Gaussian fluctuations for random matrices with correlated entries

Hermann Schulz-Baldes, Jeffrey Schenker

Erlangen, Michigan

Gaussian fluctuations = linear statistics

Ensemble $X_{n}=\frac{1}{\sqrt{n}}\left(a_{n}(p, q)\right)_{p, q=1 \ldots n}$ hermitian with $a_{n}(p, q) \in \mathbb{C}$ centered, unit variance, moment bound If i.i.d., Wigner (1955):

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \operatorname{Tr}\left(X_{n}^{k}\right)=\int_{-2}^{2} \frac{d x}{2 \pi} \sqrt{4-x^{2}} x^{k}
$$

L. Arnold (1969): almost sure convergence of empirical distribution Jonsson (1982), Khorunzhy, Khoruzhenko, Pastur (1996), Johansson, Sinai + Soshnikov, ...

$$
\operatorname{Tr} f\left(X_{n}\right)-\mathbb{E} \operatorname{Tr} f\left(X_{n}\right) \quad \longrightarrow \quad \text { Gaussian process }
$$

with f polynomial or analytic

Diagonalizing the covariance matrix

Chebyshev polynomials of the first kind

$$
T_{m}(2 \cos (\theta))=2 \cos (m \theta)
$$

Johansson (1998): for i.i.d. Gaussian entries (GUE)

$$
\left\{\operatorname{Tr}\left(T_{m}\left(X_{n}\right)\right)-\mathbb{E} \operatorname{Tr}\left(T_{m}\left(X_{n}\right)\right)\right\}_{m \geq 1}
$$

is an independent family of Gaussians with variance σ_{m}
Extended by Cabanal-Duvillard (2001): stochastic analysis
Further by Kusalik, Mingo, Speicher (2007): genus expansion
Anderson, Zeitouni (2006): i.i.d. non-Gaussian entries
Schenker, Schulz-Baldes (2007): combinatoriel proof, correlations

Definition of ensembles

For $n \in \mathbb{N}$, equivalence relation \sim_{n} on pairs

$$
P=(p, q) \in[n]^{2}=\{1, \ldots, n\}^{\times 2} \text { with }(p, q) \sim_{n}(q, p)
$$

Entries $a_{n}\left(P_{1}\right), \ldots, a_{n}\left(P_{j}\right)$ independent
$\Longleftrightarrow P_{1}, \ldots, P_{j}$ in j distinct classes of \sim_{n}.
$a(P)$ centered, unit variance, moment bound
Control on size of equivalence classes: for all $\epsilon>0$

$$
\begin{equation*}
\max _{p, q \in[n]^{2}} \#\left\{\left(p^{\prime}, q^{\prime}\right) \in[n]^{2} \mid(p, q) \sim_{n}\left(p^{\prime}, q^{\prime}\right)\right\}=\mathcal{O}\left(n^{\epsilon}\right) \tag{C1}
\end{equation*}
$$

Sufficiently many independent rows: for some $\delta>0$

$$
\begin{equation*}
\#\left\{\left(p, q, p^{\prime}\right) \in[n]^{3} \mid(p, q) \sim_{n}\left(p^{\prime}, q\right) \& p \neq p^{\prime}\right\}=\mathcal{O}\left(n^{1-\delta}\right) \tag{C2}
\end{equation*}
$$

Extending Wigner's result

Theorem If $(\mathrm{C} 1)$ and $(\mathrm{C} 2)$ hold, then DOS \rightarrow semicircle
Proof: With sum over consistent pairs

$$
\mathbb{E} \frac{1}{n} \operatorname{Tr}\left(\left(X_{n}\right)^{k}\right)=\frac{1}{n^{1+\frac{k}{2}}} \sum_{P_{1}, \ldots, P_{k} \in[n]^{2}} \mathbb{E} a\left(P_{1}\right) \cdots a\left(P_{k}\right)
$$

Reorder sum: P_{1}, \ldots, P_{k} gives partition $\pi \in \mathcal{P}_{k}$ of [k] by

$$
\begin{gathered}
I \sim_{\pi} m \quad \Longleftrightarrow \quad P_{l} \sim_{n} P_{m} \\
\mathbb{E} \frac{1}{n} \operatorname{Tr}\left(\left(X_{n}\right)^{k}\right)=\frac{1}{n^{1+\frac{k}{2}}} \sum_{\pi \in \mathcal{P}_{k}} \sum_{\left(P_{1}, \ldots, P_{k}\right) \cong \pi} \mathbb{E} a\left(P_{1}\right) \cdots a\left(P_{k}\right)
\end{gathered}
$$

$\# \pi>\frac{k}{2}$ singleton, $\# \pi<\frac{k}{2}$ vanishes \Longrightarrow pair partitions crossings vanish \Longrightarrow non-crossing pair partitions \Longrightarrow Catalan \#

Cumulants

$$
C_{j}\left(Y_{1}, \ldots, Y_{j}\right)=\sum_{\pi \in \mathcal{P}_{j}}(-1)^{\# \pi-1}(\# \pi-1)!\prod_{l=1}^{\# \pi} \mathbb{E} \prod_{i \in B_{l}} Y_{i},
$$

where first product over blocks of partition $\pi=\left\{B_{1}, \ldots, B_{\# \pi}\right\}$
If all joint cumulants with $j \geq 3$ vanish, then Gaussian family
Theorem If (C1) holds and $j \geq 3$, then

$$
C_{j}\left(\operatorname{Tr}\left(X_{n}^{k_{1}}\right), \ldots, \operatorname{Tr}\left(X_{n}^{k_{j}}\right)\right)=o(1)
$$

Variances

Up to o(1) errors: only non-crossing pair partitions, no twist in m connectors (dihedral group $D_{2 m}$), $a_{n}\left(\mathbf{P}_{i}\right)=\prod_{\ell=1}^{k_{i}} a_{n}\left(P_{i, \ell}\right)$

$$
C_{2}\left(\operatorname{Tr} X_{n}^{k_{1}}, \operatorname{Tr} X_{n}^{k_{2}}\right) \approx \frac{1}{n^{\frac{k}{2}}} \sum_{m=1}^{\min \left\{k_{1}, k_{2}\right\}} \sum_{\pi \in \mathcal{D N P} \mathcal{P}_{\left[k_{1}\right] \cup\left[k_{2}\right]}^{m}} \sum_{\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right) \cong \pi} C_{2}\left(a\left(\mathbf{P}_{1}\right), a\left(\mathbf{P}_{2}\right)\right)
$$

$\mathcal{D N} \mathcal{P} \mathcal{P}_{\left[k_{1}\right] \cup\left[k_{2}\right]}^{m}=\mathcal{N H} \mathcal{P} \mathcal{P}_{k_{1}}^{m} \times D_{2 m} \times \mathcal{N H} \mathcal{P} \mathcal{P}_{k_{2}}^{m}$
$\mathcal{N H} \mathcal{P} \mathcal{P}_{k}^{m}$ non-crossing half pair partitions of $[k], m$ connectors

Variances

Thus $C_{2}\left(\operatorname{Tr} X_{n}^{k_{1}}, \operatorname{Tr} X_{n}^{k_{2}}\right)$ is up to $o(1)$

$$
\begin{array}{r}
\frac{1}{n^{\frac{k}{2}}} \sum_{m=1}^{\min \left\{k_{1}, k_{2}\right\}} \sum_{g \in D_{2 m}} \sum_{\pi_{1} \in \mathcal{N H} \mathcal{P} \mathcal{P}_{\left[k_{1}\right]}^{m}} \sum_{\pi_{2} \in \mathcal{N H} \mathcal{H} \mathcal{P}_{\left[k_{2}\right]}^{m}} \sum_{\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right) \cong\left(\pi_{g}, \pi_{1}, \pi_{2}\right)} C_{2}\left(a\left(\mathbf{P}_{1}\right),\right. \\
\quad \approx \sum_{m=1}^{\min \left\{k_{1}, k_{2}\right\}} t_{k_{1}, m} t_{k_{2}, m} \frac{1}{n^{m}} \sum_{g \in D_{2 m}} \sum_{\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right) \cong \pi_{g}} C_{2}\left(a\left(\mathbf{P}_{1}\right), a\left(\mathbf{P}_{2}\right)\right)
\end{array}
$$

where $t_{k, m}=\# \mathcal{N H} \mathcal{P} \mathcal{P}_{k}^{m}$
Theorem (Kusalik, Mingo, Speicher)

$$
x^{k}=\sum_{m=0}^{k} t_{k, m} T_{m}(x)
$$

Inverse of matrix $\left(t_{k, m}\right)$ is $\left(T_{m, k}\right)$ where $T_{m}(x)=\sum_{k=0}^{m} T_{m, k} x^{k}$

Variance: conclusion

Theorem If (C1) and (C2) hold, then

$$
C_{2}\left(\operatorname{Tr}\left(T_{m}\left(X_{1}\right)\right), \operatorname{Tr}\left(T_{k}\left(X_{j}\right)\right)\right)=\delta_{m=k} V_{m}+o(1)
$$

Explicit formula for V_{m} given.
Theorem For a generalized Wigner ensembles of matrices having T symmetries, on top of being hermitian. Then

$$
V_{m}=\left\{\begin{array}{cc}
T \mathbb{E}(d) & m=1 \\
2 T\left(\mathbb{E}\left(a^{4}\right)-1\right) & m=2 \\
2 m T & m \geq 3
\end{array}\right.
$$

