbb{R} \setminus (-2, 2)$

For $E \notin [-2,2]$, free solutions exponentially increasing or decreasing For $z \in \mathbb{S}^1 \setminus \{-1,1\}$ plane wave, so of constant modulo in *n* For $z = \pm 1$, namely band edges $E = \pm 2$, only one free solutions $u_0^{\pm 1}$ Second solution $v_0^{\pm 1}$ of $H_0 u = \pm 2u$ given by $v_0^{\pm 1} = (\pm 1)^n n$

Jost solutions and plane wave transfer matrix

Jost solutions u_{+}^{z} of perturbed Hu = Eu with $E = z + z^{-1}$ fixed by

$$u_{+}^{z}(n) = u_{0}^{z}(n)$$
 , $u_{-}^{z}(-n) = u_{0}^{z}(-n)$, $n > |K_{\pm}|$

Solutions u_{\pm}^z called outgoing/incoming if increasing/decreasing at $\pm\infty$

 $(u_{\pm}^{z}, u_{\pm}^{1/z})$ both fundamental solutions for all $z \in \mathbb{C} \setminus \{-1, 0, 1\}$ Plane wave transfer matrix $\mathcal{M}^{z} \in \mathbb{C}^{2L \times 2L}$ is defined by

$$(u_{-}^{z}, u_{-}^{1/z}) = (u_{+}^{z}, u_{+}^{1/z}) \mathcal{M}^{z}$$

Scattering matrix

The $L \times L$ entries of transfer matrix are denoted by

$$\mathcal{M}^{z} = \begin{pmatrix} M_{-}^{1/z} & N_{-}^{z} \\ N_{-}^{1/z} & M_{-}^{z} \end{pmatrix}$$

Defining relation: $u_{-}^{z} = u_{+}^{z} M_{-}^{1/z} + u_{+}^{1/z} N_{-}^{1/z}$ and $u_{-}^{1/z} = u_{+}^{z} N_{-}^{z} + u_{+}^{1/z} M_{-}^{z}$ If M_{-}^{z} invertible, rewrite to $u_{+}^{1/z} = u_{+}^{z} N_{-}^{z} (M_{-}^{z})^{-1} - u_{-}^{1/z} (M_{-}^{z})^{-1}$ For $z \in \mathbb{C}_{0} = \{z \in \mathbb{C} \setminus \{-1, 0, 1\} : M_{-}^{1/z} \text{ and } M_{-}^{z} \text{ invertible}\}$ set $(u_{-}^{z}, u_{+}^{1/z}) = (u_{+}^{z}, u_{-}^{1/z}) S^{z}$

Expresses incoming in terms of outgoing Jost solutions

 $L \times L$ entries are transmission and reflection coefficients

$$S^{z} = \begin{pmatrix} T_{+}^{z} & R_{-}^{z} \\ R_{+}^{z} & T_{-}^{z} \end{pmatrix} = \begin{pmatrix} ((M_{-}^{\overline{z}})^{*})^{-1} & -N_{-}^{z}(M_{-}^{z})^{-1} \\ (M_{-}^{z})^{-1}N_{-}^{1/z} & (M_{-}^{z})^{-1} \end{pmatrix}$$

Left versus right action of S^z and \mathcal{M}^z

In solid state physics literature rather action from left!

Connection: incoming solutions $u_{-}^{z}\psi_{+}$ and $u_{+}^{1/z}\phi_{-}$ via $\psi_{+}, \phi_{-} \in \mathbb{C}^{L}$

Outgoing solutions $u_{-}^{1/z}\psi_{-}$ and $u_{+}^{z}\phi_{+}$ given by $\psi_{-}, \phi_{+} \in \mathbb{C}^{L}$. Then

$$\left(u_{-}^{z}, u_{+}^{1/z}\right) \begin{pmatrix} \psi_{+} \\ \phi_{-} \end{pmatrix} = \left(u_{+}^{z}, u_{-}^{1/z}\right) \mathcal{S}^{z} \begin{pmatrix} \psi_{+} \\ \phi_{-} \end{pmatrix} = \left(u_{+}^{z}, u_{-}^{1/z}\right) \begin{pmatrix} \phi_{+} \\ \psi_{-} \end{pmatrix}$$

namely

Basic algebraic facts

$$\mathcal{K} = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \quad , \quad \mathcal{I} = \begin{pmatrix} 0 & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \quad , \quad \mathcal{J} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}$$

• Plane wave transfer matrix satisfies for $z \in \mathbb{C} \setminus \{-1, 0, 1\}$

$$(\mathcal{M}^{1/\overline{z}})^* \mathcal{J} \mathcal{M}^z = \mathcal{J} , \qquad \mathcal{M}^z \mathcal{J} (\mathcal{M}^{1/\overline{z}})^* = \mathcal{J}$$

 $\mathcal{J}\text{-unitarity relation } (\mathcal{M}^z)^* \mathcal{J} \mathcal{M}^z = \mathcal{J} \text{ for } z \in \mathbb{S}^1 \setminus \{-1, 1\}$

- For $z \in \mathbb{R}$ so that $E \in \mathbb{R} \setminus (-2, 2)$, \mathcal{M}^z is \mathcal{I} -unitary $(\mathcal{M}^z)^* \mathcal{I} \cdot \mathcal{M}^z = \mathcal{I}$
- S^z unitary for $z \in \mathbb{S}^1 \setminus \{-1, 1\}$. Extended relation for $z \in \mathbb{C}_0$: $(S^{1/\overline{z}})^* S^z = 1$, $S^{\overline{z}} = \mathcal{K} (S^z)^* \mathcal{K}$
- If V = 0, one has $\mathcal{M}^z = \mathbf{1}$ and $\mathcal{S}^z = \mathbf{1}$ for $z \in \mathbb{C}_0$
- Both \mathcal{M}^z and \mathcal{S}^z are meromorphic on \mathbb{C}

Passage from \mathcal{M}^z to \mathcal{S}^z

Proposition

The set of \mathcal{J} -unitaries { $\mathcal{M} \in \mathbb{C}^{2L \times 2L}$: $\mathcal{M}^* \mathcal{J} \mathcal{M} = \mathcal{J}$ } bijectively mapped by \mathcal{V} to unitaries from U(2L) with invertible diagonals:

$$\mathcal{M} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad \mapsto \quad \mathcal{V}(\mathcal{M}) = \begin{pmatrix} (A^*)^{-1} & -BD^{-1} \\ B^*(A^*)^{-1} & D^{-1} \end{pmatrix}$$

 $\mathcal{V}(\mathcal{M})$ is the phase of Lagrangian graph of $\mathcal{M}.$ It satisfies

$$\mathcal{V}(\mathcal{M}) \ = \ \mathcal{V}(\mathcal{M}^{-1})^* \ = \ \mathcal{J} \, \mathcal{V}(\mathcal{M}^*)^* \mathcal{J}$$

Here for $z \in \mathbb{S}^1 \setminus \{-1, 0, 1\}$,

$$\mathcal{V}(\mathcal{M}^z) = \mathcal{S}^z$$

This relation is extended analytically away from \mathbb{S}^1

Analytic properties of matrix entry M_{-}^{z}

Recall

$$\mathcal{M}^{Z} = \begin{pmatrix} M_{-}^{1/z} & N_{-}^{z} \\ N_{-}^{1/z} & M_{-}^{z} \end{pmatrix}$$

• M_{-}^{z} invertible for $|z| \leq 1$ except when

 $z = \pm 1$ or z roots z_j of $E_j = z + z^1 \in \sigma(H)$ with $j = 1, \ldots, J_b$

- Zeros of $z \mapsto \det(M_{-}^z)$ at z_j of order of eigenvalue E_j (difficult!)
- High energy asymptotics $\lim_{z\to 0} M_{-}^{z} = 1$
- det(M_{-}^{z}) has poles at ± 1 of order $L J_{h}^{\pm}$ where J_{h}^{\pm} dimension of (half-) bounded solutions of $Hu = \pm 2u$
- If \mathbb{S}_r^1 circle of radius *r* and $J_h = J_h^+ + J_h^-$, then argument principle

$$\oint_{\mathbb{S}_{1-\epsilon}^{1}} \frac{dz}{2\pi i} \partial_{z} \log \det(M_{-}^{z}) = J_{b} \quad , \quad \oint_{\mathbb{S}_{1+\epsilon}^{1}} \frac{dz}{2\pi i} \partial_{z} \log \det(M_{-}^{z}) = J_{b} + J_{h}$$

Main results

Theorem

The scattering matrix extends analytically from \mathbb{C}_0 to $\{-1, 1\}$ It has poles at z_j for $j = 1, ..., J_b$ in the diagonal entries It has a pole at z = 0 in the off-diagonal entries

Theorem (Levinson-type theorem)

The number of bound states J_b and half-bound states J_h satisfy

$$J_b + \frac{1}{2}J_h - L = \int_{-2}^{2} \frac{dE}{2\pi i} \operatorname{Tr}((\mathcal{S}^E)^* \partial_E \mathcal{S}^E)$$

where $\mathcal{S}^E = \mathcal{S}^z$ if $E = z + z^{-1}$ and $\Im m(z) > 0$

Based on:

$$\operatorname{Tr}((\mathcal{S}^{1/\overline{z}})^*\partial_z \mathcal{S}^z) = \partial_z \log \det(M_-^{1/z}) - \partial_z \log \det(M_-^z)$$

Standard transfer matrix

$$\mathcal{T}^{E}(n) = \begin{pmatrix} E - V(n) & -\mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}$$

over several sites

$$\mathcal{T}^{\mathcal{E}}(n,m) = \mathcal{T}^{\mathcal{E}}(n)\cdots \mathcal{T}^{\mathcal{E}}(m+1) \qquad , \qquad n > m$$

Also $\mathcal{T}^{E}(n, n) = \mathbf{1}_{2L}$ and $\mathcal{T}^{E}(m, n) = \mathcal{T}^{E}(n, m)^{-1}$. Then \mathcal{I} -unitarity $\mathcal{T}^{\overline{E}}(n, m)^{*} \mathcal{I} \mathcal{T}^{E}(n, m) = \mathcal{I}$

For solution u of Hu = Eu, set

$$\Phi(n) = \begin{pmatrix} u(n+1) \\ u(n) \end{pmatrix}$$

Then

$$\Phi(n) = \mathcal{T}^{\mathsf{E}}(n) \Phi(n-1) = \mathcal{T}^{\mathsf{E}}(n,m) \Phi(m)$$

Plane wave versus standard transfer matrix

$$\mathcal{M}^{z}(n) = \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{1} \end{pmatrix} + i\nu^{z} \begin{pmatrix} V(n) & z^{-2n}V(n) \\ -z^{2n}V(n) & -V(n) \end{pmatrix} , \quad \nu^{z} = \frac{i}{z - z^{-1}}$$

Note $\mathcal{M}^{z}(n) = 1$ if V(n) = 0, hence adapted to perturbation theory

Proposition

$$\mathcal{M}^{z}(n) = \left(\mathcal{C}^{z}\mathcal{D}^{z}(n)\right)^{-1}\mathcal{T}^{E}(n)\left(\mathcal{C}^{z}\mathcal{D}^{z}(n-1)\right)$$

where $E = z + z^{-1}$ and

$$\mathcal{C}^{z} = \begin{pmatrix} z\mathbf{1} & z^{-1}\mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} , \qquad \mathcal{D}^{z}(n) = \begin{pmatrix} z^{n}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & z^{-n}\mathbf{1} \end{pmatrix}$$

One has $\mathcal{M}^{1/\overline{z}}(n)^*\mathcal{J}\mathcal{M}^z(n) = \mathcal{J}$, hence \mathcal{J} -unitarity for $z \in \mathbb{S}^1$

Generalized Cayley transform passing from $\mathcal{I}\text{-}$ to $\mathcal{J}\text{-}\text{unitaries}$

Multiplicativity of plane wave transfer matrices

As above, set $\mathcal{M}^{z}(n, n) = \mathbf{1}$ and

$$\mathcal{M}^{z}(n,m) = \mathcal{M}^{z}(n)\cdots \mathcal{M}^{z}(m+1)$$
, $n > m$

Then

$$\mathcal{M}^{1/\overline{z}}(n,m)^* \, \mathcal{J} \, \mathcal{M}^z(n,m) \; = \; \mathcal{J}$$

Proposition

Plane wave transfer matrix \mathcal{M}^z of scattering theory is

$$\mathcal{M}^{z} = \mathcal{M}^{z}(K_{+}, K_{-})$$

Thus

$$\mathcal{M}^{z} = \left(\mathcal{C}^{z} \mathcal{D}^{z}(K_{+}) \right)^{-1} \mathcal{T}^{E}(K_{+}, K_{-}) \left(\mathcal{C}^{z} \mathcal{D}^{z}(K_{-}) \right)$$

Due to different \mathcal{D}^z -factors **not** just change of representation

Other potential application: perturbation theory for Lyapunov exponent

Application: analyticity issues

$$\mathcal{M}^{Z} = \prod_{n=K_{-}+1}^{K_{+}} \left[\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} + i\nu^{Z} \begin{pmatrix} V(n) & z^{-2n}V(n) \\ -z^{2n}V(n) & -V(n) \end{pmatrix} \right]$$

At band edge $z \to \pm 1$ one has $\nu^z = \frac{i}{z-z^{-1}} \to \infty$. Very singular? No:

Proposition

With analytic \mathcal{G}^{z} in neighborhood of $z = \pm 1$,

$$\mathcal{M}^{z} \;=\; \mathcal{G}^{z} \;+\; \nu^{z} \,\mathcal{F}$$

Matrix \mathcal{F} contains all information at band edges, determines $L - J_h^{\pm}$ In spite of singular factors, algebraic (semigroup) structure shows for lower right entry M_-^z of \mathcal{M}^z that

Proposition

 $\lim_{z\to 0} M_{-}^{z} = \mathbf{1}$

Link to Green matrix

For $n, m \in \mathbb{Z}$ and $E \notin \sigma(H)$,

$$G^{E}(n,m) = \pi_{n} (H-E)^{-1} (\pi_{m})^{*} \in \mathbb{C}^{L \times L},$$

where $\pi_n : \ell^2(\mathbb{Z}, \mathbb{C}^L) \to \mathbb{C}^L$ restriction to site *n*

Well-known link of Green matrices to entries of transfer matrices:

Proposition

 M_{-}^{z} invertible for $E = z + z^{-1} \notin \sigma(H)$ with |z| < 1 and

$$M_{-}^{z} = \frac{z^{K_{+}-K_{-}}}{z-z^{-1}} G^{E}(K_{-},K_{+})^{-1}$$

Moreover:

$$S^{Z} = \frac{z^{K_{-}-K_{+}}}{z-z^{-1}} \begin{pmatrix} G^{E}(K_{+},K_{-}) & -z^{-K_{+}-K_{-}}(G^{E}(K_{+},K_{+})+i\nu^{z}) \\ -z^{K_{+}+K_{-}}(G^{E}(K_{-},K_{-})+i\nu^{z}) & G^{E}(K_{-},K_{+}) \end{pmatrix}$$

Outlook: Extension to short range potentials

General procedure applies. Alternative: make sense out of

$$\mathcal{M}^{z} = \prod_{n=-\infty}^{\infty} \left[\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} + i \nu^{z} \begin{pmatrix} V(n) & z^{-2n} V(n) \\ -z^{2n} V(n) & -V(n) \end{pmatrix} \right]$$

Use

lf

$$\|\mathcal{M}^{z}(n) - \mathbf{1}\| \leq 4 |\nu^{z}| \|V(n)\|$$

Slight extension of Wedderburn (1934):

Proposition

 $\sum_{n=-\infty}^{\infty} \|V(n)\| < \infty$

then infinite product \mathcal{M}^z converges and analytic in $z\in\mathbb{C}\backslash\{-1,0,1\}$

Then S^z obtained after same algebraic passage

Anoly	ut lout	1 0	000	orupa	motrix
Allar	VIICIII	v () I	Sudi		IIIaiiix