Exkurs: Das Sieb des Erathosthenes

Das Sieb des Eratosthenes ist eine Methode um zu gegebener Zahl $n \in \mathbb{N}$ alle Primzahlen $\leq n$ zu bestimmen. Es funktioniert so:

- Man schreibt die Zahlen $1, 2, 3, \ldots, n$ in eine Liste und streicht die Zahl 1.
- Man wiederholt folgende Operation, solange es möglich ist: Man nimmt die erste nichtgestrichene Zahl i der Liste und streicht alle Zahlen i^2 , i^2+i , i^2+2i , i^2+3i , ..., soweit sie in der Liste stehen. (Man streicht also i^2 und dann alle folgenden Zahlen im Abstand i von der vorangegangenen Zahl.)
- Gilt für die nächste nichtgestrichene Zahl i der Liste $i^2 > n$, so kann man die Operation nicht mehr durchführen. Man hört auf. Die nichtgestrichenen Zahlen der Liste sind genau die Primzahlen < n.

Beispiel: Wir wollen die Primzahlen ≤ 100 bestimmen. Wir schreiben die Zahlen von 1 bis 100 in eine Liste/Tabelle. Die Zahl 1 streichen wir.

X	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Wir nehmen die erste nicht gestrichene Zahl der Liste, also i=2. Nun streichen wir alle Zahlen der Gestalt $i^2, i^2+i, i^2+2i, i^2+3i, \ldots$, also $4, 6, 8, 10, 12, \ldots$, wir ans Ende der Liste kommen:

X	2	3	X	5	X	7	X	9	X
11	X	13	Х	15	X	17	X	19	Х
21	X	23	X	25	X	27	X	29	X
31	X	33	X	35	X	37	X	39	X
41	X	43	X	45	X	47	X	49	X
51	X	53	X	55	X	57	X	59	X
61	X	63	X	65	X	67	X	69	X
71	X	73	X	75	X	77	X	79	X
81	X	83	X	85	X	87	X	89	X
91	X	93	X	95	X	97	X	99	X

Nun nehmen wir die nächste nichtgestrichene Zahl der Liste, also i=3 und streichen wieder alle Zahlen der Gestalt $i^2, i^2+i, i^2+2i, i^2+3i, \ldots$, also $9, 12, 15, 18, 21, \ldots$, bis wir ans Ende der Liste kommen:

X	2	3	X	5	X	7	X	X	х
11	X	13	х	X	Х	17	X	19	X
X	X	23	х	25	Х	X	X	29	X
31	X	X	X	35	X	37	X	X	X
41	X	43	X	X	X	47	X	49	X
X	X	53	X	55	Х	X	X	59	X
61	X	X	х	65	X	67	х	X	X
71	X	73	X	X	X	77	X	79	X
X	X	83	X	85	X	X	X	89	X
91	X	X	х	95	Х	97	X	X	Х

Datei: ki_eratosthenes.tex. Version vom 29.5.2018

1

Die nächste nichtgestrichene Zahl der Liste ist i=5. Wir streichen $25,30,35,40,45,\ldots$:

X	2	3	X	5	X	7	X	X	X
11	X	13	X	X	X	17	X	19	X
X	X	23	X	X	X	X	X	29	X
31	X	X	X	X	X	37	X	X	X
41	X	43	Х	X	X	47	X	49	X
X	X	53	Х	X	Х	X	X	59	X
61	X	X	Х	Х	Х	67	X	X	х
71	X	73	Х	Х	Х	77	X	79	X
X	X	83	Х	Х	Х	X	X	89	х
91	X	X	Х	X	Х	97	X	X	X

Die nächte nichtgestrichene Zahl ist i=7. Wir streichen wieder alle Zahlen der Gestalt $i^2, i^2+i, i^2+2i, i^2+3i, \ldots$, also $49, 56, 63, 70, \ldots$, bis wir ans Ende der Liste kommen:

X	2	3	х	5	Х	7	х	X	х
11	Х	13	х	х	х	17	X	19	х
X	X	23	Х	х	Х	X	X	29	х
31	X	X	Х	х	X	37	X	X	х
41	X	43	X	Х	X	47	X	X	Х
X	X	53	X	Х	X	X	X	59	Х
61	X	X	X	X	X	67	X	X	X
71	X	73	X	X	X	X	X	79	X
X	X	83	X	X	X	X	X	89	X
X	X	X	X	X	X	97	X	X	X

Die nächste nichtgestrichene Zahl ist i=11. Da aber $11^2>100$, können wir mit obigen Verfahren nichts mehr streichen. Wir sind fertig. Die nichtgestrichenen Zahlen der Tabelle sind alle Primzahlen ≤ 100 .

Beispiel: Nun wollen wir alle Primzahlen ≤ 400 bestimmen. In eine Tabelle schreiben wir alle Zahlen ≤ 400 und streichen 1, weil dies keine Primzahl ist:

x	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400

Mit der obigen Vorgehensweise streicht man für i=2,3,5,7,11,13,17,19 jeweils alle Zahlen $i^2,i^2+i,i^2+i,i^3+i,i^4+i$

х	2	3	х	5	х	7	х	X	х	11	х	13	х	х	х	17	X	19	x
х	х	23	х	х	х	х	х	29	х	31	х	х	х	х	х	37	х	х	x
41	х	43	х	x	х	47	x	X	x	X	x	53	x	х	х	X	x	59	x
61	х	X	х	х	х	67	х	X	х	71	x	73	х	х	х	X	х	79	x
x	x	83	х	x	x	x	x	89	x	X	x	X	x	х	x	97	x	X	x
101	х	103	х	х	х	107	х	109	x	X	x	113	х	х	х	X	х	х	x
x	x	X	х	x	x	127	x	X	x	131	x	X	x	х	x	137	x	139	x
x	х	х	х	x	х	X	x	149	x	151	x	х	x	х	x	157	x	х	x
x	х	163	Х	х	х	167	х	Х	х	Х	х	173	х	х	х	Х	х	179	x
181	x	X	х	x	x	x	x	х	x	191	х	193	x	х	x	197	x	199	x
x	х	Х	х	х	х	Х	х	х	х	211	х	Х	х	х	х	Х	х	Х	x
x	х	223	х	х	х	227	х	229	х	Х	х	233	х	х	х	Х	х	239	x
241	x	X	х	x	x	x	x	х	x	251	x	Х	x	х	x	257	x	Х	x
x	х	263	х	х	х	Х	х	269	х	271	х	х	х	х	х	277	х	х	x
281	х	283	х	х	х	X	х	Х	х	Х	x	293	х	х	х	Х	х	Х	x
x	x	х	х	x	x	307	x	х	x	311	x	313	x	х	x	317	x	Х	x
x	х	X	х	х	х	Х	х	х	х	331	х	Х	х	х	х	337	х	Х	x
х	х	х	х	х	х	347	х	349	х	х	х	353	х	х	х	х	х	359	x
х	х	X	х	х	х	367	х	х	х	х	х	373	х	х	х	х	х	379	x
х	х	383	х	х	х	x	х	389	х	x	x	x	х	х	х	397	х	x	х

Die nichtgestrichenen Zahlen sind genau die Primzahlen ≤ 400 .

Wir geben nun noch eine algorithmische Variante an. Weil in einigen Programmiersprachen Listen mit dem Index 0 beginnen, wird das auch hier so gehandhabt:

Algorithmus Sieb des Eratosthenes

```
Eingabe: Eine natürliche Zahl n
Ausgabe: Alle Primzahlen \leq n
 1: Erstelle eine Liste/Folge a=(a_i)_{0\leq i\leq n} mit Einträgen a_0=a_1=0 und a_i=1 für 2\leq i\leq n
 2: i \leftarrow 2
 3: while i^2 \leq n \operatorname{do}
 4:
        if a_i = 1 then
             j \leftarrow i^2
 5:
             while j \leq n do
 6:
                 a_j \leftarrow 0
 7:
 8:
                 j \leftarrow j + i
             end while
 9:
10:
        end if
        i \leftarrow i+1
11:
12: end while
13: return Alle Indizes i mit a_i = 1
```

Eine zugehörige Python3-Funktion kann so aussehen:

```
def eratosthenes(n):
    if n<2:
        return []
    a=[0,0]+(n-1)*[1]
    i=2
    while i*i<=n:
        if a[i]==1:
            for j in range(i*i,n+1,i):
                 a[j]=0
        i=i+1
    return [p for p in range(n+1) if a[p]==1]</pre>
```