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Introduction

Knots

A knot is an equivalence class of embeddings γ : R/Z → R3, i.e.
topological homeomorphisms onto their images.

Two emdbeddings, called knotted curves, are identified if there
exists an ambiant isotopy of R3 transforming one into the other.
Broadly speaking, no cutting, self-intersecting, or pull-tight
phenomena of the curves are allowed.
Questions in knot theory

▶ How to classify of all knots?

▶ How to easily assign an arbitrary knotted curve to the knot
class it represents?
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Introduction

Knot Energies

Knot Energies

introduced by Shinji Fukuhara [Fuk88] as an analytical tool used to
deform a given knotted curve into a standard form

Classification problem: only
finitely many knots below energy

threshold?

Compare standard forms instead
of arbitrary curves
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Introduction

Knot Energies

Jun O’Hara [O’H91] introduces the Möbius energy

E (γ) =

ˆ 1

0

(
lim
ε↓0

ˆ 1+x−ε

x+ε

dy

|γ(x) − γ(y)|2
− 2

ε

)
dx
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Introduction

Knot Energies

Jun O’Hara [O’H91] introduces the Möbius energy
and in [O’H92a] the two-parameter family of knot energies, called
O’Hara energies

E (γ) =

ˆ 1

0

(
lim
ε↓0

ˆ 1+x−ε

x+ε

dy

|γ(x) − γ(y)|2
− 2

ε

)
dx

E (γ) =

¨
(R/Z)2

1

|γ(x) − γ(y)|2
− 1

|x − y |2
dxdy−2

Eα,p(γ) =

¨
(R/Z)2

(
1

|γ(x) − γ(y)|α
− 1

|x − y |α

)p

|γ′(x)||γ′(y)|dxdy
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Introduction

Knot Energies

Oscar Gonzalez and John Maddocks [GM99] introduce the integral
Menger curvature

Rp(a, b, c) = 2−p |(b − a) ∧ (c − a)|p

|b − a|p|c − a|p|b − c |p

intMp(γ) =

˚
(R/Z)3

|γ′(x)|γ′(y)||γ′(z)|
Rp
(
γ(x), γ(y), γ(z)

)dxdydz
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Introduction

Knot Energies

Oscar Gonzalez and John Maddocks [GM99] introduce the integral
Menger curvature
Simon Blatt and Philipp Reiter [BR15b] extend this to the
generalised integral Menger curvature

Rp,q(a, b, c) =
|(b − a) ∧ (c − a)|q

|b − a|p|c − a|p|b − c |p

intMp,q(γ) =

˚
(R/Z)3

|γ′(x)||γ′(y)||γ′(z)|
Rp,q(γ(x), γ(y), γ(z))

dxdydz
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Introduction

Knot Energies

Pawe l Strzelecki and Heiko von der Mosel [SvdM12] introduce
tangent-point energies

rpγ (γ(x), γ(y)) = 2−p |γ(x) − γ(y)|2p

distp
(
γ(x) + Rγ′(x), γ(y)

)
TPp(γ) =

¨
(R/Z)2

|γ′(x)||γ′(y)|
rp
(
γ(x), γ(y)

)dxdy
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Knot Energies

Pawe l Strzelecki and Heiko von der Mosel [SvdM12] introduce
tangent-point energies
Simon Blatt and Philipp Reiter [BR15a] extend this to the
generalised tangent-point energies

rp,qγ (γ(x), γ(y)) =
|γ(x) − γ(y)|p

distq
(
γ(x) + Rγ′(x), γ(y)

)
TPp,q(γ) =

¨
(R/Z)2

|γ′(x)||γ′(y)|
rp,qγ

(
γ(x), γ(y)

)dxdy
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Introduction

Knot Energies

Knot Energy [O’H03, Definition 1.1]

functional E on a topological space of knotted curves satisfying

▶ E ≥ 0

▶ If γn → γ and γ has double points, then E (γn) → ∞.

All energies presented above are knot energies.

▶ Eα,p, α ∈ (0,∞), p ∈ [1,∞) with 2 ≤ αp < 2p + 1 [O’H92b]

▶ intMp,q, q ∈ (1,∞), p ∈ (23q + 1, q + 2
3) [BR15b]

▶ TPp,q, q ∈ (1,∞), p ∈ (q + 2, 2q + 1) [BR15a]

All these results rely on bi-Lipschitz estimates for injective and
arclength parametrised curves.
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Knot Energies

The “right” topological spaces for these knot energies have been
characterised as

▶ W
1+αp−1

2p
,2p

ir (R/Z,Rn) for Eα,p [Bla12a]

▶ W
3p−2

q
−1,q

ir (R/Z,Rn) for intMp,q [BR15b]

▶ W
p−1
q

,q

ir (R/Z,Rn) for TPp,q [BR15a]

where W 1+s,ρ
ir (R/Z,Rn) is the subspace of W 1,ρ (R/Z,Rn) with

¨
(R/Z)2

(
|γ′(x) − γ′(y)|
|x − y |sR/Z

)ρ
dxdy

|x − y |R/Z
< ∞.

and γ injectiv and regular, i.e. |γ′| > 0.
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Gradient Flows of Knot Energies

Gradient Flows of Knot Energies

d

dt
Γ(t) = −∇E [Γ(t)]

L2-gradient flows of knot energies

▶ Zheng-Xu He [He00] shows short-time existence of an
L2-gradient flow of the Möbius energy E.

▶ Simon Blatt [Bla12b] shows long-time existence of an
L2-gradient flow of E if starting sufficiently close to a local
minimiser of E . Convergence to a critical point.

▶ Simon Blatt [Bla18] shows long-time existence of an
L2-gradient flow of Eα,1 + L (functional regularised with the
length of γ). Convergence to a critical point.
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Introduction

Gradient Flows of Knot Energies

Gradient Flows of Knot Energies

Hilbert space gradient flow in energy space

▶ Philipp Reiter and Henrik Schumacher [RS21] show short-time
existence of a gradient flow of E 2,1 with respect to a metric

related to the one of W
3
2
,2.

▶ Jan Knappmann, Henrik Schumacher, Daniel Steenebrügge,
and Heiko von der Mosel [KSSvdM22] prove long-time

existence of the gradient flow of intMp,2 in W
3
2
p−2,2.

▶ Daniel Steenebrügge [Ste22] proves long-time existence of the

gradient flow of TPp,2 in W
p−1
2

,2.

▶ Gradient flows in respective energy spaces can lead to
numerical procedures that are substantially more efficient and
robust in comparision to the methods for the L2-gradient
flow. [RS21]
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Gradient Flows in Banach Spaces and Main Theorem

Gradient flows in Banach spaces

H Hilbert space, ϕ ∈ C 1(H,R), u ∈ C 1((a, b),H).
A gradient flow is given by

u′(t) = −∇ϕ[u(t)]

∇ = J−1
H ◦ D

where JH : H → H∗ is the Riesz isomorphism, and
D : C 1(H,R) → C 0(H,H∗) is the derivative operator.
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Gradient Flows in Banach Spaces and Main Theorem

Gradient flows in Banach spaces

B Banach space, duality mapping with weights 1
θ + 1

θ∗ = 1:

J(B,θ) :B → 2B
∗

x 7→ {ξ ∈ B∗ | ⟨ξ, x⟩B∗×B = ∥x∥B ∥ξ∥B∗ , ∥x∥θB = ∥ξ∥θ
∗

B∗}

Examples:

▶ If B = H, then J(B,2) = JH.

▶ If B = Lp, then J(Lp ,p)(f ) = |f |p−2f ∈ Lq.
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Gradient Flows in Banach Spaces and Main Theorem

Gradient flows in Banach spaces

B Banach space, duality mapping with weights 1
θ + 1

θ∗ = 1:

J(B,θ) :B → 2B
∗

x 7→ {ξ ∈ B∗ | ⟨ξ, x⟩B∗×B = ∥x∥B ∥ξ∥B∗ , ∥x∥θB = ∥ξ∥θ
∗

B∗}

Can formulate differential inclusion

J(B,θ)(u
′(t)) ∋ −Dϕ[u(t)]
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Gradient Flows in Banach Spaces and Main Theorem

Gradient flows in Banach spaces

B Banach space, duality mapping with weights 1
θ + 1

θ∗ = 1:

J(B,θ) :B → 2B
∗

x 7→ {ξ ∈ B∗ | ⟨ξ, x⟩B∗×B = ∥x∥B ∥ξ∥B∗ , ∥x∥θB = ∥ξ∥θ
∗

B∗}

If the geometry of B is “nice”, then J(B,θ) : B → B∗ is a
homeomorphism, and the inclusion becomes an equation:

u′(t) = −J−1
(B,θ)(Dϕ[u(t)]).
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Gradient Flows in Banach Spaces and Main Theorem

Total Energy ϕ

total energy

1 < κ, θ 0 < ε E ∈ {TPp,q, intMp,q,Eα,p} s, ρ = s, ρ(E )

ϕ(γ) =

{
E (γ) + ∥Σ(γ)∥κW s,ρ , γ ∈ W 1+s+ε,ρ

ir

+∞, else.

where

logarithmic strain

Σ : W 1+s,ρ (R/Z,Rn) → W s,ρ (R/Z)

Σ(γ)(u) = log |γ′(u)|

used in [KSSvdM22] to control the parametrisation of the curves.
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Gradient Flows in Banach Spaces and Main Theorem

[MSvdM, Theorem 1.1]

1 < κ, θ 0 < ε E ∈ {TPp,q, intMp,q,Eα,p} s, ρ = s, ρ(E )

∀γ0 ∈ W 1+s+ε,ρ
ir ∃Γ ∈ C 1

(
[0,∞),W 1+s+ε,ρ

)
such that

d

dt
Γ(t) = −J−1

(W 1+s+ε,ρ,θ)
Dϕ[Γ(t)]

Γ(0) = γ0

J−1
(W 1+s+ε,ρ,θ)

is not Lipschitz-continuous, hence Picard-Lindelöf

theory is not applicable.
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Proof of the Main Theorem

From Gradient Flows to Curves of Maximal Slope

Metric gradient flows
Instead: metric theory of minimising movements and curves of
maximal slope as described in [AGS08]

In Hilbert space: u,E ∈ C 1.

u′(t) = −∇E [u(t)]

Cauchy-Schwarz inequality

⇔ ∥u′(t)∥ = ∥∇E [u(t)]∥
⟨u′(t),∇E [u(t)]⟩H = −∥u′(t)∥ ∥∇E [u(t)]∥

Young’s inequality

⇔ ⟨u′(t),∇E [u(t)]⟩H ≤ −1

2

∥∥u′(t)
∥∥2 − 1

2
∥∇E [u(t)]∥2

Chain rule

⇔ d

dt
E
(
u(t)

)
≤ −1

2

∥∥u′(t)
∥∥2 − 1

2
∥∇E [u(t)]∥2
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Proof of the Main Theorem

Energy Dissipation Inequality

metric derivative∥∥u′(t)
∥∥ |u′|(t) := lim

s→t

d (u(t), u(s))

|s − t|
local slope

∥∇E [u]∥ |∂E |
(
u
)

:= lim sup

v
d−→u

(
E (u) − E (v)

)+
d
(
v , u
)

upper gradient

d

dt
E
(
u(t)

)
= ⟨∇E [u(t)], u′(t)⟩

∣∣∣∣ ddt E(u(t)
)∣∣∣∣ ≤ |∂E |

(
u(t)

)
|u′|(t)

Energy Dissipation Inequality: gradient flow

d

dt
E
(
u(t)

)
≤ −1

2

∥∥u′(t)
∥∥2 − 1

2
∥∇E [u(t)]∥2
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Proof of the Main Theorem

Energy Dissipation Inequality

metric derivative∥∥u′(t)
∥∥ |u′|(t) := lim

s→t

d (u(t), u(s))

|s − t|
local slope

∥∇E [u]∥ |∂E |
(
u
)

:= lim sup

v
d−→u

(
E (u) − E (v)

)+
d
(
v , u
)

upper gradient

d

dt
E
(
u(t)

)
= ⟨∇E [u(t)], u′(t)⟩

∣∣∣∣ ddt E(u(t)
)∣∣∣∣ ≤ |∂E |

(
u(t)

)
|u′|(t)

Energy Dissipation Inequality: curve of maximal slope

d

dt
E
(
u(t)

)
≤ −1

2
|u′|2(t) − 1

2
|∂E |2

(
u(t)

)
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Proof of the Main Theorem

Energy Dissipation Inequality

metric derivative∥∥u′(t)
∥∥ |u′|(t) := lim

s→t

d (u(t), u(s))

|s − t|
local slope

∥∇E [u]∥ |∂E |
(
u
)

:= lim sup

v
d−→u

(
E (u) − E (v)

)+
d
(
v , u
)

upper gradient

d

dt
E
(
u(t)

)
= ⟨∇E [u(t)], u′(t)⟩

∣∣∣∣ ddt E(u(t)
)∣∣∣∣ ≤ |∂E |

(
u(t)

)
|u′|(t)

Energy Dissipation Inequality: integral

E
(
u(t)

)
+

1

2

ˆ t

s
|u′|2(r)dr +

1

2

ˆ t

s
|∂E |2

(
u(r)

)
dr ≤ E

(
u(s)

)
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Proof of the Main Theorem

Energy Dissipation Inequality

In order to solve

d

dt
Γ(t) = −J−1

(W 1+s+ε,ρ,θ)
Dϕ[Γ(t)]

Γ(0) = γ0

find a solution of

ϕ
(
Γ(t)

)
+

1

2

ˆ t

s
|Γ′|2(r)dr +

1

2

ˆ t

s
|∂ϕ|2

(
Γ(r)

)
dr ≤ ϕ

(
Γ(s)

)



Banach gradient flows for various families of knot energies

Proof of the Main Theorem

Minimising Movement

Existence of Curves of Maximal Slope
via minimising movements [AGS08, Chapter 2 and 3 ]
step 1: fix step size τ > 0; solve iterative minimisation scheme

Γτ (0) Γτ (τ)
Γτ (2τ)

Φn,τ (γ) = ϕ(γ) +
1

2τ
∥γ − γn−1∥2W 1+s+ε,ρ

γn ∈ argminΦn,τ

obtain Γτ piecewise constant: Γτ (t) := γn, t ∈ ((n − 1)τ, nτ ]
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Proof of the Main Theorem

Minimising Movement

Minimising Movement

step 2: limit τ → 0.
piecewise constant Γτ satisfy discrete EDI

ϕ(Γτ (t)) +
1

2

ˆ t

0
|Γ′

τ |2dr +
1

2

ˆ t

0
|Dτϕ|2dr ≤ ϕ(Γτ (0)︸ ︷︷ ︸

=γ0

)

Using dEDI and Arzelà-Ascoli: passing to the limit τ → 0
(subsequence)
there exists a minimising movement Γ ∈ AC

(
[0,∞),W 1+s+ε

)
lim
k→∞

Γτk (t) = Γ(t)
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Proof of the Main Theorem

Minimising Movement

Curve of Maximal Slope

step 3: show that Γ satisfies EDI.

ϕ(Γτ (t)) +
1

2

ˆ t

0
|Γ′

τ |2dr +
1

2

ˆ t

0
|Dτϕ|2dr ≤ ϕ(γ0)

passing to the limit τk → 0 in dEDI:

ϕ(Γ(t)) +
1

2

ˆ t

0
|Γ′|2(r)dr +

1

2

ˆ t

0
|∂−ϕ|2(Γ(r))dr ≤ ϕ(γ0)

|∂−ϕ|(γ) = inf{lim inf
k→∞

|∂ϕ|(γk) | γk ⇀ γ, sup
k∈N

ϕ(γk) < ∞}

Almost EDI
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Minimising Movement

E ∈ {TPp,q, intMp,q,Eα,p} satisfies

▶ (E1) E is continuously Fréchet-differentiable on W 1+s,ρ
ir

▶ (E2) E is weakly lower semicontinuous on W 1+s,ρ
ir

▶ (E3) E satisfies uniform bi-Lipschitz estimates:

1

c1
≤ |γ′| ≤ c1 & E (γ) ≤ c2 ⇒ BiLip(γ) ≥ C (c1, c2,E )

where BiLip(γ) := infx ,y∈R/Z
x ̸=y

|γ(y)−γ(x)|
|x−y |R/Z

.

[BR15b], [BR15a], [O’H92b], [MSvdM, Theorem 5.1]
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Minimising Movement

[MSvdM, Theorem 3.2]

1 < κ, θ 0 < ε E satisfies (E1)-(E3) E ≥ 0 s, ρ = s, ρ(E )

∀γ0 ∈ W 1+s+ε,ρ
ir ∃Γ ∈ C 1

(
[0,∞),W 1+s+ε,ρ

)
such that

d

dt
Γ(t) = −J−1

(W 1+s+ε,ρ,θ)
Dϕ[Γ(t)]

Γ(0) = γ0
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Minimising Movement

Φn,τ (γ) = ϕ(γ) +
1

2τ
∥γ − γn−1∥2W 1+s+ε,ρ

Solve minimisation scheme using direct method of calculus of
variation:

▶ Φ is coercive

▶ sublevel-sets of Φ are weakly relatively compact

▶ Φ is weakly lower semicontinuous
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Minimising Movement

Φ is weakly lower semicontinuous

on W 1+s+ε,ρ
ir

Φn,τ (γ) = ϕ(γ) +
1

2τ
d2
(
γ, γn−1

)
= E (γ) + ∥Σ(γ)∥κW s,ρ +

1

2τ
∥γ − γn−1∥2W 1+s+ε,ρ

this is weakly lower semicontinuous.
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Minimising Movement

Φ is weakly lower semicontinuous

However, if γ /∈ W 1+s+ε,ρ
ir , then Φn,τ (γ) = ∞.

It remains to show that if

sup
k∈N

ϕ
(
γ̃k
)

=: M < ∞ and γ̃k ⇀ γ̃

then
γ̃ ∈ W 1+s+ε,ρ

ir .
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Minimising Movement

Φ is weakly lower semicontinuous

Since ϕ(γ̃k) ≤ M

▶ γ̃k ∈ W 1+s,ρ
ir by definition of ϕ

▶ hence ∥Σ(γ̃k)∥κW s,ρ ≤ M

by embedding W s,ρ ↪→ C 0

sup
k∈N

sup
x∈R/Z

| log |γ̃′k(x)|| < ∞

thus (γ̃k)k∈N is uniformly regular:

1

c1
≤ |γ̃′k(x)| ≤ c1

In particular, since W 1+s,ρ ↪→ C 1 embeds compactly, γ̃ is regular.
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Minimising Movement

Φ is weakly lower semicontinuous

Furthermore, ϕ(γ̃k) ≤ M implies that

sup
k∈N

E
(
γ̃k) < ∞

Recall

(E3) E satisfies uniform bi-Lipschitz estimates:

1

c1
≤ |γ′| ≤ c1 & E (γ) ≤ c2 ⇒ BiLip(γ) ≥ C (c1, c2,E )

Therefore,
inf
k∈N

BiLip(γ̃k) > 0

Thus γ̃ is injective.
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Curve of Maximal Slope

The local slope of ϕ is

|∂ϕ|(γ) = ∥Dϕ[γ]∥(W 1+s+ε,ρ)∗

Recall
ϕ(γ) = E (γ) + ∥Σ(γ)∥κW s,ρ

Since ϕ is C 1 in W 1+s,ρ and W 1+s+ε,ρ ↪→ W 1+s,ρ embeds
compactly, ∥Dϕ[γ]∥(W 1+s+ε)∗ is weakly sequentially continuous.

Therefore, |∂−ϕ| = |∂ϕ|. By [AGS08, Theorem 2.3.3], Γ is a curve
of maximal slope.
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Curve of Maximal Slope

Thank you for your attention.
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