Space versus energy oscillations for Sturm-Liouville and Jacobi operators

Hermann Schulz-Baldes
Liam Urban (Erlangen, now PhD in Vienna)

February 2022

There is a paper with a similar title in Elect. J. Diff. Eq. 2020

Sturm-Liouville operator and Prüfer phases

Self-adjoint acting densely on $L^{2}([0,1], \mathbb{R})$ as

$$
H=-\partial_{x}\left(p \partial_{x}+q\right)+q \partial_{x}+v
$$

with - real p, q, v bounded

- p, q differentiable
- $p \geqslant c_{p}>0$ (not singular)
- Dirichlet boundary conditions (for sake of concreteness)

Solve Schrödinger equation with Dirichlet on left boundary:

$$
H \phi^{E}=E \phi^{E} \quad, \quad \phi^{E}(0)=0, \partial_{x} \phi^{E}(0)=1
$$

Define Prüfer phase

$$
e^{i \theta^{E}(x)}=\frac{\phi^{E}(x)-i \partial_{x} \phi^{E}(x)}{\phi^{E}(x)+i \partial_{x} \phi^{E}(x)}
$$

$(x, E) \mapsto \theta^{E}(x) \in \mathbb{R}$ differentiable in x and in E (lifted from \mathbb{S}^{1} to \mathbb{R})

Oscillations in space (Sturm) and energy

$$
\begin{aligned}
\# & \{\text { eigenvalues of } H \leqslant E\} \\
& =\#\left\{\text { zeros of } x \in[0,1] \mapsto \phi^{E}(x)\right\} \\
& =\operatorname{SF}\left(x \in[0,1] \mapsto \theta^{E}(x) \bmod 2 \pi \text { through } \pi\right) \\
& =\operatorname{SF}\left(e \in(-\infty, E] \mapsto \theta^{e}(1) \bmod 2 \pi \text { through } \pi\right)
\end{aligned}
$$

Second equality is non-trivial! Indeed no going back through -1 :

$$
\partial_{x} \theta^{E}(x)>0 \text { whenever } \theta^{E}(x)=\pi \bmod 2 \pi
$$

Further fact: global monotonicity in energy

$$
\partial_{E} \theta^{E}(x)>0
$$

Homotopy property in the space-energy strip $(x, E) \in[0,1] \times \mathbb{R}$

Matrix-valued Sturm-Liouville operators

Self-adjoint acting densely on $L^{2}\left([0,1], \mathbb{C}^{L}\right)$ as

$$
H=-\partial_{x}\left(p \partial_{x}+q\right)+q \partial_{x}+v
$$

with • bounded functions $p, q, v=v^{*}$ matrix-valued $\mathbb{C}^{L \times L}$

- p, q differentiable
- $p \geqslant c_{p} \mathbf{1}_{L}>0$ positive definite
- Dirichlet boundary conditions

Fundamental solution $x \mapsto \Phi^{E}(x) \in \mathbb{C}^{L \times L}$:

$$
H \Phi^{E}=E \Phi^{E} \quad, \quad \Phi^{E}(0)=\mathbf{0}_{L}, \quad \partial_{X} \Phi^{E}(0)=\mathbf{1}_{L}
$$

Well-defined $\mathrm{U}(L)$-valued matrix Prüfer phase

$$
U^{E}(x)=\left(\Phi^{E}(x)-i \partial_{x} \Phi^{E}(x)\right)\left(\Phi^{E}(x)+i \partial_{x} \Phi^{E}(x)\right)^{-1}
$$

Fact: $(x, E) \mapsto U^{E}(x) \in U(L)$ differentiable in x and in E

Oscillations in space and energy

$\#\{$ eigenvalues of $H \leqslant E\}$

$$
\begin{aligned}
& =\mathrm{SF}\left(x \in[0,1] \mapsto \operatorname{Spec}\left(U^{E}(x)\right) \bmod 2 \pi \text { through } \pi\right) \\
& =\operatorname{SF}\left(e \in(-\infty, E] \mapsto \operatorname{Spec}\left(U^{e}(1)\right) \bmod 2 \pi \text { through } \pi\right)
\end{aligned}
$$

Both intersection \#'s are Bott-Maslov index of $x, E \mapsto \operatorname{Ran}\binom{\rho^{\rho(x)} \partial_{x} \Phi^{E}(x)}{\Phi^{E}(x)}$ Still no going back through -1 :

$$
\left.\frac{1}{i}(U(x))^{*} \partial_{X} U(x)\right|_{\operatorname{Ker}\left(U(x)+\mathbf{1}_{L}\right)}>0
$$

(Coppel 1965)
Monotonicity in E

$$
\frac{1}{i}\left(U^{E}(x)\right)^{*} \partial_{E} U^{E}(x) \geqslant \mathbf{0}_{L}
$$

(Bott 1956)

Asymptotics $\lim _{E \rightarrow-\infty} U^{E}(x)=-\mathbf{1}_{L}$ clockwise

Numerical illustration for $L=2$

$$
p(x)=\left(\begin{array}{cc}
2+\cos (12 x) & \sin (11.5 x) \\
\sin (11.5 x) & 3-\sin (16 x)
\end{array}\right) \quad, \quad q(x)=\ldots \quad, \quad v(x)=\ldots
$$

Plot of phases of spectrum of $U^{E}(1)$ as function of E

Avoided level crossings

Numerical illustration for $L=2$

Plot of phases of spectrum of $U^{E}(x)$ as function of x for fixed E

Matrix Jacobi operators

Length $N \geqslant 3$ with $T_{n}, V_{n}=V_{n}^{*} \in \mathbb{C}^{L \times L}$ and $\operatorname{Ker}\left(T_{n}\right)=\{0\}$

$$
H_{N}=\left(\begin{array}{cccccc}
V_{1} & T_{2} & & & & \\
T_{2}^{*} & V_{2} & T_{3} & & & \\
& T_{3}^{*} & V_{3} & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & \ddots & V_{N-1} & T_{N} \\
& & & & T_{N}^{*} & V_{N}
\end{array}\right)
$$

Suitable gauge transformation $G=\operatorname{diag}\left(G_{1}, \ldots, G_{N}\right) \Longrightarrow T_{n}>0$ Fundamental solution Φ^{E} via three term recurrence (with $T_{N+1}=\mathbf{1}_{L}$)

$$
T_{n+1} \Phi_{n+1}^{E}+V_{n} \Phi_{n}^{E}+T_{n} \Phi_{n-1}^{E}=E \Phi_{n}^{E} \quad \Phi_{0}^{E}=\mathbf{0}_{L}, \quad \Phi_{1}^{E}=\mathbf{1}_{L}
$$

Alternative construction: transfer matrices from Lorentz group $U(L, L)$

Matrix Prüfer phases:

Produces eigenstate of H_{N} for energy E only if $\operatorname{Ker}\left(\Phi_{N+1}^{E}\right) \neq\{0\}$
Hence again intersection theory of Lagrangian subspaces

$$
U_{n}^{E}=\left(T_{n+1} \Phi_{n+1}^{E}-i \phi_{n}^{E}\right)\left(T_{n+1} \Phi_{n+1}^{E}+i \Phi_{n}^{E}\right)^{-1} \in U(L)
$$

Theorem

 multiplicity of E as $E V$ of $H_{N}=$ multiplicity of -1 as $E V$ of U_{N}^{E}and

$$
\#\left\{\text { eigenvalues of } H_{N} \leqslant E\right\}=\operatorname{SF}\left(e \in(-\infty, E] \mapsto U_{N}^{e} \text { through }-1\right)
$$

Moreover,

$$
\frac{1}{i}\left(U_{N}^{E}\right) * \partial_{E} U_{N}^{E}>0
$$

Question: how to define space oscillations from U_{n}^{E} to U_{n+1}^{E} ?

Discrete Sturm oscillations

To measure \# of sign changes of solution from n to $n+1$ consider

$$
S_{n}^{E}=\left(\Phi_{n}^{E}\right)^{*} T_{n+1} \Phi_{n+1}^{E}=\left(S_{n}^{E}\right)^{*}
$$

Morse indices $\imath_{<}\left(S_{n}^{E}\right)=\operatorname{Tr}\left(\chi\left(S_{n}^{E}<0\right)\right)$ and $\imath_{>}\left(S_{n}^{E}\right)=\operatorname{Tr}\left(\chi\left(S_{n}^{E}>0\right)\right)$
Theorem (inspired by book of Dosly-Elyseeva-Hilscher)
For E not in the finite singular set

$$
\mathcal{S}=\bigcup_{n=1, \ldots, N-1} \operatorname{Spec}\left(H_{n}\right) \quad, \quad H_{n}=\left.H_{N}\right|_{[1, n]}
$$

one has
$\#\left\{\right.$ eigenvalues of $\left.H_{N} \leqslant E\right\}=\sum_{n=1}^{N} \imath_{>}\left(S_{n}^{E}\right)=N L-\sum_{n=1}^{N} \imath_{<}\left(S_{n}^{E}\right)$
Proof: short, but intricate geometric argument

Interpolation between U_{n-1}^{E} and U_{n}^{E}

Using principal branch Log of logarithm

$$
Q_{n}^{E}=-i \log \left(U_{n}^{E}\right)
$$

Set

$$
W^{E}(x)=\left\{\begin{array}{cl}
e^{-i 3\left(x-n+\frac{2}{3}\right) Q_{n-1}^{E}}, & x \in\left[n-1, n-\frac{2}{3}\right] \\
e^{i 3\left(x-n+\frac{2}{3}\right) 2 \pi \chi\left(S_{n}^{E} \geqslant 0\right)}, & x \in\left[n-\frac{2}{3}, n-\frac{1}{3}\right] \\
e^{i 3\left(x-n+\frac{1}{3}\right) Q_{n}^{E}}, & x \in\left[n-\frac{1}{3}, n\right]
\end{array}\right.
$$

Corollary

Suppose that $E \notin \mathcal{S}$. Then
$\#\left\{\right.$ eigenvalues of $\left.H_{N} \leqslant E\right\}=\operatorname{SF}\left(x \in[0, N] \mapsto W^{E}(x)\right.$ through - 1$)$
Short-coming: excludes \mathcal{S} ! Progress by Hilscher-Sepitka 2021
Alternative: work with a suitable ODE on each interval $[n-1, n]$

Elements of geometric proof (disc. Sturm osc.):

Claim: $\operatorname{Tr}\left(\chi\left(H_{N} \leqslant E\right)\right)=N^{E}=\sum_{n=1}^{N} \imath^{\imath}\left(S_{n}^{E}\right)$ with $S_{n}^{E}=\left(\Phi_{n}^{E}\right)^{*} T_{n+1} \phi_{n+1}^{E}$
Aim 1: exhibit $\left(H_{N}-E\right)$-non-pos. def. subs. $\mathcal{E} \leqslant \subset \mathbb{C}^{N L}$ with $\operatorname{dim}=N^{E}$ Aim 2: exhibit $\left(H_{N}-E\right)$-pos. def. subs. $\mathcal{E}_{>}^{E} \subset \mathbb{C}^{N L}$ with $\operatorname{dim}=N L-N^{E}$ For $*=\leqslant,>$ iterative construction $\mathcal{E}_{*}^{E}=\oplus_{n=1}^{N} \mathcal{E}_{*}^{E, n}$ with $\mathcal{E}_{*}^{E, n} \subset \mathcal{E}^{n}$ and $\mathcal{E}^{n}=\left\{\psi=\left(\psi_{1}, \ldots, \psi_{N}\right) \in \mathbb{C}^{N L}: \psi_{n} \neq 0\right.$ and $\left.\psi_{n+1}=\ldots=\psi_{N}=0\right\} \cup\{0\}$ By construction, $\mathcal{E}_{*}^{E, n} \cap \mathcal{E}_{*}^{E, m}=\{0\}$ for $n \neq m$
For $\mathcal{E}^{E, n}$, choose $v \in \mathbb{C}^{L}$ such that $v^{*} S_{n}^{E} v<0$, so $\phi_{n}^{E} v \neq 0$. Set
Then

$$
\psi_{v}^{E, n}=\left(\phi_{1}^{E} v, \ldots, \phi_{n}^{E} v, 0, \ldots, 0\right) \in \mathcal{E}^{n}
$$

$$
\left(\psi_{v}^{E, n}\right)^{*}\left(H_{N}-E\right) \psi_{v}^{E, n}=-v^{*}\left(\phi_{n}^{E}\right)^{*} T_{n+1} \phi_{n+1}^{E} v=-v^{*} S_{n}^{E} v>0
$$

Holds for all v satisfying $v^{*} S_{n}^{E} v<0$. Therefore

$$
\operatorname{dim}\left(\mathcal{E}_{>}^{E, n}\right) \geqslant \imath_{<}\left(S_{n}^{E}\right)
$$

Further extensions of oscillation theory:

- unitary scattering zippers (generalization of CMV matrices)
- Jacobi operators with blocks of infinite dimension
- Oscillation theory for surface states in $2 D$ systems

