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Growth models for populations

Logistic model (Verhulst, 1838)

Loy u(t) _
d(6) = 1o (1 - K) u®) ) = TR = u(0) ep(—n )
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Growth models for populations
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An example of observed data and of logistic "fit"
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Dispersion models for populations

100

80

60+

401

20+

-100 -80 -60 40 -20 0 20 40 60 80 100

Random walk: We assume isotropy, and consider a scale of time and
space which is large (w.r.t. the motion of one individual).
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Dispersion models for populations
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Corresponding law: convergence towards a Gaussian law with variance
proportional to time.
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Dispersion models for populations

Random walk S, = le X;, with X; = Ax and X; = —Ax each of
probability 1/2, and independant.

a+p

Law of S, P(Sp, = qAx) =27P C,? (when |g] < p et g = p[2]).
We consider N(pAt,x) := P(S, € [x — Ax, x + Ax][). Then for
t=pAt:
qtp
N(t,qAx) =277 C,7 .

One uses the following asymptotic expansion:

Lemma:
g 2 ¢

2P C,7 ~

when p — 400, ¢ = o(p?).
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Dispersion models for populations

When At — 0 and At? << Ax3,

At «2
At e tad) =
N(t,x) ~2Ax ) =28 27 ©
(£:) Ax? /27t
in such a way that 25 — 2L and At — 0,
Nz x) i
t, x e ipt
— u(t,x) = .
2 Ax (t,%) VAr Dt

This last quantity is the elementary solution of the heat equation in
dimension 1 with a diffusion coefficient D:

du %u
E(tvx) - D@(LX), U(O7X) - 5O(X)'
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Dispersion models for populations

Diffusion (Fourier, 1822): Heat (diffusion) equation and its
fundamental solution:

ou 32U
%)= DT, 0= 5o)
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Traveling waves

Invasion model (Fisher; Kolmogoroff-Petrovsky-Piscounoff, 1937)

ou 0?u u(t, x)
E(t,X) = D@(t,X) + h (1 — K) U(t,X).

Obtained when both diffusion and logistic effects are considered.
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Traveling waves
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In dimension 1: One looks for u(t,x) = N(x — ct) solution of the PDE:

—cN'(z)-DN"(z) = ro (1 - N!(:)) N(z);  N(—o0) = K; N(o0) = 0.

Theorem (Kolmogoroff-Petrovsky-Piscounoff, 1937): Solutions to this
heteroclinic junction problem in ODEs exist when ¢ > ¢y = /21y D,
critical speed of invasion associated to a population.

Those solutions are stable (in a setting to be made precise...) for the
PDE if and only if ¢ = ¢.



2D Traveling waves of invasion
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Meaning of maps related to a biological invasion




Competition models

Lotka, Volterra, 1925

Unknowns: v :=u(t) >0, v:=v(t) >0, for t > 0.

Equations:
U/(f) = (fl — Si1 U(t) — S0 V(t)) U(t),

V/(t) = (r2 — 5 Ll(t) — Sx» V(t)) V(t).

S;i > 0: intraspecific competition

Sjj >0, i # j: interspecific competition
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Competition models

Depending on the parameters r;, Sj;, and considering only nonnegative
solutions, one has either (up to exchanging n; and ny):

e Strong competition: The only stable equilibrium for the system of
ODEs is (u, v) = (n10,0) with nyg > 0; competitive exclusion.

@ Weak competition: The only stable equilibrium for the system of
ODEs is (u, v) = (n19, nag) with nyg > 0, nmyy > 0; coexistence.
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Competition /Diffusion model

Unknowns: uy := uy(t,x) >0, up := wp(t,x) >0, for t >0, x € Q.
Equations:
Oy — Dy A = (fl —Si1u— Si2 U2) uy,

Ortin — Dy Ajuy = (1 — Sp1 u1 — Sop o) .

No Turing instability for such models: all steady homogeneous solutions
which are stable for the ODEs are also stable for the PDEs; No
segregation of species appears
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A typical cross diffusion system:

Shigesada-Kawasaki-Teramoto (SKT) model (1979)

Equations for the densities of population of two competing species:

Orup — Ay <U1 |:D1 + A Uz] > = (f1 — S — S U2) uy,

Orun — Ay (Uz {Dz + Ao Ul] ) = (r — Sy u1 — Sy w2) to.

Neumann boundary condition (for t > 0, x € 9Q)

Vi (t,x) - n(x) =0, Viu(t,x) n(x)=0.

Assumption: D; > 0, A1,A> >0, r; >0, 5,_, > 0.
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Modeling issue

Why A, (u1 tup) = Vi - (12 Vxur) + Vi - (ug Viup) rather than
Vi (12 Viu), or Ay(ug u2) = Vi - (12 Veur) + BV - (11 Vi), avec
p#17

Answer (proposed by lida, lzuhara, Mimura, Ninomiya, in the "triangular”
case Ay; = 0)

Possible interprétation based on a “microscopic” behavior: The species
uy exists in two states: quiet (u14) and stressed (u1g). The individuals of
this species switch between the two states with a time scale € and
probability rates which depend on the concentration u, of the other
species.
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Equations of the "microscopic" model

Ortna — D1 Ajuna = (n — S11 (v1a + uig) — S12 th) U1a

+g((1 — ) U1g — Uz U1A),

Orng — (D1 + A1) A = (1 — S11 (t1a + tig) — S12 o) i1

—g((l — ) 1B — Uz U14),

Otin — Dy Ajuy = (1 — So1 (u1a + tiB) — Soo t2) .
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Formal asymptotics when the time scales tends to 0

Assuming that uj, — uia, Ui — 1B, U5 — Uo,

(1—w)ump = wua, g = tp (tha + tiB),

and (u1a + U1, up) satisfy
O¢(tha + i) — Ay <D1 ta+ (D1 + A2) UlB))
= (rn — S11 (r1a + n18) — S12 w2) (114 + U1B),

Ot — Dy Aoy = (12 — So1 (tha + tig) — Sao 2) .

Rigorous proof: Cf. LD-Trescases.
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Formal asymptotics when the time scales tends to 0 (Il)

The SKT model (with Ay; = 0) is recovered by defining u; = u14 + U1,
Orup — Ay ((Dl + A ) U1> =(n —Si1u1 — S wo) .

The equation for u; is conserved:

Otin — Dy Ajuy = (1 — Sp1 u1 — Sop o) .
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Turing instability for the SKT model

Existence of inhomogeneous steady states for the SKT model, interpreted
as describing segregation situations

@ At the numerical level: computation of those inhomogeneous steady
states, and of associated bifurcation diagrams lida, lzuhara, Mimura,
Ninomiya.

@ At the rigorous level: justification of the numerical simulations
thanks to computer-assisted proofs Breden, Castelli, Lessard,
Vanicat.
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Segregation state
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Bifurcation Diagram
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Here, d is one of the parameters of the SKT model. The solutions in red
are stable, the ones in blue and green unstable.
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Results of existence for the non-triangular SKT system

Amann: Existence of local (in time) solutions

Kim; Masuda, Mimura; Shim: Existence of solutions for various types of
coefficients in dimension 1

Li, Zhao: Existence of solutions when D; = D,

Chen, Jiingel, 2004: Existence of (weak) solutions thanks to the use of
the functional

J(ur, ) = An /

(tn Inu17u1+l)+A12/(uQ Inuy —up+1)
Q

Q
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Computation of the evolution of the functional J

d Ve |? YV, usl?
CTJ(L’17112)-~-/421 D1/| 1 + A2 Dz/‘i2|
t ] up

2

Vi _’_M SC(rl/SU’A’J)

+ A1z A2 / Uy Uy

5] up

After integration in time, for any T > 0,
4 2 2
/ / <|vx,ﬁu1| + Vo] ) <.
0o Ja

Ifr, =0, S;=0,

d
C=0; EJ(UI’ up) < 0.
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Extensions for more general equations

Theorem (LD, Lepoutre, Moussa, Trescases) We assume that D; > 0,
ri >0, A,JZO, and SU>O
We take 0 < 8 < 1, and a2, a1 > 0 such that

a1y < 1.

Then there exists a weak solution to the system

Orup — Ay l:(Dl + A1 us™?) U1] = (fl —Sput =S u§“>,

Ortn — Ay {(Dz + Aoy uf™) Uz] = <f2 — S u? — Sp U§22>,

with Neumann boundary conditions, and suitable (nonnegative for all
components) initial data.
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Main a priori estimate used in the proof

Entropy (Lyapounov) estimate (case agp < 1, ap; < 1),

J*(Ul,UQ +4ZA,JD
i#j

+4A12A21/ /’ Cmufm

where
. ] AljaU ujaij 1
J* (w1, o) :Zlau/g [(uj_ Oéij) - (l_o‘ij .

i#]

< J*(u10, u20) + C(T),
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The entropic structure

General equation
9:U — AJA(U)] = R(U),

with A R: R/ - R/ and U := U(t,x) : Ry x Q(Q Cc RY) — (Ry)".

Forany ¢ : (R.) = R,,if R=0, and (, ) is the Euclidian scalar
product on R/,

d I :

% [ow = [ vow).atauy
N

— _Z/@Xj U, D*®(U)D(A)(U)0,U) <0
j=1"92

when @ is an entropy, that is when (D?>®(U) D(A)(U))¥»™ > 0.
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The entropic structure (II)

Proposition (LD, Lepoutre, Moussa, Trescases): Consider
a, a R} — Ry two C! functions, and

A(Xl, X2) = (X1 al(x2) , X2 32(X1)).
We assume that a;, ap are increasing and Det D(A) > 0, that is

Vx1, Xo > 0, a1(x2) ax(x1) > x1 x2 a1(x2) ah(x1)-

Then taking
O(X) := d1(x1) + d2(x2),

where ¢; is a nonnegative second primitive of z > ai(z)/z (i # j), we
get an entropy.
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The entropic structure (lII)

Proof: We compute, for X = (x1, x2),

pax) = (25 3l ooy

x ay(xa)  a(xi)

7N
o
N
OS";‘
X
L
o
x= o
s
N
\/

so that
A

) oo o0 - (A i)

is obviously symmetric. Since the functions a; are increasing, all the
coefficients of M(X) are nonnegative, so that Tr M(X) > 0 ; we also see
that

DetM(X) = DetD?(¢)(X) DetD(A)(X) > 0.
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Example of a system of 3 equations for which an entropy

exists (and existence holds)

System:
Oeur — Dx[un (D + u3 + u3)] = 0,

Orur — Dy[uz (D2 + uf + u3)] = 0,
8tU3 — AX[U3 (D3 + Uf + US)] = 0,

for 0 < s < 1/v/3 and Dy, D, D3 > 0.

Entropy still of the form

/Q <¢1(“1) +p2(u2) + ¢3(u3)> dx.
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Example of a system for which an entropy is known, but is

not “additive” (and existence is not known)

System:
Oru — A Juv?] =0,

Orv —d Ay [vi?] =0.

Entropy structure:

i/u2v2dx:—/ <u2v4

Veu Vvl
—U—Q—Z v +d u*v?

u v

2Vu
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A method for building systems with entropies:

reaction limit of reaction-diffusion systems

Reaction-(nonlinear) diffusion system with fast reaction limit:

1
Oru — A (v?) = - (vw —u),

Orv — AX(V2) = —é (vw — u),
5 1
0w — Ay (w?) = — (vw —u).
Entropy:

E:/ [(ulnu—u—l—l)+(vInv—v—|—1)+(W|nW—W—|—l) dx.
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Fast reaction limit of reaction-diffusion systems (II)

Formal limit: v = v w, and

Or(vw +v) — A (v w? +v?) =0,
De(vw +w) — A (v w? +w?) =0.

Entropy:

E:/ {(vwln(vw)vw+1)+(v Inv—v+1)+(w Inw—w+1)| dx.

Rigorous passage to the limit: Bothe, Rolland

Cross diffusion



Fast reaction limit of reaction-diffusion systems (lII:

structural stability)

Reaction-cross diffusion system with fast reaction limit:
1
atu - AX(U2 + UUP(Ua V)) = - (V w = LI),
€
5 1
Orv — A (v +nvq(u,v)) = — (vw —u),

oW — AX(W2) = —g (vw — u).

Assumption: p > 0,01p > 0, g > 0,029 > 0,

; (|azp|oo . ||alq|oo) <4

Entropy:

E:/[(ulnu—u—i—l)—l—(v|nv—v—|—1)+(w|nw—w+l) dx.
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Fast reaction limit of reaction-diffusion systems (IV)

Formal limit: v = v w, and

d(vw +v) = A (VPw? + v +pvwp(vw,v) +nva(vw,v)) =0,

Or(vw +w) — A (V2w +w? +nvwp(vw,v)) =0.
Entropy:

E:/ |:(VW In(vw)—vw+1)+(vinv—v+1)+(wInw—w+1)| dx.

Rigorous passage to the limit: Daus, LD, Jiingel

Cross diffusion



SKT system for an arbitrary number of species

System:

Orup = Ay ([Di + ZAUUJ} Ui)

j=1

Chen, Daus, Jingel showed that

J(ur, . up) = Z/ﬂ'; [uiIn(u;) — u; + 1]

with positive constants m; > 0 for i = 1,...,n, is an entropy if the
following condition holds

VI,_j 7T,'A,'j :’/TJ'AJ','.

The system is then said to be detailed balanced.
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SKT system for an arbitrary number of species (II)

We consider a dicretized space domain: Q = {0, £ e M,. ,1}, and
nonnegative constants 7;, D;, D; such that > .., m; = 1 and D; = Dj; for
ihj=1,...,n

We consider n species of particles located on Q. There are [7; N|

particles of species i.

We define the time-continuous Markov chain on Oy n = Q
by the transitions

[N+ +[m,N]
M

Dj

with rate 5(,- 2)2£(, b)5 a,x N

x—x—el—eb

x%eref’Jrejb}
J

X = x+e€ )
'a with rate D;
X =X — €

fori,j=1,....,nand a=1,...,[7N], b=1,...,[;N], where €] is the
vector with components of value zero at all places, except for the a-th
particle of species i, where the value is h = 1/M.
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SKT system for an arbitrary number of species (lII)

Associated master equation:

n [miN]
ZuM(ex) =303 Dy (e x + ) + (e x — ) — 218, %)

dt i=1 a=1

n [mN] n [mN]

zZZZZM#@b xp=xb ?v[ N(t,x + e +eP)

i=1 a=1 j=1 b=1

+uN(t,x — &2 — eb) — 2Nt )}.
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SKT system for an arbitrary number of species (V)

The functional defined by

N(t, x
A0 = X e (g g )

is decreasing with respect to time, i.e.
d -~
—HEMy <0
g Y <

along the flow of the master equation.
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SKT system for an arbitrary number of species (V)

When N — oo, under the assumption (of indinstinguishability and) chaos
propagation:
[LN(t,Xll,...7X1[Tr1N], ......... ,X,},...,X,[,W"N])
N
~ Ul(t7X]:_l) e Ul(t7X]Fﬂ—l ]) ......... Un(t7X,:7l) e Un(t7X,[7ﬂ-"N])7

one can show that

%u;(t,x) =D; [u,-(t,x +h)+ ui(t,x — h) — 2u;(t,x)}

+ Z Dy {uj(t, x+h)ui(t, x+h)+u;(t, x—h)ui(t, x—h)—2u;(t, x)u;(t, x)} .
=1
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SKT system for an arbitrary number of species (VI)

When N — oo, under the assumption (of indinstinguishability and) chaos
propagation,

~ " x
AR IACL (M)

X

= LSS ) (“22)

i=1 ¢=0
n M—-1
— s ui(xe) In (Ulf\;e))
i=1 ¢=0
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SKT system for an arbitrary number of species (VII)

When h=1/M — 0, defining A;; := m; Dj;, and rescaling in time (in such
a way that 0; is replaced by h?d;), one recovers the original SKT system
for an arbitrary number of species:

Oruj = Ay <|:Di + ZAUUJ] Ui) ;

j=1

and its Lyapunov functional:

J(ug,yyup) = Z/Tf,’ [uiIn(u;) — u; + 1] .
i=1

The condition Vi, j Dj = Dj; becomes the detailed balance condition:

VI,_j 7T,'A,'j :’/TJ'AJ','.
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