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Data assimilation

Data assimilation combines information
in heterogeneous observations and a
mathematical model to learn about and
help predict phenomena of interest.

It employs a variety of mathematical me-
thods from optimization, numerics, sta-
tistics.
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FIG. 1. Domain extent of COSMO-DE with conventional observations. The circles indicate positions of the

surface based stations. The areas of the circles correspond to the average daily number of single observations

of the wind variable per station. The average number of observations per day are: 11851 PROF, 5813 SYNOP,

1571 TEMP.
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Data assimilation algorithm

Data assimilation produces initial conditions for geophysical models by
combining observations and a background (forecast) using estimates of
their uncertainties.

min
δw

J(δw) = min
δw

δwTPb−1δw + (d−Hδw)TR−1(d−Hδw)

with δw = w −wb
k and d = wo

k − H(wb
k)
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Pb error covariance of the background (forecast)
R error covariance of the observations



Why is this hard?

I Geophysical models of atmosphere incorporate our knowledge of the
dynamics and physics.

These models are
not perfect.
We need to spe-
cify background
uncertainty inclu-
ding model error
uncertainty.

I The state vector wb
k at time k consists of variables as temperature,

wind components, humidity of the numerical model at all grid points
I For modern geophysical models this state vector is of size 106 − 108.

We need fast algorithms applicable for large scale problems.



Why is this hard?

I Second source of the information about the state of the atmosphere
is given through observations.

I Instruments have different spatial and temporal coverage as well as
different accuracy.
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The observations
are not perfect.
We need to specify
observation uncer-
tainty including
representation
error uncertainty.

I The observation vector wo
k at time k consists of all available data at

that time. Observation vector is of size 105 − 106.
At any given time data assimilation problem is underdetermined.



Kalman filter

Rudolf Emil Kalman

Trajectory estimation for the Apollo program in 1960s

Many different applications:
I Navigation
I Robotics
I Economic modeling
I Flood forecasting ......



Kalman filter

Propagation step. Propagate the mean and the covariance with the
dynamics between observations. Prior to new observation we have wb

k

and its covariance Pb
k .

wb
k =Mwa

k−1 + qk

Pb
k = MPa

k−1M
T + Q

Kalman analysis.

wa
k = wb

k + Kk(wo
k −Hkwb

k),

Kk = Pb
kH

T
k (HkPb

kH
T
k + Rk)−1

Pa
k = (I−KkHk)TPb

k

Derived using q ∼ N (0,Q), r ∼ N (0,R), wb
0 ∼ N (0,Pb

0) and all
uncorrelated.



Ensemble Kalman filter

Idea: take Kalman filter equations and represent all the covariances using
an ensemble of geophysical model simulations!

Covariances represented through

Pb
k =

1
N − 1

N∑
i=1

[wb,i
k −wb

k ][wb,i
k −wb

k ]T .

Pb
k is the ensemble derived background error covariance;

wb,i
k are ensemble members i = 1, . . . ,N of size n × 1 at time tk ;

wb
k is the average over ensemble, wb

k = 1
N

∑N
i=1 wb,i

k .
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Why ensemble Kalman filter

Liquid

Ice

Rain

Snow

Graupel

Met3D

I Ensembles are propagated with full nonlinear numerical model. This
can be done over long time period, and results in flow dependent
covariances.

I Computationally efficient formulations using low dimensional
ensemble space.



Issues with ensemble Kalman filter

I Small ensemble size requires localization.

I Still model and observation error need to be specified.

I Equations are not optimal for non-Gaussian problems.



— Fidelity to conservation laws —



Physical properties lost in the analysis step
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The mean (red line) with background ensemble (left) and analysis ensemble
obtained with EnKF algorithm (right). Observations (green) are the true state
plus log normal noise.



Energy and Enstrophy

Es

En

Obs u,v and h Obs u and v Obs h
Y. Zeng and T. Janjic, 2016: Study of Conservation Laws with the Local Ensemble Transform Kalman Filter, Q.

J. R. Meteorol. Soc.,142:699, 2359–2372.



Problem on convective scale

Idealized setup for radar DA

Zeng et al. 2021: Assimilating radar radial wind and reflectivity

data in an idealized setup of the COSMO-KENDA system,

Atmospheric Research, 249, 105282,

https://doi.org/10.1016/j.atmosres.2020.105282.

Analysis mass of all hydro-
meteors compared to truth
during DA.



QPEns

Propagation step. Propagate the mean and the covariance with the
dynamics between observations. Prior to new observation we have wb

k

and its covariance Pb
k .

wb,i
k =Mwa,i

k−1 + qi
k i = 1, . . .N
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k =

1
N − 1

N∑
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[wb,i
k −wb

k ][wb,i
k −wb

k ]T .

Kalman analysis.
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k = wb,i

k + Kk(wo
k + r i −Hkwb

k),

Kk = Pb
kH

T
k (HkPb

kH
T
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k = (I−KkHk)TPb
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Derived using qi ∼ N (0,Q), r i ∼ N (0,R), wb
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QPEns algorithm

I The idea is to extend the stochastic EnKF by imposing additional
physical constraints on the atmospheric states when updating the
ensemble members.

I This can yield more physically plausible states and also allows to
consider nonlinear relationships and therefore non-Gaussian moments
in the background PDF. If used without constraints, the QPEns
equals the stochastic EnKF.

I The QPEns read:

wa,i
k = arg min

w
J i

k (w)

subject to cl (w) = 0, l ∈ E and/or cm(w) ≤ 0, m ∈ I,

with J i
k (w) =

1
2
(w − wb,i

k )TPb
k

−1
(w − wb,i

k ) +
1
2
(yik −H(w))TR−1

k (yik −H(w))

Janjic, T., D. McLaughlin, S. E. Cohn, M. Verlaan, 2014: Conservation of mass and preservation of positivity with

ensemble-type Kalman filter algorithms, Mon. Wea. Rev., 142, No. 2, 755-773.



Modified shallow water model

∂u
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+ u
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Wuersch and Craig 2014: A simple dynamical model of cumulus convection for data assimilation research.,

Meteorol. Z., 23, 483-490.



Ruckstuhl and Janjic 2018: Parameter and state estimation with ensemble Kalman filter based algorithms for

convective scale applications. Q.J.R. Meteorol. Soc.. 144:712, 826–841, doi:10.1002/qj.3257.



2D shallow water model - Prediction
Northern Hemisphere, approximately 50 km horizontal resolution,
midlatitudes

RMSE for h RMSE for u

Zeng, Y., T. Janjić, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter algorithm conserving mass,

total energy and enstrophy, Q. J. R. Meteorol. Soc., 143:708, 2902–2914, doi:10.1002/qj.3142.



The MJO Skeleton Model

The Skeleton model is a dynamical model with intermediate complexity
that simulates tropical intraseasonal variability, especially the MJO and
its relevant tropical waves, at the planetary scale (Majda and Stechmann,
2011),

∂u

∂t
− yv − ∂θ

∂x
= 0 (1a)

yu − ∂θ

∂y
= 0 (1b)

∂θ

∂t
−
(
∂u
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− ∂v

∂y
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= Ha− sθ (1c)

∂q

∂t
+ Q

(
∂u

∂x
+
∂v

∂y

)
= −Ha + sq (1d)

∂a

∂t
= Γqa. (1e)



Implementation

In this study, constraints to the following properties are taken into
consideration:

I the total energy (TE),∫ (
u2

2
+
θ2

2
+

1
2

Q

1− Q

(
θ +

q

Q

)2

+
H

ΓQ
a− s

ΓQ
ln (a)

)
= const.

I the moist static energy (ME),
I the dry mass (DM), and
I the positivity of convective activity.

Gleiter, T., T. Janjić, N. Chen, 2022: Ensemble Kalman Filter based Data Assimilation for Tropical Waves in the

MJO Skeleton Model, Q. J. R. Meteorol. Soc., 148, 1035–1056, https://doi.org/10.1002/qj.4245.



Results: Impact of the different constraints
The differences in the RMSEs and pattern correlations for 1 year of DA followed by 1 year of

free forecast. Calculated by subtracting the reference value of the stochastic EnKF from those

of the QPEns. Only the zonal wind and the convective activity observed.

I Overall, during DA, the EnKF and QPEns produce more similar RMSEs. However,

during the free forecast, initial small error differences amplify.
I There is a significant statistical benefit from the total energy (TE) constraint.



A stronger non-Gaussian test case for the
QPEns with total energy constraint

Increasing the background warmpool parameter from 0.6 to 0.75 and
assimilating zonal wind and the convective activity only.



Weakly Constrained LETKF

For positivity:
I To avoid spurious convection (Aksoy et al., 2009) clear-air

reflectivity data are assimilated, i.e. non-negative threshold value is
set for very small reflectivities.

I By assimilating additional clear-air reflectivity data, we are asking in
the approximate weak sense that non-negativity is preserved in the
analysis of hydrometeors

For mass: S is operator which calculates the domainwise (global) integral
for each of the microphysical spieces. Constraint on mass is up to
accuracy Mk

Mk =
1

Nens − 1

Nens∑
i=1

[
m∗k − S

(
xb(i)k

)] [
m∗k − S

(
xb(i)k

)]T



Experimental setup

Idealized setup for radar DA

Zeng et al. 2021: Assimilating radar radial wind and reflectivity

data in an idealized setup of the COSMO-KENDA system,

Atmospheric Research, 249, 105282,

https://doi.org/10.1016/j.atmosres.2020.105282.

I COSMO model with a 2-km

horizontal resolution

I Efficient Modular VOlume

scanning RADar Operator

(EMVORADO, Zeng et al.,

2014, 2016)

I Both radial wind and

reflectivity data are

assimilated

I Ensemble size is 80

I Assimilated observations are

perturbation of nature run

with Gaussian noise with a

standard deviation of 5.0

dBZ and 1.0 m/s



Results: Impact of the different constraints

1 EControl Radar reflectivity and wind assimilated
2 EM With mass constraint
3 EP With positivity constraint (clear-air reflectivity data )
4 EMP Both constraint

If clear-air reflectivity data are assimilated, a threshold value of 5 dBZ is set, that is, all reflectivity values smaller
than 5 dBZ are set to 5 dBZ. If clear-air reflectivity data are not assimilated, all reflectivity values smaller than 5
dBZ are set to missing values.

Janjic, T. and Y. Zeng, 2021, Weakly constrained LETKF for estimation of hydrometeor variables in
convective-scale data assimilation, Geophysical Research Letters, 48, e2021GL094962,
https://doi.org/10.1029/2021GL094962.



Accuracy

FSS score. Accuracy of short term forecasts.



Conclusion

I The idea of representing the uncertainty through the ensemble of
states allows inclusion of the time varying error structures in
algorithm.

I We propose inclusion of conservation laws and physical constraints
to tackle the difficult problem of small ensemble size and
non-Gaussianity.

I Convective scale DA (higher dimensional problem with third of the
variables that need to be nonnegative) requires new approaches.

I By including in addition physical properties, as mass and positivity
for example we improve on prediction of convective events.

I Tests on models representing various dynamical properties show
benefits of this approach.
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Outlook
I The inclusion of model error and observation error are still required.

I

Application of QPEns to high
dimensional systems:

1 Optimization research as in Janjic,
T., Y. Ruckstuhl and P. L. Toint,
2021, QJRMS or

2 through machine learning
Ruckstuhl, Y., T. Janjic, S. Rasp
2021, Nonlinear Processes in
Geophysics.

I Hierarchy of models for robustness across scales and in presence of
sources and sinks, boundary conditions, etc.

I Predictability studies


