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1 Monoidal categories

1.1 Monoidal categories and monoidal functors

Monoidal categories can be viewed as categories equipped with a tensor product that generalises
the tensor product over a commutative ring k.

For this generalisation one describes the tensor product of k-modules in such a way that it
involves only objects, morphisms, functors and natural transformations (cf. Exercise 1). The
starting point is the observation that the tensor product of modules over a commutative ring
k defines a functor ⊗ : k-Mod× k-Mod→ k-Mod. This suggests that one should view a tensor
product in a general category C as a functor ⊗ : C × C → C that satisfies certain additional
conditions. These additional conditions generalise the associativity of the tensor product and
the fact that the ring k acts as a unit for the tensor product.

For modules over a commutative ring k, they are encoded in the k-linear isomorphisms

aM,N,P : (M⊗kN)⊗kP →M⊗k(N⊗kP ), (m⊗n)⊗p 7→ m⊗(n⊗p)
lM : k⊗kM →M, λ⊗m 7→ λm, rM : M⊗kk →M, m⊗λ 7→ λm

for all k-modules M,N,P . If we denote by k × id : k-Mod→ k-Mod× k-Mod the functor that
assigns to a k-module M the pair (k,M) and to a k-linear map f : M → M ′ the pair (idk, f),
then the k-module isomorphisms lM : k⊗kM → M and rM : M⊗kk → M relate the functors
⊗(k × id) : k-Mod → k-Mod and ⊗(id× k) : k-Mod → k-Mod to the identity functor idk-Mod.
Similarly, the k-module isomorphisms aM,N,P relate the functors ⊗(⊗× id) and ⊗(id×⊗).

The k-linear isomorphisms lM , rM and aM,N,P commute with k-linear maps. For all k-linear
maps f : M →M ′, g : N → N ′ and h : P → P ′ we have

aM ′,N ′,P ′ ◦ ((f⊗g)⊗h) = (f⊗(g⊗h)) ◦ aM,N,P , lM ′ ◦ (idk⊗f) = f ◦ lM , rM ′ ◦ (f⊗idk) = f ◦ rM .

We can therefore interpret aM,N,P , lM and rM as component morphisms of natural isomorphisms
a : ⊗(⊗× id)→ ⊗(id×⊗), l : ⊗(k× id)→ id and r : ⊗(id× k)→ id. Note also that there are
identities between composites of the maps lM , rM and aM,N,P that allow us to omit tensoring
with k and the brackets in iterated tensor products.

The existence of a special object e that generalises the commutative ring k and of natural
isomorphisms a : ⊗(⊗ × id) → ⊗(id × ⊗), l : ⊗(e × id) → id and r : ⊗(id × e) → id can be
imposed in any category C with a functor ⊗ : C × C → C. If we also take into account the
identities between multiple composites of the natural isomorphisms a, l and r, we obtain the
following definition that generalises tensor products over commutative rings.

Definition 1.1.1:

A monoidal category is a sextuple (C,⊗, e, a, l, r) consisting of

• a category C,
• a functor ⊗ : C × C → C, the tensor product,

• an object e in C, the tensor unit,

• a natural isomorphism a : ⊗(⊗× idC)→ ⊗(idC ×⊗), the associator,

• natural isomorphisms r : ⊗(idC×e)→ idC and l : ⊗(e×idC)→ idC, the unit constraints,
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subject to the following two conditions:

1. pentagon axiom: for all objects U, V,W,X of C the following diagram commutes

((U⊗V )⊗W )⊗X
aU,V,W⊗1X

��

aU⊗V,W,X// (U⊗V )⊗(W⊗X)
aU,V,W⊗X// U⊗(V⊗(W⊗X))

(U⊗(V⊗W ))⊗X aU,V⊗W,X
// U⊗((V⊗W )⊗X).

1U⊗aV,W,X

44
(1)

2. triangle axiom: for all objects V,W of C the following diagram commutes

(V⊗e)⊗W
aV,e,W //

rV ⊗1W &&

V⊗(e⊗W )

1V ⊗lWxx
V⊗W.

(2)

It is called strict if a, r and l are identity natural transformations.

Remark 1.1.2:

• The tensor unit and the unit constraints are determined by ⊗ and a uniquely up to
unique isomorphism.

• The functor ⊗ : C × C → C is in general not unique. It is a choice of structure, not a
property. A category C may have several different monoidal structures.

• The tensor product ⊗ : C × C → C does not determine the associator, not even up to
isomorphisms (Example 1.1.6, Exercise 4).

Remark 1.1.3: (Exercise 3)
Equivalently, a monoidal category can be defined as a pentuple (C,⊗, a, e, ι) of a category C, a
functor ⊗ : C × C → C, a natural isomorphism a : ⊗(⊗× id)→ ⊗(id×⊗), an object e and an
isomorphism ι : e⊗e→ e such that

(i) a satisfies the pentagon axiom: diagram (1) commutes,

(ii) the functors e⊗− : C → C and −⊗e : C → C are equivalences of categories.

The name monoidal category comes from the fact that in a monoidal category, the endomor-
phisms of the unit object form a commutative monoid (cf. Corollary 1.2.2). Many well-known
categories from algebra or topology have the structure of a monoidal category, some of them
even several non-equivalent ones.

Example 1.1.4:

1. For any commutative ring k, the category k-Mod is a monoidal category with:

• the functor ⊗ : k-Mod×k-Mod→ k-Mod that assigns to a pair (M,N) of k-modules
the k-module M⊗kN and to a pair (f, g) of k-linear maps f : M →M ′, g : N → N ′

the linear map f⊗g : M⊗kN →M ′⊗kN ′, m⊗n 7→ f(m)⊗g(n),

• the tensor unit e = k,

• the associator with component isomorphisms
aM,N,P : (M⊗N)⊗P →M⊗(N⊗P ), (m⊗n)⊗p 7→ m⊗(n⊗p),
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• the unit constraints with component morphisms
rM : M⊗kk →M , m⊗λ 7→ λm and lM : k⊗kM →M , λ⊗m 7→ λm.

This includes the category F-Mod = VectF for a field F, Z-Mod = Ab and also the
category of modules over the polynomial ring k[X].

2. For every ring R, the category (R,R)−BiMod of (R,R)-bimodules and (R,R)-bimodule
morphisms is a monoidal category with the tensor product ⊗R over R and the ring R as
a bimodule over itself as the tensor unit. Associators and unit constraints are defined as
in the last example, but with respect to the tensor product over R.

3. For any small category C, the category End(C) of endofunctors F : C → C and natural
transformations between them is a strict monoidal category with:

• the functor ⊗ : End(C) × End(C) → End(C) that assigns to a pair (F,G) of endo-
functors the endofunctor FG : C → C and to a pair (µ, η) of natural transformations
µ : F → F ′, η : G→ G′ the natural transformation µ⊗η : FG→ F ′G′ with compo-
nent morphisms (µ⊗η)C = µG′(C) ◦ F (ηC) = F ′(ηC) ◦ µG(C) : FG(C)→ F ′G′(C),

• the identity functor as the tensor unit: e = idC.

4. The categories Set and Top are monoidal categories with:

• the functor ⊗ : Set× Set→ Set that assigns to a pair of sets (X, Y ) their cartesian
product X × Y and to a pair (f, g) of maps f : X → X ′, g : Y → Y ′ the product
map f × g : X × Y → X ′ × Y ′,
• the functor ⊗ : Top×Top→ Top that sends a pair (X, Y ) of topological spaces the

product space X × Y and a pair of continuous maps f : X → X ′, g : Y → Y ′ to the
product map f × g : X × Y → X ′ × Y ′,
• the one-point set {p} and the one-point space {p} as the tensor unit,

• the associators with component morphisms
aX,Y,Z : (X × Y )× Z → X × (Y × Z), ((x, y), z) 7→ (x, (y, z)),

• the unit constraints with component morphisms
rX : X × {p} → X, (x, p) 7→ x and lX : {p} ×X → X, (p, x) 7→ x.

5. More generally, any category C with finite (co)products is a monoidal category with:

• the functor ⊗ : C × C → C that sends a pair of objects to their (co)product and a
pair of morphisms to the induced morphism between (co)products,

• the empty (co)product, i. e. the final (initial) object in C as the tensor unit,

• the associators induced by the universal properties of the (co)products,

• the unit constraints induced by the universal properties of the (co)products.

This includes:

• any abelian category A,

• the category Set with the disjoint union of sets and the empty set, or with the
Cartesian product of sets and the 1-point set,

• the category Mfldn of topological or smooth n-dimensional manifolds with the
disjoint union and the empty manifold,

• the category Top with the sum of topological spaces and the empty space, or with
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the product of topological spaces and the 1-point space,

• the category Top1 of pointed topological spaces with wedge sums and the one-point
space or with products of pointed spaces and the one-point space,

• the category Grp with the direct product of groups and the trivial group or with
the free product of groups and the trivial group.

6. For any commutative ring k, the category Chk-Mod of chain complexes in k-Mod is a
monoidal category with the tensor product of chain complexes

(A•⊗B•)n = ⊕nj=0Aj⊗kBn−j, d
A⊗B
n (a⊗b) = dAj (a)⊗b+(−1)ka⊗dBn−j(b) for a ∈ Aj, b ∈ Bn−j

and with the tensor product of chain maps given by

(f•⊗g•)n(a⊗b) = fj(a)⊗gn−j(b) for a ∈ Aj, b ∈ Bn−j.

The tensor unit is the chain complex 0→ k → 0 and the associators and unit constraints
are induced by the ones in k via the universal property of direct sums.

7. For any monoidal category C and small category B, the category Fun(B, C) is a monoidal
category with

• the tensor product of two functors F,G : B → C given by (F⊗G)(B) = F (B)⊗G(B)
and (F⊗G)(f) = F (f)⊗G(f) for all objects B ∈ ObB and morphisms f : B → B′,
and the tensor product of natural transformations η, κ given by (η⊗κ)B = ηB⊗κB,

• the constant functor I : B → C with I(B) = e and I(β) = 1e for all objects B and
morphisms β in B as the tensor unit,

• the associator and the unit constraints induced by the associators and unit con-
straints in C.

8. For any monoidal category (C,⊗, e, a, l, r), there is an opposite monoidal category
(C,⊗op, e, a−1, r, l) with the tensor product ⊗op : C × C → C given by X⊗opY = Y⊗X
and f⊗opg = g⊗f for all objects X, Y and morphisms f, g in C.

In this lecture, we are particularly interested in monoidal categories that arise in representation
theory. The standard example is the category F[G]−Mod of modules over a group algebra F[G]
and its full subcategory F[G]−Modfd of finite-dimensional F[G]-modules.

Example 1.1.5: Let G be a group and F[G] its group algebra over F. Then F[G]-Mod is a
monoidal category with

• the tensor product M⊗FN with the F[G]-module structure g� (m⊗n) = (g�m)⊗(g�n)
as tensor product of F[G]-modules,
• the tensor product f⊗g : M⊗FN →M⊗FN , m⊗n 7→ f(m)⊗g(n) for F[G]-linear maps,
• the tensor unit F with the trivial F[G]-module structure: g � λ = λ for all g ∈ G, λ ∈ F,
• the associators and unit constraints from VectF, which become F[G]-linear.

With this structure, the full subcategory F[G]−Modfd becomes monoidal as well.
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It is clear that Example 1.1.5 does not generalise to the category A−Mod of modules over a
general algebra A over F. This requires additional structure, namely an algebra homomorphism
∆ : A→ A⊗A to define an A-module structure on the tensor product of two A-modules over F
and an algebra homomorphism ε : A→ F to define an A-module structure on F. The pentagon
and the triangle axiom then impose additional conditions on these algebra homomorphisms,
and this leads to the notion of a bialgebra. We will investigate bialgebras in Section 5.

Besides the category F[G]−Mod, there is another monoidal category associated to a group G
and a field F, namely the category of G-graded vector spaces. This category can be deformed
with additional data, namely a multiplicative 3-cocycle for the group G. The category of G-
graded vector spaces is often useful to build examples and counterexamples.

Example 1.1.6 (Exercise 4): Let G be a group, F a field and ω : G×G×G→ F× a 3-cocycle,
a map that satisfies ω(gh, k, l)ω(g, h, kl) = ω(g, h, k)ω(g, hk, l)ω(h, k, l) for all g, h, k, l ∈ G.

The category VectωG of G-graded vector spaces over F has

• vector spaces over F with a decomposition V = ⊕g∈GVg as objects,
• F-linear maps f : V → W with f(Vg) ⊂ Wg for all g ∈ G as morphisms.

It is a monoidal category with the tensor product

V⊗W = ⊕g∈G(V⊗W )g (V⊗W )g = ⊕x∈GVx⊗FWx−1g,

and the associator given by the linear maps

aUg ,Vh,Wk
: (Ug⊗FVh)⊗FWk → Ug⊗F(Vh⊗FWk), (u⊗v)⊗w 7→ ω(g, h, k)u⊗(v⊗w).

Note that if F = R or F = C the notion of 3-cocycle in this Example is directly related to the
additive notion of a 3-cocycle from group cohomology with values in the trivial Z[G]-module
F. The latter is defined as a map τ : G×G×G→ F with

τ(h, k, l)− τ(gh, k, l) + τ(g, hk, l)− τ(g, h, kl) + τ(g, h, k) = 0 ∀g, h, k, l ∈ G.

Setting ω(g, h, k) = exp(τ(g, h, k)) yields a multiplicative 3-cocycle as in Example 1.1.6. Note
also that one can always choose the trivial 3-cocycle ω : G×G×G→ F, (g, h, k) 7→ 1. In this
case, the index ω is omitted and one denotes the category from Example 1.1.6 by VectFG.

Besides the standard examples and representation theoretical examples of monoidal categories,
there are also combinatorial examples. An important examples is the simplex category, which
plays an important role in homological algebra, including group (co)homology, Hochschild
(ho)mology and singular (co)homology. Functors from this category in another category C
allow one to defined homology theories for C.

Example 1.1.7: The simplex category ∆ has

• as objects finite ordinal numbers [0] = ∅ and [n] = {0, 1, ..., n− 1} for n ∈ N,

• as morphisms f : [n]→ [m] monotonic maps maps f : {0, ..., n− 1} → {0, ...,m− 1} with
f(i) ≤ f(j) for all 0 ≤ i ≤ j < n.

It is a strict monoidal category with:

• the functor ⊗ : ∆×∆→ ∆ that assigns
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– to a pair ([m], [n]) of ordinals the ordinal [m+ n],
– to a pair (f, g) of monotonic maps f : [m]→ [m′], g : [n]→ [n′] the monotonic map

f⊗g : [m+ n]→ [m′ + n′], i 7→

{
f(i) 0 ≤ i ≤ m− 1,

m′ + g(i−m) m ≤ i ≤ n+m− 1,

• the ordinal [0] = ∅ as the tensor unit.

Another important class of examples are monoidal categories constructed from families of groups
that are related by group homomorphisms. If these group homomorphisms satisfy certain con-
sistency conditions, they give rise to strict monoidal categories.

Example 1.1.8: Suppose (Gn)n∈N0 is a family of groups with G0 = {e} and (ρm,n)m,n∈N0 a
family of group homomorphisms ρm,n : Gm × Gn → Gm+n such that ρ0,m : {e} × Gm → Gm,
(e, g) 7→ g and ρm,0 : Gm × {e} → Gm, (g, e) 7→ g and

ρm+n,p ◦ (ρm,n × idGp) = ρm,n+p ◦ (idGm × ρn,p) ∀m,n, p ∈ N0. (3)

Then one obtains a strict monoidal category C with non-negative integers n ∈ N0 as objects,

HomC(m,n) =

{
∅ n 6= m

Gn n = m,

and the tensor product ⊗ : C × C → C given by m⊗n = m + n for all n,m ∈ N0 and
f⊗g = ρm,n(f, g) for all morphisms f ∈ Gm, g ∈ Gn and the tensor unit e = 0.

In particular, the construction from Example 1.1.8 can be applied to the braid groups and
permutation groups. Both of these groups play an important role in many areas of mathematics.
Braid groups can be viewed as generalisations of permutation groups. For this, recall that the
symmetric group Sn is presented with generators σ1, ..., σn−1 and relations

σiσi+1σi = σi+1σiσi+1 ∀i ∈ {1, ..., n− 2}
σiσj = σjσi ∀i, j ∈ {1, ..., n− 1} with |i− j| > 1

σ2
i = 1 ∀i ∈ {1, ..., n− 1}, (4)

where σi = (i, i + 1) stands for the elementary transpositions. Omitting the relations in the
last line in (4) yields the presentation of the braid group Bn. As the symmetric group Sn is
obtained from the braid group by imposing additional relations, there is a canonical group
homomorphism Πn : Bn → Sn, σi 7→ σi.

Definition 1.1.9: For n ∈ N the braid group Bn on n strands is the group presented by
generators σ1, .., σn−1 and relations

σiσi+1σi = σi+1σiσi+1 ∀i ∈ {1, ..., n− 2} (5)

σiσj = σjσi ∀i, j ∈ {1, ..., n− 1} with |i− j| > 1.

To apply the construction from Example 1.1.8 to the families (Bn)n∈N0 and (Sn)n∈N0 , one
considers the following group homomorphisms that satisfy the condition (3)

ρm,n : Bm ×Bn → Bn+m, (σi, σj) 7→ σi ◦ σm+j ρ′m,n : Sm × Sn → Sm+n, (σi, σj) 7→ σi ◦ σm+j.
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Definition 1.1.10:

1. The braid category B is the strict monoidal category from Example 1.1.8 asso-
ciated with the family (Bn)n∈N0 of braid groups and the group homomorphisms
ρm,n : Bm ×Bn → Bn+m, (σi, σj) 7→ σi ◦ σm+j.

2. The permutation category S is the strict monoidal category from Example 1.1.8 as-
sociated with the family (Sn)n∈N0 of permutation groups and the group homomorphisms
ρ′m,n : Sm × Sn → Sn+m, (σi, σj) 7→ σi ◦ σm+j.

The name braid group is due to the fact that elements σ ∈ Bn can be visualised by braid
diagrams, which involve two parallel horizontal lines with n marked points, labelled from the
left to the right by 1, ..., n. The diagram for an element σ ∈ Bn is obtained by drawing n
smooth curves that are nowhere horizontal and connect the point i on the upper line to the
point Πn(σ)(i) on the lower line. The intersection points of these curves are then changed to
overcrossings and undercrossings, in such a way that exactly one curve crosses over another at
each intersection point. The diagrams for the generators σi and their inverses σ−1

i are

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

n

n

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

n

n

The generator σi ∈ Bn. The generator σ−1
i ∈ Bn.

The group multiplication in Bn is given by the vertical composition of diagrams. The diagram
for the group element τ ◦ σ ∈ Bn is obtained by putting the diagram for τ below the one
for σ such that the points on the horizontal lines match, erasing the middle lines, connecting
the strands of the two diagrams and tightening them to remove unnecessary crossings. This
corresponds to applying the relations σ∓1

i ◦ σ±1
i = 1:

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

The relation σ−1
i ◦ σi = 1 = σi ◦ σ−1

i .

The remaining relations of the braid group in Definition 1.1.9 correspond to sliding two crossings
that do not share a strand past each other and to sliding one crossing point in a triple crossing
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below the remaining strand:

1

1

. . .

i

i

i+ 1

i+ 1

j

. . .

j

j + 1

j + 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

j

. . .

j

j + 1

j + 1

. . .

n

n

The relation σi ◦ σj = σj ◦ σi for |i− j| > 1.

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

i+ 3

i+ 3

n

n

=

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

i+ 3

i+ 3

n

n

The relation σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1.

Elements of the permutation group Sn are represented by the same diagrams, but with crossings
instead of overcrossings and undercrossings. This corresponds to the additional relations σ2

i = 1
for all i ∈ {1, ..., n − 1}, which identify over- and undercrossings. This implies that the group
homomorphism Πn : Bn → Sn, σi 7→ σi is represented graphically by changing each overcrossing
or undercrossing in a braid diagram to a crossing:

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

The relation σ2
i = 1 in Sn.

Elements of the braid category and the permutation category are visualised by the same di-
agrams. The only difference is that in addition to the vertical composition of diagrams that
corresponds to the composition of morphisms, there is also a horizontal composition corre-
sponding to the tensor product. The tensor product f⊗g : m + n → m + n of two morphisms
f : m→ m and g : n→ n is obtained by putting the diagram for g with n strands to the right
of the diagram for f and adding m to each number in the diagram for g.

1

1

. . .

i

i

i+ 1

i+ 1

. . .

m

m

⊗

1

1

. . .

j

j

j + 1

j + 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

m

m

m+ 1

m+ 1

. . .

m+ j

m+ j

. . .

m+ n

m+ n

12



After introducing monoidal categories and investigating examples, we will now consider their
interaction with functors and natural transformations. The strictest possible compatibility re-
quirement for a functor F : C → D with their monoidal structures on C and D would be to
impose that ⊗D(F × F ) = F⊗C and F (eC) = eD. However, there are very few functors that
satisfy these strict requirements. It is more natural to impose that these relations hold up to
isomorphisms, namely a natural isomorphism φ⊗ : ⊗D(F × F ) → F⊗C and an isomorphism
φe : eD → F (eC).

Definition 1.1.11:
Let (C,⊗C, eC, aC, lC, rC) and (D,⊗D, eD, aD, lD, rD) be monoidal categories.

1. A monoidal functor from C to D is a triple (F, φe, φ⊗) of

• a functor F : C → D,
• an isomorphism φe : eD → F (eC) in D,
• a natural isomorphism φ⊗ : ⊗D(F × F )→ F⊗C,

that satisfy the following axioms:

(a) compatibility with the associativity constraint:
for all objects U, V,W of C the following diagram commutes

(F (U)⊗F (V ))⊗F (W )
aD
F (U),F (V ),F (W )//

φ⊗U,V ⊗1F (W )

��

F (U)⊗(F (V )⊗F (W ))

1U⊗φ⊗V,W
��

F (U⊗V )⊗F (W )

φ⊗U⊗V,W
��

F (U)⊗F (V⊗W )

φ⊗U,V⊗W
��

F ((U⊗V )⊗W )
F (aCU,V,W )

// F (U⊗(V⊗W )).

(6)

(b) compatibility with the unit constraints:
for all objects V of C the following diagrams commute

eD⊗F (V )

lD
F (V )

��

φe⊗1F (V )// F (eC)⊗F (V )

φ⊗eC ,V
��

F (V ) F (eC⊗V )
F (lCV )

oo

F (V )⊗eD
rD
F (V )

��

1F (V )⊗φe// F (V )⊗F (eC)

φ⊗V,eC
��

F (V ) F (V⊗eC).
F (rCV )

oo

(7)

A monoidal functor (F, φe, φ⊗) is called strict if φe = 1eD and φ⊗ = idF⊗C is the
identity natural transformation. It is called a monoidal equivalence if F : C → D is
an equivalence of categories, and in this case, C and D are called monoidally equivalent.

2. Let (F, φe, φ⊗), (F ′, φ′e, φ′⊗) : C → D be monoidal functors. A monoidal natural
transformation from F to F ′ is a natural transformation η : F → F ′ that satisfies:

(a) compatibility with φe and φ′e: the following diagram commutes

F (eC)
ηeC // F ′(eC)

eD.
φe

cc

φ′e

;;
(8)
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(b) compatibility with φ⊗ and φ′⊗: For all objects V,W of C the diagram

F (V )⊗F (W )

φ⊗V,W
��

ηV ⊗ηW// F ′(V )⊗F ′(W )

φ′⊗V,W
��

F (V⊗W ) ηV⊗W
// F ′(V⊗W ).

(9)

commutes. A monoidal natural transformation η : F → F ′ is called monoidal isomor-
phism if for all objects V of C the morphism ηV : F (V )→ F (V ′) is an isomorphism.

Remark 1.1.12: (Exercise 6) Alternatively, a monoidal functor can be defined as a pair
(F, φ⊗) of a functor F : C → D and a natural isomorphism φ⊗ : ⊗D(F × F )→ F⊗C such that

(i) φ⊗ satisfies the compatibility condition (6) with the associators,
(ii) F (eC) ∼= eD.

A monoidal natural transformation from (F, φ⊗) to (F ′, φ′⊗) can be defined equivalently as a
natural transformation η : F → F ′ such that ηe : F (e)→ F ′(e) is an isomorphism and diagram
(9) commutes.

Remark 1.1.13:

1. The isomorphism φe and the natural isomorphism φ⊗ are called the coherence data of
the monoidal functor (F, φe, φ⊗). The natural isomorphism φ⊗ determines φe uniquely
(Exercise 6), and it is a choice of structure, not a property. A given functor between
monoidal categories may have several different monoidal functor structures, or none of
them (Exercise 7).

2. If F : C → D is a monoidal equivalence, there is monoidal equivalence G : D → C such
that FG : D → D and GF : C → C are isomorphic to the identity functors by monoidal
isomorphisms. This gives an alternative definition of monoidal equivalence (Exercise 10).

Example 1.1.14:

1. The forgetful functor F : Top → Set is a strict monoidal functor, when Top and Set are
equipped with the monoidal structures defined by their products or coproducts.

2. For any group G and field F the forgetful functor F : F[G]−Mod → VectF is a strict
monoidal functor.

3. The functor F : Set → k-Mod that assigns to a set X the free k-module F (X) = 〈X〉k
and to a map f : X → Y the unique k-linear map F (f) : 〈X〉k → 〈Y 〉k with
F (f) ◦ ιX = ιY ◦ f is a monoidal functor, when Set is equipped with the product
monoidal structure. Its coherence data is given by the maps φe : k → 〈p〉k, λ 7→ λp and
φ⊗X,Y : 〈X〉k⊗k〈Y 〉k → 〈X × Y 〉k, x⊗y 7→ (x, y).

4. For any group homomorphism α : G → H, the functor α∗ : F[H]−Mod → F[G]−Mod
that assigns to an F[H]-module (M,�) the F[G]-module (M,�α) with g�αm = α(g)�m
and every F[H]-linear map to itself is a strict monoidal functor.
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5. For any ring R the functor F : (R,R)−BiMod→ Fun(R−Mod, R−Mod) that assigns

• to an (R,R)-bimodule M the functor LM = M⊗R− := R−Mod→ R−Mod,
• to an (R,R)-bimodule morphism f : M → N the natural transformation
Lf = f⊗R− : M⊗R− → N⊗R−,

is a monoidal functor. Its coherence data is

• the natural isomorphism φe : idR−Mod → LR with φeM : M → R⊗RM , m 7→ 1⊗m,
• the natural isomorphism φ⊗ : ⊗(L × L) → L⊗ whose component morphisms are

the natural isomorphisms φ⊗M,N : LMLN → LM⊗N with component morphisms

(φ⊗M,N)P = a−1
M,N,P : M⊗R(N⊗RP )→ (M⊗R)⊗RP , m⊗(n⊗p)→ (m⊗n)⊗p.

6. Let D, E be small categories, C a monoidal category and equip Fun(D, C) and Fun(E , C)
with the monoidal structures from from Example 1.1.4, 6.

• Pre-composition with a given functor F : E → D defines a monoidal functor
F ∗ : Fun(D, C) → Fun(E , C) that sends a functor G : D → C to GF and a natural
transformation η : G→ G′ to ηF : GF → GF ′.

• Pre-composition with a natural transformation η : F → F ′ defines a monoidal natural
transformation η∗ : F ∗ → F ′∗ with component morphisms η∗G = Gη : GF → GF ′ for all
functors G : D → C (Exercise).

1.2 Strictification and coherence

Computations and proofs in monoidal categories can be quite complicated due to the amount
of coherence data. Many arguments that are fairly straightforward in a strict monoidal category
become a maze of commuting pentagon axioms, triangle axioms and diagrams that encode the
naturality of the associator and unit constraints in a non-strict monoidal category.

Mac Lane’s famous strictification and coherence theorem allow one to largely ignore these
complications. It states that any monoidal category is monoidally equivalent to a strict monoidal
category. The coherence theorem is a consequence of the strictification theorem and implies that
any two morphisms between given objects in a monoidal category that are composed of unit
morphisms, associators and left and right unit constraints are equal.

This allows one to perform computations as in a strict monoidal category, then choose appro-
priate bracketings of the tensor products and insert units, and finally add in coherence data
such that all the morphisms have the right start and target object. As a consequence of the
coherence theorem, any way of doing this will yield the same result. In fact, this result is already
used implicitly in elementary computations with tensor products of vector spaces, in which the
bracketings are usually omitted.

To prove Mac Lane’s strictification and coherence result, we need additional results about the
properties of the tensor unit in a monoidal category. The first result related the left and right
unit constraint for a tensor product of objects to the left and right unit constraints of the
individual objects and can be viewed as a generalisation of the triangle axiom.
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Lemma 1.2.1: (properties of the unit constraints) Let (C,⊗, e, a, l, r) be a monoidal
category. Then the diagrams

(e⊗V )⊗W

lV ⊗1W &&

ae,V,W // e⊗(V⊗W )

lV⊗Wxx
V⊗W

(V⊗W )⊗e

rV⊗W &&

aV,W,e // V⊗(W⊗e)

1V ⊗rWxx
V⊗W

commute for all objects V,W , and one has le⊗V = 1e⊗lV , rV⊗e = rV⊗1e and le = re.

Proof:
1. We consider for objects U, V,W of C the diagram

((U⊗e)⊗V )⊗W
aU,e,V ⊗1W //

(rU⊗1V )⊗1W

))
aU⊗e,V,W

��

(U⊗(e⊗V ))⊗W
(1U⊗lV )⊗1W

uu
aU,e⊗V,W

��

(U⊗V )⊗W
aU,V,W

��
(U⊗e)⊗(V⊗W )

rU⊗1V⊗W //

aU,e,V⊗W ))

U⊗(V⊗W ) U⊗((e⊗V )⊗W )

1U⊗ae,V,Wuu

1U⊗(lV ⊗1W )oo

U⊗(e⊗(V⊗W )).

1U⊗lV⊗W

OO

The outer pentagon in this diagram commutes by the pentagon axiom, the upper triangle and
the lower left triangle commute by the triangle axiom and the two quadrilaterals by the natu-
rality of a : ⊗(⊗× idC)→ ⊗(idC×⊗). As all arrows in this diagram are isomorphisms, it follows
that the lower right triangle commutes as well. To show that this implies the commutativity of
the first triangle in the lemma, we choose U = e and use the naturality of l : ⊗(e× idC)→ idC,
which implies f = g for all morphisms f, g : X → Y with 1e⊗f = 1e⊗g:

X

f

$$

g

::e⊗XlXoo
1e⊗f ++

1e⊗g
33 e⊗Y

lY // Y.

This shows that the first triangle commutes, and the proof for the second triangle is similar.

2. To prove the last three identities in the lemma, we consider the commutative diagrams

e⊗(e⊗V )
le⊗V //

1e⊗lV
��

e⊗V
lV
��

e⊗V
lV

// V

(e⊗e)⊗e
re⊗1e

zz
ae,e,e

��

le⊗1e

$$
e⊗e

1e⊗e

55e⊗(e⊗e)1⊗leoo le⊗e // e⊗e

The first diagram commutes by the naturality of l : ⊗(e× idC)→ idC. Because lV : e⊗V → V
is an isomorphism, it follows that le⊗V = 1e⊗lV . The proof of the identity rV⊗e = rV⊗1e is
analogous. In the second diagram, the lower triangle is the identity le⊗e = 1e⊗le, which follows
from the first diagram with V = e, the left triangle commutes by the triangle axiom and the
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right triangle commutes by 1. Hence, the outer triangle commutes as well and le⊗1e = re⊗1e.
By the same argument as in 1., this implies re = le. 2

Corollary 1.2.2: The endomorphisms of the tensor unit in a monoidal category form a
commutative monoid.

Proof:
In any category C and for any object C the set HomC(C,C) is a monoid with the composition
of morphisms. To show that HomC(e, e) is commutative, we consider the diagram

e
g //

f

��

e

f

��

e⊗e

re

le

aa

f⊗1e
��

1e⊗g // e⊗e
f⊗1e
��

re

le

==

e⊗e
le
re

}}

1e⊗g
// e⊗e

le
re

!!
e

g // e

where we used the identity le = re from Lemma 1.2.1. The inner rectangle commutes because
⊗ : C ×C → C is a functor. The inner quadrilaterals commute by the naturality of r and l, and
hence the outer square commutes as well. 2

This last result motivates the name monoidal category. Using these results, we can prove Mac
Lane’s coherence theorem. Instead of MacLane’s original proof, which can be found for instance
in [Ka, Section XI.5] and in Exercise 11, we give an alternative proof from [EGNO, Chapter
2.8]. As usual, we ignore largeness and smallness issues in categories.

The construction in this proof can be viewed as the analogue of the right-module structure
of a ring R over itself by right multiplication, but for a monoidal category instead of a ring.
Consider a ring R as a right module over itself. Then R-right module endomorphisms of R
are maps f : R → R with f(s · r) = f(s) · r for all r, s ∈ R. This implies that any R-right
module endomorphism f : R → R satisfies f(r) = f(1 · r) = f(1) · r and hence is determined
by f(1) ∈ R. It follows that the map L : R → EndRop(R), r 7→ Lr with Lr(s) = r · s for all
s ∈ S is a ring isomorphism.

In the following we consider the categorical counterpart of this statement. Instead of a ring
R we consider a monoidal category C, whose tensor product replaces the ring multiplication.
Instead of R-right module endomorphisms f : R → R, we consider endofunctors F : C → C
together with a natural isomorphism c : ⊗(F × idC) → F⊗. To obtain a category, we take as
morphisms natural transformations between such endofunctors. After imposing compatibility
conditions involving the isomorphisms c and the associators, we then obtain a strict monoidal
category C ′, in which the tensor product is given by the composition of functors.

Instead of the R-right module endomorphisms Lr : R → R, s 7→ r · s, we then consider
the functors LX = x⊗− : C → C for objects X in C and instead of the ring isomorphism
L : R→ EndR(R), we obtain a monoidal equivalence L : C → C ′.
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Theorem 1.2.3: (strictification of monoidal categories)
Any monoidal category is monoidally equivalent to a strict monoidal category.

Proof:
1. Let (C,⊗, e, a, l, r) be a monoidal category. Construct a strict monoidal category (C ′,⊗′, e′):

• Objects of C ′ are pairs (F, c) of an endofunctor F : C → C and a natural isomorphism
c : ⊗(F × id)→ F⊗ such that the following diagram commutes for all X, Y, Z ∈ ObC

(F (X)⊗Y )⊗Z
aF (X),Y,Z//

cX,Y ⊗1Z
��

F (X)⊗(Y⊗Z)
cX,Y⊗Z// F (X⊗(Y⊗Z))

F (X⊗Y )⊗Z cX⊗Y,Z
// F ((X⊗Y )⊗Z).

F (aX,Y,Z)

55
(10)

• Morphisms ν : (F, c) → (F ′, c′) in C ′ are natural transformations ν : F → F ′ such that
the following diagram commutes for all X, Y ∈ ObC

F (X)⊗Y
νX⊗1Y

��

cX,Y // F (X⊗Y )

νX⊗Y
��

F ′(X)⊗Y
c′X,Y

// F ′(X⊗Y ).

(11)

The composition of morphisms is the composition of natural transformations, and the
identity morphisms are identity natural transformations 1(F,c) = idF : (F, c)→ (F, c).

• The tensor product ⊗′ : C ′⊗C ′ → C ′ is given by (F, c)⊗′(G, d) = (FG, cd) on the objects,
where cd : ⊗(FG× id) → FG⊗ is the natural isomorphism with component morphisms
(cd)X,Y = F (dX,Y ) ◦ cG(X),Y : FG(X)⊗Y → FG(X⊗Y ).

The tensor product of morphisms µ : (F, c) → (F ′, c′) and ν : (G, d) → (G′, d′) in C ′ is
the natural transformation µ⊗′ν = (µG′) ◦ (Fν) = (F ′ν) ◦ (µG) : FG→ F ′G′.

To see that C ′ is a category, note that the identity natural transformation idF : F → F makes
the diagram (11) for c = c′ and F = F ′ commute. By stacking the diagrams (11) for morphisms
ν : (F, c) → (F ′, c′) and ν ′ : (F ′, c′) → (F ′′, c′′) vertically, one sees that the composite natural
transformation ν ′ ◦ ν : F → F ′′ makes the diagram (11) for c and c′′ commute. Hence, the
composition of morphisms is well-defined.

To show that the tensor product ⊗′ is well-defined on the objects, we verify that the dia-
gram (10) commutes for (F, c)⊗′(G, d) = (FG, cd) for all objects (F, c) and (G, d) in C ′. By
subdividing it, we obtain the diagram

(FG(X)⊗Y )⊗Z
aFG(X),Y,Z//

(cd)X,Y ⊗1Z

''

cG(X),Y ⊗1Z
��

FG(X)⊗(Y⊗Z)
(cd)X,Y⊗Z //

cG(X),Y⊗Z

**

FG(X⊗(Y⊗Z))

F (G(X)⊗Y )⊗Z
F (dX,Y )⊗1Z
��

cG(X)⊗Y,Z// F ((G(X)⊗Y )⊗Z)
F (aG(X),Y,Z)

//

F (dX,Y ⊗1Z)

��

F (G(X)⊗(Y⊗Z))

F (dX,Y⊗Z)

OO

FG(X⊗Y )⊗Z

(cd)X⊗Y,Z

44cG(X⊗Y ),Z

// F (G(X⊗Y )⊗Z)
F (dX⊗Y,Z)

// FG((X⊗Y )⊗Z).

FG(aX,Y,Z)

ii
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in which the triangles commute by definition of cd : ⊗(FG× idC)→ FG⊗, the lower pentagon,
because it is the image of diagram (10) for (G, d) under F , the upper pentagon, because it is
the diagram (10) for (F, c), and the quadrilateral by naturality of c. This shows that (FG, cd)
is again an object in C ′ and ⊗′ is well-defined on the objects of C ′.

To show that⊗′ is well-defined on the morphisms of C ′, we show that the diagram (11) commutes
for the natural transformation µ⊗′ν : FG → F ′G′ for all morphisms µ : (F, c) → (F ′, c′) and
ν : (G, d)→ (G′, d′). This is the outer rectangle in the diagram

FG(X)⊗Y

(cd)X,Y

((

(µ⊗′ν)X⊗1Y

%%

cG(X),Y//

F (νX)⊗1Y
��

F (G(X)⊗Y )
F (dX,Y )

//

F (νX⊗1Y )

��

FG(X⊗Y )

F (νX⊗Y )

��
(µ⊗′ν)X⊗Y

yy

FG′(X)⊗Y
cG′(X),Y//

µG′(X)⊗1Y
��

F (G′(X)⊗Y )
F (d′X,Y )

//

µG′(X)⊗Y
��

FG′(X⊗Y )

µG′(X⊗Y )

��
F ′G′(X)⊗Y

c′
G′(X),Y

//

(c′d′)X,Y

66
F ′(G′(X)⊗Y )

F ′(d′X,Y )
// F ′G′(X⊗Y ),

where the upper triangle commutes by definition of cd, the lower triangle by definition of c′d′,
the left and right triangles by definition of µ⊗′ν, the upper left rectangle by naturality of c,
the lower right rectangle by naturality of µ, the lower left rectangle, because it is the diagram
(11) for µ, c and c′ and the upper right rectangle, because it is the image of the diagram (11)
for ν, d and d′ under F . This shows that µ⊗′ν : (FG, cd)→ (F ′G′, c′d′) is a morphism in C ′.

The tensor product of C ′ is a functor ⊗′ : C ′ × C ′ → C ′, since we have for all natural transfor-
mations µ : F → F ′, µ′ : F ′ → F ′′, ν : G→ G′, ν ′ : G′ → G′′ and X ∈ Ob C

(idF⊗′idG)X = (idF )G(X) ◦ F (idG(X)) = idFG(X)

((µ′⊗′ν ′) ◦ (µ⊗′ν))X = µ′G′′(X) ◦ F ′(ν ′X) ◦ µG′(X) ◦ F (νX) = µ′G′′(X) ◦ µG′′(X) ◦ F (ν ′X) ◦ F (νX)

= (µ′ ◦ µ)G′′(X) ◦ F ((ν ′ ◦ ν)X) = ((µ′ ◦ µ)⊗′(ν ′ ◦ ν))X .

The tensor product ⊗′ is strictly associative, since this holds for the composition of functors,
and we have for all (E, b), (F, c), (G, d) ∈ Ob C ′ and X, Y ∈ Ob C

((bc)d)X,Y = EF (dX,Y ) ◦ (bc)G(X),Y = EF (dX,Y ) ◦ E(cG(X),Y ) ◦ bFG(X),Y

= E((cd)X,Y ) ◦ bFG(X),Y = (b(cd))X,Y .

That it is strictly associative on the morphisms follows from the identities

(µ⊗′ν)⊗′ρ = (µ⊗′ν)H ′ ◦ (FGρ) = (µG′H ′ ◦ FνH ′) ◦ (FGρ) = (µG′H ′) ◦ (FνH ′ ◦ FGρ)

= (µG′H ′) ◦ F (ν⊗′ρ) = (µG′H ′)⊗′(ν ′⊗′ρ)

for all natural transformations µ : F → F ′, ν : G→ G′ and ρ : H → H ′.

It is strictly unital with unit (idC, id⊗), since F idC = idCF = F for all functors F : C → C and
for all natural isomorphisms c : ⊗(F × idC)→ ⊗F and X, Y ∈ Ob C

(id⊗c)X,Y = cX,Y ◦ 1F (X)⊗Y = cX,Y = 1F (X⊗Y ) ◦ cX,Y = (cid⊗)X,Y .
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2. We construct a monoidal functor (L, φ⊗, φe) : C → C ′. Let L : C → C ′ send

• an object C in C to the the pair (LC , aC,−,−) of the endofunctor LC = C⊗− : C → C
and the natural isomorphism aC,−,− : ⊗(LC × idC) → LC⊗ with component morphisms
aC,Y,Z : (C⊗Y )⊗Z → C⊗(Y⊗Z),

• a morphism f : C → C ′ in C to the natural transformation L(f) : LC → LC′ with
component morphisms L(f)X = (f⊗1X) : C⊗X → C ′⊗X.

The pentagon axiom for C ensures that the diagram (10) commutes for F = LC = C⊗− : C → C
and the natural isomorphisms aC,−,− : ⊗(LC × idC)→ LC⊗, so L is well-defined on the objects.
The naturality of the associator guarantees that (11) commutes for F = LC , cX,Y = aC,X,Y ,
F ′ = LC′ , c

′
X,Y = aC′,X,Y and νX = f⊗1X and hence L is well-defined on the morphisms.

That L is a functor follows because L(1C) = idLC and one has for all morphisms f : C → C ′

and f ′ : C ′ → C ′′ and X ∈ Ob C

(L(f ′) ◦ L(f))X = (f ′⊗1X) ◦ (f⊗1X) = ((f ′ ◦ f)⊗1X) = L(f ′ ◦ f)X .

To show that L is monoidal, we construct an isomorphism φe : (idC, id⊗) → (Le, ae,−,−) in C ′
and a natural isomorphism φ⊗ : ⊗′(L× L)→ L⊗.

We define φe = l−1 : idC → Le with component morphisms φeX = l−1
X : X → e⊗X. Lemma 1.2.1

implies that the diagram (11) commutes for F = idC, F
′ = Le, cX,Y = 1X⊗Y , c′X,Y = ae,X,Y and

ν = l−1, and hence φe = l−1 is indeed an isomorphism in C ′.

We define the component morphisms of the natural isomorphism φ⊗ : ⊗′(L × L) → L⊗ as
φ⊗C,C′ = a−1

C,C′,− : LCLC′ → LC⊗C′ . Their naturality follows from the naturality of the associator
in the last argument. The naturality of φ⊗ follows from its naturality in the first two arguments.
The pentagon axiom in C implies that diagram (11) commutes for

(F, c) = (LC , aC,−,−)⊗′(LC′ , aC′,−,−), (F ′, c′) = (LC⊗C′ , aC⊗C′,−,−), ν = φ⊗C,C′ = a−1
C,C′,−.

This shows that we constructed a natural isomorphism φ⊗C,C′ = a−1
C,C′,− : LCLC′ → LC⊗C′ .

It remains to show that the isomorphism φe = l−1 : idC → Le and the natural isomorphism
φ⊗ : ⊗′(L × L) → L⊗ satisfy the conditions from Definition 1.1.11. As C ′ is strict, these
conditions are equivalent to the commutativity of the following diagrams of endofunctors and
natural transformations

LC

idLC
��

φeLC// LeLC

φ⊗e,C
��

LC Le⊗C
L(lC)
oo

LC

idLC
��

LCφ
e
// LCLe

φ⊗C,e
��

LC LC⊗e
L(rC)
oo

LULVLW
LUφ

⊗
V,W //

φ⊗U,V LW
��

LULV⊗W
φ⊗U,V⊗W

((
LU⊗VLW

φ⊗U⊗V,W

// L(U⊗V )⊗W
L(aU,V,W )

// LU⊗(V⊗W ).

Evaluating them on an object X and inserting the component morphisms of φe and φ⊗ shows
that the first diagram commutes by Lemma 1.2.1 , the second by the triangle axiom and the
third by the pentagon axiom for C. This shows that (L, φ⊗, φe) : C → C ′ is a monoidal functor.

3. We show that L : C → C ′ is essentially surjective and fully faithful and hence a monoidal
equivalence. For essential surjectivity, note that any object (F, c) in C ′ is isomorphic to
(LF (e), aF (e),−,−). The isomorphisms νX = F (lX)◦ ce,X : F (e)⊗X → F (X) are natural in X and
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define a natural isomorphism ν : LF (e) → F . It makes the diagram (11) for (LF (e), aF (e),−,−)
and (F, c) commute, since this is the outer rectangle in the diagram

(F (e)⊗X)⊗Y

νX⊗1Y

''

aF (e),X,Y //

ce,X⊗1Y
��

F (e)⊗(X⊗Y )

ce,X⊗Y
��

νX⊗Y

ww

F (e⊗X)⊗Y
ce⊗X,Y//

F (lX)⊗1Y
��

F ((e⊗X)⊗Y )
F (ae,X,Y )

//

F (lX⊗1Y ) ))

F (e⊗(X⊗Y ))

F (lX⊗Y )

��
F (X)⊗Y cX,Y

// F (X⊗Y ),

where the left and right triangle commute by definition of ν, the lower middle triangle by Lemma
1.2.1, the upper rectangle by (10) for (F, c) and the lower left quadrilateral by naturality of c.
This shows that ν : (LF (e), aF (e),−,−)→ (F, c) is an isomorphism in C ′.

To see that L is faithful suppose that L(f) = L(g) for morphisms f, g : C → C ′ in C. Then
f⊗e = L(f)⊗e = L(g)⊗e = g⊗e, and by naturality of the right unit constraints one has

f = rC′ ◦ (f⊗e) ◦ r−1
C = rC′ ◦ (g⊗e) ◦ r−1

C = g.

To show that L is full, let ν : L(C) → L(C ′) be a morphism in C ′. Then ν = L(f), where
f = rC′ ◦ νe ◦ r−1

C , since we have for all X ∈ Ob C the commuting diagram

C⊗X
L(f)X =f⊗1X

��

1C⊗X

))
(C⊗e)⊗X aC,e,X

//
rC⊗1X
oo

νe⊗1X
��

C⊗(e⊗X)
1C⊗lX

//

νe⊗X
��

C⊗X
νX
��

C ′⊗X

1C′⊗X

55(C ′⊗e)⊗X
aC′,e,X//rC′⊗1Xoo C ′⊗(e⊗X)

1C′⊗lX// C ′⊗X,

in which the top and bottom triangle commute by the triangle axiom, the left rectangle by
definition of f , the middle rectangle by (11) for for ν and the right rectangle by naturality of
ν. This shows that L is fully faithful and hence an equivalence of categories. 2

As a consequence of the strictification theorem, we obtain the coherence theorem for monoidal
categories that allow us to control associators and unit constraints. It justifies ignoring coherence
data and performing proofs in strict monoidal categories.

Theorem 1.2.4: (coherence for monoidal categories)
Let C be a monoidal category, X1, . . . , Xn ∈ Ob C and X, Y ∈ Ob C parenthesized products of
X1, . . . , Xn, in this order, and with insertions of the tensor unit. Let f, g : X → Y be morphisms
in C that are are composites via ◦ and ⊗ of the associativity and unit constraints, their inverses
and identity morphisms. Then f = g : X → Y .

Sketch of Proof:
By Theorem 1.2.3 there is a monoidal equivalence (L, φ⊗, φe) : C → C ′ into a strict monoidal
category C ′. Express f and g as a composites f = fn ◦ . . .◦f1 and g = gm ◦ . . .◦g1 of morphisms
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fi and gj that are tensor products of exactly one associator, unit constraint or their inverses
with identity morphisms. We need to show that the diagram

X1
f2 // . . .

fn−1 // Xn−1

fn

""
X

f1

>>

g1   

Y,

Y1 g2

// . . . gm−1

// Ym−1

gm

<<

(12)

commutes. For this, take its image under L. Build a prism by attaching

• to each arrow L(fi) and L(gi) that contains an image of the associator under L the
commutative diagram (6) from Definition 1.1.11,
• to each arrow L(fi) and L(gi) that contains the image of a left (right) unit constraint the

corresponding diagram (7) from Definition 1.1.11.

Then the diagram at the top of the prism contains only identity morphisms due to the
strictness of C ′, and all the side faces of the prism commute. This implies that the top face can
be contracted to a point, and one obtains a cone with commuting side faces. It follows that
the bottom face of the cone commutes as well. This is the image of diagram (12) under L, and
hence L(f) = L(g). As L is an equivalence of categories, it follows that f = g. 2

The coherence theorem allows one to perform computations in a monoidal category by assuming
he category is strict. It also allows one to introduce a graphical calculus for monoidal categories.
Its usefulness will become apparent when we consider monoidal categories with more additional
structure.

In this graphical calculus, objects in a monoidal category C are represented by vertical lines
labelled with the object. The unit object e is represented by the empty line, i. e. not drawn in
the diagrams. A morphism f : X → Y is represented as a vertex on a vertical line that divides
the line into an upper part labelled by X and a lower part labelled by Y . Unit morphisms in C
are not represented by vertices in the diagrams.

X e

X

Y

f

X

X

1X

e

e

f

the object X the tensor unit e a morphism identity morphism an endomorphism
f : X → Y 1X : X → X f : e→ e

The composition of morphisms is given by the vertical composition of diagrams, whenever the
object at the bottom of one diagram matches the object at the top of the other. More precisely,
the composite g ◦ f : X → Z of two morphisms f : X → Y and g : X → Z is obtained
by putting the diagram for g below the one for f . The associativity of the composition of
morphisms and the properties of the unit morphisms ensure that this is consistent for multiple
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composites and that it is possible to omit identity morphisms.

X

Y

Z

X

Z

=

f

g

g ◦ f

X

Y

1X

f

=

X

Y

1Y

f
=

X

Y

f

Tensor products of objects and morphisms are given by the horizontal composition of diagrams.
The diagram for the tensor product U⊗X involves two parallel vertical lines, the one on the
left labelled by U and the one on the right labelled by X. The tensor product of morphisms is
represented by vertices on such lines. The condition that ⊗ : C × C → C is a functor allows one
to slide these vertices past each other and to compose them individually on each line:

U

V

h

X

Y

f
=

U

V

h

X

Y

f
=

U

V

h

X

Y

f =

U⊗X

V⊗Y

h⊗f

U

V

h

e

=

e U

V

h =

U

V

h (13)

Just as the tensor unit and the identity morphisms, the component morphisms of the associator
and of the left and right unit constraints are not represented in this diagrammatical calculus.
This is consistent because of Theorem 1.2.4. Any two objects represented by the same diagram
are related by a unique isomorphism composed of associators and left and right unit constraints.
Consequently, any two morphisms represented by the same diagrams are related by left and
right composition with the isomorphisms that relate their source and target objects.

Note also that the diagrammatic calculus for monoidal categories generalises the diagrammatic
representation of morphisms in the braid category B and permutation category S from Defi-
nition 1.1.10. In these categories, all objects are tensor products of a single object 1, and all
morphisms are composites of tensor products of one elementary transposition and its inverse.
This allows one to omit the labelling of the objects and morphisms in the diagrammatic calculus
for the categories B and S.
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2 Duals in monoidal categories

2.1 Rigid monoidal categories

In this section, we consider monoidal categories with additional structure, namely left and right
dual objects. These duals will play an important role in the construction of knot and manifold
invariants in the following section and give rise to a notion of trace in a monoidal category.
They generalise the dual V ∗ of a finite-dimensional vector space over F and the associated
linear maps ev : V ∗⊗V → F, α⊗v 7→ α(v) ad coev : F → V⊗V ∗, λ 7→ Σn

i=1vi⊗αi for a basis
(v1, ..., vn) of V and the associated dual basis (α1, ..., αn) of V ∗.

For a finite-dimensional vector space V , it is merely a matter of convention if one defines the
evaluation map for V as a map ev : V ∗⊗V → F, α⊗v 7→ α(v) or as map ev : V⊗V ∗ → F,
v⊗α 7→ α(v) and similarly for the coevaluations. These choices are related a trivial flip of the
factors in the tensor product. However, in a general monoidal category there is no structure
that exchanges the factors in a tensor product. For this reason, it is important to distinguish
these definitions and to introduce left and right duals.

Definition 2.1.1: Let (C,⊗, e, a, l, r) be a monoidal category.

1. An object X of C is called right dualisable if there is an object X∗, a right dual of X,
and morphisms

evRX : X∗⊗X → e coevRX : e→ X⊗X∗

such that the following diagrams commute

X

1X
��

l−1
X // e⊗X

coevRX⊗1X// (X⊗X∗)⊗X
aX,X∗,X
��

X X⊗erX
oo X⊗(X∗⊗X)

1X⊗evRX

oo

X∗

1X∗

��

r−1
X∗ // X∗⊗e

1X∗⊗coevRX// X∗⊗(X⊗X∗)
a−1
X∗,X,X∗
��

X∗ e⊗X∗
lX∗
oo (X∗⊗X)⊗X∗.

evRX⊗1X∗
oo

(14)

2. An object X of C is called left dualisable if there is an object ∗X, a left dual of X, and
morphisms

evLX : X⊗∗X → e coevLX : e→ ∗X⊗X

such that the following diagrams commute

X

1X
��

r−1
X // X⊗e

1X⊗coevLX// X⊗(∗X⊗X)

a−1
X,∗X,X
��

X e⊗X
lX

oo (X⊗∗X)⊗X
evLX⊗1X

oo

∗X

1∗X
��

l−1
∗X // e⊗∗X

coevLX⊗1∗X// (∗X⊗X)⊗∗X
a∗X,X,∗X
��

∗X ∗X⊗er∗X
oo ∗X⊗(X⊗∗X).

1∗X⊗evLX

oo

(15)

The category C is called right rigid if every object in C is right dualisable, left rigid if every
object of C is left dualisable, and rigid if it is both right and left rigid.

Note that Definition 2.1.1 implies that an object Y in C is a right dual of an object X in C if
and only if X is a left dual of Y . Note also that the evaluation and the coevaluation are part
of the duality. We will see below that right and left duals may coincide as objects but differ in
their evaluations and coevaluations.
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Although the duals are not defined via a universal property, it turns out that they are unique
up to unique isomorphism. We will thus speak of the left or right dual of a given object.

Proposition 2.1.2: Let C be a monoidal category. If a left or right dual of an object X in C
exists, it is unique up to unique isomorphism.

Proof:
We prove the claim for right duals.

We suppose that X∗1 and X∗2 are right duals of X with right evaluations and coevaluations
ei : X∗i ⊗X → e and ci : e→ X⊗X∗i and show that there is a unique isomorphism φij : X∗i → X∗j
with ej ◦ (φij⊗1X) = ei and (1X⊗φij) ◦ ci = cj.

For this, we consider for i 6= j ∈ {1, 2} the morphisms

φij : X∗i

r−1
X∗
i−−→ X∗i⊗e

1X∗
i
⊗cj

−−−−→ X∗i⊗(X⊗X∗j )
a−1
X∗
i
,X,X∗

j−−−−−→ (X∗i⊗X)⊗X∗j
ei⊗1X∗

j−−−−→ e⊗X∗j
lX∗
j−−→ X∗j (16)

and show that φij is inverse to φji. For notational simplicity we restrict attention to the case
where C is strict and consider the diagram

X∗i

φij

&&

1⊗cj
��

1⊗ci // X∗i⊗X⊗X∗i
1⊗cj⊗1⊗1

��

1⊗1⊗1

**
X∗i⊗X⊗X∗j

1⊗1⊗1⊗ci//

ei⊗1

��

X∗i ⊗X⊗X∗j⊗X⊗X∗i
1⊗1⊗ej⊗1//

ei⊗1⊗1⊗1

��

X∗i⊗X⊗X∗i
ei⊗1

��
X∗j

φji

44
1⊗ci // X∗j⊗X⊗X∗i

ej⊗1 // X∗i ,

in which the upper triangle commutes by (14), the curved triangles by definition of φij and the
rectangles by functoriality of the tensor product. This shows that φji ◦ φij = (ei⊗1) ◦ (1⊗ci).
By applying the snake identity (14), we obtain φji ◦ φij = 1X∗i . This shows that φij : X∗i → X∗j
are isomorphisms. To show the remaining identities, we consider the diagrams

X∗i⊗X

φij⊗1

''

1⊗1

��

1⊗cj⊗1// X∗i⊗X⊗X∗j⊗X

1⊗1⊗ejww

ei⊗1⊗1// X∗j⊗X

ej

wwX∗i⊗X ei
// e

e

ci

��

cj // X⊗X∗j
ci⊗1⊗1

��

1⊗1

''
X⊗X∗i

1⊗φij
66

1⊗1⊗cj// X⊗X∗i ⊗X⊗X∗j
1⊗ei⊗1 // X⊗X∗j ,

in which the triangles commute by (14) and the rectangles by functoriality of the tensor
product. This shows that ej ◦ (φij⊗1X) = ei and (1X⊗φij) ◦ ci = cj for φij from (16). It also
shows that any morphism φij that satisfies these identities is given by (16). 2

Example 2.1.3:

1. In the category C = Fun(D,D) an object F : D → D is left (right) dualisable, if and only
if it has a right (left) adjoint (Exercise 12).
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2. The category VectfdF of finite-dimensional vector spaces over F is rigid with the dual vector
space V ∗ = ∗V as the left and right dual and the evaluations and coevaluations

coevRV : F→ V⊗V ∗, λ 7→ λΣn
i=1vi⊗αi evRV : V ∗⊗V → F, α⊗v 7→ α(v) (17)

coevLV : F→ V ∗⊗V, λ 7→ λΣn
i=1α

i⊗vi evLV : V⊗V ∗ → F, v⊗α 7→ α(v),

where (v1, ..., vn) is a basis of V and (α1, ..., αn) the dual basis of V ∗. To show that VectfdF
is right rigid, we verify the identities (14)

rV ◦ (idV⊗evRV ) ◦ aV,V ∗,V ◦ (coevRV⊗idV ) ◦ l−1
V (v) = Σn

i=1α
i(v)vi = v

lV ◦ (evRV⊗idV ∗) ◦ a−1
V,V ∗,V ◦ (idV ∗⊗coevRV ) ◦ r−1

V (β) = Σn
i=1β(vi)α

i = β

for all v ∈ V , β ∈ V ∗. A similar computation shows that VectfdF is left rigid.

3. One may modify the left evaluation and coevaluation in VectfdF by setting

ev′LV = evL ◦ (µ−1⊗idV ∗) : V⊗V ∗ → F coev′LV = (idV ∗⊗µ) ◦ coevLV : F→ V ∗⊗V

for an isomorphism µ : V → V . A direct computation shows that ev′LV and ev′LV , again sat-
isfy (15). An analogous procedure can be applied to the right evaluation and coevaluation.

4. The category F[G]−Modfd of finite-dimensional modules over a group algebra F[G] from
Example 1.1.5 is rigid.

The left and right dual of an F[G]-module (V,�) is (V ∗,�∗) with the F[G]-module
structure g �∗ α = α ◦ (g−1 � −). The evaluations and coevaluations are again given by
(17) and become F[G]-linear with this dual module structure.

5. For any finite group G and 3-cocycle ω : G×G×G→ F×, the monoidal category Vectω fdG ,
the full subcategory of the category VectωG in Example 1.1.6 with only finite-dimensional
vector spaces as objects, is rigid (Exercise 13).

6. If X is a right (left) dualisable object in C and F : C → D a monoidal functor, then
F (X) is right (left) dualisable. It follows that if C is right (left) rigid and F essentially
surjective, then D is right (left) rigid (Exercise 14).

Note that the restriction to finite-dimensional vector spaces and finite-dimensional F[G]-
modules in the second, third and fourth example is necessary to ensure the existence of the
coevaluation. There is no way of extending it consistently to infinite-dimensional vector spaces.
Note also that although it is defined in terms of a basis, the coevaluation in the second example
does not depend on the choice of this basis (Exercise).

The first example and third example in Example 2.1.3 show that left and right duals in a rigid
monoidal category need not coincide, and the existence of left (right) dual does not imply the
existence of a right (left) dual. In fact, one can characterise the existence of left or right duals
in a monoidal category C in terms of left or right adjoint functors.

Proposition 2.1.4: Let C be a monoidal category.

1. If C ∈ Ob C is right dualisable, then the functor LC∗ = C∗⊗− : C → C is left adjoint to
LC = C⊗− : C → C and RC∗ = −⊗C∗ : C → C is right adjoint to RC = −⊗C : C → C.
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2. If C ∈ Ob C is left dualisable, then the functor L∗C = ∗C⊗− : C → C is right adjoint to
LC = C⊗− : C → C and R∗C = −⊗∗C : C → C is left adjoint to RC = −⊗C : C → C.

If C is rigid all functors LC = C⊗− and RC = −⊗C have left and right adjoints.

Proof:
We prove the claim for the functor LC∗ = C∗⊗− : C → C. The proofs for the functors
L∗C , RC∗ , R∗C : C → C are analogous.

The unit ε : LC∗LC → idC and counit η : idC → LCLC∗ of the adjunction LC∗ a LC are given
by the right and left coevaluation and evaluation for C and have component morphisms

εM : C∗⊗(C⊗M)
a−1
C∗,C,M−−−−−→ (C⊗C∗)⊗M

evRC⊗1M−−−−−→ e⊗M lM−→M

ηM : M
l−1
M−−→ e⊗M

coevRC⊗1M−−−−−−→ (C⊗C∗)⊗M
aC,C∗,M−−−−−→ C⊗(C∗⊗M).

Due to the naturality of the associator and the unit constraints, these morphisms are natural
in M and hence define natural transformations ε : LC∗LC → idC and η : idC → LCLC∗ .

That they satisfy the conditions (LCε) ◦ (ηLC) = idLC and (εLC∗) ◦ (LC∗η) = idLC∗ from
Proposition B.20 follows from the commuting diagrams

C⊗M
l−1
C⊗M

��

1C⊗M // C⊗M
l−1
C ⊗1

��

1C⊗M // C⊗M 1C⊗M // C⊗M

e⊗(C⊗M)

coevRC⊗(1⊗1)
��

(e⊗C)⊗Maoo

(coevRC⊗1)⊗1
��

(C⊗e)⊗M a //

rC⊗1

OO

C⊗(e⊗M)

1⊗lM

OO

(C⊗C∗)⊗(C⊗M)

a
))

((C⊗C∗)⊗C)⊗Maoo a⊗1 // (C⊗(C∗⊗C))⊗M a //

(1⊗evRC)⊗1

OO

C⊗((C∗⊗C)⊗M)

1⊗(evRC⊗1)

OO

C⊗(C∗⊗(C⊗M))
1⊗a−1

22

C∗⊗M
1⊗l−1

M
��

1C∗⊗M // C∗⊗M
1C∗⊗M //

r−1
C∗⊗1

��

C∗⊗M
1C∗⊗M // C∗⊗M

C∗⊗(e⊗M)

1⊗(coevRC⊗1)
��

(C∗⊗e)⊗Maoo

(1⊗coevRC)⊗1
��

(e⊗C∗)⊗M

lC∗⊗1

OO

a // e⊗(C∗⊗M)

lC∗⊗M

OO

C∗⊗((C⊗C∗)⊗M)

1⊗a **

(C∗⊗(C⊗C∗))⊗Maoo ((C∗⊗C)⊗C∗)⊗M a //

(evRC⊗1)⊗1)

OO

a⊗1oo (C∗⊗C)⊗(C∗⊗M)

evRC⊗(1⊗1)

OO

a
rr

C∗⊗(C⊗(C∗⊗M)).

The outer paths from C⊗M to C⊗(C∗⊗(C⊗M)) and from C⊗(C∗⊗(C⊗M)) to C⊗M in
the first diagram are the component morphisms (ηLC)M and (LCε)M . The outer paths from
C∗⊗M to C∗⊗(C⊗(C∗⊗M)) and from C∗⊗(C⊗(C∗⊗M)) to C∗⊗M in the second diagram
are the component morphisms (LC∗η)M and (εLC∗)M . In both diagrams, the pentagons at
the bottom commute by the pentagon axiom, the upper left and upper right rectangles by
Lemma 1.2.1 and the triangle axiom, the lower left and lower right rectangles by naturality
of the associator and the hexagons in the middle by the snake identity (14) for the right duals. 2
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Left and right duals in a monoidal category can be included in the graphical calculus. We
represent the right and left (co)evaluation for right and left dualisable objects in a monoidal
category by the following diagrams

X∗ X

X X∗
XX ∗X

∗X X

evRX : X∗⊗X → e coevRX : e→ X⊗X∗ evLX : X⊗∗X → e coevLX : e→ ∗X⊗X.

The commuting diagrams (14) and (15) in Definition 2.1.1 then take the form

X∗

X

X

=

X X∗

= X

X∗

X∗

X

∗X

∗X

=

∗X X

= ∗X

X

X

(18)

For this reason they are often called the snake identities or zigzag identities.

The diagrammatic representation of the duals also suggests a way of extending duals from
objects to morphisms. Given a morphism f : X → Y and representing it diagrammatically, we
may use pictures as the ones in the snake identity to construct a morphism f ∗ : Y ∗ → X∗ from
the right duals or a morphism ∗f : ∗X → ∗Y from the left duals:

Y ∗

X∗

f ∗ :=
X

Y

Y ∗

X∗

f

∗Y

∗X

∗f :=
X

Y

∗Y

∗X

f

(19)

This suggests that one could extend the right or left duals to a functor. As the construction
in (19) reverses the source and target objects and the tensor products, it should correspond to
a monoidal functor ∗ : C → Cop,op, where Cop,op is the category with the opposite composition
and the opposite tensor product. The following proposition shows that this is indeed the case.

Proposition 2.1.5: Let C be a right (left) rigid monoidal category. Then the right (left) duals
define a monoidal functor ∗ : C → Cop,op.
Proof:
We prove the claim for right rigid monoidal categories. The proof for left rigid monoidal cate-
gories is analogous. For this, we define ∗ on morphisms by setting for each morphism f : X → Y

f ∗ : Y ∗
r−1
Y ∗−−→ Y ∗⊗e

1Y ∗⊗coevRX−−−−−−→ Y ∗⊗(X⊗X∗)
a−1
Y ∗,X,X∗−−−−−→ (Y ∗⊗X)⊗X∗ (1Y ∗⊗f)⊗1X∗−−−−−−−−→ (Y ∗⊗Y )⊗X∗

evRY ⊗1X∗−−−−−→ e⊗X∗ lX∗−−→ X∗. (20)

Diagrammatically, this morphism is given by the left picture in (19). Using this diagrammatic
representation and the diagrammatic representation of the snake identities in (18), we obtain
for all objects X, Y and morphisms f : X → Y

X∗

Y ∗

f ∗
X

=
Y

X

f

Y ∗

X
f

Y X∗

=
f ∗
Y ∗

X∗Y

(21)
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The snake identities also imply 1∗X = 1X∗ for all objects X and (g ◦ f)∗ = f ∗ ◦ g∗ for all
morphisms g : Y → Z:

Y ∗

Z∗

X∗

f ∗

g∗

=
Y

Z

Z∗

Y ∗
g

X

Y

X∗

f =

Z∗

X∗

f

g
Y

X

Z

=

Z∗

X∗

(g ◦ f)∗

This shows that ∗ : C → Cop is a functor.

To prove that it is a monoidal functor, we construct an isomorphism φe : e→ e∗ and a natural
isomorphism φ⊗ : ⊗op(∗×∗)→ ∗⊗ that satisfy the compatibility conditions with the associator
and unit constraints from Definition 1.1.11. For this, we define φe := le∗ ◦ coevRe : e → e∗. By
combining the snake identity (14) with Lemma 1.2.1, one finds that φe is invertible, with inverse
φe−1 = evRe ◦ r−1

e∗ : e∗ → e. We also define for all objects X, Y

φ⊗X,Y =

X∗Y ∗

X Y

1X⊗Y

X⊗Y

(X⊗Y )∗

φ⊗ −1
X,Y =

Y ∗ X∗

YX
1X⊗Y

X⊗Y

(X⊗Y )∗

The snake identity then implies directly that φ−1
X,Y is inverse to φ⊗X,Y . The naturality of φ⊗

follows from the identity (21), together with the fact that ⊗ is a functor and the naturality of
the associator and the unit constraints. The compatibility conditions from Definition 1.1.11
that involve the the associator and the unit constraints follow directly from the definition of
φ⊗ and φe and the coherence theorem. This shows that ∗ is monoidal. 2

Remark 2.1.6: (Exercise 15)

1. One can show that for a rigid monoidal category C the functors ∗R : C → Cop,op and
∗L : C → Cop,op defined by the right and left duals are equivalences of categories: The
functors ∗L∗R : C → C and ∗R∗L : C → C are naturally isomorphic to idC.

2. For any monoidal functor F : C → D between right (left) rigid monoidal categories C
and D, the functors ∗DF : C → Dop,op and F∗C : C → Dop,op are naturally isomorphic.

3. Statements 1. and 2. imply that if C and D are rigid, any monoidal natural transformation
η : F → F ′ is a monoidal isomorphism.

2.2 Pivotal categories and traces

Proposition 2.1.5 shows that right (left) duals in a right (left) rigid monoidal category C define a
functor ∗ : C → Cop,op. This functor generalises the functor ∗ : VectfdF → Vectfd op,opF that assigns
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to a vector space V its dual V ∗ and to a linear map f : V → W the linear map f ∗ : W ∗ → V ∗,
α 7→ α ◦ f . The question is what happens if we apply this functor twice.

In the category VectfdF , there is a natural isomorphism can : id→ ∗∗. Its component morphisms
are the canonical maps canV : V → V ∗∗ that assign to a vector v ∈ V the linear map fv : V ∗ → F
with fv(α) = α(v) for all α ∈ V ∗. Hence, up to this canonical natural isomorphism, taking
double duals has no effect.

However, this is not inherent in the diagrammatic calculus. The diagrammatic definition of
the dual morphisms in (20) shows that that taking multiple right or left duals of a morphism
f : X → Y wraps the lines for the objects X and Y around the circle representing f . To undo
this wrapping, one would require a natural isomorphism ω : idC → ∗∗. This would allow one
to interpret the functor ∗ : C → Cop,op as a symmetry of the diagrams, namely a 180 degree
rotation in the plane.

Definition 2.2.1: Let C be a right rigid monoidal category. A pivotal structure on C is a
monoidal natural isomorphism ω : idC → ∗∗. A pivotal category is a pair (C, ω) of a right
rigid monoidal category C and a pivotal structure ω.

Example 2.2.2:

1. The rigid monoidal category VectfdF is pivotal with the pivot ω given by the canonical
isomorphisms ωV = canV : V → V ∗∗, v 7→ fv with fv(α) = α(v) for α ∈ V ∗, v ∈ V .

2. For any group G, the rigid monoidal category F[G]−Modfd is pivotal with the pivot ω
given by the canonical isomorphisms ωV = canV : V → V ∗∗, v 7→ fv with fv(α) = α(v) for
α ∈ V ∗, v ∈ V . As the F[G]-module structure �∗ on V ∗ is defined by g�∗α = α◦(g−1�−),
these morphisms are F[G]-linear.

A indicated in (22), the pivot of a pivotal category is represented diagrammatically as a mor-
phism that unwraps the double dual of each morphism in C. The naturality of the pivot states
that morphisms ωX can be moved through any morphism f : X → Y , provided that suitable
double duals are taken and the argument of the pivot is adjusted:

X

Y
f

Y ∗

X∗

X

Y ∗∗

ωX

X∗∗

=

X

ωX

X∗∗

f ∗∗

Y ∗∗

=

X

f

Y

ωY

Y ∗∗

(22)

A pivot also guarantees that right dual objects are left dual objects and vice versa, just as in
the pivotal category finite-dimensional vector spaces. The left evaluation and coevaluation of
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an object X in a right rigid monoidal category can be defined by composing the pivot with the
right evaluation and coevaluation of its right dual X∗.

Proposition 2.2.3: Every pivotal category is left rigid, and right dual objects in a pivotal
category are left dual objects.

Proof:
Let C be a pivotal category. Define ∗X := X∗ for all objects X of C and

evLX : X⊗X∗ ω⊗1X∗−−−−→ X∗∗⊗X∗
evR
X∗−−−→ e coevLX : e

coevR
X∗−−−−→ X∗⊗X∗∗ 1X∗⊗ω−1

−−−−−→ X∗⊗X (23)

X X∗ := X∗∗ X∗

ωX

X X∗

X∗ X := X∗∗

ω−1
X

X∗ X

That this left evaluation and coevaluation satisfy the snake identities follows by a direct com-
putation from their definition and the snake identities for the right evaluation and coevaluation:

X

X∗

X∗

(23)
=

X∗∗

X∗
X∗∗

X∗

X
ωX

ω−1
X

X∗∗

X∗

X∗

= (14)
=

X∗

X∗

X

X

(23)
=

X∗∗
X∗

X

ωX

X∗∗

X

ω−1
X

X

X

(14)
=

ω−1
X

ωX
X∗∗ =

X

2

Proposition 2.2.3 allows one to simplify the graphical calculus for a pivotal category. As left
and right dual objects in a pivotal category coincide, we can denote the object X∗ = ∗X
diagrammatically by an arrow labelled with X that points upward and the object X by an
arrow labelled by X that points downwards. The left evaluation can be represented by the
diagrams in (23) and all labels corresponding to left and right duals can be omitted.

X

:=

X X∗

:=

X
Y

X

f ∗ :=

Y ∗

X∗

f ∗

Another benefit of a pivotal structure is that any pivotal category is equipped with the notion of
a left trace and right trace that generalises the trace in the category VectfdF . The trace in VectfdF
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assigns to each endomorphism f : V → V a number, i. e. an endomorphism of the unit object
F. Similarly, the left and right trace in a pivotal category (C, ω) assign to each endomorphism
f : X → X an endomorphism of the unit object in C, i. e. an element of the commutative
monoid EndC(e).

In particular, this yields a generalised notion of dimension for each object X, namely the left
and right traces of the identity morphism 1X : X → X. The only difference is that in a general
pivotal category it is not guaranteed that left and right traces coincide. A pivotal category with
this property is called spherical, because the diagrams for left and right traces can be deformed
into each other if they are drawn on a sphere S2.

Definition 2.2.4: Let C be a pivotal category, equipped with the left evaluation and
coevaluation from Proposition 2.2.3, X an object in C and f : X → X a morphism.

1. The left and right trace of f are defined as

trL(f) = evRX ◦ (1X∗⊗f) ◦ coevLX trR(f) = evLX ◦ (f⊗1X∗) ◦ coevRX

trL(f) =

X

X

f trR(f) =

X

X

f

2. The left and right dimension of X are defined as

dimL(X) = trL(1X) = evRX ◦ coevLX dimR(X) = trR(1X) = evLX ◦ coevRX

dimL(X) = X dimR(X) = X

3. The category C is called spherical if trL(f) = trR(f) for all endomorphisms f in C.

The left and right traces in a pivotal category have many properties that are familiar from
the traces in VectfdF such as cyclic invariance and compatibility with duality. They are also
compatible with tensor products, provided the morphisms satisfy a mild addition assumption.
In particular, this implies that the left and right dimensions of objects in C behave in a way
that is very similar to the dimensions of vector spaces.

Lemma 2.2.5: Let C be a pivotal category. The traces in C have the following properties:

1. cyclic invariance: trL,R(g ◦ f) = trL,R(f ◦ g) for all morphisms f : X → Y , g : Y → X.

2. duality: trL,R(f) = trR,L(f ∗) for all endomorphisms f : X → X.

3. compatibility with tensor products:
If rY ◦ (1Y⊗h) ◦ r−1

Y = lY ◦ (h⊗1Y ) ◦ l−1
Y for all endomorphisms h : e→ e and an object Y ,

then trL,R(f⊗g) = trL,R(g) · trL,R(f) for all objects X and endomorphisms f : X → X,
g : Y → Y .
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Proof:
We prove these identities graphically for the left traces. The proofs for the right traces are
analogous. The definition of the left evaluation and coevaluation and the pivot implies:

Y

X

f

Y

(23)
=

X Y ∗

Y ∗∗

f
ωY nat.ω

=

X Y ∗

Y ∗∗
f ∗∗
ωX

(21)
= X∗∗

X
ωX

Y ∗

f ∗

X∗
(23)
= X

Y

f ∗
X

(24)

X

f ∗

Y

(23)
=

X∗ Y

Y ∗ Y ∗∗
f ∗ ω−1

Y

(21)
=

X∗ Y

X∗∗

f ∗∗

ω−1
Y

nat.ω
=

X∗ Y

X∗∗

f
ω−1
X

(23)
=

X

Y

f

X

By combining these identities with the corresponding identities for the right evaluation and
coevaluation in (21), we obtain

trL(g ◦ f) =

X

X

f
X

Y
g

X

(21)
=

X

Y

f
X

Yg∗
=

X

Y
f
X

Y

g∗

(24)
=

Y

Y

g
Y

X
f

Y

= trL(f ◦ g),

and for all endomorphisms f : X → X

trL(f) =

XX

X X

f (21)
=

XX

X X

f ∗ = trR(f ∗).

The condition rY ◦ (1Y⊗h) = lY ◦ (h⊗1Y ) implies that we can move trL(f) : e→ e to the right
of the line labelled with Y in the picture for trL(f⊗g). This yields

trL(f⊗g) =

XX

X XY Y

f

Y Y

g =

YY

Y Y

g

XX

X X

f = trL(g) · trL(f)

where · is the multiplication in commutative monoid HomC(e, e) from Corollary 1.2.2. 2
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Corollary 2.2.6: Let C be a pivotal category. Then:

(i) X ∼= Y implies dimL,R(X) = dimL,R(Y ),

(ii) dimL,R(X) = dimR,L(X∗) for all objects X,

(iii) If rY ◦ (1Y⊗h) ◦ r−1
Y = lY ◦ (h⊗1Y ) ◦ l−1

Y for all endomorphisms h : e → e and an object
Y , then dimL,R(X⊗Y ) = dimL,R(X) · dimL,R(Y ) for all objects X, Y ,

(iv) dimL(e) = dimR(e) = 1e.

Proof:
(i) If X ∼= Y , then there is an isomorphism f : X → Y . With the cyclic invariance of the trace
one obtains

dimL(X) = trL(1X) = trL(f−1 ◦ f) = trL(f ◦ f−1) = trL(1Y ) = dimL(Y ).

(ii) Follows directly from Lemma 2.2.5, 2. by setting f = 1X and using the identity 1X∗ = 1∗X ,
which follows from the fact that ∗ : C → Cop is a functor. Similarly, (iii) is obtained from Lemma
2.2.5, 3. by setting f = 1X and g = 1Y .

(vi) By Lemma 1.2.1 we have re = le, and the naturality of the unit constraints implies that
le ◦ (1e⊗h) ◦ l−1

e = h = re ◦ (h⊗1e) ◦ r−1
e for all enomorphisms h : e → e. With the cyclic

invariance of the trace from Lemma 2.2.5, 1. this yields for all endomorphisms h : e→ e

trL,R(h) · dimL,R(e) = trL,R(h⊗1e) = trL,R(r−1
e ◦ h ◦ re) = trL,R(h).

and hence dimL,R(e) = 1e, the multiplicative unit in the commutative monoid HomC(e, e). 2

34



3 Braided monoidal categories

3.1 Braided monoidal categories

In this section, we consider monoidal categories C with additional structure, namely a natural
isomorphism c : ⊗ → ⊗op, where ⊗op : C ×C → C is the opposite tensor product from Example
1.1.4, 8. It assigns to a pair (U, V ) of objects in C the object U⊗opV = V⊗U and to a pair
of morphisms f : U → U ′, g : V → V ′ the morphism f⊗opg = g⊗f : V⊗U → V ′⊗U ′. The
component morphisms cU,V : U⊗V → V⊗U of this natural isomorphism generalise the flip
maps τU,V : U⊗V → V⊗U , u⊗v 7→ v⊗u in the category VectF.

Just as the flip maps τU,V in VectF, these component morphisms need to satisfy a compatibility
condition with the tensor product in C, namely that flipping an object with a tensor product
of two other objects is the same as flipping it first with one and then with the other. A natural
isomorphism c : ⊗ → ⊗op that satisfies this condition is called a braiding. Unlike the flip map
τ , a braiding does not need to be involutive or symmetric, i. e. to satisfy cV,U ◦ cU,V = idU⊗V .

Definition 3.1.1: Let (C,⊗, e, a, l, r) be a monoidal category.

1. A braiding for C is a natural isomorphism c : ⊗ → ⊗op that satisfies the hexagon
axioms: the following diagrams commute for all objects U, V,W in C

(U⊗V )⊗W
aU,V.W

��

cU,V ⊗1W// (V⊗U)⊗W
aV,U,W// V⊗(U⊗W )

1V ⊗cU,W
��

U⊗(V⊗W )cU,V⊗W
// (V⊗W )⊗U aV,W,U

// V⊗(W⊗U)

U⊗(V⊗W )

a−1
U,V,W

��

1U⊗cV,W// U⊗(W⊗V )
a−1
U,W,V // (U⊗W )⊗V

cU,W⊗1V
��

(U⊗V )⊗W cU⊗V,W
//W⊗(U⊗V )

a−1
W,U,V // (W⊗U)⊗V

.

2. A braiding is called symmetric if cW,V = c−1
V,W for all objects V,W in C.

3. A monoidal category with a braiding is called a braided monoidal category. If the
braiding is symmetric, it is called a symmetric monoidal category.

Remark 3.1.2:

1. If (C,⊗, e) is a strict monoidal category, then the hexagon axioms reduce to the equations

cU⊗V,W = (cU,W⊗1V ) ◦ (1U⊗cV,W ) cU,V⊗W = (1V⊗cU,W ) ◦ (cU,V⊗1W ).

2. If c : ⊗ → ⊗op is a braiding for (C,⊗, e, a, l, r), then c′ : ⊗ → ⊗op with component
morphisms c′U,V = c−1

V,U : U⊗V → V⊗U is a braiding as well (Exercise). It is called the
opposite braiding and shows that a braiding is a choice of structure, not a property.

3. For all objects V in a braided monoidal category (C,⊗, e, a, l, r, c) one has

cV,e = l−1
V ◦ rV = c−1

e,V .
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This is obtained from the diagram

(V⊗e)⊗W

cV,e⊗1W

��

aV,e,W //

rV ⊗1W ''

V⊗(e⊗W )
cV,e⊗W //

1V ⊗lW
��

(e⊗W )⊗V
lW⊗1V

��
ae,W,V

��

V⊗W
cV,W //W⊗V

(e⊗V )⊗W ae,V,W
//

lV ⊗1W

77

e⊗(V⊗W )

lV⊗W

OO

1e⊗cV,W
// e⊗(W⊗V ),

lW⊗V

OO

in which the upper rectangle commutes by the naturality of c, the lower rectangle by
naturality of l, the triangle on the upper left by the triangle axiom, the triangles on the
lower left and on the right by Lemma 1.2.1, and the outer hexagon by the first hexagon
axiom. As all arrows are labelled by isomorphisms, this implies that the middle triangle
on the left commutes as well and hence (lV ◦ cV,e)⊗1W = rV⊗1W for all objects V,W .
Setting W = e and applying the same argument as in the proof of Lemma 1.2.1 one then
obtains cV,e = l−1

V ◦ rV . The proof of the second identity is analogous.

4. For all objects U, V,W in in a braided tensor category (C,⊗, e, a, l, r, c) the dodecagon
diagram commutes:

(V⊗U)⊗W
aV,U,W

��

(U⊗V )⊗W
cU,V ⊗1Woo

aU,V,W// U⊗(V⊗W )

1U⊗cV,W
��

cU,V⊗W

zz

V⊗(U⊗W )

1V ⊗cU,W
��

U⊗(W⊗V )

a−1
U,W,V
��

cU,W⊗V

zz

V⊗(W⊗U)

a−1
V,W,U

��

(U⊗W )⊗V
cU,W⊗1V
��

(V⊗W )⊗U
cV,W⊗1U

��

(W⊗U)⊗V
aW,U,V

��
(W⊗V )⊗U aW,V,U

//W⊗(V⊗U) W⊗(U⊗V )
1W⊗cU,V
oo

This follows because the two hexagons commute by the hexagon axioms and the
parallelogram by naturality of the braiding.

If (C,⊗, e, a, l, r, c) is strict, it reduces to the Yang-Baxter equation

(cV,W⊗1U) ◦ (1V⊗cU,W ) ◦ (cU,V⊗1W ) = (1W⊗cU,V ) ◦ (cU,W⊗1V ) ◦ (1U⊗cV,W ).

Example 3.1.3:

1. The category VectF is a symmetric monoidal category with the braiding given by the flip
map cU,V : U⊗V → V⊗U , u⊗v 7→ v⊗u. More generally, for any commutative ring k, the
category (k-Mod, ⊗k, k) is a symmetric monoidal category with cU,V : U⊗kV → V⊗kU ,
u⊗v 7→ v⊗u.

2. For any group G, the category F[G]−Mod is a symmetric monoidal category with the
braiding cU,V : U⊗V → V⊗U , u⊗v 7→ v⊗u from VectF. As g� (u⊗v) = (g� u)⊗(g� v),
the maps cU,V become F[G]-linear.
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3. The categories Set and Top with, respectively, the cartesian product of sets and the
product of topological spaces are symmetric monoidal categories with the braiding
cX,Y : X × Y → Y ×X, (x, y) 7→ (y, x).

4. More generally, any monoidal category C whose tensor product is given by a categorical
product or coproduct in C is a symmetric monoidal category.

5. Let F be a field of characteristic charF 6= 2. Then the category VectFZ/2Z is a symmetric

monoidal category with cU,V : U⊗V → V⊗U , u⊗v 7→ (−1)deg(u) deg(v)v⊗u, where
deg(u) = 0 if u ∈ U0 and deg(u) = 1 if u ∈ U1.

6. The category ChR-Mod of chain complexes and chain maps from Example 1.1.4, 6. is a
symmetric monoidal category.

Example 3.1.4: Let G be a group.

• A crossed G-set is a triple (X,�, µ) of a set X, a left action � : X × G → X and a
map µ : X → G that satisfy µ(g � x) = g · µ(x) · g−1 for all x ∈ X and g ∈ G.

• A morphism of crossed G-sets from (X,�X , µX) to (Y,�Y , µY ) is a map f : X → Y
with f(g �X x) = g �Y f(x) for all x ∈ X and g ∈ G and µY ◦ f = µX .

• The tensor product of crossed G-sets (X,�X , µX) and (Y,�Y , µY ) is the crossed G-set
(X × Y,�, µ) with g � (x, y) = (g �X x, g �Y y) and µ(x, y) = µX(x) · µY (y). The tensor
product of morphisms f : X → Y and h : U → V of crossed G-sets is the morphism
h× f : U ×X → V × Y .

Crossed G-sets form a monoidal category X(G), where the tensor unit is the singleton {•} with
the trivial group action and the map µ : {•} → G, • 7→ e. It is braided, but not symmetric,
with the component morphisms of the braiding given by

cX,Y : X × Y → Y ×X, (x, y) 7→ (y, µY (y)−1�X)

and the ones of the opposite braiding by

copX,Y = c−1
Y,X : x× Y → Y ×X, (x, y) 7→ (µX(x) �Y y, x).

Example 3.1.5:

1. The braid category B is a strict braided monoidal category.

2. The permutation category S is a strict symmetric monoidal category.

Proof:
We take as the component morphisms of the braiding in B the morphisms

cm,n = (σn ◦ ... ◦ σ2 ◦ σ1) ◦ (σn+1 ◦ ... ◦ σ3 ◦ σ2) ◦ ... ◦ (σn+m−1 ◦ ... ◦ σm+1 ◦ σm) (25)

that braid the first m strands over the last n strands.
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cm,n =

1 ...m m+ n

1 ... n m+ n

... ...

...

... ...

(26)

Then the hexagon axioms follow directly from the definition of the braiding. To prove naturality
of the braiding, it is sufficient to show that

cm,n ◦ (σi⊗σj) = (σj⊗σi) ◦ cm,n

for all i ∈ {1, ...,m−1} and j ∈ {1, ..., n−1}. This follows by repeatedly applying the relations

=

=

σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1 σi ◦ σj = σj ◦ σi
for all i ∈ {1, ..n+m− 2} for all i ∈ {1, ..n+m− 2}, |i− j| > 1.

The permutation category S is described by the same relations as the braid category B,
plus the additional relations σ2

i = id. It follows that it is braided with the isomorphisms
cm,n : Sn⊗Sm → Sm⊗Sn given again by (25). The additional relations σ2

i = id imply that
overcrossings can be changed into undercrossings and hence cm,n = c−1

n,m for all n,m ∈ N0. This
shows that S is a symmetric monoidal category. 2

The braiding in a braided monoidal category has a diagrammatic interpretation. As suggested
by Example 3.1.5 and the name braiding, the component morphisms of the natural isomorphism
c : ⊗ → ⊗op in a braided monoidal category are represented diagrammatically by undercrossings
and overcrossings of the lines that represent the objects

U V

V U

V U

U V

V U

U V

U V

V U

cU,V : U⊗V → V⊗U c−1
U,V : V⊗U → U⊗V cV,U : V⊗U → U⊗V c−1

V,U : U⊗V → V⊗U.

The identities in Remark 3.1.2, 3. ensure that it is still consistent to omit the tensor unit from
the graphical calculus, since they imply that the braiding of the tensor unit with any other
object is given by the left and right unit constraints: ce,V = l−1

V ◦ rV = c−1
V,e and the left and

right unit constraints are not represented.
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The conditions c−1
U,V ◦ cU,V = 1U⊗V = cV,U ◦ c−1

V,U read

U V

U V

=

U V

=

U V

U V

(27)

The naturality of the braiding implies that morphisms can slide above or below a crossing:

U V

U ′

V U ′

f

=

V U ′

U V

U

f

U V

V ′

V ′ U

g

=

V ′ U

U V

V

g

(28)

The hexagon axioms state that the two possible interpretations of the following diagrams, as (i)
the composite of two braidings and (ii) a braiding of the object for one strand with the tensor
product of the objects for the other two, coincide:

U V W

V W U

U V W

W U V

(29)

The dodecagon identity states that the following two diagrams represent the same morphism:

U V W

W V U

=

U V W

W V U

(30)

A symmetric braiding is represented by the analogous diagrams, but in this case one need not
distinguish overcrossings and undercrossings and may represent them as simple crossings.

That the diagrams for a braided monoidal category resemble the diagrams for the braid category
B from Definition 1.1.10 is not a coincidence. The braid category plays a special role among
the braided monoidal categories that becomes apparent once one considers monoidal functors
that respect the braiding. Such a functor is called a braided monoidal functor, and monoidal
natural transformations between such functors are called braided natural transformations.
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Definition 3.1.6: Let C, D be braided monoidal categories.

1. A monoidal functor (F, φe, φ⊗) : C → D is called a a braided monoidal functor from
C to D if for all objects V,W in C the following diagram commutes

F (V )⊗F (W )

φ⊗V,W
��

cD
F (V ),F (W )// F (W )⊗F (V )

φ⊗W,V
��

F (V⊗W )
F (cCV,W )

// F (W⊗V ).

If C and D are symmetric tensor categories, then a braided monoidal functor F : C → D
is also called a symmetric monoidal functor.

2. A braided natural transformation is a monoidal natural transformation between
braided monoidal functors. A braided natural isomorphism is a braided natural trans-
formation that is a natural isomorphism.

Example 3.1.7:

1. The forgetful functors V : Top→ Set, VectF → Set from Example 1.1.14 and the forgetful
functors V : k −Mod→ Ab for a commutative ring k and V : F[G]−Mod→ VectF for a
group G are symmetric monoidal functors.

2. The functor F : Set → VectF from from Example 1.1.14 that assigns to a set X the
free vector space 〈X〉F generated by X and to a map f : X → Y the induced map
F (f) : 〈X〉F → 〈Y 〉F is a symmetric monoidal functor.

3. The family (Πn)n∈N0 of group homomorphisms Πn : Bn → Sn, σi 7→ σi introduced after
Definition 1.1.9 define a strict braided monoidal functor F : B → S with F (n) = n for
all n ∈ N0 and F (f) = Πn(f) for all morphisms f ∈ HomB(n, n) = Bn.

4. One can show (Exercise 19) that for any braided monoidal category (C,⊗, c) there is a
strict braided monoidal category C ′ and a braided monoidal equivalence F : C ′ → C. This
can be viewed as a braided version of MacLanes strictification theorem.

The braid category B captures the essence of a braided monoidal category. All morphisms in
B are obtained by composing braidings, their inverses and identity morphisms, via the tensor
product and the composition of morphisms. This makes it especially simple to construct braided
monoidal functors F : B → C into a braided monoidal category C.

Proposition 3.1.8: (universality of the braid category)
Let (C,⊗, c) be a strict braided monoidal category. Then for any object V of C there is a unique
strict braided monoidal functor FV : B → C with FV (1) = V .

Proof:
1. Any strict monoidal functor F : B → C satisfies F (0) = e for the tensor units and for n ∈ N,
one has F (n) = F (1 + ...+ 1) = F (1)⊗...⊗F (1). This shows that F is determined uniquely on
the objects by F (1) =: V .

The condition that F is a strict braided monoidal functor implies that the image of the morphism
c1,1 = σ1 : 2 → 2 is given by F (c1,1) = cV,V : V⊗V → V⊗V and F (c−1

1,1) = F (c1,1)−1 = c−1
V,V .
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As the generating morphisms in B are given by σ±1
i = 1i−1⊗c±1

1,1⊗1n−i−1 : n → n for all n ∈ N
and i ∈ {1, ..., n − 1} and F is monoidal, we have F (σ±1

i ) = 1V ⊗(i−1)⊗c−1
V,V⊗1V ⊗(n−i−1) . As any

morphism in B is a composite of the morphisms σi, this determines F on the morphisms.

2. Conversely, for any object V in C, we construct a functor FV : B → C by setting F (0) = e,
F (n) = V ⊗n for n ∈ N, FV (σ±1

i ) = 1V ⊗(i−1)⊗c±1
V,V⊗1V ⊗(n−i−1) . To show that this defines a functor

FV : B → C, one needs to check that FV respects the defining relations of the braid category:
The functoriality of the tensor product in C implies FV (σi) ◦ FV (σj) = FV (σj) ◦ FV (σi) for all
i, j ∈ {1, ..., n− 1} with |i− j| > 1 and the dodecagon identity in C implies FV (σi) ◦FV (σi+1) ◦
FV (σi) = FV (σi+1) ◦ FV (σi) ◦ FV (σi+1). Thus, FV respects the relations in Bn and is a functor,
which is strict monoidal by definition.

3. It remains to show that FV is braided, that is FV (cm,n) = cFV (m),FV (n) for all m,n ∈ N0. This
follows from the definition of cm,n in (26) and the definition of FV together with the hexagon
axiom for the braiding in C. 2

If we do not suppose that the category C is braided, the procedure in the proof of Proposition
3.1.8 still allows us to construct functors F : B → C as long as there is an object V in C with an
isomorphism σ : V⊗V → V⊗V that satisfies the dodecagon identity. We can then just consider
multiple tensor products of the object V with itself and take the morphism σ as the image of
the morphism c1,1 : 2→ 2. This does not even require that C is strict.

Definition 3.1.9: Let (C,⊗, e, a, l, r) be a monoidal category.

1. A Yang-Baxter operator in C is an object V in C together with an isomorphism
σ : V⊗V → V⊗V such that the dodecagon diagram commutes

(V⊗V )⊗V
aV,V,V

��

(V⊗V )⊗Vσ⊗1Voo
aV,V,V // V⊗(V⊗V )

1V ⊗σ
��

V⊗(V⊗V )

1V ⊗σ
��

V⊗(V⊗V )

a−1
V,V,V
��

V⊗(V⊗V )

a−1
V,V,V

��

(V⊗V )⊗V
σ⊗1V
��

(V⊗V )⊗V
σ⊗1V

��

(V⊗V )⊗V
aV,V,V

��
(V⊗V )⊗V aV,V,V

// V⊗(V⊗V ) V⊗(V⊗V )
1V ⊗σ
oo

2. A morphism of Yang-Baxter operators in C from (V, σ) to (W, τ) is a morphism
f : V → W with τ ◦ (f⊗f) = (f⊗f) ◦ σ.

Yang-Baxter operators in C and morphisms of Yang-Baxter operators in C form a category
YB(C). A Yang-Baxter operator in VectF is also called a braided vector space.
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Example 3.1.10:

1. If C is a braided monoidal category with braidings cU,V : U⊗V → V⊗U , then (V, cV,V ) is
a Yang-Baxter operator for any object V of C.

2. If F : C → D is a monoidal functor, then for any Yang-Baxter operator (V, σ) in C, the
pair (F (V ), σ′) with σ′ = φ⊗ −1

V,V ◦ F (σ) ◦ φ⊗V,V is a Yang-Baxter operator in D.

3. Let q, λ ∈ F× with q 6= 1 and V a vector space over F with an ordered basis (v1, ..., vn).
Then V becomes a braided vector space with

σ : V⊗V → V⊗V, vi⊗vj 7→


λ vj⊗vi i < j

λq vi⊗vi i = j

λ vj⊗vi + λ(q − q−1)vi⊗vj i > j.

Corollary 3.1.11: Let (V, σ) be a Yang-Baxter operator in C. Then there is a monoidal
functor F : B → C, unique up to coherence data in C, with F (1) = V and F (c1,1) = σ.

Proof:
The proof is analogous to the one of Proposition 3.1.8. We set F (0) = e and take for F (n) an
n-fold tensor product of V with itself with a chosen bracketing. This defines F on the objects.
On the morphisms, we define F (c1,1) = σ, and for the generators σi ∈ Bn we set F (σ±1

i ) =
1V ⊗(i−1)⊗σ±1⊗1V ⊗(n−i−1) , up to bracketings and associators that are determined uniquely by the
bracketing on the objects.

The functoriality of the tensor product in C then implies F (σi) ◦ F (σj) = F (σj) ◦ F (σi)
for all i, j ∈ {1, ..., n − 1} with |i − j| > 1 and the dodecagon identity for σ implies
F (σi) ◦ F (σi+1) ◦ F (σi) = F (σi+1) ◦ F (σi) ◦ F (σi+1). We thus obtain a functor F : B → C.
The functor F is monoidal with φe = 1e and the natural isomorphism φ⊗ given by the as-
sociators in C. It is unique up to the choice of the bracketings of multiple tensor products of V . 2

Remark 3.1.12: One can show (Exercise 20) that the category YB of Yang-Baxter operators
and morphisms of Yang-Baxter operators in a strict monoidal category C is equivalent to the
category Fun⊗(B, C) of strict monoidal functors F : B → C and monoidal natural transforma-
tions between them.

Corollary 3.1.13: Let (V, σ) be a braided vector space. Then the maps

ρn : Bn → AutF(V ⊗n), σi 7→ idV ⊗(i−1)⊗σ⊗idV ⊗(n−i−1)

define a family of representations of the braid groups Bn on V ⊗n.

Proof:
We define ρ on the generators of Bn by setting ρ(σ±1

i ) = idV ⊗(i−1)⊗σ±⊗idV ⊗(n−i−1) for all
i ∈ {1, ..., n − 1}. As (V, σ) is a Yang-Baxter operator in VectF, the functoriality of the
tensor product and the dodecagon identity allow one to extend ρ to a group homomorphism
ρ : Bn → AutF(V ⊗n). 2

42



3.2 The centre construction

The examples of braided monoidal categories in the previous sections might give the impression
that braided monoidal categories are rather special and that non-trivial examples are hard to
find. This is in fact not the case. In this section, we show that there is a canonical construction
that assigns to any monoidal category C a braided monoidal category Z(C).

It is called the centre construction, because it can be viewed as a categorical version of the
centre of a ring. The centre of a ring R is the subring Z(R) = {r ∈ R | r · s = s · r ∀s ∈ R}.
If we replace the multiplication of the ring by the tensor product of a monoidal category and
translate the definition naively, we would consider the full subcategory whose objects V satisfy
X⊗V = V⊗X for all objects X in C. However, this is not very useful, since it is too strict.
There are very few such objects in typical monoidal categories such as VectF. This makes it
more natural to impose X⊗V ∼= V⊗X instead.

One should also view the isomorphisms X⊗V ∼= V⊗X for different objects X as structures
associated with the object V and not as a property of V . This forces us to consider the in-
teraction of these isomorphisms with tensor products and with morphisms in C and to impose
consistency conditions.

Theorem 3.2.1: Let (C,⊗, e) be a monoidal category. Then there is a braided monoidal
category Z(C), the centre of C, defined as follows:

• The objects of Z(C) are pairs (V, c−,V ) of an object V in C and a family c−,V of
isomorphisms cX,V : X⊗V → V⊗X defined for all objects X in C such that:

(i) cX,V is natural in X: For all morphisms g : X → Y the following diagram commutes

X⊗V
g⊗1V

��

cX,V // V⊗X
1V ⊗g
��

Y⊗V cY,V
// V⊗Y.

(31)

(ii) for all X, Y, V ∈ Ob C the following diagram commutes

(X⊗Y )⊗V
aX,Y,V

ww

cX⊗Y,V// V⊗(X⊗Y )

X⊗(Y⊗V )

1X⊗cY,V ''

(V⊗X)⊗Y

aV,X,Y
gg

X⊗(V⊗Y )
a−1
X,V,Y

// (X⊗V )⊗Y
cX,V ⊗1Y

77

(32)

• A morphism f : (V, c−,V ) → (W, c−,W ) is a morphism f : V → W in C such that for all
objects X in C the following diagram commutes

X⊗V
1X⊗f

��

cX,V // V⊗X
f⊗1X
��

X⊗W cX,W
//W⊗X.

(33)
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The identity morphisms are the identity morphisms of C, and the composition of
morphisms is the composition of morphisms in C.

• The tensor product in Z(C) is given by (V, c−,V )⊗(W, c−,W ) = (V⊗W, c−,V⊗W ) with
cX,V⊗W defined by

X⊗(V⊗W )
a−1
X,V,W

vv

cX,V⊗W// (V⊗W )⊗X

(X⊗V )⊗W

cX,V ⊗1Y ((

V⊗(W⊗X)

a−1
V,W,X

hh

(V⊗X)⊗W aV,X,W
// V⊗(X⊗W )

1V ⊗cX,W

66

(34)

• The braiding of Z(C) is given by cV,W : (V, c−,V )⊗(W, c−,W )→ (W, c−,W )⊗(V, c−,V ).

Proof:
1. We show that Z(C) is a category. For this, it is sufficient to note that diagram (33) commutes
for f = 1V and that for morphisms f : (U, c−,U) → (V, c−,V ) and g : (V, c−,V ) → (W, c−,W ) in
Z(C), the morphism g ◦ f : U → W again makes the diagram (33) commute for all objects X
in C. This follows directly by stacking the diagrams (33) for f and g vertically.

2. We show that Z(C) is monoidal. To show that the tensor product is well-defined on the
objects, we prove that the morphisms cX,V⊗W from (34) are natural in the first argument and
make the diagram (32) commute. The naturality follows from the naturality of the associator
and of the morphisms cX,V and cX,W . We show that diagram (32) commutes for c−,V⊗W for the
case where C is strict. In this case we have the diagram

X⊗Y⊗V⊗W
cX⊗Y,V⊗W //

1⊗cY,V ⊗1

��

cX⊗Y,V ⊗1

**

V⊗W⊗X⊗Y

X⊗V⊗Y⊗W

1⊗1⊗cY,W **

cX,V ⊗1⊗1
// V⊗X⊗Y⊗W

1⊗cX⊗Y,W
44

1⊗1⊗cY,W// V⊗X⊗W⊗Y

1⊗cX,W⊗1

OO

X⊗V⊗W⊗Y,
cX,V ⊗1⊗1

44

in which the top triangle commutes by (34), the triangles on the left and right by (32) and
the quadrilateral at the bottom by the functoriality of the tensor product. As the paths from
the left and right top entry to the middle entry at the bottom are the morphisms 1X⊗cY,V⊗W
and cX,V⊗W⊗1Y by (34), this shows that diagram (32) commutes for c−,V⊗W if C is strict. The
general case is obtained by inserting associators and subdividing the diagram into pentagon
axioms, diagrams with two associators and one braiding, which commute by the naturality of
the associators, and diagrams (31) and (34).

To show that the tensor product is well-defined on morphisms, we need to show that for all
morphisms f : V → V ′ and g : W → W ′ for which diagram (33) commutes, diagram (33) also
commutes for f⊗g : V⊗W → V ′⊗W ′ with c−,V⊗W and c−,V ′⊗W ′ given by (34). This follows
from (34), the naturality of the associator and the commuting diagrams (33) for f, g. This shows
that the tensor product of Z(C) is well-defined and defines a functor ⊗ : Z(C)×Z(C)→ Z(C).

The tensor unit is the pair (e, c−,e) with cX,e = l−1
X ◦ rX : X⊗e → e⊗X, the unit constraints

are the unit constraints of C, and the associator is the associator of C. To show that this gives
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Z(C) the structure of a monoidal category, we need to show that these morphisms satisfy (33)
and hence are morphisms in Z(C). The pentagon and the triangle axiom then follow from the
pentagon and triangle axiom in C.

That the left unit constraints of C satisfy (33) follows from the commuting diagram

(e⊗X)⊗V
ae,X,V //

lX⊗1

''

e⊗(X⊗V )

lX⊗V
��

1⊗cX,V// e⊗(V⊗X)

lV⊗X
��

a−1
e,V,X // (e⊗V )⊗X

lV ⊗1ww
(X⊗e)⊗V

cX,e

OO

rX⊗1 // X⊗V
cX,V // V⊗X

X⊗(e⊗V )

1⊗lV

77

a−1
X,e,V

OO

in which the path from the lower left to the upper right along the left side and top of the
diagram represents cX,e⊗V , the rectangle in the middle commutes by naturality of l, the two
triangles adjacent to it by Lemma 1.2.1, the triangle on the lower left by the triangle axiom for
C and the triangle above it by definition of c−,e. This shows that the morphism lV : e⊗V → V
is a morphism in Z(C), and the proof for the morphism rV : V⊗e→ V is analogous.

The proof that the associators aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ) are morphisms in Z(C)
proceeds by expressing the morphisms cX,(U⊗V )⊗W and cX,U⊗(V⊗W ) as a composite of associators
and the morphisms cX,U , cX,V , cX,W via (34) and inserting this into diagram (33) for f = aU,V,W .
By introducing additional arrows labelled with associators, one can subdivide this diagram
into pentagons, which commute by the pentagon axiom for C, and squares that involve two
associators and two morphisms cX,Y for Y = U, V,W , which commute by naturality of the
associators (Exercise). This proves that Z(C) is a monoidal category.

3. We show that Z(C) is braided. For this, it is sufficient to prove that the morphisms
cV,W : (V, c−,V )⊗(W, c−,W )→ (W, c−,W )⊗(V, c−,V ) are morphisms in Z(C). The second hexagon
axiom in Definition 3.1.1 then follows directly from condition (32) and the first hexagon axiom
from the definition of cX,V⊗W in (34).

To see that cU,V is a morphism in Z(C), we consider the commuting diagram

(X⊗U)⊗V

cX⊗U,V

##

cX,U⊗1V// (U⊗X)⊗V

cU⊗X,V

$$

aU,X,V // U⊗(X⊗V )
1U⊗cX,V// U⊗(V⊗X)

a−1
U,V,X
��

X⊗(U⊗V )

1X⊗cU,V
��

a−1
X,U,V

OO

��

(U⊗V )⊗X
cU,V ⊗1X
��

X⊗(V⊗U)

a−1
X,V,U

��

(V⊗U)⊗X

(X⊗V )⊗U
cX,V ⊗1U

// (V⊗X)⊗U aV,X,U
// V⊗(X⊗U)

1V ⊗cX,U
// V⊗(U⊗X),

a−1
V,U,X

OO

where the hexagons on the left and right commute by (32) and the parallelogram in the middle
by naturality of c−,V in the first argument.
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By subdividing this commuting diagram as

(X⊗U)⊗V
cX,U⊗1V// (U⊗X)⊗V

aU,X,V // U⊗(X⊗V )
1U⊗cX,V// U⊗(V⊗X)

a−1
U,V,X
��

X⊗(U⊗V )
cX,U⊗V //

1X⊗cU,V
��

a−1
X,U,V

OO

��

(U⊗V )⊗X
cU,V ⊗1X
��

X⊗(V⊗U)
cX,V⊗U //

a−1
X,V,U

��

(V⊗U)⊗X

(X⊗V )⊗U
cX,V ⊗1U

// (V⊗X)⊗U aV,X,U
// V⊗(X⊗U)

1V ⊗cX,U
// V⊗(U⊗X)

a−1
V,U,X

OO

in which the middle rectangle is (33) for cU,V and in which the top and bottom rectangle
commute by definition of cX,U⊗V and cX,V⊗U in (34), one finds that diagram (33) for cU,V
commutes and cU,V is a morphism in Z(C). 2

Theorem 3.2.1 associates to each monoidal category a braided monoidal category. It is the
categorical counterpart to passing from a ring R to its centre Z(R). However, the relation
between a monoidal category C and its centre Z(C) is more complicated. For instance, any
commutative ring coincides with its centre, but this is not true for a braided monoidal category
C and its centre Z(C). It is obvious that in any braided monoidal category C, one can construct
objects in Z(C) as pairs (V, c−,V ), where c−,V is given by the braiding in C. However, there is
also the opposite braiding from Remark 3.1.2, 2. which defines additional objects in Z(C) and
there may be even more objects obtained by modifying the braidings.

This raises the question if the centre of a monoidal category can be characterised more abstractly
via a characteristic property or a universality condition, and if a braided monoidal category
can at least be embedded into its centre. One also wonders under which conditions a functor
F : C → D from a braided monoidal category C can be lifted to a functor F : C → Z(D). For
this, we consider the forgetful functor Π : Z(C)→ C with Π(V, c−,V ) = V and Π(f) = f for all
objects V and morphisms f : V → W in Z(C). It forgets the additional data that defines the
braiding of Z(C) and is monoidal by definition of Z(C).

Proposition 3.2.2: Let C be a braided monoidal category and F : C → D a monoidal
functor that is essentially surjective and full. Then there is a unique braided monoidal functor
Z(F ) : C → Z(D) with ΠZ(F ) = F .

Proof:
1. Uniqueness of Z(F ):
If G : C → Z(D) is a monoidal functor with ΠG = F , then G(V ) = (F (V ), c−,F (V )) for
all objects V in C and G(f) = F (f) for all morphisms f in C. If additionally G is braided,
then cF (X),F (V ) = φ⊗−1

V,X ◦ F (cX,V ) ◦ φ⊗X,V for all objects X and V in C, where cX,V denotes the
braiding in C. Naturality of c−,F (V ) in the first argument then implies that the following diagram
commutes for all objects V in C and morphisms g : D → F (X) in D

D⊗F (V )

cD,F (V )

��

g⊗1// F (X)⊗F (V )

cF (X),F (V )

��

φ⊗X,V // F (X⊗V )

F (cX,V )

��
F (V )⊗D

1⊗g
// F (V )⊗F (X)

φ⊗−1
V,X

// F (V⊗X).

(35)
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As F is essentially surjective, for every object D in D, there is an object X in C and an
isomorphism g : D → F (X), and hence cD,F (V ) is defined uniquely by (35).

2. Existence of Z(F ):
Using the essential surjectivity of F , we choose an isomorphism g : D → F (X) for each object D
in D and define Z(F ) by Z(F )(f) = F (f) on the morphisms and by Z(F )(V ) = (F (V ), c−,F (V ))
on the objects, where cD,F (V ) is given by (35).

2.(a) To show that (F (V ), c−,F (V )) is an object in Z(D), we check that (i) the morphisms cD,F (V )

are natural in the first argument and (ii) they make the diagram (32) commute.

(i) The naturality in the first argument follows, because for every morphism f : D → D′ in D
and isomorphisms gD : D → F (X) and gD′ : D′ → F (X ′), there is a morphism f ′ : X → X ′

with F (f ′) = gD′ ◦ f ◦ g−1
D by fullness of F . Naturality of φ⊗ and of c yields

D⊗F (V )

cD,F (V )

,,

f⊗1

��

gD⊗1
// F (X)⊗F (V )

F (f ′)⊗1
��

φ⊗X,V

// F (X⊗V )

F (f ′⊗1)
��

F (cX,V )
// F (V⊗X)

F (1⊗f ′)
��

φ⊗−1
V,X

// F (V )⊗F (X)
1⊗g−1

D

//

1⊗F (f ′)
��

F (V )⊗D
1⊗f
��

D′⊗F (V )

cD′,F (V )

22
gD′⊗1// F (X ′)⊗F (V )

φ⊗
X′,V // F (X ′⊗V )

F (cX′,V )
// F (V⊗X ′)

φ⊗−1
V,X′// F (V )⊗F (X ′)

1⊗g−1
D′ // F (V )⊗D′.

(ii) To show that the diagram (32) commutes for the morphisms c−,F (V ), we first consider the
case, where the first argument is the tensor product of two objects in the image of F . We
subdivide diagram (32) into a diagram that is the image for the second hexagon axiom of C
under F , the defining diagrams for c−,F (V ) and several diagrams that encode the naturality of
the braiding in C and the monoidal structure of F . With the shorthand notation X ′ := F (X)
for all objects X in C, we then obtain the commuting diagram

X ′⊗(Y ′⊗V ′)

1⊗φ⊗Y,V

��
1⊗cY ′,V ′

��

aX′,Y ′,V ′ // (X ′⊗Y ′)⊗V ′

φ⊗X,Y ⊗1
��

cX′⊗Y ′,V ′// V ′⊗(X ′⊗Y ′)

1⊗φ⊗X,Y

��

(V ′⊗X ′)⊗Y ′
aV ′,X′,Y ′oo

φ⊗V,X⊗1

��

(X⊗Y )′⊗V ′

φ⊗X⊗Y,V

��

c(X⊗Y )′,V ′// V ′⊗(X⊗Y )′

φ⊗V,X⊗Y

��
((X⊗Y )⊗V )′

F (a−1
X,Y,V )

��

F (cX⊗Y,V )// (V⊗(X⊗Y ))′

X ′⊗(Y⊗V )′

1⊗F (cY,V )

��

φ⊗X,Y⊗V

// (X⊗(Y⊗V ))′

F (1⊗cY,V )

��

((V⊗X)⊗Y )′

F (aV,X,Y )

OO

(V⊗X)′⊗Y ′
φ⊗V⊗X,Yoo

X ′⊗(V⊗Y )′
φ⊗X,V⊗Y

// (X⊗(V⊗Y ))′
F (a−1

X,V,Y )

// ((X⊗V )⊗Y )′

F (cX,V ⊗1)

OO

φ⊗−1
X⊗V,Y

// (X⊗V )′⊗Y ′

F (cX,V )⊗1

OO

φ⊗−1
X,V ⊗1 ((

X ′⊗(V ′⊗Y ′)
1⊗φ⊗V,Y

66

a−1

X′,V ′,Y ′

// (X ′⊗V ′)⊗Y ′.

cX′,V ′⊗1

OO

in which the upper middle rectangle commutes by naturality of c−,F (V ) in the first argument,
the rectangle below it by definition of c−,F (V ), and the small middle hexagon below it by the
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second hexagon axiom for the braiding in C. The hexagons at the upper left, the upper right
and at the bottom of the diagram commute because F is monoidal, the quadrilaterals at the
left and right by definition of c−,F (V ) and the two lower middle rectangles by naturality of φ⊗.

This shows that (32) commutes if the objects X, Y in (32) are in the image of F . To prove this
for all objects in D, choose isomorphisms gD : D → F (X) and gE : E → F (Y ). The diagram

(D⊗E)⊗F (V )

aD,E,F (V )

��

(gD⊗gE)⊗1

))

cD⊗E,F (V ) // F (V )⊗(D⊗E)

1⊗(gD⊗gE)

uu
(F (X)⊗F (Y ))⊗F (V )

cF (X)⊗F (Y ),V//

aF (X),F (Y ),F (V )

��

F (V )⊗(F (X)⊗F (Y ))

D⊗(E⊗F (V ))
gD⊗(gE⊗1)//

1⊗cE,F (V )

��

F (X)⊗(F (Y )⊗F (V ))

1⊗cF (Y ),F (V )

��

(F (V )⊗F (X))⊗F (Y )

aF (V ),F (X),F (Y )

OO

(F (V )⊗D)⊗E
(1⊗gD)⊗gEoo

aF (V ),D,E

OO

F (X)⊗(F (V )⊗F (Y ))
a−1
F (X),F (V ),F (Y )

// (F (X)⊗F (V ))⊗F (Y )

cF (X),F (V )⊗1

OO

D⊗(F (V )⊗E)

gD⊗(1⊗gE)
55

a−1
D,F (V ),E

// (D⊗F (V ))⊗E,

(gD⊗1)⊗gE
ii

cD,F (V )⊗1

OO

commutes. Its inner hexagon commutes, because it involves only objects in the image of F , and
the outer diagrams commute by naturality of c−,F (V ) in the first argument, the properties of the
tensor product and the naturality of the associator in D. This shows that Z(F ) is well-defined
on the objects of C.

2.(b) To show that Z(F ) is well-defined on the morphisms of C, we need to check that for each
morphism f : V → W in C the morphism F (f) : F (V )→ F (W ) in D makes the diagram (33)
commute. This follows, because this diagram can be subdivided as

F (X)⊗F (V )

1⊗F (f)

��

cF (X),F (V ) //

φ⊗X,V

((

F (V )⊗F (X)
φ⊗V,X

vv

F (f)⊗1

��

F (X⊗V )

F (1⊗f)
��

F (cX,V )
// F (V⊗X)

F (f⊗1)
��

F (X⊗W )
F (cX,W )

//

φ⊗−1
X,W

vv

F (W⊗X)
φ⊗−1
W,X

((
F (X)⊗F (W ) cF (X),F (W )

// F (W )⊗F (X),

where the top and bottom quadrilateral commute by definition of c−,F (V ) and c−,F (W ), the left
and right quadrilateral by naturality of φ⊗ and the middle rectangle by naturality of c.

As Z(F ) coincides with F on the morphisms, we have shown that Z(F ) : C → Z(D) is a
functor, and by definition we have ΠZ(F ) = F .

2.(c) To show that Z(F ) is monoidal, note that the only natural candidates for its coherence
data are the isomorphism φe : F (e)→ e and the natural isomorphism φ⊗ : ⊗(F ×F )→ F⊗ for
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F . We thus need to show that (i) φe : F (e)→ e is a morphism in Z(D), (ii) the isomorphisms
φ⊗V,W are morphisms in Z(D) and (iii) that diagram (34) commutes for c−,F (V ).

(i) That φe is a morphism in Z(C) follows from the diagram

F (X)⊗F (e)
φ⊗X,e

''
1⊗φe

��

cF (X),F (e) // F (e)⊗F (X)

φe⊗1

��

F (X⊗e)F (rX) // F (X)

l−1
F (X) ++

F (l−1
X )
// F (e⊗X)

φ⊗−1
e,X

77

F (X)⊗e
rF (X)

44

cF (X),e

// e⊗F (X),

in which the top quadrilateral commutes by definition of c−,F (e) and by Remark 3.1.2, 3. for the
braiding in C. The bottom triangle commutes by Remark 3.1.2, 3. for the braiding in Z(D),
and the quadrilaterals at the left and right because F is monoidal.

(ii) To show that the isomorphisms φ⊗V,W : F (V )⊗F (W )→ F (V⊗W ) are morphisms in Z(D),
we need to show that they make diagram (33) commute. For this, we first consider the case,
where the first argument of c−,F (V )⊗F (W ) and of c−,F (V⊗W ) is an object F (X) in the image of
F and subdivide the diagram

F (X)⊗(F (V )⊗F (W ))

1⊗φ⊗V,W
��

cF (X),F (V )⊗F (W )// (F (V )⊗F (W ))⊗F (X)

φ⊗V,W⊗1

��
F (X)⊗F (V⊗W ) cF (X),F (V⊗W )

// F (V⊗W )⊗F (X)

into the subdiagram (34) that relates cF (X),F (V )⊗F (W ) to cF (X),F (V ) and cF (X),F (W ) attached to
the top horizontal arrow, the subdiagrams given by (35) with gD = 1 that relate cF (X),F (V ),
cF (X),F (W ) and cF (X),F (V⊗W ) to F (cX,V ), F (cX,W ) and F (cX,V⊗W ), the subdiagram that relates
F (cX,V⊗W ) to F (cX,V ) and F (cX,W ) and additional diagrams that encode the naturality of φ⊗

and the compatibility condition of φ⊗ with the associators in C and D. The claim for general
objects D in C then follows as in 2.(ii) by choosing an isomorphism gD : D → F (X), which
exists by essential surjectivity of F .

(iii) That diagram (34) commutes for c−,F (V ) follows by splitting it into subdiagrams as in 2.(ii),
only that now one uses the first hexagon axiom for C instead of the second one.

2.(d) That Z(F ) is braided then follows directly from the definition of c−,F (V ) in (35). 2

By applying Proposition 3.2.2 to the identity functor F = idC : C → C on a braided monoidal
category C, we obtain a functor that embeds a braided monoidal category into its centre and is
a right inverse of the forgetful functor Π : Z(C)→ C.

Corollary 3.2.3: For any braided monoidal category C, there is a unique braided monoidal
functor Z : C → Z(C) with ΠZ = idC.

We now consider the interaction of the centre construction with monoidal equivalences. Any
ring isomorphism φ : R → S induces a ring isomorphism φ′ : Z(R) → Z(S), that is an iso-
morphism of commutative rings. Replacing rings by monoidal categories, the ring isomorphism
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by a monoidal equivalence and the centres by categorical centres leads to the question if a
monoidal equivalence F : C → D induces a braided monoidal equivalence F ′ : Z(C) → Z(D).
Indeed, we can lift F to a braided monoidal functor F ′ : Z(C) → Z(D) with FΠ = ΠF ′. As
FΠ : Z(C) → D is essentially surjective and full, Proposition 3.2.2 guarantees the existence
and uniqueness of F ′. We show that F ′ is an equivalence of categories.

Proposition 3.2.4: Let F : C → D be a monoidal equivalence. Then there is a unique braided
equivalence F ′ : Z(C)→ Z(D) with FΠ = ΠF ′.

Proof:
1. Uniqueness: Let F ′ : Z(C) → Z(D) be a braided equivalence with FΠ = ΠF ′. Then the
identity FΠ = ΠF ′ implies F ′(f) = F (f) for all morphisms f in Z(C) and F ′(V, c−,V ) =
(F (V ), c−,F (V )). As F ′ is braided, one has cF (U),F (V ) = φ⊗−1

V,U ◦F (cU,V ) ◦φ⊗U,V for all objects U, V
in C, and the naturality of c−,F (V ) in the first argument implies that diagram

D⊗F (V )

cD,F (V )

��

g⊗1// F (X)⊗F (V )

cF (X),F (V )

��

φ⊗X,V // F (X⊗V )

F (cX,V )

��
F (V )⊗D

1⊗g
// F (V )⊗F (X)

φ⊗−1
V,X

// F (V⊗X).

(36)

commutes for all morphisms g : D → F (X). As F is essentially surjective, for each object D is
D, there is an isomorphism g : D → F (X) for some object X in C, and (36) determines c−,F (V )

and hence F ′ uniquely.

2. Existence: We define F : Z(C) → Z(D) by F ′(f) = F (f) for all morphisms f in Z(C). To
define F ′ on the objects, we choose for each object D in D an isomorphism g = gD : D → F (X),
which exists by essential surjectivity of F and set F ′((V, c−,V )) = (F (V ), c−,F (V )), where c−,V
is defined by (36) for g = gD.

2.(a) That F ′ is well-defined on the objects and morphisms of Z(C) follows as in the proof of
Propositon 3.2.2. That F ′ becomes monoidal when equipped with the coherence data of F also
follows analogously to the proof of Propositon 3.2.2. Diagram (36) with g = 1F (X) then shows
that F ′ is braided.

2.(b) We show that F ′ is an equivalence of categories. As F is an equivalence of categories and
F ′(f) = F (f) for all morphisms, it follows directly that F ′ is faithful. To show that F ′ is full,
let h : (F (V ), c−,F (V ))→ (F (W ), c−,F (W )) be a morphism in Z(D). As F is fully faithful, there
is a unique morphism h′ : V → W with F (h′) = h. It remains to show hat h is a morphism in
Z(C) from (V, c−,V ) to (W, c−,W ), i. e. that diagram (33) commutes for all objects X in C. As
F is fully faithful, it is sufficient to consider its image under F

F (X⊗V )

F (1⊗h′)
��

φ⊗−1
X,V // F (X)⊗F (V )

1⊗h1⊗F (h′)=
��

cF (X),F (V )// F (V )⊗F (X)

h⊗1
��

φ⊗V,X // F (V⊗X)

F (h′⊗1)
��

F (X⊗W )
φ⊗−1
X,W

// F (X)⊗F (W )cF (X),F (W )

// F (W )⊗F (X)
φ⊗W,X

// F (W⊗X),

in which the outer rectangles commute by naturality of φ⊗ and the middle one because h is a
morphism in Z(D). This shows that h′ is a morphism in Z(C) with F ′(h′) = f and F ′ is full.

50



To see that F ′ is essentially surjective, let (D, c−,D) be an object in Z(D). As F is essentially
surjective, there is an isomorphism gD : D → F (X) for some object X in C. As F is fully
faithful, for every object X ′ in C there is a unique morphism cX′,X : X ′⊗X → X⊗X ′ with

F (cX,X′) : F (X ′⊗X)
φ⊗−1
X′,X−−−→ F (X ′)⊗F (X)

1⊗g−1
D−−−→ F (X ′)⊗D

cF (X′),D−−−−−→ D⊗F (X ′)

gD⊗1−−−→ F (X)⊗F (X ′)
φ⊗
X,X′−−−→ F (X⊗X ′). (37)

To show that F ′(X, c−,X) ∼= (D, c−,D) in Z(C), we need to show that (i) the morphisms cX′,X are
natural in the first argument and (ii) satisfy condition (32) and that (iii) gD is an isomorphism
in Z(D) from (D, c−,D) to F ′(X, c−,X). As F is fully faithful, claim (i) follows from the diagram

F (X ′⊗X)

F (f⊗1)
��

φ⊗−1

X′,X// F (X ′)⊗F (X)

F (f)⊗1
��

1⊗g−1
D // F (X ′)⊗D

F (f)⊗1
��

cF (X′),D// D⊗F (X ′)

1⊗F (f)

��

gD⊗1// F (X)⊗F (X ′)

1⊗F (f)

��

φ⊗
X,X′ // F (X⊗X ′)

F (1⊗f)
��

F (X ′′⊗X)
φ⊗−1

X′′,X// F (X ′′)⊗F (X)
1⊗g−1

D // F (X ′′)⊗D
cF (X′′),D// D⊗F (X ′′)

gD⊗1// F (X)⊗F (X ′′)
φ⊗
X,X′′ // F (X⊗X ′′),

which commutes by naturality of φ⊗ and c. Claim (ii) follows from the second hexagon
identity for c−,D, the condition that F is monoidal and (37). Claim (iii) follows directly from
(35) and (37). This shows that (X, c−,X) is an object of Z(C) and (D, c−,D) ∼= F ′(X, c−,X) in
Z(D). Hence, F ′ is essentially surjective and hence a braided equivalence. 2

The centre construction is quite abstract, and it is often difficult to describe the resulting
braided monoidal categories explicitly and concretely. In particular, it is often complicated to
write down explicitly the class of objects of the centre. However, this is often not necesary,
since one is only interested in the centre up to braided equivalence. The point is not to show
that a braided monoidal category is equal to the centre of a monoidal category, only that it is
braided equivalent to it. In Section 6.3 we will see an alternative, but less general construction
that gives a more concrete description of the centre of certain monoidal categories.

3.3 Ribbon categories

We now investigate the interaction of braidings with duals in a braided monoidal category C.
For this, we suppose that C is pivotal and that the left duals are constructed from the right duals
and the pivot as in Proposition 2.2.3. This allows us to use the simplified graphical calculus for
pivotal categories from Section 2.2.

The naturality of the braiding then implies that evaluations and coevaluations can be moved
below and above overcrossings and undercrossings in the diagrams, which allows one to undo
many braidings. However, there is a basic diagram that combines a braidings with an evaluation
and a coevaluation that cannot be undone by pulling evaluations and coevaluations under
crossings. It describes the twist morphism in C and merits further investigation.

Definition 3.3.1: Let C be a braided pivotal category.

1. For any object X in C the twist on X is the morphism

θX = rX ◦ (1X⊗evLX) ◦ aX,X,X∗ ◦ (cX,X⊗1X∗) ◦ a−1
X,X,X∗ ◦ (1X⊗coevRX) ◦ r−1

X (38)
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θX =

X

X

2. The category C is called a ribbon category if all twists are self-dual:
θ∗X = θX∗ : X∗ → X∗ for all objects X in C.

Clearly, the twist morphism θX depicted in Definition 3.3.1 exists in four variants, which are
obtained by reflecting its diagram on a vertical line and by exchanging over- and undercrossings
in the twist and its reflection. The former is its inverse θ−1

X , while the latter two are the dual
θ∗X∗ and its inverse. They coincide with the twist and its inverse if and only if C is ribbon.
This is a consequence of the following lemma, which also shows that the twist defines a natural
isomorphism θ : idC → idC, but that this natural isomorphism is in general not monoidal.

Lemma 3.3.2: Let C be a braided pivotal category.

1. The twist is invertible with inverse

θ−1
X = lX ◦ (evRX⊗1X) ◦ a−1

X∗,X,X ◦ (1X∗⊗c−1
X,X) ◦ aX∗,X,X ◦ (coevLX⊗1X) ◦ l−1

X

θ−1
X =

X

X

(39)

2. The twist satisfies θe = 1e and θX⊗Y = cY,X ◦ cX,Y ◦ (θX⊗θY ) = (θX⊗θY ) ◦ cY,X ◦ cX,Y .

3. The twist is natural: f ◦ θX = θY ◦ f for all morphisms f : X → Y .

4. C is ribbon if and only if for all objects X one has

θX = θ′X := lX ◦ (evRX⊗1X) ◦ a−1
X∗,X,X ◦ (1X∗⊗cX,X) ◦ aX∗,X,X ◦ (coevLX⊗1X) ◦ l−1

X

θX =

X

X

= = θ′X

X

X

(40)

Proof:
1. We prove graphically that θ−1

X ◦ θX = 1X :

X

X

=

X

X

=

X

X

=

X

X

=

X
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where we used the naturality of the braiding with respect to the twist in the first step, the
naturality of the braiding with respect to ∪ in the second step and then the snake identity. The
graphical proof that θX ◦ θ−1

X = 1 is analogous (Exercise).

2. That θe = 1e follows directly from the identities ce,e = 1e⊗e and trL(1e) = trR(1e) = 1. The
identities for θX⊗Y can be proved graphically. From the diagram for the twist θX⊗Y we obtain

X Y

X Y

=

X Y

X Y

=

YX

X Y

=

X Y

X Y

=

YX

X Y

where we used the naturality of the braiding with respect to θY and the dodecagon identity
(30) in the first step and then twice the naturality of the braiding with respect to the twists.

3. The naturality of the twist follows from the naturality of the braiding and the identities (21)
and (24) for the left and right evaluation and coevaluation:

X

Y

f

Y

=

X

Y

Y

f

=

X

Y

Y

f ∗ =

X

X

Y

f =

X

X

Y

f

4. To prove 4. we use the definition of the dual morphism θ∗X in (20) and compute

θ∗X =

X

X

=

X

X

=

X

X

=

X

X

= θ′X∗

where we used identity (27) and the naturality of the braiding with respect to ∪ in the first
step, the snake identity in the second step, then again (27) and the naturality of the braiding
with respect to ∩ in the third step. Hence we have θ∗X = θX∗ if and only if θX = θ′X . 2

The fact that a pivotal braided monoidal category C is ribbon has consequences for the left
and right traces of morphisms f : X → X and for its quantum dimensions. It allows one to
transform a left trace into a right trace by pulling one side of the diagram for the trace behind
or in front of the other, creating two twists and passing it to the other side. It follows that the
left and right traces of any morphism in a ribbon category agree.
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Corollary 3.3.3: Every ribbon category is spherical.

Proof:
We give a diagrammatic proof as follows

X

X

f =

X

X

θ′X

f

θ−1
X

=

X

X

f

θ′X

θ−1
X

f= f ∗= = f ∗ =
X

X
f

where we used the identity θX = θ′X in the first step, the naturality of θ′ in the second step,
the definition of θX and θ′X in the third step, the naturality of the braiding with respect to f
and the pivotality of C in the fourth step, the inverse and the naturality of the braiding with
respect to the the evaluations and coevaluations and f in the fifth step and the snake identity
and the pivotality in the last step. 2

Example 3.3.4: The categories VectfdF and F[G]−Modfd for a group G are ribbon.

We will see more non-trivial examples of ribbon categories in Exercise 22 and 24 and in the
following sections, where we also discuss their relations to knot and ribbon invariants.
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4 Applications

The graphical calculus for monoidal categories is not just a convenient tool for computations but
encodes connections between algebra, geometry and topology. A first example is knot theory.
This was a hot topic in 19th century mathematics and then did not advance much further,
until it had a sudden revival in the 1990s. The source of this revival was the discovery that
representations of certain algebras and certain topological gauge theories from mathematical
physics give rise to knot invariants. This was subsequently formalised and encoded in the
language of ribbon categories.

4.1 Knots, link and ribbon invariants

The goal of knot theory is to establish simple and manageable criteria that tell one if

(i) two knots can be transformed into each other without cutting them,

(ii) a knot can be unknotted without cutting it.

Similar questions are considered for generalised knots with several connected components such
as the olympic rings, which are called links. An efficient way to address these questions are knot
or link invariants. These are maps from the set of knots or links into a commutative monoid
that take the same value on all knots or links that can be transformed into each other without
cutting them. To introduce them, we require some background on knots an links and their
representations by diagrams.

Definition 4.1.1:

1. An oriented link is a smooth embedding L : qnS1 → R3 for some n ∈ N. An oriented
knot is an oriented link L : S1 → R3.

2. A link is an equivalence class of oriented links with respect to the equivalence relation
defined by individual orientation reversals on each copy of S1.

3. Two oriented links L,L′ are called equivalent or ambient isotopic if there is a smooth
map F : [0, 1] × R3 → R3 such that Ft = F (t,−) : R3 → R3 is a diffeomorphism for all
t ∈ [0, 1], F0 = id and F1 ◦ L = L′, an ambient isotopy from L to L′.

4. Two links are called ambient isotopic if they are ambient isotopic up to individual
orientation reversal on each copy of S1.

Here, qnS1 denotes the direct sum of n copies of S1, that is, the n-fold disjoint union with the
sum topology and the induced smooth manifold structure. The orientation reversal on S1 is
given by the map o : S1 → S1, z 7→ z−1. An embedding of a smooth manifold M into a smooth
manifold N is an injective smooth map f : M → N that is a homeomorphism onto its image
and such that Tmf : TmM → Tf(m)N is injective for all m ∈M . The notion of ambient isotopy
encodes the intuitive picture of deforming a link smoothly, without passing it through itself.
By an abuse of notation, we often do not distinguish links or oriented links from their images
and write L ⊂ R3 instead of L(qnS1) ⊂ R3.

Links in R3 can be described by link diagrams. A link diagram is obtained by projecting a link
L ⊂ R3 with the map P : R3 → R2, (x, y, z) 7→ (x, y). By applying an ambient isotopy to the
link L, one can always achieve that the projection P (L) ⊂ L is generic, i. e. satisfies:
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(i) |P−1(x) ∩ L| < 3 for all x ∈ R2,

(ii) there are only finitely many points x ∈ R2 with |P−1(x) ∩ L| = 2,

(iii) if P−1(x) ∩ L = {p, q}, then there are neighbourhoods Up, Uq ⊂ R3 and an orientation
preserving diffeomorphism f : R2 → R2 that maps P (Up ∪ Uq) to the following diagram

Up ∩ L

Up ∩ L

Uq ∩ L

Uq ∩ L

This means that each point where the projection of the link overlaps with itself is a transversal
crossing of exactly two strands and that there are only finitely many such crossings.

To reconstruct a link from its projection, at least up to equivalence, one requires the information
which strand lies above he other in each crossing point. This information is indicated in diagrams
by drawing the crossing as an overcrossing or undercrossing, where the strand with greater
z coordinate at the crossing point crosses over the one with smaller z-coordinate. The same
diagrams are used for oriented links, with the orientation of the link indicated by arrows on
each connected component. A knot diagram without crossing points is called a unknot.

Definition 4.1.2: Let L ⊂ R3 be a link.

1. A link diagram for L is a generic link projection of L together with the information
which of the two points in P−1(x) ∩ L = {p, q} has the greater z-coordinate for each
x ∈ R2 with |P−1(x) ∩ L| = 2.

2. An oriented link diagram for L is a link diagram for L together with a choice of
orientation on each connected component of L.

It was shown by Reidemeister that (oriented) link diagrams capture all information about the
equivalence classes of (oriented) links. The proof uses just basic topology and basic facts about
smooth manifolds and can be found for instance in [Mn, Mu].

Theorem 4.1.3: Two (oriented) links L,L′ ⊂ R3 are equivalent if and only if their (ori-
ented) link diagrams DL and DL′ are related by a finite sequence of orientation preserving
diffeomorphisms f : R2 → R2 and the three Reidemeister moves:

= = = =
=

Reidemeister move RM1 Reidemeister move RM2 Reidemeister move RM3.

In this case, the link diagrams DL, D
′
L are called equivalent.

The Reidemeister moves are local moves that change only the depicted region in the link diagram
and leave the rest of the link diagram invariant. They are defined analogously for oriented links,
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where each connected component receives an orientation. They encode the fact that an ambient
isotopy F : [0, 1]× R3 → R3 from a link L to L′ need not induce diffeomorphism f : R2 → R2

with f(D) = D′. Instead, it may give rise to additional crossing points in the projections (RM1
and RM2) or move crossing points past other crossing points (RM3).

Besides the notion of a link, there is also the related concept of a framed link or ribbon, which
can also be oriented. It can be viewed as a link that is thickened to a strip or ribbon. The
information needed to define the thickening is contained in the framing.

Definition 4.1.4:

1. A framed link or ribbon is a link L : qnS1 → R3 together with a vector field X along
L that is nowhere tangent to L: a smooth map X : qnS1 → R3 with X(z) /∈ TL(z)L ⊂ R3

for all z ∈ qnS1.

2. Two framed links (L,X) and (L′, X ′) are called equivalent or ambient isotopic if there
is an ambient isotopy F : [0, 1] × R3 → R3 from L to L′ with X ′(z) = TL(z)F1(X(z)) for
all z ∈ qnS1.

Given a link L ⊂ R3 and a vector field X along L that is nowhere tangent to L, we can thicken
the link to a ribbon, that is twisted around itself only by multiples of 2π. Note that this excludes
Möbius strips.

If one is only interested in equivalence classes of framed links, one can forget about the vector
field and define a framed link as a link with an assignment of an integer z ∈ Z to each connected
component that indicates how many times the connected component is twisted around itself.
With the relation

=

one can transform any projection of an associated ribbon into a blackboard framed ribbon
projection that only involves twists of the type on the left but not the twist on the right. This
corresponds to colouring the ribbon in R3 in two colours, black and white, and projecting in
such a way that the white side is up in all parts of the projection. Blackboard framed links
can be characterised by the same diagrams as links, where the link diagram represents the
projection of a line in the middle of a ribbon, the core.
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The only difference is that link diagrams that are related by the the Reidemeister move RM1
no longer describe projections of equivalent ribbons. Instead, one has a modified Reidemeister
move RM1′.

Theorem 4.1.5: Two framed (oriented) links L,L′ ⊂ R3 are equivalent if and only if their
link diagrams DL, DL′ are related by a finite sequence of orientation preserving diffeomorphisms
f : R2 → R2 and of the three Reidemeister moves

= =

= =
=

Reidemeister move RM1’ Reidemeister move RM2 Reidemeister move RM3.

In this case, the diagrams DL, DL′ are called equivalent.

The central question of knot theory is to decide from two given link diagrams DL, DL′ if the
associated links L,L′ ∈ R3 or framed links in L,L′ ⊂ R3 are equivalent. By Theorem 4.1.3 and
4.1.5 this is the case if and only if the associated link diagrams are related by finite sequences
of orientation preserving diffeomorphisms f : R2 → R2 and the three Reidemeister moves RM1,
RM2, RM3 or the three Reidemeister moves RM1’, RM2, RM3, respectively.

However, it is not practical to address this question by the Reidemeister moves alone. Instead,
one considers link invariants or ribbon invariants, which are functions from the set of links
or ribbons into a commutative monoid R that are constant on the equivalence classes of links
or framed links. A good link or ribbon invariant should

• be easy to compute from a link or ribbon diagram,
• distinguish as many nonequivalent links or ribbons in R3 as possible.

By Theorems 4.1.3 and 4.1.5, link or ribbon invariants can also be defined in terms of diagrams.

Definition 4.1.6: Let R be a commutative monoid and D the set of (oriented) link diagrams.

1. An (oriented) link invariant is a map I : D → R that is invariant under orientation
preserving diffeomorphisms f : R2 → R2 and the Reidemeister moves RM1, RM2, RM3.

2. An (oriented) ribbon invariant is a map I : D → R that is invariant under orientation
preserving diffeomorphisms f : R2 → R2 and the Reidemeister moves RM1’, RM2, RM3.
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An obvious but not very useful invariant of a link or ribbon is the number of connected com-
ponents. It is indeed easy to read off from a diagram, but does not distinguish enough links to
be useful. Two famous and important link invariants that can distinguish many links are the
HOMFLY polynomial and the Jones-Kauffman polynomial of a link. For more background on
these link invariants and the proofs of the following theorems see [Ka] and [Mn].

Theorem 4.1.7: There is a unique invariant of oriented links with values in Z[x, x−1, y, y−1],
the HOMFLY polynomial H, that satisfies the following conditions:

(i) It takes the value 1 on the unknot: H(O) = 1.

(ii) If the diagrams of oriented links L,L′ ∈ R3 are related by the three Reidemeister moves
RM1-RM3 and orientation preserving diffeomorphisms f : R2 → R2, then H(L) = H(L′).

(iii) If the diagrams of the oriented links L+, L−, L0 are skein related, i. e. locally related by

L+ L− L0

while the rest of their diagrams coincide, then

x ·H(L+)− x−1 ·H(L−) = y ·H(L0). (41)

Proof:
That the HOMFLY polynomial is determined uniquely by these conditions follows because every
link can be transformed into an unknot by applying the skein relation and the Reidemeister
moves RM1-RM3.

To show that the HOMFLY polynomial exists, it is sufficient to prove that the skein relation
is compatible with the Reidemeister relations RM1-RM3. This follows by applying the skein
relation to the diagrams on the left and right in the Reidemeister relations RM2 and RM3 and
show that this does not give rise to any contradictions (Exercise). 2

Another important link invariant is the Jones-Kauffman invariant. It is obtained from an in-
variant of framed links by rescaling it with the writhe, which describes how often each connected
component of the framed link twists around itself.

Definition 4.1.8: The writhe w(K) of a framed knot K is the sum over all crossing points
p in the knot diagram for K over the signs of the crossing

w(K) =
∑

p∈K∩K

sgn(p),

where K is given an arbitrary orientation and the sign sgn(p) of a crossing point p is
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lower strand crosses from right to left lower strand crosses from left to right
sgn(p) = 1 sgn(p) = −1

The writhe of a link is the sum of the writhes of its connected components.

Note that in the definition of the writhe, only the crossings of each connected component of
the link with itself are taken into account, but not crossings involving two different connected
components. This implies that the writhe does not depend on the orientation of a framed link.
Reversing the orientation of a connected component K ⊂ L reverses the orientation of both
strands in each crossing point and hence does not change the sign of the crossing.

It also follows directly from the definition that the writhe is invariant under the Reidemeister
moves RM2 and RM3, since the Reidemeister move RM2 for one connected component of a
link creates two additional crossings with opposite signs and the Reidemeister move RM3 does
not change the number or signs of crossings.

It is also invariant under the Reidemeister move RM1’, which creates or removes two crossings
with opposite signs, but not under the Reidemeister move RM1.The latter creates or removes a
crossing point with sign 1 or -1 and hence changes the writhe by ±1. It follows that the writhe
is an invariant of framed links, but not a link invariant.

Theorem 4.1.9:

1. There is a unique invariant P of framed links with values in Z[z, z−1, a, a−1], the
Kauffman polynomial K, that satisfies the following conditions:

(i) It takes the value 1 on the unknot: K(O) = 1.

(ii) If the diagrams of two links L,L′ ∈ R3 are related by the Reidemeister moves RM2,
RM3 and orientation preserving diffeomorphisms f : R2 → R2, then K(L) = K(L′).

(iii) If the diagrams of links L++, L00, L−− are locally related by

L++ L00 L−−

while the rest of their diagrams coincide, then

a−1 ·K(L++) = K(L00) = a ·K(L−−).

(iv) If the diagrams of the links L+, L−, L0, L∞ are locally related by
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L+ L− L0 L∞

while the rest of their diagrams coincide, then

K(L+) +K(L−) = z ·K(L0) + z ·K(L∞).

2. The rescaled Kauffman polynomial P given by P (L) = a−w(L)K(L), where w(L) is
the writhe of L, is a link invariant.

Proof:
It is clear that the Kauffman polynomial and the rescaled Kauffman polynomial are determined
uniquely by conditions (i)-(iv), since any link L can be transformed into an unknot by removing
twists as in (iii) and transforming overcrossings into undercrossings and vice versa as in (iv).

To show that the Kauffman polynomial and the rescaled Kauffman polynomial are well-defined
and invariants of framed links, it is sufficient to show that the relations in (iii) and in (iv)
are compatible with the Reidemeister relations RM1’, RM2 and RM3. For the Reidemeister
relation RM1’, this follows directly from (iii). For the Reidemeister relations RM2 and RM3,
it follows by applying the relations in (iii) and (iv) to the diagrams on the left and right in the
Reidemeister relations RM2 and RM3 and to show that the resulting polynomials are indeed
equal. (Exercise). That the rescaled Kauffman polynomial is a link invariant follows directly
from its definition and from condition (iii). 2

Many other famous link invariants can be viewed as special cases or rescalings of the HOMFLY
polynomial or the rescaled Kauffman polynomial. Examples are the following:

Definition 4.1.10:

1. The Alexander polynomial of an oriented link L is the polynomial in Z[t] given by

A(L)(t) = H(L)(1, t1/2 − t−1/2)

2. The Jones polynomial of an oriented link L is the polynomial in Z[t1/2, t−1/2] given by

J(L)(t) = H(L)(t−1, t1/2 − t−1/2) = −K(L)(−t−1/4 − t1/4, t−3/4)

3. The Jones-Conway polynomial of an oriented link is the polynomial in Z[q, q−1] given
by C(O) = (qn − q−n)/(q − q−1) for the unknot and the skein relation

qnC(L+)− q−nC(L−) = (q − q−1)C(L0),

where L+, L−, L0 are as in Theorem 4.1.7 and n ∈ N, n > 1.

These are less powerful link invariants than the HOMFLY and the rescaled Kauffman poly-
nomial. Even the HOMFLY and the Kauffman polynomial are not perfect, as there are non-
equivalent knots with the same HOMFLY and Kauffman polynomial. However, the goal is not
to construct a perfect link invariant, but to construct managable link invariants systematically.
This can be achieved by considering a suitable rigid monoidal category
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4.2 Link and ribbon invariants via the tangle and ribbon category

It is clear that (framed) links are closely connected to the diagrammatic calculus for ribbon cat-
egories. The over- and undercrossings resemble the diagrammatic representation of the braiding
in a monoidal category, the maxima and minima in a (framed) link diagram the diagrams for
the evaluation and coevaluation in a pivotal category. These can be viewed as the elementary
building blocks of a link diagram.

These elementary building blocks satisfy additional relations. The Reidemeister move RM2 in
Theorem 4.1.5 corresponds to diagram (27) for the inverse of the braiding morphism, Reide-
meister move RM 3 to diagram (30) for the dodecagon identity and the modified Reidemeister
move RM1’ is the diagrammatic expression of the statement that a pivotal braided monoidal
category is ribbon from Lemma 3.3.2.

This suggests to describe (framed) links via a very basic ribbon category that only contains
the minimal number of objects and morphisms required. On the levels of objects that should
be a basic object, its dual and all finite tensor products of this object and its dual. On the
level of morphisms, these are evaluation and coevaluation morphisms for this basic object, a
braiding of the basic object with itself and its inverse as well as all possible tensor products
and composites of these morphisms.

Just as in the case of the braid category, it seems sensible to define this ribbon category as a strict
monoidal category and to present it in terms of generators and relations. This means that every
object can be expressed as a tensor product of certain generating objects and every morphism
as a composite of the generating morphisms via the composition and the tensor product. All
relations between morphisms are obtained via the composition of morphisms and the tensor
product from the generating relations and the monoidal structure. This can be formalised in a
similar way to group presentations - the only difference is that there are two compositions and
the morphisms need not be invertible and the procedure becomes quite technical. For details,
see for instance [Ka, XII.1].

To account for links and framed links, we introduce two such categories that differ only in one
relation. The tangle category T describes oriented link diagrams, and the category R of ribbon
tangles that plays an analogous role for ribbons.

Definition 4.2.1: The tangle category T is the strict monoidal category with finite se-
quences (ε1, ..., εn) in Z/2Z as objects, six generating morphisms ∪,∪′,∩,∩′, X,X−1

∪ : ∩ : ∪′ : ∩′ : X : X−1 :
−⊗+→ ∅ ∅ → +⊗− +⊗− → ∅ ∅ → −⊗+ +⊗+→ +⊗+ +⊗+→ +⊗+

and the following generating relations:

• 1. RM1: 2. RM2 3. RM3

= = = = =
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• 4. Snake identities:

= = = =

• 5. Snaked braiding:

= =

• 6. Modified RM2:

= = = =

The identity morphisms 1+ : +→ + and 1− : − → − are denoted

1+ = 1− =

• The composition of morphisms is the vertical composition of diagrams, whenever the
sequences at the bottom of the top diagram and at the top of the bottom diagram match.

• The monoidal structure is given by the concatenation of finite sequences in Z/2Z and the
horizontal composition of diagrams.

A morphism f : (ε1, ..., εm)→ (ε′1, ..., ε
′
n) in T is called an (m,n)-tangle.

The tangle category exhibits as relations the Reidemeister moves RM1 to RM3, as well as
the snake identities and other relations between diagrams that are related by diffeomorphisms.
In particular, each (0, 0)-tangle is an oriented link diagram, up to Reidemeister moves and
diffeomorphisms of the diagram. This makes this category suitable for the description of oriented
link invariants. There is an analogous strict monoidal category for the description of oriented
ribbons. It has the same generators and relations, just that the Reidemeister move RM1 is
replaced by the Reidemeister move RM1’.

Definition 4.2.2: The category R of ribbon tangles is the strict monoidal category with
finite sequences (ε1, ..., εn) in Z/2Z as objects, the same generating morphisms and relations as
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in Definition 4.2.1, except that relation RM1 is replaced by

RM1’ = = (42)

A morphism f : (ε1, ..., εm)→ (ε′1, ..., ε
′
n) in R is called an (m,n)-ribbon tangle.

As suggested by their names and the diagrammatic representation, the tangle category T and
the ribbon category R are indeed ribbon categories, with the evaluations and coevaluations
given by ∪,∪; ,∩,∩′ and the braidings constructed from the morphism X and its inverse.

Proposition 4.2.3: The categories T and R are strict ribbon categories.

Proof:
1. By definition, the categories T and R are strict monoidal categories. It also follows directly
from the snake identities that they are left and right rigid with (ε1, ..., εn)∗ = ∗(ε1, ..., εn) =
(−εn, ...,−ε1) and evaluation and coevaluation maps given as composites of the morphisms
∩,∪,∩′,∪′ as indicated in this example:

coevR(−,+) = coevL(−,+) evR(−,+) = evL(−,+)

The snake identities and the snaked braiding relations imply that they are pivotal with the
identity morphisms as the pivot.

2. We show that T and R are braided. For this, note that a braiding in T and R is defined
uniquely by its component morphisms cε,ε′ : (ε, ε′) → (ε′, ε) for ε, ε′ ∈ {±} since every object
(ε1, ..., εn) = ε1⊗...⊗εn is a multiple tensor product of the objects ±, and the braiding in a strict
monoidal category satisfies

ce,U = cU,e = 1U cU⊗V,W = (cU,W⊗1V ) ◦ (1U⊗cV,W ) cU,V⊗W = (1V⊗cU,W ) ◦ (cU,V⊗1W )

for all objects U, V,W by the hexagon identity, see Remark 3.1.2. We define

c+,+ := X = c−1
+,+ := X−1 =

:=c−,+ := :=c−1
−,+ :=
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:=c+,− := :=c−1
+,− :=

:=c−,− := 5.
= :=c−1

−,− := 5.
=

We verify that c−1
ε,ε′ is indeed the inverse of cε,ε′ . The identities c∓1

+,+ ◦ c±1
+,+ = 1+⊗+ follow directly

from the defining relation RM2, and the identities c∓1
+,− ◦ c±1

+,− = 1±⊗∓ and c∓1
−,+ ◦ c±1

−,+ = 1∓⊗±
follow from the modified RM2 relation. For the identity c−,− ◦ c−1

−,− = 1−⊗− we compute

4.
=

2.
= = 4.

=

and the identity c−1
−,− ◦ c−,− = 1−⊗− follows analogously. This shows that cε,ε′ : ε⊗ε′ → ε′⊗ε for

ε, ε′ ∈ {±} are isomorphisms.

It remains to prove the naturality of the braiding. As the morphisms ∩, ∩, ∪′, ∩′ and X±1

generate T ,R and the braidings for tensor products of objects are given as composites of the
braidings cε,ε′ for ε, ε′ ∈ {±1}, it is sufficient to prove naturality for ∩, ∩, ∪′, ∩′ and X. To
prove the naturality for ∩ we note that the definition of c−,+ and the snake identity imply

c−,+
=

4.
=

⇒
= 2.

=

This proves the naturality for ∩ for a line that is oriented downwards and crosses under the
strands ∩. The corresponding identity for a line that is oriented upwards and crosses under the
strands of ∩ follows in a similar way from the definition of c−,− and c−1

+,−, which imply

c−,−
= 4.

=
c−1
+,−
=

⇒ = 2.
=

The corresponding identities where the line crosses over the strands of ∩ and the identities for
∩′, ∪ and ∪′ follow analogously. This proves the naturality of the braiding with respect to the
morphisms ∩,∪,∩′,∪′. It remains to prove the naturality of the braiding with respect to the
morphism X. For a line that is oriented downwards and crosses over or under the strands of X
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this follows directly from the RM3 relation. For a line that is oriented upwards it follows from
the definition of c−,+, the snake identity and the RM3 relation:

c−,+
= 4.

= 3.
=

4.
=

c−,+
=

3. That the category R is ribbon follows directly from the modified Reidemeister 1 relation
RM1’ in (42), which is equivalent to the condition θ+ = θ′+ from Lemma 3.3.2, 4. and hence
to θ∗+ = θ−. By taking another dual one obtains θ+ = θ∗∗+ = θ∗−. That the tangle category T is
ribbon as well follows directly, since the relation RM1 implies the relation RM1’. 2

In fact, the category R is not just a ribbon category, but a minimal ribbon category in the same
way as the braid category B is a minimal braided monoidal category. It contains the minimum
amount of objects and morphisms that are required for a ribbon category, an object +, its
dual − and tensor products of these objects, the evaluations and coevaluations for + and the
braidings, as well as composites and tensor products of these morphisms. As a consequence,
the category R has a similar universality property for ribbon categories as the universality of
the braid category for braided monoidal categories from Proposition 3.1.8.

Proposition 4.2.4: (universality of the ribbon category)
Let C be a ribbon category and V ∈ Ob C. Then there is a braided monoidal functor FV : R → C,
unique up to natural isomorphisms composed of associators and unit constraints in C, with

FV (+) = V FV (−) = V ∗ FV (∪) = evRV : V ∗⊗V → e FV (∪′) = evLV : V⊗V ∗ → e.

Proof:
We prove the claim for the case where C is a strict braided monoidal category and FV : R → C
is a strict braided monoidal functor.

If FV : R → C is a strict braided monoidal functor with FV (+) = V and FV (−) = V ∗, then
one has FV (∅) = e and F (ε1, ..., εn) = FV (ε1)⊗...⊗FV (εn) for all n ∈ N and ε1, ..., εn ∈ {±}
and hence FV is determined uniquely on the objects by FV (+) = V and FV (−) = V ∗. By
assumption, one has FV (∪) = evRV , FV (∪′) = evLV . The snake identity then enforces FV (∩) =
coevRV , , FV (∩′) = coevLV .

As FV is braided, one has FV (X±1) = FV (c±1
+,+) = c±1

V,V : V⊗V → V⊗V , and as the morphisms
∪,∩,∪′,∩′, X±1 generate R, this defines FV uniquely on the morphisms.

To show that these assignments define a braided monoidal functor FV : R → C, we need to
show that the morphisms FV (∪), FV (∩), FV (∪′), FV (∩′) and FV (X±1) satisfy analogues of the
defining relations from Definition 4.2.2.

• The Reidemeister relation RM1’ follows directly from the condition θV = θ′V in Lemma 3.3.2
and the associated diagrams (38), (39) and (40) for the component morphisms of the twist θ
and its dual.

• The Reidemeister relations RM2 and RM3 follow directly from the fact that C is braided and
FV (X) = cV,V .
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• The snake identities for FV (∪), FV (∩), FV (∪′) and FV (∩′) follow from the fact that C is
pivotal and hence left and right rigid, see the corresponding diagrams after Example 2.1.3.

• The snaked braiding identities in Definition 4.2.2 follow from the identities (21) and (24),
applied to the braiding in C and the snake identities in C.

• The modified RM2 relations follow again from the identities (21) and (24), applied to the
braiding, and the snake identities.

This shows that the assignments are compatible with the relations in T and define a monoidal
functor FV : R → C. This functor is braided, since it sends X to cV,V . As the braiding in R is
determined uniquely by the morphism X, it follows that FV is braided. 2

The main motivation to consider braided monoidal functors F : T → C or F : R → C is that
every monoidal functor F : T → C or F : R → C defines oriented link and ribbon invariants.
If we view oriented link or ribbon diagrams as (0, 0)-tangles or (0, 0)-ribbon tangles, then any
monoidal functor F : T → C or F : R → C into a monoidal category C assigns to a link or
ribbon diagram an endomorphism of the unit object in C. This assignment is invariant under
Reidemeister moves and certain diffeomorphisms of the plane encoded in the other relations of
R and T and hence depends only on the link or ribbon up to ambient isotopy.

Theorem 4.2.5: Let C be a monoidal category. Every monoidal functor F : T → C defines
an oriented link invariant and every monoidal functor F : R → C an oriented ribbon invariant.

Sketch of Proof:
The oriented link or ribbon invariant is obtained by projecting a link or ribbon L to a link or
ribbon diagram DL. By applying orientation preserving diffeomorphisms f : R2 → R2, one can
transform the projection to a diagram representing a (0, 0)-tangle in T or a (0, 0)-ribbon tangle
in R.

It remains to show that the relations in T and R ensure that the resulting morphisms in T or
R do not depend on the projection and agree for all oriented links or ribbons that are ambient
isotopic. For diagrams related by Reidemeister moves, this follows directly from the Reide-
meister relations in T and R. For diagrams related by orientation preserving diffeomorphisms
f : R2 → R2, this is more difficult to show. For a proof, see [Ka, Chapters X.5 and XII] and
[T, Chapters I.2-I.4] and the references therein.

Applying the functor F to this (0, 0)-tangle or ribbon tangle yields an morphism F (D) : e→ e
that depends only on the ambient isotopy class of the link or the ribbon. 2

Corollary 4.2.6: Every object in a ribbon category C, together with a choice of left and right
evaluation, defines an oriented ribbon invariant.

In particular, Corollary 6.4.15 can be applied to symmetric pivotal categories such as the cat-
egories VectfdF or F[G]−Modfd for a group G, which are ribbon categories by Example 6.4.15.
However, the resulting ribbon invariants are not very interesting, because they cannot distin-
guish ribbons that are obtained from each other by changing overcrossings into undercrossings
or vice versa. By exchanging over- and undercrossings and applying the three Reidemeister
moves, one can transform any ribbon into a disjoint union of unknots, possibly with a number
of twists. As pairs of twists on one connected component cancel, the resulting ribbon invariants
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can at most measure the number of connected components of the ribbon and determine if the
writhe of each connected component is odd or even.

Example 4.2.7: The following defines a braided monoidal functor F : T → VectfdF

• F (+) = V for some finite-dimensional vector space V over F and F (−) = V ∗,

• F (∪) = evRV : V ∗⊗V → F, F (∩) = coevRV : F→ V⊗V ∗,
• F (∪′) = evLV : V⊗V ∗ → F, F (∩′) = coevLV : F→ V ∗⊗V .

• F (X) = F (X−1) = τ : V⊗V → V⊗V , v⊗w 7→ w⊗v.

The associated ribbon invariant is a link invariant and assigns to a link with n connected
components the number (dimF V )n.

To obtain more interesting link or ribbon invariants, one needs to consider non-symmetric
ribbon categories, which we will construct systematically in the following sections. Another
option is to consider objects with additional structures in monoidal categories that give rise to
monoidal functors as in Theorem 4.2.5.

This is similar to the relation between Proposition 3.1.8, which states that every object in a
strict braided monoidal category C defines a braided monoidal functor F : B → C, and Corollary
3.1.11, which states that any Yang-Baxter operator in a monoidal category C defines a monoidal
functor F : B → C. Clearly, if C is braided, any object in C has a canonical Yang-Baxter operator
structure, but this is not required to construct a monoidal functor F : B → C.

Similarly, by Proposition 4.2.4 every object in a ribbon category C defines a monoidal functor
F : R → C as in Theorem 4.2.5, but we may also consider objects with additional structure
in more general monoidal categories to construct such functors. One possibility to obtain such
functors is to consider braided vector spaces as in Definition 3.1.9 with additional structure.

Example 4.2.8: Suppose that q ∈ C× is not a root of unity and (V, σ) the braided vector
space from Example 3.1.10 with ordered basis (v1, ..., vn) and λ = q−n and

σ : V⊗V → V⊗V, vi⊗vj 7→


q−nvj⊗vi i < j

q1−nvi⊗vi i = j

q−nvj⊗vi + q−n(q − q−1)vi⊗vj i > j.

Then there is a monoidal functor F : T → VectF with F (+) = V , F (−) = V ∗ and

F (X) = σ : V⊗V → V⊗V
F (∪) : V ∗⊗V → F, αj⊗vi 7→ δij

F (∪′) : V⊗V ∗ → F, vi⊗αj 7→ q1+n−2iδij.

where (α1, ..., αn) is the dual basis of V ∗. It satisfies the additional relation

qnF (X)− q−nF (X−1) = (q − q−1)idV⊗V

and assigns to a link L the evaluation of its Jones-Conway polynomial from Definition 4.1.10:

F (L) = evq−1C(L).
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Proof:
1. To show that this defines a monoidal functor F : T → VectF, we verify that the images of the
morphisms ∪,∩,∪′,∩′ and X±1 under F satisfy analogues of the relations in Definition 4.2.1.
By Example 3.1.10 (V, σ) is a braided vector space, and this implies that relations RM2 and
RM3 are satisfied. The snake relations fix the images of the morphisms ∩,∩′ as

F (∩) : F→ V⊗V ∗, 1 7→ Σn
i=1vi⊗αi F (∩′) : F→ V ∗⊗V, 1 7→ Σn

i=1q
2i−1−nαi⊗vi

The analogues of the relations RM1, the snaked braiding relations and the modified RM2
relations follow by direct, but lengthy computations. This shows that we obtain a functor
F : T → VectF.

2. The relation qnF (X)−q−nF (X−1) = (q−q−1)idV⊗V follows by a direct computation from the
definition of σ. Up to exchanging q 7→ q−1, this is precisely the relation for the Jones-Conway
polynomial from Definition 4.1.10. We also obtain the expression from Definition 4.1.10 for the
value on the unknot

F (O) = F (∪′)F (∩) = F (∪)F (∩′) = Σn
i=1q

±(n+1−2i) = q±(n+1)Σn
i=1q

∓2i =
qn − q−n

q − q−1
.

Thus, the evaluation of F yields the evaluation of the Jones-Conway polynomial in q−1. 2

This example illustrates the power and usefulness of the diagrammatic calculus for ribbon
categories and shows that it has nice applications in geometry and topology. However, one
might wonder about the origin of the map σ : V⊗V → V⊗V in Example 4.2.8 and, more
generally, how to construct braided vector spaces or ribbon categories systematically. We will
develop methods to do this in the following sections, where we construct ribbon categories as
representation categories of certain algebras with additional structure.

4.3 Topological quantum field theories

The concept of a topological quantum field theory was developed by Atiyah in [At], originally to
describe quantum field theories on manifolds. The basic idea is to assign to each oriented closed
(n− 1)-manifold S a vector space Z(S). To the manifold S̄ with the opposite orientation, one
assigns the dual vector space Z(S)∗ and to each oriented, compact n-manifold M with boundary
∂M = S̄qS ′ a linear map Z(M) : Z(S)→ Z(S ′). This assignment is required to be compatible
with disjoint unions of manifolds and with gluing.

For this, one constructs a category C with (n − 1)-manifolds as objects and n-manifolds with
boundary as morphisms between them. Compatibility with gluing amounts to the statement
that Z : C → VectF is a functor. The disjoint union of manifolds defines a tensor product in
the category C. The compatibility of Z with disjoint unions then states that the category C is
a symmetric monoidal category and Z : C → VectF a symmetric monoidal functor.

Definition 4.3.1: The cobordism category Cobn,n−1 with n ∈ N is the symmetric monoidal
category given as follows:

• Objects of Cobn,n−1 are oriented closed smooth (n− 1)-manifolds.

• Morphisms in Cobn,n−1 are equivalence classes of cobordisms:
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– A cobordism from a closed oriented smooth (n − 1)-manifold S to a closed
oriented smooth (n− 1)-manifold S ′ is a pair (M,φ) of a smooth compact oriented
n-manifold M with boundary ∂M and an orientation preserving diffeomorphism
φ : S̄ q S ′ → ∂M , where S̄ is S with the reversed orientation and q the disjoint
union of manifolds.

– Two cobordisms (M,φ), (M ′, φ′) : S → S ′ are called equivalent if there is an
orientation preserving diffeomorphism ψ : M →M ′ such that the following diagram
commutes

M
ψ //M ′

S̄ q S ′

φ
cc

φ′
;; .

• The identity morphism 1S is the equivalence class of the cobordism ([0, 1]×S, φS), where
φS : S̄ q S → {0, 1} × S with φS(x) = (1, x) and φS(y) = (0, y) for all x ∈ S̄, y ∈ S.

• The composite of morphisms [(M,ρ)] : S → S ′ and [(N, σ)] : S ′ → S ′′ is the equivalence
class of the cobordism (P, τ), where P = M#S′N is the n-manifold obtained by gluing
M and N along S ′ with the gluing maps given by ρ|S′ : S ′ → ∂M and σ|S̄′ : S̄ ′ → ∂N .
The diffeomorphism τ : S̄ qS ′′ → ∂P is induced by ρ|S̄ : S̄ →M , σ|S′′ : S ′′ → N and the
canonical surjection π : M q N → P . The smooth structure on P is constructed with a
choice of collars around S ′, but the the equivalence class of the resulting cobordism does
not depend on this choices.

• The tensor product of cobordisms is given by the disjoint union of manifolds and the
tensor unit is the empty manifold ∅, viewed as an oriented smooth (n− 1)-manifold1.

Remark 4.3.2:

1. There are other versions of topological quantum field theories based on topological or
piecewise linear manifolds with boundary. For n ≤ 3 the associated cobordism categories
are equivalent. For n ≥ 4 the smooth framework is the most common and well-developed.

2. Orientation reversal defines a functor ∗ : Cobn,n−1 → Cobopn,n−1 with ∗∗ = idCobn,n−1 . It
assigns to a smooth oriented (n− 1)-manifold S the manifold S̄ with the opposite orien-
tation and to the equivalence class of a cobordism (M,φ) : S → S ′ the equivalence class
of the cobordism (M̄, φ) : S̄ ′ → S̄, where M̄ is equipped with the opposite orientation.
Thus, the symmetric monoidal category Cobn,n−1 is pivotal.

With the notion of the cobordism category it is simple to define a topological quantum field
theory. Although one usually considers topological quantum field theories with values in the
category VectfdF , the notion can be generalised to any symmetric monoidal category.

Definition 4.3.3: Let C be a symmetric monoidal category.

1. An oriented n-dimensional topological quantum field theory with values in C is a
symmetric monoidal functor Z : Cobn,n−1 → C.

2. Two oriented topological n-dimensional quantum field theories Z,Z ′ : Cobn,n−1 → C are
called equivalent if there is a monoidal natural isomorphism φ : Z → Z ′.

1Note that the empty set ∅ is by definition an n-dimensional smooth oriented manifold for all n ∈ N0.
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The goals in the investigation of topological quantum field theories are the construction of
interesting examples, the use of topological quantum field theories to gain information on
manifolds and the classification of topological quantum field theories.

For this we need describe the category Cobn,n−1 as explicitly and concretely as possible, namely
to present it in terms of generators and relations, as for the tangle category and the ribbon
category. Such presentations are obtained with techniques from Morse theory. In principle, these
techniques allow one to obtain a presentation of Cobn,n−1 for any n ∈ N, but the description in
terms of generators and relations becomes more complicated with growing dimension.

We therefore focus on n = 1 and n = 2. For general background on Morse theory and Cobor-
disms, see for instance [H, Chapter 6,7], for a brief summary and the application to n = 1 and
n = 2, see [Kock, Chapter 1].

Example 4.3.4: The cobordism category Cob1,0

The symmetric monoidal category Cob1,0 has

• as objects finiteb disjoint unions of oriented points, given by finite sequences in Z/2Z,
• as morphisms finite unions of oriented circles and of oriented lines such that the orienta-

tions of lines match the orientations of the objects.

This can be depicted by a diagram in the plane as follows:

+

+

+ − −−

− −

− +

+ −− +

A morphism f : (+,+,−,−,−,−,+)→ (−,+,−,+,−,+) in Cob1,0.

The category Cob1,0 is generated by the the morphisms

Its defining relations are analogous to the defining relations of the tangle category 4.2.1 with
the additional relation that the braiding coincides with its inverse.

Note that the relations in Cob1,0 imply that any cobordism from ∅ to ∅ is a disjoint union of
circles. As Cob1,0 has the relations of the tangle category with a symmetric braiding, where
over- and undercrossings agree, any link is equal to a disjoint union of unknots. Due to the
naturality conditions, circles can be moved freely in the diagrams.
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Example 4.3.5: The cobordism category Cob2,1

• objects:
The cobordism category Cob2,1 has as objects finite unions of oriented circles.

• generating morphisms:
The cobordism category Cob2,1 is generated by the following six morphisms. Each of them
arises in two versions with opposite orientation, and the orientation of the boundary circles is
induced by the orientations of the surfaces:

trinion opposite trinion cap cup cylinder exchanging cylinder

• relations:
The generators are subject to the following defining relations:

(a) identity relations

= = =

= =
=

= = =

These relations state that the identity morphism on a finite union of oriented circles is the finite
union of cylinders over these circles.

(b) associativity and unitality

=
= =
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(c) coassociativity and counitality

= = =

(d) Frobenius relation

==

(e) commutativity and cocommutativity

= =

(f) relations for the exchanging cylinder

= =

=
=

=

=

The first four relations state that the exchanging cylinder is natural with respect to cap, cup
and trinions. The last two are a symmetric version of the Reidemeister relations RM2 and RM3.

We will now use the presentation of the cobordism category Cob2,1 to classify topological
quantum field theories Z : Cob2,1 → VectF. Note that as monoidal functors TQFTs send
duals to duals by Exercise 14 and .duals are unique up to unique isomorphisms by Proposition
2.1.2. Thus any TQFT Z : Cob2,1 → VectfdF is determined on the objects by the image of
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the oriented circle V := Z(O+), and its value on the circke with the opposite orientation is
given by the dual Z(O−) = V ∗. On the morphisms it is determined by the images of cup, cap,
and the trinions. The condition that Z is monoidal implies that the empty manifold is sent to
the field F, the tensor unit. The condition that Z is a functor implies that the cylinders are
sent to identity morphisms, and the condition that Z is symmetric monoidal implies that the
exchanging cylinder is sent to the flip map τ : V⊗V → V⊗V , v⊗v′ 7→ v′⊗v.

The image of the cup and cap define linear maps ε = F (∪) : V → F and η = F (∩) : V → F. The
images of the trinions define linear maps m : V⊗V → V and ∆ : V → V⊗V . The associativity
and unitality relation state that (V,m, η) is an algebra over F, and the commutativity relation
states that it is commutative. The linear maps ∆ : V → V⊗V and ε : V → F define additional
structure on this algebra. It turns out that this additional structure is that of a Frobenius
algebra. The concept of a Frobenius algebra can be defined in two equivalent ways.

Definition 4.3.6: A Frobenius algebra over F is an algebra A over F together with a linear
map κ : A⊗A→ F, a⊗b 7→ κ(a⊗b), the Frobenius form, such that

1. κ((a · b)⊗c) = κ(a⊗(b · c)) for all a, b, c ∈ A,

2. κ is non-degenerate: the map φκ : A→ A∗, b 7→ κ(−⊗b) is a linear isomorphism.

It is called symmetric if κ(a⊗b) = κ(b⊗a) for all a, b ∈ A.

A morphism of Frobenius algebras f : (A, κ) → (A, κ′) is an algebra homomorphism
f : A→ A′ with κ′(f(a)⊗f(b)) = κ(a⊗b) for all a, b ∈ A.

Definition 4.3.7: A (∆, ε)-Frobenius algebra over F is an algebra A over F together with
linear maps ∆ : A→ A⊗A and ε : A→ F such that the following conditions are satisfied:

1. coassociativity and counitality:
(∆⊗id) ◦∆ = (id⊗∆) ◦∆ and lA ◦ (ε⊗id) ◦∆ = id = rA ◦ (id⊗ε) ◦∆,

2. ∆ is a morphism of A⊗Aop-modules:
∆(ab) = (a⊗1) ·∆(b) = ∆(a) · (1⊗b) for all a, b ∈ A.

A morphism of (∆, ε)-Frobenius algebras f : (A,∆, ε) → (A′,∆′, ε′) is an algebra homo-
morphism f : A→ A′ with (f⊗f) ◦∆ = ∆′ ◦ f and ε′ ◦ f = ε.

To see that these two definitions are indeed equivalent, one needs to construct the linear maps
∆ : A → A⊗A and ε : A → F from the algebra structure and the Frobenius form and to
construct a Frobenius form from the data of a (∆, ε)-Frobenius algebra. This is left as an
exercise (Exercise 29).

Lemma 4.3.8: Every Frobenius algebra has a canonical (∆, ε)-Frobenius algebra structure,
and every (∆, ε)-Frobenius algebra a canonical Frobenius algebra structure.

Remark 4.3.9:

1. Every Frobenius form satisfies κ(a⊗b) = κ(ab⊗1) = κ(1⊗ab) and hence is given by a
linear form λ : A→ F with κ(a⊗b) = λ(a · b) for all a, b ∈ A.

2. Every commutative Frobenius algebra is symmetric: if A is commutative, then 1. implies
κ(a⊗b) = κ(b⊗a) for all a, b ∈ A.
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3. Every Frobenius algebra is finite-dimensional, since the non-degeneracy condition implies
A∗ ∼= A and hence dimFA <∞.

Example 4.3.10:

1. Any invertible matrix A ∈ Mat(n× n,F) defines a Frobenius form κA on Mat(n× n,F)

κA : Mat(n× n,F)⊗Mat(n× n,F)→ F, M⊗N 7→ Tr(M ·N · A).

It is symmetric if and only if A = λ1n for some λ ∈ F.

2. Let G be a finite group. Then κ : F[G]⊗F[G]→ F, κ(g⊗h) = δe(g ·h) is a Frobenius form
on F[G] and κ′ : Fun(G,F)⊗Fun(G,F) → F, κ′(f⊗h) = Σg∈Gf(g)h(g) is a Frobenius
form on Fun(G,F). Both Frobenius algebras are symmetric.

3. If (A, κ) is a Frobenius algebra and a ∈ A is invertible, then

κa : A⊗A→ F, b⊗c 7→ κ(b⊗ca) κ′a : A⊗A→ F, b⊗c 7→ κ(ab⊗c)

are Frobenius forms on A as well. One says they are obtained by twisting with a.

4. The tensor product A⊗B of two Frobenius algebras (A, κA) and (B, κB) over F has a
natural Frobenius algebra structure with the Frobenius form

κ : (A⊗B)⊗(A⊗B)→ F, (a⊗b)⊗(a′⊗b′) 7→ κA(a⊗a′)κB(b⊗b′).

Given the concept of a Frobenius algebra and some relevant examples, we can now classify
TQFTs Z : Cob2,1 → VectF. For this, note that the images of the cap and one trinion define a
commutative algebra structure on the image of the circle. The image of the cap and the other
trinion have to satisfy the coassociativity and counitality condition (c) in Example 4.3.5, which
coincides with the first condition in Example 4.3.7. Finally, the Frobenius condition condition
(d) in Example 4.3.5 is precisely the second condition in Definition 4.3.7.

Theorem 4.3.11: Equivalence classes of 2-dimensional oriented topological quantum field
theories Z : Cob2,1 → VectfdF are in bijection with isomorphism classes of commutative Frobe-
nius algebras over F.

Proof:
A monoidal functor Z : Cob2,1 → VectfdF is determined uniquely (up to rebracketing and left
and right unit constraints) by its value on the positively oriented circle and on the six generating
morphisms. If Z assigns to the positively oriented circle a vector space Z(O) = V , then it assigns
to the circle with the opposite orientation the dual vector space Z(Ō) = V ∗, to an n-fold union
of circles the vector space Z(Oq ...qO) = V⊗...⊗V and to the empty set the underlying field
Z(∅) = F. This implies that Z associates to the six generating morphisms linear maps

m : V⊗V → V ∆ : V → V⊗V η : F→ V ε : V → F idV : V → V τ : V⊗V → V⊗V

where we took already into account the identity relations for cylinders and suppose that all
circles match the oprientation of the cobordism. In order to define a functor Z : Cob2,1 → VectfdF
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the linear maps m, η, ∆, ε, τ must satisfy certain relations that correspond to the defining
relations of Cob2,1.

(b) associativity and unitality: they state that (V,m, η) is an algebra:

m ◦ (m⊗id) = m ◦ (id⊗m) m ◦ (η⊗idV ) = idV = m ◦ (idV⊗η).

(c) coassociativity and counitality:
coincide with the coassociativity and counitality condition from Definition 4.3.7

(∆⊗id) ◦∆ = (id⊗∆) ◦∆ lV ◦ (ε⊗idV ) ◦∆ = idV = rV ◦ (idV⊗ε) ◦∆.

(d) Frobenius relation: coincide with condition that ∆ is A⊗Aop-linear from Definition 4.3.7

(idV⊗m) ◦ (∆⊗idV ) = ∆ ◦m = (m⊗idV ) ◦ (idV⊗∆)

Together (b), (c), (d) state that (V,m, η,∆, ε) is a (∆, ε)-Frobenius algebra and hence a Frobe-
nius algebra by Lemma 4.3.8.

(f) relations for the exchanging cylinder: The last two relations state that the linear map
τ : V⊗V → V⊗V is an involution and defines a functor S → VectfdF . The remaining ones are

τ ◦ (η⊗idV ) = idV⊗η, (m⊗id) ◦ (idV⊗τ) ◦ (τ⊗idV ) = τ ◦ (idV⊗m),

(idV⊗ε) ◦ τ = ε⊗idV (τ⊗idV ) ◦ (idV⊗τ) ◦∆ = (idV⊗∆) ◦ τ.

We conclude that τ is the flip map τ : V⊗V → V⊗V , v⊗v′ 7→ v′⊗v.

(e) commutativity and cocommutativity relations: They state that the (∆, ε)-Frobenius
algebra (V,m, η,∆, ε) is commutative and cocommutative:

m ◦ τ = m τ ◦∆ = ∆.

One can show that a (∆, ε)-Frobenius algebra is commutative and cocommutative if and only if
the associated Frobenius algebra is commutative. This shows that oriented topological quantum
field theories Z : Cob2,1 → VectF correspond to commutative Frobenius algebras.

Due to the conditions in Definition 1.1.11, 2. a monoidal natural isomorphism φ : Z → Z ′

between two topological quantum field theories Z and Z ′ is specified uniquely by the linear map
φO : V = Z(O)→ Z ′(O) = V ′. The naturality of φ implies that the map φO is an algebra and
coalgebra isomorphism, which is the case if and only if φ is an algebra isomorphism that pre-
serves the Frobenius form. Conversely, every algebra isomorphism φ : V = Z(O)→ Z ′(O) = V ′

defines a monoidal natural isomorphism φ : Z → Z ′. 2

76



5 Bialgebras and Hopf algebras

5.1 Bialgebras

In this section we focus on monoidal categories and rigid monoidal categories that arise from
representations of algebras over a field F. As already noted in Example 1.1.14, the category
F[G]−Mod of modules over a group algebra F[G] is a monoidal category with the tensor product,
tensor unit, associators and unit constraints from VectF. By Example 2.1.3 the full subcategory
F[G]−Modfd of finite-dimensional modules is a rigid monoidal category when equipped with
the left and right evaluations and coevaluations of VectfdF .

These statements do not hold for the category A−Mod of modules over a general algebra A
over F. In this case there is no canonical A-module structure on the field F, the tensor product
of two A-modules over F does not inherit an A-module structure, and there is no canonical
A-module structure on the dual vector space V ∗ of an A-module V .

We start by investigating which additional structure on A is needed to ensure that the category
A−Mod is a monoidal category when equipped with the the tensor product over F. Clearly,
this requires an A-module structure on the tensor unit F in VectF and an A-module structure
on the tensor product over F of any two A-modules.

An A-module structure ρF : A→ EndF(F) is given by an algebra homomorphism ε : A→ F with
ρF(a)λ = ε(a)λ. If we require A-module structures on all tensor products of A-modules over
F, we require in particular an A-module structure ρA : A → EndF(A⊗A), where A is viewed
as an A-module over itself with the left multiplication. This defines an algebra homomorphism
∆ : A → A⊗A, a 7→ ρ(a)(1⊗1). Given such an algebra homomorphism and two A-modules
V,W , we obtain an A-module structure ρV⊗W = (ρV⊗ρW ) ◦∆ : A→ EndF(V⊗W ) on V⊗W .

To ensure that A−Mod inherits the monoidal structure from VectF, we need to impose that
the associativity isomorphisms aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ) and the left and right unit
isomorphisms rV : V⊗F→ V and lV : F⊗V → V in VectF are homomorphisms of A-modules.
This imposes additional conditions on the algebra homomorphisms ε and ∆.

The A-module structures on the tensor products U⊗(V⊗W ) and on U⊗(V⊗W ) are given by

ρ(U⊗V )⊗W = ((ρU⊗ρV )⊗ρW ) ◦ (∆⊗idA) ◦∆ ρU⊗(V⊗W ) = ((ρU⊗ρV )⊗ρW ) ◦ (idA⊗∆) ◦∆.

From these expressions, it follows that the associator aU,V,W is an isomorphism of A-modules if

aA,A,A ◦ (∆⊗idA) ◦∆ = (idA⊗∆) ◦∆. (43)

By setting U = V = W = A and applying the endomorphisms ρ(A⊗A)⊗A(a) to (1⊗1)⊗1
and ρA⊗(A⊗A)(a) to 1⊗(1⊗1), we find that this condition is not just sufficient, but necessary.
Similarly, the representations of A on V⊗F and F⊗V are given by

ρV⊗F = (ρV⊗ρF) ◦∆ ρF⊗V = (ρF⊗ρV ) ◦∆,

and rV : V⊗F→ V and lV : F⊗V → V . The condition

lA ◦ (ε⊗idA) ◦∆ = rA ◦ (idA⊗ε) ◦∆ = idA. (44)

ensures that rV and lV are isomorphisms of A-modules. By setting V = A and applying them
to the elements 1⊗1, one finds that these conditions are also necessary.
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A vector space A over F together with linear maps ε : A → F and ∆ : A → A⊗A subject
to (43) and (44) is called a coalgebra. If we also require that the linear maps ε : A → F and
∆ : A→ A⊗A are algebra homomorphisms, we obtain the concept of a bialgebra.

Definition 5.1.1:

1. A coalgebra over a field F is a triple (C,∆, ε) of an F-vector space C and linear maps
∆ : C → C⊗C, ε : C → F, the comultiplication and the counit, such that the following
diagrams commute

(C⊗C)⊗C
aC,C,C

ww

C⊗C∆⊗idoo

C⊗(C⊗C) C⊗C
id⊗∆
oo C

∆
oo

∆

OO F⊗C C
c7→1⊗c
∼=
oo

∆
��

c 7→c⊗1
∼=
// C⊗F

C⊗C
ε⊗id

dd

id⊗ε

::

coassociativity counitality

A coalgebra (C,∆, ε) is called cocommutative if ∆op := τ ◦ ∆ = ∆, where
τ : C⊗C → C⊗C, c⊗c′ 7→ c′⊗c is the flip map.

2. A homomorphism of coalgebras or coalgebra map from (C,∆C , εC) to (D,∆D, εD)
is a linear map φ : C → D for which the following diagrams commute

C⊗C
φ⊗φ
��

C
∆Coo

φ
��

D⊗D D
∆D

oo

F
id
��

C
εCoo

φ
��

F DεD
oo

Note that the comultiplication ∆ is a structure on C, whereas the counit is a property. One
can show that for each pair (C,∆) there is at most one linear map ε : C → F that satisfies the
counitality condition (Exercise 34).

Note also that the commuting diagrams in Definition 5.1.1 are obtained from the corresponding
diagrams for algebras and algebra homomorphisms in Definition A.3 by reversing all arrows
labelled by m or η and labelling them with ∆ and ε instead. In this sense, the concepts of an
algebra and a coalgebra are dual to each other, which motivates the name coalgebra.

Remark 5.1.2: For a coalgebra (C,∆, ε) we use the symbolic notation ∆(c) = Σ(c) c(1)⊗c(2),
which stands for a finite sum ∆(c) = Σn

i=1ci⊗c′i with ci, c
′
i ∈ C. It is called Sweedler notation.

It is symbolic since the properties of the tensor product imply that the elements c(1) and c(2) are
not defined uniquely. However, this ambiguity causes no problems as long as all maps composed
with ∆ are F-linear. The coassociativity of ∆ then implies for all c ∈ C

(∆⊗id) ◦∆(c) = Σ(c)c(1)(1)⊗c(1)(2)⊗c(2) = Σ(c)c(1)⊗c(2)(1)⊗c(2)(2) = (id⊗∆) ◦∆(c).

This allows us to renumber the factors in the tensor product as

Σ(c)c(1)⊗c(2)⊗c(3) = Σ(c)c(1)(1)⊗c(1)(2)⊗c(2) = Σ(c)c(1)⊗c(2)(1)⊗c(2)(2)

and similarly for higher composites of ∆.
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Example 5.1.3:

1. For any coalgebra (C,∆, ε), the opposite comultiplication ∆op = τ ◦ ∆ : C → C⊗C
defines another coalgebra structure on C with counit ε. The coalgebra (C,∆op, ε) is called
the opposite coalgebra and denoted Ccop.

2. For any pair of coalgebras (C,∆C , εC) and (D,∆D, εD) the vector space C⊗D has a
canonical coalgebra structure given by

∆C⊗D = τ23 ◦ (∆C⊗∆D) : C⊗D → (C⊗D)⊗(C⊗D) c⊗d 7→ Σ(c),(d) c(1)⊗d(1)⊗c(2)⊗d(2)

εC⊗D = εC⊗εD : C⊗D → F c⊗d 7→ εC(c)εD(d),

with τ23 : C⊗C⊗D⊗D → C⊗D⊗C⊗D, c⊗c′⊗d⊗d′ 7→ c⊗d⊗c′⊗d′. This coalgebra
structure on C⊗D is called the tensor product of the coalgebras C, D.

3. If (A,m, ·) is a finite-dimensional algebra over F, then the dual vector space A∗ has a
coalgebra structure (A∗,m∗, η∗), where m∗ : A∗ → (A⊗A)∗ = A∗⊗A∗ and η∗ : A∗ → F
are the duals of the multiplication and unit map given by

m∗(α)(a⊗b) = α(ab) η∗(α) = α(1) ∀α ∈ A∗, a, b ∈ A.

If A is infinite-dimensional, then the dual of the multiplication is a linear map
m∗ : A∗ → (A⊗A)∗. However, in this case we can have A∗⊗A∗ ( (A⊗A)∗, and then m∗

does not define a coalgebra structure on A∗. However, we obtain a coalgebra structure
on the finite dual A◦ = {α ∈ A∗ |m∗(α) ∈ A∗⊗A∗} (Exercise).

4. The dual statement of 3. holds also in the infinite-dimensional case. If (C,∆, ε) is a
coalgebra over F, then the (C∗,∆∗|C∗⊗C∗ , ε∗) is an algebra over F.

5. We consider the algebra Mat(n×n,F) with the basis given by the elementary matrices Eij
that have the entry 1 in the ith row and jth column and zero elsewhere. The dual basis
of Mat(n× n,F)∗ is given by the matrix elements Mij : Mat(n× n,F)→ F, M 7→ mij.
The comultiplication and counit of Mat(n× n,F)∗ are given by

∆(Mij) = Σn
k=1Mik⊗Mkj ε(Mij) = δij.

6. By Definition 4.3.7 every (∆, ε)-Frobenius algebra and hence by Lemma 4.3.8 every Frobe-
nius algebra over F is a coalgebra over F.

As we can view a coalgebra as the dual of an algebra, we can also introduce subcoalgebras
and left, right and two-sided coideals by dualising the concepts of subalgebras, left, right and
two-sided ideals. In particular, we can take the quotient of a coalgebra by a two-sided coideal
and obtain another coalgebra.

Definition 5.1.4: Let (C,∆, ε) be a coalgebra.

1. A subcoalgebra of C is a linear subspace I ⊂ C with ∆(I) ⊂ I⊗I.

2. A left coideal in C is a linear subspace I ⊂ C with ∆(I) ⊂ C⊗I, a right coideal is a
linear subspace I ⊂ C with ∆(I) ⊂ I⊗C and a coideal is a linear subspace I ⊂ C with
∆(I) ⊂ I⊗C + C⊗I and ε(I) = 0.
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Proposition 5.1.5: If C is a coalgebra and I ⊂ C a coideal, then the quotient space C/I
inherits a canonical coalgebra structure with the following characteristic property:

The canonical surjection π : C → C/I is a coalgebra map. For any coalgebra map φ : C → D
with ker(φ) ⊂ I there is a unique coalgebra map φ̃ : C/I → D with φ̃ ◦ π = φ.

Proof:
As I ⊂ C is a coideal, the map ∆′ : C/I → C/I⊗C/I, c+ I 7→ (π⊗π)∆(c) is well defined and
satisfies ∆′ ◦ π = (π⊗π) ◦∆. Its coassociativity follows directly from the coassociativity of ∆
and the surjectivity of π

(∆′⊗id) ◦∆′ ◦ π = (∆′⊗id) ◦ (π⊗π) ◦∆ = (π⊗π⊗π) ◦ (∆⊗id) ◦∆

= (π⊗π⊗π) ◦ (id⊗∆) ◦∆ = (id⊗∆′) ◦ (π⊗π) ◦∆ = (id⊗∆′) ◦∆′ ◦ π.

As I is a coideal, we have I ⊂ ker(ε) by definition and obtain a linear map ε′ : C/I → F with
ε′ ◦ π = ε. The counitality of ε′ then follows from the counitality of ε and the surjectivity of π:

(ε′⊗id) ◦∆′ ◦ π = (ε′⊗id) ◦ (π⊗π) ◦∆ = (id⊗π) ◦ (ε⊗id) ◦∆ = 1F⊗π
(id⊗ε′) ◦∆′ ◦ π = (id⊗ε′) ◦ (π⊗π) ◦∆ = (id⊗π) ◦ (id⊗ε) ◦∆ = 1F⊗π.

The canonical surjection is a coalgebra map by definition of the coalgebra structure on C/I.
The rest of the characteristic property follows directly from the characteristic property of the
quotient spaces and the definition of the coalgebra structure. 2

In a similar manner, we can dualise the concept of a module over an algebra to obtain the notion
of a comodule over a coalgebra. One also can define subcomodules, quotients of comodules by
subcomodules and related structures. All of them are obtained by taking the defining commuting
diagrams for modules over algebras and reversing all arrows labelled by m, η and �.

Definition 5.1.6: Let (C,∆, ε) be a coalgebra over F.

1. A left comodule over C is a pair (V, δ) of a vector space V over F and a linear map
δ : V → C⊗V such that the following diagrams commute

C⊗(C⊗V ) C⊗Vid⊗δoo

(C⊗C)⊗V

aC,C,V
77

C⊗V∆⊗idoo V
δoo

δ

OO V

δ
��

v 7→1⊗v
∼=
// F⊗V

C⊗V.
ε⊗id

99

2. A homomorphism of left comodules or an C-colinear map from (V, δV ) to (W, δW )
is an F-linear map φ : V → W for which the following diagram commutes

C⊗V
id⊗φ

��

V
δVoo

φ
��

C⊗W W.
δWoo

Analogously, one defines right comodules over C as left comodules over Ccop and (C,C)-
bicomodules as left comodules over C⊗Ccop.
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One often uses a variant of Sweedler notation and denotes the map δ : V → V⊗C for a right
C-comodule V by δ(v) = Σ(v)v(0)⊗v(1), which stands for as a finite sum over elements of C⊗V .
By definition of a right comodule, one then has

(δ⊗idC)◦δ(v)=Σ(v)v(0)(0)⊗v(0)(1)⊗v(1) =:Σ(v)v(0)⊗v(1)⊗v(2) :=Σ(v)v(0)⊗v(1)(1)⊗v(1)(2) =(id⊗∆)◦δ(v).

Analogously, for a left C-comodule V with δ : V → C⊗V one writes δ(v) = Σ(v)v(1)⊗v(0) and

(idC⊗δ)◦δ(v)=Σ(v)v(1)⊗v(0)(1)⊗v(0)(0) =:Σ(v)v(2)⊗v(1)⊗v(0) :=Σ(v)v(1)(1)⊗v(1)(2)⊗v(0) =(∆⊗id)◦δ(v).

Example 5.1.7:

1. Every coalgebra (C,∆, ε) is a left and right comodule over itself with the comultiplication
δ = ∆ : C → C⊗C. This gives C the structure of a (C,C)-bicomodule.

2. If V is a left comodule over a coalgebra (C,∆, ε) with δ : V → C⊗V , v 7→ Σ(v)v(1)⊗v(0),
then it is a right module over the algebra (C∗,∆∗|C∗⊗C∗ , ε∗) with � : V⊗C∗ → V ,
v⊗α 7→ Σ(v)α(v(1)) v(0). However, not every right module over (C∗,∆∗, ε∗) arises from a
comodule over C, if C is infinite-dimensional. The modules that arise in this way are
called rational modules.

3. If (C,∆, ε) is a coalgebra and I ⊂ C a linear subspace, then the comultiplication of C
induces a left (right) comodule structure on the quotient C/I if and only if I is a left
(right) coideal in C (Exercise 34).

The statements in Proposition 5.1.5 and in Example 5.1.7, 3. justify the definition of left coideal,
right coideal and coideal in Definition 5.1.4, which seem slightly odd at first sight. They are
defined in such a way that quotients of coalgebras by coideals have properties analogous to
quotients of algebras by ideals: quotients of (co)algebras by (co)ideals yield (co)algebras, and
quotients by left or right (co)ideals yield left or right (co)modules.

If we require that a coalgebra over F also has an algebra structure and that its comultiplication
and counit are algebra homomorphisms, we obtain the notion of a bialgebra. Note that the
condition that comultiplication and the counit are algebra homomorphisms is equivalent to
imposing that the multiplication and unit are coalgebra homomorphisms. Hence, the coalgebra
structure and the algebra structure enter the definition of a bialgebra on an equal footing.

Definition 5.1.8:

1. A bialgebra over a field F is a pentuple (B,m, η,∆, ε) such that (B,m, η) is an algebra
over F, (B,∆, ε) is a coalgebra over F and ∆ : B → B⊗B and ε : B → F are algebra
homomorphisms.

2. A bialgebra homomorphism from (B,m, η,∆, ε) to (B′,m′, η′,∆′, ε′) is a linear map
φ : B → B′ that is a homomorphism of algebras and a homomorphism of coalgebras:

m′ ◦ (φ⊗φ) = φ ◦m φ ◦ η = η′ ∆′ ◦ φ = (φ⊗φ) ◦∆ ε′ ◦ φ = ε.
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Example 5.1.9:

1. For any bialgebra (B,m, η,∆, ε), reversing the multiplication or the comultiplication
yields another bialgebra structure on B. The three new bialgebras obtained in this
way are Bop := (B,mop, η,∆, ε), Bcop := (B,m, η,∆op, ε) and Bop,cop := (B,mop, η,∆op, ε).

2. For any two bialgebras B,C over F, the vector space B⊗C becomes a bialgebra when
equipped with the tensor product algebra and coalgebra structures. This is called the
tensor product bialgebra and denoted B⊗C.

3. For any finite-dimensional bialgebra (B,m, η,∆, ε), the dual vector space has a canonical
bialgebra structure given by (B∗,∆∗, ε∗,m∗, η∗). If B is infinite-dimensional, the finite
dual B◦ = {b ∈ B |m∗(b) ∈ B∗⊗B∗} is a bialgebra with the restriction of the maps
m∗ : B∗ → B∗⊗B∗, η∗ : B∗ → F, ∆∗ : B∗⊗B∗ → B∗ and ε∗ : F→ B∗ (Exercise).

4. A subbialgebra of a bialgebra B is a linear subspace U ⊂ B that is a subalgebra and a
subcoalgebra of B.

Theorem 5.1.10: Let (B,m, η,∆, ε) be a bialgebra over F. Then B−Mod has the structure
of a monoidal category that makes the forgetful functor F : B−Mod→ VectF monoidal.

Proof:
We define the B-module structure on F and the B-module structure on the tensor product of
two A-modules V,W by

�F : B⊗F→ F, b⊗λ 7→ ε(b)λ

�V⊗W : B⊗(V⊗W )→ V⊗W, b⊗(v⊗w) 7→ Σ(b)(b(1) �V v)⊗(b(2) �W w).

The fact that ∆ and ε are algebra homomorphism ensures that these are indeed B-module
structures. We define the functor ⊗ : B−Mod × B−Mod → B−Mod on the objects by
(V,�V )⊗(W,�W ) = (V⊗W,�V⊗W ) and as the usual tensor product of F-linear maps on the
morphisms. A direct computation shows that for any two B-linear maps f : V → V ′ and
g : W → W ′, the map f⊗g : V⊗W → V ′⊗W ′ is again B-linear:

b�V ′⊗W ′ (f⊗g)(v⊗w) = Σ(b)(b(1) �V ′ f(v))⊗(b(2) �W ′ g(w))

= Σ(b)(f(b(1) �V v))⊗(g(b(2) �W ′ w)) = (f⊗g)(b�V⊗W (v⊗w)).

As the identity map on any B-module and the composite of two B-linear maps are again
B-linear, this defines a functor ⊗ : B−Mod×B−Mod→ B−Mod.

The associator is given by its component morphisms aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ),
(u⊗v)⊗w 7→ u⊗(v⊗w), the tensor unit by e = (F,�F) and the left and right unit constraints
by their component morphisms lV : F⊗V → V , λ⊗v 7→ λv and rV : V⊗F→ V , v⊗λ 7→ λv.

That the associator and the unit constraints are morphisms of B-modules follows from the
coassociativity and counitality of ∆ and ε, as shown at the beginning of this section. That they
satisfy the pentagon and triangle axiom follows from the pentagon and triangle axiom in VectF.
This shows that B−Mod is a monoidal category.

That the forgetful functor F : B−Mod→ VectF is monoidal follows directly from the definition
of the tensor product, the associator and the unit constraints in B−Mod. 2
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5.2 Hopf algebras

We now investigate which additional properties a bialgebra needs so that the monoidal category
B−Modfd of finite-dimensional B-modules becomes a right rigid, left rigid or rigid monoidal
category, when equipped with the coevaluations and evaluations in VectF. The evaluation and
coevaluation maps for a finite-dimensional vector space V over F were introduced in Example
2.1.3 and are given by

coevRV : F→ V⊗V ∗, λ 7→ λΣn
i=1vi⊗αi evRV : V ∗⊗V → F, α⊗v 7→ α(v)

coevLV : F→ V ∗⊗V, λ 7→ λΣn
i=1α

i⊗vi evLV : V⊗V ∗ → F, v⊗α 7→ α(v),

where (v1, ..., vn) is a basis of V and (α1, ..., αn) the dual basis of V ∗.

We thus require anB-module structure on the dual vector space V ∗ of each finite-dimensionalB-
module V , such that the right evaluation and coevaluation, the left evaluation and coevaluation
or all of them are homomorphisms of B-modules.

For this, note that the B-module structure on V induces a B-right module structure on V ∗

that is given by α� b = α ◦ (b�−) for all α ∈ V ∗ and b ∈ B. To turn this into a B-left module
structure, we need an anti-algebra homomorphism S : B → B and then define

� : B⊗V ∗ → V ∗, b⊗α 7→ α ◦ (S(b) �−).

The condition that the right evaluation and coevaluation are B-linear read in Sweedler notation

evRV (b� (α⊗v)) = α((Σ(b)S(b(1)) · b(2)) � v) = ε(b)α(v) = b� evRV (α⊗v) (45)

b� coevRV (1) = Σn
i=1((Σ(b)b(1) · S(b(2))) � vi)⊗αi = ε(b)Σn

i=1vi⊗αi = coevRV (b� 1),

and the corresponding conditions for the left evaluation and coevaluation read

evLV (b� (v⊗α)) = α((Σ(b)S(b(2))b(1)) � v) = ε(b)α(v) = b� evLV (v⊗α) (46)

b� coevLV (1) = Σn
i=1(αi⊗(Σ(b)b(2)S(b(1))) � vi)) = ε(b)Σn

i=1α
i⊗vi = coevLV (b� 1),

where we used the identity Σn
i=1φ(vi)⊗αi = Σn

i=1vi⊗φ∗(αi) for any linear map φ : V → V and
its dual φ∗ : V ∗ → V ∗, α 7→ α ◦ φ. They conditions for the right evaluation and coevaluation
are satisfied for all finite-dimensional B-modules V if

m ◦ (S⊗id)◦∆ = η◦ε = m ◦ (id⊗S)◦∆ (47)

and the ones for the left evaluation and coevaluation if

mop◦(S⊗id)◦∆ = η◦ε= mop◦(id⊗S)◦∆. (48)

If B is finite dimensional, we can set V = B, v = 1 in (45) and (46) and work with a basis of B
that contains the unit of B as the first basis element: v1 = 1. In this case, it follows that (47)
and (48) are not only sufficient, but also necessary conditions.

We will see later that the conditions (47) and (48) are in general not equivalent, and that either
of them implies that S : B → B is an anti-algebra morphism. Imposing condition (47) for the
right duals leads to the following definition.
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Definition 5.2.1: A bialgebra (H,m, η,∆, ε) is called a Hopf algebra if there is a linear
map S : H → H, called the antipode, with

m ◦ (S⊗id) ◦∆ = m ◦ (id⊗S) ◦∆ = η ◦ ε.

Remark 5.2.2:

1. In Sweedler notation, the axioms for a Hopf algebra read:

Σ(a)a(1)(1)⊗a(1)(2)⊗a(2) = Σ(a)a(1)⊗a(2)(1)⊗a(2)(2) Σ(a)ε(a(1))a(2) = Σ(a)a(1)ε(a(2)) = a

Σ(ab)(ab)(1)⊗(ab)(2) = Σ(a)Σ(b)a(1)b(1)⊗a(2)b(2) ε(ab) = ε(a)ε(b)

Σ(a)S(a(1))a(2) = Σ(a)a(1)S(a(2)) = ε(a) 1 ∀a, b ∈ H.

2. As indicated by the wording of Definition 5.2.1, the existence of the antipode is a property
of a given bialgebra (H,m, η,∆, ε) and not a choice of structure. We will see in Corollary
5.2.5 that there is at most one antipode for a given bialgebra structure on H.

3. Although the antipode replaces the inverse for representations of a finite group, it does
not need to be an involution. In fact, it is not even guaranteed to be invertible. A Hopf
algebra with S2 = id is called involutive. We will show in Theorem 6.2.9 that for every
finite-dimensional Hopf algebra H the antipode is invertible.

The defining condition on the antipode in Definition 5.2.1 is motivated from the representation
theoretical viewpoint by right rigidity of H−Modfd. Nevertheless, it is possible to understand
it conceptually without representations. This is achieved with the convolution product of a
bialgebra H, which is defined more generally for a pair of an algebra A and a coalgebra C.

Lemma 5.2.3: Let (A,m, η) be an algebra and (C,∆, ε) a coalgebra over F.

1. The convolution product defines an algebra structure on HomF(C,A)

∗ : HomF(C,A)⊗HomF(C,A)→ HomF(C,A), f⊗g 7→ f ∗ g = m ◦ (f⊗g) ◦∆.

2. The convolution invertible elements in HomF(C,A) form a group with unit η ◦ ε.

Proof:
That ∗ is F-linear follows from the F-linearity of ∆, m and the properties of the tensor product.
The associativity of ∗ follows from the associativity of m and the coassociativity of ∆

(f ∗ g) ∗ h = m ◦ ((f ∗ g)⊗h) ◦∆ = m ◦ (m⊗id) ◦ (f⊗g⊗h) ◦ (∆⊗id) ◦∆

= m ◦ (id⊗m) ◦ (f⊗g⊗h) ◦ (id⊗∆) ◦∆ = m ◦ (f⊗(g ∗ h)) ◦∆ = f ∗ (g ∗ h).

That η ◦ ε : C → A is a unit for ∗ follows because η is the unit of A and ε the counit of C

(η ◦ ε) ∗ f = m ◦ ((η ◦ ε)⊗f) ◦∆ = m ◦ (id⊗f) ◦ (η⊗id) ◦ (ε⊗id) ◦∆ = m ◦ (1A⊗f) = f

f ∗ (η ◦ ε) = m ◦ (f⊗(η ◦ ε)) ◦∆ = m ◦ (f⊗id) ◦ (id⊗η) ◦ (id⊗ε) ◦∆ = m ◦ (f⊗1A) = f.

This shows that the vector space HomF(C,A) with the convolution product is an associative
algebra over F. The uniqueness of two-sided inverses and the statement that the elements with
a two-sided inverse form a group holds for any monoid. 2
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If (B,m, η,∆, ε) is a bialgebra, we can choose (C,∆, ε) = (B,∆, ε) and (A,m, η) = (B,m, η)
and consider the convolution product on EndF(B). It is then natural to ask if the element
idB ∈ EndF(B) is convolution invertible. We find that this is the case if and only if B is a
Hopf algebra, and then the convolution inverse is the antipode of B. This gives an additional
motivation for Definition 5.2.1 and allows us to investigate the properties of the antipode.

Proposition 5.2.4: Let (B,m, η,∆, ε) and (B′,m′, η′,∆′, ε′) bialgebras over F.

1. The identity map idB : B → B is convolution invertible if and only if (B,m, η,∆, ε) is a
Hopf algebra, and in this case the convolution inverse of idB is the antipode S : B → B.

2. If f ∈ HomF(B,B) is a convolution invertible algebra homomorphism, then its convo-
lution inverse f−1 : B → B is an anti-algebra homomorphism: mop◦(f−1⊗f−1) = f−1◦m.

3. If f ∈ HomF(B,B) is a convolution invertible coalgebra homomorphism, then its convolu-
tion inverse f−1 : B → B is an anti-coalgebra homomorphism: ∆◦f−1 = (f−1⊗f−1)◦∆op.

4. If φ : B → B′ is an algebra homomorphism, then Lφ : HomF(B,B) → HomF(B,B′),
f 7→ φ ◦ f is an algebra homomorphism with respect to the convolution products.

5. If ψ : B → B′ is a coalgebra homomorphism, then Rψ : HomF(B′, B′) → HomF(B,B′),
g 7→ g ◦ ψ is an algebra homomorphism with respect to the convolution products.

Proof:
1. By definition, the identity map idB is convolution invertible if and only if there is a linear
map f : B → B with f ∗ idB = m ◦ (f⊗idB) ◦∆ = η ◦ ε = m ◦ (idB⊗f) ◦∆ = idB ∗ f . This is
the defining condition for the antipode in Definition 5.2.1.

2. For any algebra homomorphism f : B → B with convolution inverse f−1 : B → B we have

f−1 ◦ η = m ◦ (f−1 ◦ η⊗f ◦ η) = m ◦ (f−1⊗f) ◦∆ ◦ η = (f−1 ∗ f) ◦ η = η ◦ ε ◦ η = η,

where we used the identities m ◦ (id⊗η) = id and f ◦ η = η for an algebra homomorphism f in
the first step, then the identity ∆ ◦ η = η⊗η, the definition of the convolution product and the
identity ε ◦ η = idF.

To show that mop ◦ (f−1⊗f−1) = f−1 ◦m, we consider the convolution algebra HomF(B⊗B,B),
where B⊗B is equipped with the tensor product coalgebra structure from Example 5.1.3, 2. We
show that f−1 ◦m and mop ◦ (f−1⊗f−1) are both convolution inverses of m ◦ (f⊗f) = f ◦m :
B⊗B → B. The uniqueness of the convolution inverse then implies mop ◦ (f−1⊗f−1) = f−1 ◦m.

To show that both, f−1 ◦m and mop ◦ (f−1⊗f−1), are convolution inverses of f ◦m, we compute

(f−1 ◦m) ∗ (f ◦m) = m ◦ (f−1 ◦m⊗f ◦m) ◦∆B⊗B = m ◦ (f−1⊗f) ◦∆ ◦m
= (f−1 ∗ f) ◦m = η ◦ ε ◦m = η ◦ (ε⊗ε) = η ◦ εB⊗B,

and an analogous computation shows that (f ◦m) ∗ (f−1 ◦m) = η ◦ εB⊗B.

To show the corresponding identity for mop ◦ (f−1⊗f−1) , we note that in Sweedler notation
we have (f ∗ g)(b) = Σ(b)f(b(1))g(b(2)) and ∆B⊗B(b⊗c) = Σ(b)(c)b(1)⊗c(1)⊗b(2)⊗c(2). This yields

(mop ◦ (f−1⊗f−1)) ∗ (f ◦m)(b⊗c)
= Σ(b)(c)(m

op ◦ (f−1⊗f−1))(b(1)⊗c(1)) · (f ◦m)(b(2)⊗c(2)) = Σ(b)(c)f
−1(c(1)) · f−1(b(1)) · f(b(2)c(2))

= Σ(b)(c)f
−1(c(1)) · f−1(b(1)) · f(b(2)) · f(c(2)) = Σ(b)(c)f

−1(c(1)) · (f−1 ∗ f)(b) · f(c(2))

= ε(b)Σ(c)f
−1(c(1)) · f(c(2)) = ε(b)(f−1 ∗ f)(c) = ε(b)ε(c)1B = η ◦ εB⊗B(b⊗c),
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and a similar computation proves (f ◦m) ∗ (f−1 ◦m) = (f ∗m) ◦ (mop ◦ (f−1 ◦ f−1) = η ◦ εB⊗B.

3. The proof for 3. is analogous to 2. One considers the convolution algebra HomF(B,B⊗B),
where B⊗B is the tensor product of the algebra B with itself from Example A.5, 5. and proves
that ∆ ◦ f−1 and (f−1⊗f−1) ◦∆op are convolution inverses of ∆ ◦ f = (f⊗f) ◦∆ : B → B⊗B
(Exercise).

4. and 5. For any algebra homomorphism φ : B → B′, coalgebra homomorphism ψ : B → B′

and linear maps f, g ∈ EndF(B), h, k ∈ EndF(B′) one has

φ ◦ (f ∗ g) = φ ◦m ◦ (f⊗g) ◦∆ = m′ ◦ (φ⊗φ) ◦ (f⊗g) ◦∆ = (φ ◦ f) ∗ (φ ◦ g)

(h ∗ k) ◦ ψ = m′ ◦ (h⊗k) ◦∆′ ◦ ψ = m′ ◦ (h⊗k) ◦ (ψ⊗ψ) ◦∆ = (h ◦ ψ) ∗ (k ◦ ψ).

As any algebra homomorphism φ : B → B′ satisfies Lφ(η ◦ ε) = φ ◦ η ◦ ε = η′ ◦ ε and
any coalgebra homomorphism ψ : B → B′ satisfies Rψ(η′ ◦ ε′) = η′ ◦ ε′ ◦ ψ = η′ ◦ ε, we
estabished that Lφ : EndF(B)→ HomF(B,B′) and Rφ : EndF(B′)→ HomF (B,B′) are algebra
homomorphisms. 2

Corollary 5.2.5: (Properties of the antipode 1)

1. If a bialgebra (B,m, η,∆, ε) is a Hopf algebra, then its antipode S : B → B is unique.

2. The antipode of a Hopf algebra is an anti-algebra and anti-coalgebra homomorphism

mop ◦ (S⊗S) = S ◦m S ◦ η = η ∆ ◦ S = (S⊗S) ◦∆op ε ◦ S = ε.

3. If (B,m, η,∆, ε, S) and (B′,m′, η′,∆′, ε′, S ′) are Hopf algebras, then any bialgebra homo-
morphism φ : B → B′ satisfies S ′ ◦ φ = φ ◦ S.

Proof:
1. The first claim follows from the uniqueness of the convolution inverse in Lemma 5.2.3 and
because the antipode is the convolution inverse of the identity map by Proposition 5.2.4, 1.

2. The second claim follows from Proposition 5.2.4, 2. and 3., since idH is an algebra and
coalgebra homomorphism.

3. The last claim follows directly from Proposition 5.2.4, 4. and 5. since for any bialgebra
homomorphism φ : B → B′, one has

(φ ◦ S) ∗ φ = Lφ(S ∗ idB) = Lφ(η ◦ ε) = η′ ◦ ε = Lφ(η ◦ ε) = Lφ(idB ∗ S) = φ ∗ (φ ◦ S)

(S ′ ◦ φ) ∗ φ = Rφ(S ′ ∗ idB′) = Rφ(η′ ◦ ε′) = η′ ◦ ε = Rφ(η′ ◦ ε′) = Rφ(idB′ ∗ S ′) = φ ∗ (S ′ ◦ φ).

This shows that both, S ′ ◦ φ and φ ◦ S are convolution inverses of φ : B → B′ in HomF(B,B′).
The uniqueness of the convolution inverse then implies S ′ ◦ φ = φ ◦ S. 2

Before considering examples, it remains to clarify the dependence of our definitions on the
choices involved. Our definition of a Hopf algebra took as the defining condition for the an-
tipode equation (47), which ensures that the right evaluation and coevaluation maps are ho-
momorphisms of representations. Note that this is also the defining condition for the antipode
of the bialgebra Bop,cop = (mop, η,∆op, ε), since equation (47) is invariant under simultane-
ously replacing m and ∆ by mop and ∆op. In contrast, the corresponding condition (48) for
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the left evaluation and coevaluation is the defining condition on the antipode of the bialgebras
Bop = (mop, η,∆, ε) and Bcop = (m, η,∆op, ε).

It turns out that for a Hopf algebra with a bijective antipode S : H → H, switching the condi-
tions (47) and (48) amounts to replacing its antipode by its inverse. Imposing both conditions
amounts to the requirement that the antipode is an involution.

Lemma 5.2.6: (Properties of the antipode 2)
Let (H,m, η,∆, ε, S) be a Hopf algebra.

1. If S is invertible, then mop ◦ (S−1⊗id) ◦∆ = mop ◦ (id⊗S−1) ◦∆ = η ◦ ε.
2. S2 = idH if and only if mop ◦ (S⊗id) ◦∆ = η ◦ ε = mop ◦ (id⊗S) ◦∆.

3. If H is commutative or cocommutative, then S2 = idH .

Proof:
1. If S−1 : H → H is the inverse of the antipode S : H → H, one has

S ◦mop ◦ (S−1⊗id) ◦∆ = m ◦ (S⊗S) ◦ (S−1⊗id) ◦∆ = m ◦ (id⊗S) ◦∆ = η ◦ ε
S ◦mop ◦ (id⊗S−1) ◦∆ = m ◦ (S⊗S) ◦ (id⊗S−1) ◦∆ = m ◦ (S⊗id) ◦∆ = η ◦ ε.

As S ◦ η ◦ ε = η ◦ ε = S−1 ◦ η ◦ ε, applying S−1 to both sides of these equations proves 1.

2. If S2 = idH , then S = S−1 and from 1. one obtains mop◦(S⊗id)◦∆ = η◦ε = mop◦(id⊗S)◦∆.
To prove the other implication, one computes with the convolution product in EndF(H)

S ∗ S2 = m ◦ (S⊗S2) ◦∆ = S ◦mop ◦ (id⊗S) ◦∆ = m ◦ (id⊗S) ◦∆op ◦ S (49)

S2 ∗ S = m ◦ (S2⊗S) ◦∆ = S ◦mop ◦ (S⊗id) ◦∆ = m ◦ (S⊗id) ◦∆op ◦ S.

If mop ◦ (S⊗id) ◦∆ = η ◦ ε = mop ◦ (id⊗S) ◦∆, this implies S ∗ S2 = S2 ∗ S = S ◦ η ◦ ε = η ◦ ε
and by uniqueness of the convolution inverse S2 = idH . Claim 3. also follows directly from (49)
since mop = m or ∆op = ∆ imply S ∗ S2 = S2 ∗ S = idH in (49) and hence S2 = idH . 2

This corollary shows that for any Hopf algebra (H,m, η,∆, ε, S), reversing the multiplication
and the comultiplication yields another Hopf algebra structure on H, namely the Hopf alge-
bra Hop,cop = (H,mop, η,∆op, ε, S). If S is invertible, then reversing the multiplication or the
comultiplication and taking the inverse of the antipode yields new Hopf algebra structures
Hop = (H,mop, η,∆, ε, S−1) and Hcop = (H,m, η,∆op, ε, S−1) on H.

By combining this result with the investigation of the right and left evaluation and coevaluation
maps at the beginning of this subsection, one obtains sufficient conditions that ensure that the
representation category H−Modfd of finite-dimensional modules over a bialgebra H is rigid.

Corollary 5.2.7: Let H be a Hopf algebra over F.

1. The monoidal categories H−Modfd and Hop,cop−Modfd are right rigid.

2. The monoidal categories Hop−Modfd and Hcop−Modfd are left rigid.

3. If the antipode of H is bijective, then H−Modfd is rigid.

4. If the antipode of H is an involution, then right and left duals in H−Modfd coincide.
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Proof:
By Theorem 5.1.10 the representation category H−Mod is a monoidal category, and so is
its full subcategory H−Modfd of finite-dimensional H-modules. At the beginning of this
subsection, we established that the right evaluation and coevaluation of VectfdF become
H-linear if H is equipped with a linear map S : H → H that satisfies (47) and the left
evaluation and coevaluation become H-linear if S : H → H satisfies (48). The former is the
case for H and Hop,cop, the latter for Hop and Hcop. The last two claims then follow directly
from Lemma 5.2.6, 1. and 2. 2

With these results on the properties of the antipode, we can now consider our first examples,
which are rather trivial but structurally important, because they care used in many construc-
tions. More interesting and advanced examples will be considered in the next subsection.

Example 5.2.8:

1. For any two Hopf algebras H,K over F, the tensor product bialgebra H⊗K is a Hopf
algebra with antipode S = SH⊗SK . This is called the tensor product Hopf algebra
and denoted H⊗K.

2. For any finite-dimensional Hopf algebra (H,m, η,∆, ε, S), the dual bialgebra
(H∗,∆∗, ε∗,m∗, η∗) is a Hopf algebra with antipode S∗. For any Hopf algebra
(H,m, η,∆, ε, S), the finite dual (H◦,∆∗|H◦⊗H◦ , ε∗,m∗|H◦ , η∗|H◦) from Example 5.1.9,
3. is a Hopf algebra with antipode S∗|H◦ (Exercise).

3. A Hopf subalgebra of a Hopf algebra H is a subbialgebra U ⊂ H with S(U) ⊂ U .

Example 5.2.9: Let G be a group and F a field.
The group algebra F[G] is a cocommutative Hopf algebra with the algebra structure from
Example A.10, comultiplication ∆ : F[G]→ F[G]⊗F[G], g 7→ g⊗g, counit ε : F[G]→ F, g 7→ 1
and antipode S : F[G]→ F[G], g 7→ g−1.

Proof:
As the elements of F[G] are finite linear combinations Σg∈G λgg with λg ∈ F, it is sufficient to
verify that the axioms hold for the basis elements. This follows by a direct computation

(∆⊗id) ◦∆(g) = ∆(g)⊗g = g⊗g⊗g = g⊗∆(g) = (id⊗∆) ◦∆(g)

(ε⊗id) ◦∆(g) = ε(g)⊗g = 1⊗g (id⊗ε) ◦∆(g) = g⊗ε(g) = g⊗1

∆(g · h) = (gh)⊗(gh) = (g⊗g) · (h⊗h) = ∆(g) ·∆(h)

ε(g · h) = 1 = 1 · 1 = ε(g) · ε(h)

m ◦ (S⊗id) ◦∆(g) = m(g−1⊗g) = g−1g = 1 = η(ε(g)) = gg−1 = m(g⊗g−1) = m ◦ (id⊗S) ◦∆(g).

2

Example 5.2.10: Let G be a finite group and F a field.
The dual vector space F[G]∗ is the vector space Map(G,F) of maps f : G → F with the
pointwise addition and scalar multiplication. In terms of the basis elements δg : G → F with
δg(g) = 1 and δg(h) = 0 for g 6= h, the dual Hopf algebra (Map(G,F),∆∗, ε∗,m∗, η∗, S∗) is

∆∗(δg⊗δh) = δg · δh = δg(h) δh ε∗(λ) = λΣg∈Gδg

m∗(δg) = Σh∈Gδh⊗δh−1g η∗(δg) = δg(e) S ′(δg) = S∗(δg) = δg−1

This Hopf algebra is commutative, and its algebra structure is given by the pointwise multipli-
cation of functions f : G→ F.
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Proof:
This follows by a direct computation from the definition of the dual Hopf algebra structure.
We have for all g, h, u, v ∈ G

∆∗(δg⊗δh)(u) = (δg⊗δh)(∆(u)) = (δg⊗δh)(u⊗u) = δg(u)δh(u) = δg(h) δh(u)

ε∗(λ)(u) = λε(u) = λ = Σg∈Gλδg(u)

m∗(δg)(u⊗v) = δg(u · v) = Σh∈Gδh(u)δg(hv) = Σh∈Gδh(u)δh−1g(v)

η∗(δg) = δg(e)

S∗(δg)(u) = δg(S(u)) = δg(u
−1) = δg−1(u).

This implies for all u ∈ G and maps f1, f2 : G→ F

(f1 · f2)(u) = ∆∗(f1⊗f2)(u) = Σg,h∈Gf1(g)f2(h)∆∗(δg⊗δh)(u) = Σg,h∈Gf1(g)f2(h)δg(u)δh(u)

= f1(u)f2(u). 2

5.3 Examples

In this section, we consider examples of Hopf algebras, which show that the concept goes
beyond group algebras and other familiar constructions. In particular, we construct parameter
dependent examples that are non-commutative and non-cocommutative and can be viewed
as deformations of other, more basic Hopf algebras. We start with two most basic examples,
namely the tensor algebra of a vector space (cf. Example A.6) and the universal enveloping
algebra of a Lie algebra (cf. Example A.9).

Example 5.3.1: The tensor algebra T (V ) of a vector space V over F is a cocommutative
Hopf algebra over F with the algebra structure from Example A.6 and the comultiplication,
counit and antipode given by

∆(v1⊗ . . .⊗vn) = Σn
p=0Σσ∈Sh(p,n−p)(vσ(1)⊗ . . .⊗vσ(p))⊗(vσ(p+1)⊗ . . .⊗vσ(n))

ε(v1⊗ . . .⊗vn) = 0 S(v1⊗...⊗vn) = (−1)nvn⊗...⊗v1,

where Sh(p, q) is the set of (p, q)-shuffle permutations

σ ∈ Sp+q with σ(1) < σ(2) < ... < σ(p) and σ(p+ 1) < σ(p+ 2) < ... < σ(p+ q),

and we set vσ(1)⊗ . . .⊗vσ(p) = 1 for p = 0 and vσ(p+1)⊗ . . .⊗vσ(n) = 1 for p = n.

Proof:
By the universal property of the tensor algebra, see Example A.6, the linear maps

∆′ : V → T (V )⊗T (V ), v 7→ 1⊗v+ v⊗1 ε′ : V → F, v 7→ 0 S : V → T (V )op, v 7→ −v

induce algebra homomorphisms ∆ : T (V ) → T (V )⊗T (V ), ε : T (V ) → F, S : T (V ) → T (V )op

with ∆ ◦ ιV = ∆′, ε ◦ ιV = ε′ and S ◦ ιV = S ′. To show that ∆ and ε are coassociative and
counital and S is an antipode it is sufficient to prove that

(∆⊗id) ◦∆ ◦ ιV = (id⊗∆) ◦∆ ◦ ιV (50)

lT (V ) ◦ (ε⊗id) ◦∆ ◦ ιV = ιV = rT (V ) ◦ (id⊗ε) ◦∆ ◦ ιV
m ◦ (S⊗id) ◦∆ ◦ ιV = η ◦ ε ◦ ιV = m ◦ (id⊗S) ◦∆ ◦ ιV
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by the universal property of the tensor algebra. As ∆, ε are algebra homomorphisms and S is
an anti-algebra homomorphism, they satisfy ∆(1F) = 1F⊗1F, ε(1F) = 1 and S(1F) = 1F for the
unit 1F of T (V ). The identities (50) follow by a direct computation from the expressions for
∆′, ε′, S ′.

The formulas for the comultiplication, counit and antipode follow by induction over n. If they
hold for all products of vectors in V of length ≤ n, then we have by definition of ∆, ε and S

ε(v1⊗...⊗vn+1) = ε(v1⊗...⊗vn) · ε(vn+1) = 0

S(v1⊗...⊗vn+1) = S(vn+1)⊗S(v1⊗...⊗vn) = (−1)n+1vn+1⊗vn⊗...⊗v1

∆(v1⊗...⊗vn+1) = ∆(v1⊗...⊗vn) ·∆(vn+1)

=
(
Σn
p=0Σσ∈Sh(p,n−p) (vσ(1)⊗...⊗vσ(p))⊗(vσ(p+1)⊗...⊗vσ(n)

)
· (vn+1⊗1 + 1⊗vn+1)

= Σn
p=0Σσ∈Sh(p,n−p) (vσ(1)⊗...⊗vσ(p)⊗vn+1)⊗(vσ(p+1)⊗...⊗vσ(n))

+ Σn
p=0Σσ∈Sh(p,n−p) (vσ(1)⊗...⊗vσ(p))⊗(vσ(p+1)⊗...⊗vσ(n)⊗vn+1)

= Σn+1
p=0Σσ∈Sh(p,n+1−p) (vσ(1)⊗...⊗vσ(p))⊗(vσ(p+1)⊗...⊗vσ(n+1)).

In the last step we used that every shuffle permutation σ ∈ Sh(p, n − p) defines a shuffle
permutation σ′ ∈ Sh(p+ 1, n− p) and a shuffle permutation σ′′ ∈ Sh(p, n+ 1− p)

σ′(i) =


σ(i) 1 ≤ i ≤ p

n+ 1 i = p+ 1

σ(i− 1) p+ 2 ≤ i ≤ n+ 1

σ′′(i) =

{
σ(i) 1 ≤ i ≤ n

n+ 1 i = n+ 1.

Conversely, for every shuffle permutation π ∈ Sh(p, n + 1 − p), one has either π(p) = n + 1
or π(n + 1) = n + 1. In the first case, one has p > 0 and π = σ′ for a shuffle permutation
σ ∈ Sh(p − 1, n + 1− p) and in the second π = σ′′ for a shuffle permutation σ ∈ Sh(p, n− p).
The cocommutativity of T (V ) follows directly from the formula for ∆′. 2

Example 5.3.2: The universal enveloping algebra U(g) of a Lie algebra g is a cocommutative
Hopf algebra with the algebra structure from Example A.9 and the comultiplication, counit and
antipode given by ∆(x) = x⊗1 + 1⊗x, ε(x) = 0 and S(x) = −x for all x ∈ g.

Proof:
The linear maps

∆′ : g→ U(g)⊗U(g), x 7→ x⊗1 + 1⊗x ε′ : g→ F, x 7→ 0 S ′ : g→ U(g)op, x 7→ −x

are Lie algebra homomorphisms, since one has for all x, y ∈ g

[∆′(x),∆′(y)] = ∆′(x) ·∆′(y)−∆′(y) ·∆′(x) = [x, y]⊗1 + 1⊗[x, y] = ∆′([x, y])

[ε′(x), ε′(y)]) = ε′(x)ε′(y)− ε′(y)ε′(x) = 0 = ε′([x, y])

[S ′(x), S ′(y)] = S ′(y)S ′(x)− S ′(x)S ′(y) = y · x− x · y = −[x, y] = S ′([x, y]).

By the universal property of U(g), they induce algebra homomorphisms ∆ : U(g)→ U(g)⊗U(g)
ε : U(g)→ F and S : U(g)→ U(g)op with ∆ ◦ ιg = ∆′, ε ◦ ιg = ε′ and S ◦ ιg = S ′. To prove the
coassociativity and counitality and that S is an antipode, it is sufficient to show that

(∆⊗id) ◦∆ ◦ ιg = (id⊗∆) ◦∆ ◦ ιg (51)

lU(g) ◦ (ε⊗id) ◦∆ ◦ ιg = ιg = rU(g) ◦ (id⊗ε) ◦∆ ◦ ιg
m ◦ (S⊗id) ◦∆ ◦ ιg = η ◦ ε ◦ ιg = m ◦ (id⊗S) ◦∆ ◦ ιg.
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The claim then follows from the universal property of U(g). The identities (51) follow by a
direct computation that yields the same formulas as in the proof of Example 5.3.1. That this
bialgebra is cocommutative follows from the fact that ∆ ◦ ιg(x) = 1⊗x + x⊗1 = ∆op ◦ ιg(x)
for all x ∈ g. With the universal property of U(g), this implies ∆ = ∆op : U(g)→ U(g)⊗U(g). 2

All examples of Hopf algebras treated so far are cocommutative, and hence their (finite) du-
als are commutative. To construct more interesting examples that are neither commutative
nor cocommutative, we consider certain polynomials in Z[q], the so-called q-factorials and q-
binomials. Their name is due to the fact that they exhibit relations that resemble the relations
between factorials of natural numbers and binomial coefficients.

Definition 5.3.3: Let Z[q] the ring of polynomials with coefficients in Z and Z(q) the asso-
ciated fraction field of rational functions. We define:

• the q-natural (n)q = 1 + q + ...+ qn−1 = qn−1
q−1

for all n ∈ N,

• the q-factorial (0)!q = 1 and (n)!q = (n)q(n− 1)q · · · (1)q = (qn−1)(qn−1−1)···(q−1)
(q−1)n

for n ∈ N,

• the q-binomial or Gauß polynomial

(
n
k

)
q

= (n)!q
(n−k)!q (k)!q

for k, n ∈ N0 with 0 ≤ k ≤ n.

Lemma 5.3.4:

1. The q-naturals, the q-factorials and the q-binomials are elements of Z[q].

2. For all k, n ∈ N0 with 0 ≤ k ≤ n the q-binomials satisfy the identity(
n
k

)
q

=

(
n

n− k

)
q

3. For all k, n ∈ N0 with 0 ≤ k < n the q-binomials satisfy the q-Pascal identity(
n+ 1
k + 1

)
q

=

(
n
k

)
q

+ qk+1

(
n

k + 1

)
q

=

(
n

k + 1

)
q

+ qn−k
(
n
k

)
q

4. If A is an algebra over Z(q) and x, y ∈ A with xy = q yx one has the q-binomial formula

(x+ y)n =
n∑
k=0

(
n
k

)
q

ykxn−k,

Proof:
That (n)q and (n)!q are polynomials in q follows directly from their definition. That this also
holds for the q-binomials follows by induction from 3. and from the fact that they are equal to
1 for k = 0 or k = n. The second claim follows directly from the definition of the q-binomial,
and the third follows by a direct computation:(
n
k

)
q

+ qk+1

(
n

k + 1

)
q

=
(qn − 1) · · · (qk+1 − 1)

(qn−k − 1) · · · (q − 1)
+ qk+1 (qn − 1) · · · (qk+2 − 1)

(qn−k−1 − 1) · · · (q − 1)

=
(qn − 1) · · · (qk+2 − 1)

(qn−k − 1) · · · (q − 1)
·
(
qk+1 − 1 + qk+1(qn−k − 1)

)
=

(qn+1 − 1) · · · (qk+2 − 1)

(qn−k − 1) · · · (q − 1)
=

(
n+ 1
k + 1

)
q(

n
k + 1

)
q

+ qn−k
(
n
k

)
q

=
(qn − 1) · · · (qk+2 − 1)

(qn−k−1 − 1) · · · (q − 1)
+ qn−k

(qn − 1) · · · (qk+1 − 1)

(qn−k − 1) · · · (q − 1)

=
(qn − 1) · · · (qk+2 − 1)

(qn−k − 1) · · · (q − 1)
·
(
qn−k − 1 + qn−k(qk+1 − 1)

)
=

(qn+1 − 1) · · · (qk+2 − 1)

(qn−k − 1) · · · (q − 1)
=

(
n+ 1
k + 1

)
q

.
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4. To prove the last claim, we show by induction over n that for all x, y ∈ A and n ∈ N0

(x+ y)n+1 −
n+1∑
k=0

(
n+ 1
k

)
q

ykxn+1−k ∈ (xy − qyx) =: I. (52)

For n = 0 this holds by definition. Suppose it holds for n ∈ N0 and x, y ∈ A. With the identity

xyk − qkykx = Σk−1
l=0 q

lyl(xy − qyx)yk−l−1, (53)

which follows by induction over k for all x, y ∈ A and with 3. we compute

(x+ y)n+1 −
n+1∑
k=0

(
n+ 1
k

)
q

ykxn+1−k

ind
= (x+ y)

n∑
k=0

(
n
k

)
q

ykxn−k −
n+1∑
k=0

(
n+ 1
k

)
q

ykxn+1−k mod I

3.
=

n−1∑
k=0

(
n
k

)
q

yk+1xn−k +
n∑
k=1

(
n
k

)
q

xykxn−k −
n∑
k=1

(
n

k − 1

)
q

ykxn+1−k −
n∑
k=1

(
n
k

)
q

qkykxn+1−k mod I

=
n∑
k=1

(
n
k

)
q

(xykxn−k − qkykxn+1−k) mod I
(53)
=

n∑
k=1

k−1∑
l=0

(
n
k

)
q

qlyl(xy − qyx)yk−l−1xn−k = 0 mod I,

where we write a = b mod I for a − b ∈ I = (xy − qyx). If xy = q yx, then the ideal
(xy − qyx) ⊂ A is trivial and the claim follows. 2

To evaluate the q-naturals, q-factorials and q-binomials, we recall that for every integral domain
R, we have a unital ring homomorphism φ : Z → R, z 7→ z = z1. By the universal property
of Z[q] it induces a unique unital ring homomorphism φ′ : Z[q] → R[q] with φ′(1) = 1. By
composing it with the evaluation homomorphism evr : R[q] → R for an element r ∈ R, we
obtain a unital ring homomorphism ev′r : Z[q]→ R, Σn∈N0anq

n 7→ Σn∈N0anr
n.

Definition 5.3.5: LetR be an integral domain. The evaluation of the q-naturals, q-binomials
and q-factorials at an element r ∈ R is

(n)′r = ev′r(n)q (n)!′r = ev′r(n)!q

(
n
k

)′
r

= ev′r

(
n
k

)
q

.

Clearly, there are two cases of special interest. The first is R = Z and r = 1, where the
evaluations of q-factorials and q-binomials in r = 1 coincide with the usual factorials and
binomials. This justifies the names q-naturals, q-binomials and q-factorials.

The second is the case, where r ∈ R is a primitive nth root of unity: rn = 1 and rk 6= 1
for 1 ≤ k < n. In this case, one has (n)′r = 0 and (k)′r 6= 0 for all k < n since the roots
of the polynomial (m)q are precisely the non-trivial mth roots of unity. This implies that the
evaluations of all q-factorials (m)!q with m ≥ n vanish, since they contain a factor (n)q. The
same holds for the evaluations of all q-binomials with entries n and 0 < k < n, since (n)′r = 0
and (k)′r 6= 0 for all k < n implies(

n
k

)′
r

= ev′r
(n)!q

(n− k)!q(k)!q
=

(n)′q · · · (n− k + 1)′q
(k)′q(k − 1)′q · · · (1)′q

= 0.
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We now use the q-naturals, q-factorials and q-binomials to construct an example of a Hopf alge-
bra that is neither commutative nor cocommutative. The simplest way to proceed is to present
its algebra structure in terms of generators and relations, see Definition A.7. Clearly, the min-
imum number of linearly independent generators that can give rise to a non-commutative and
non-cocommutative bialgebra is two. The simplest relations that can be imposed on such an
algebra without making it commutative or trivial are quadratic relations in the two genera-
tors, i. e. relations of the form xy − qyx for some q ∈ F and generators x, y. This defines an
infinite-dimensional non-commutative and non-cocommutative bialgebra. If we impose addi-
tional relations of the form xn = 0 and yn = 1 to make the bialgebra finite-dimensional, we
have to take q as a primitive nth root of unity and obtain Taft’s example.

Example 5.3.6: (Taft’s example)
Let F be a field of characteristic zero, n ∈ N and q ∈ F a primitive nth root of unity. Let Tq be
the algebra over F with generators x, y and relations

xy − q yx = 0, xn = 0, yn − 1 = 0. (54)

Then Tq is a Hopf algebra with the comultiplication, counit and antipode given by

∆(x) = 1⊗x+ x⊗y, ∆(y) = y⊗y, ε(x) = 0, ε(y) = 1, S(x) = −xyn−1, S(y) = yn−1. (55)

Proof:
Let V be the free F-vector space generated by B = {x, y}. Then the algebra Tq is given as
Tq = T (V )/I, where I = (xy− q yx, xn, yn− 1) is the two-sided ideal in T (V ) generated by the
relations (54) and · denotes the multiplication of the tensor algebra T (V ).

1. We show that (55) defines a bialgebra structure on T (V ):

By the universal property of the tensor algebra, the linear maps ∆′ : V → T (V )⊗T (V ) and
ε′ : V → F that are determined by their values on B from (55) induce algebra homomorphisms
∆′′ : T (V )→ T (V )⊗T (V ), ε′′ : T (V )→ F with ∆′′ ◦ ιV = ∆′ and ε′′ ◦ ιV = ε′.

To prove that these algebra homomorphisms satisfy the coassociativity and the counitality
condition, it is sufficient to show that

(∆′⊗id) ◦∆′(z) = (id⊗∆′) ◦∆′(z) (ε′⊗id) ◦∆′(z) = 1⊗z = (id⊗ε′) ◦∆′(z)

for z ∈ B. This follows by a direct computation from (55) and shows that ∆′′ and ε′′ define a
bialgebra structure on the tensor algebra T (V ).

2. We show that it induces a bialgebra structure on Tq = T (V )/I:

By Proposition 5.1.5 it is sufficient to show that I is a coideal in T (V ). As I is the two-sided ideal
generated by the relations in (54) and ∆′′ and ε′′ are algebra homomorphisms, it is sufficient
to show that ∆′′(r) ∈ I⊗T (V ) + T (V )⊗I and ε′′(r) = 0 for each relation r in (54). The latter
follows directly from the definition of ε′′. For the former, we compute

∆′′(xy − qyx) = ∆′′(x) ·∆′′(y)− q∆′′(y) ·∆′′(x)

= y⊗(xy) + (xy)⊗y2 − q y⊗(yx)− q(yx)⊗y2

= y⊗(xy − q yx) + (xy − qyx)⊗y2 ∈ T (V )⊗I + I⊗T (V ).

∆′′(yn − 1) = ∆′′(y)n − 1⊗1 = (y⊗y)n − (1⊗1) = yn⊗yn − 1⊗1

= yn⊗(yn − 1) + (yn − 1)⊗1 ∈ T (V )⊗I + I⊗T (V ).
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To prove this for ∆′′(xn) = (1⊗x+x⊗y)n, note that (52) from the proof of Lemma 5.3.4 implies

(1⊗x+ x⊗y)n −
n∑
k=0

(
n
k

)′
q

(x⊗y)k · (1⊗x)n−k ∈ J

where the binomial coefficient is evaluated in q ∈ F and J is the two-sided idea generated by
the element (1⊗x) · (x⊗y)− q (x⊗y)(1⊗x) = x⊗(xy)− q x⊗(yx) = x⊗(xy − qyx) ∈ T (V )⊗I.
As T (V )⊗I is a two-sided ideal in T (V )⊗T (V ), we have J ⊂ T (V )⊗I. As q is a primitive nth
root of unity, the evaluations of the binomial coefficients for 0 < k < n vanish. This yields

∆′′(xn)− 1⊗xn − xn⊗yn ∈ T (V )⊗I ⇒ ∆′′(xn) ∈ T (V )⊗I + I⊗T (V ).

Hence, we have shown that ∆′′ and ε′′ induce algebra homomorphisms ∆ : Tq → Tq⊗Tq and
ε : Tq → F with (π⊗π) ◦∆′′ = ∆ ◦ π and ε′′ = ε ◦ π, where π : T (V )→ T (V )/I is the canonical
surjection, and that this defines a bialgebra structure on Tq = T (V )/I.

3. We show that Tq is a Hopf Algebra:

For this we consider the linear map S ′ : V → T (V )op defined by (55). By the universal property
of the tensor algebra it induces an algebra morphism S ′′ : T (V ) → T (V )op with S ′′ ◦ ιV = S ′.
By composing it with the canonical surjection π : T (V )→ Tq, we obtain an algebra morphism
π ◦ S ′′ : T (V )→ T opq . To show that this induces an algebra morphism S : Tq → Tq, we have to
show that π ◦ S ′′(r) = 0 for all relations r in (54). With (53) we compute

π ◦ S ′′(xy − q yx) = π(S ′′(y))π(S ′′(x))− q π(S ′′(x))π(S ′′(y)) = −yn−1xyn−1 + q xyn−1 · yn−1

= −yn−1 xyn−1 + qnyn−1xyn−1 = (qn − 1)yn−1xyn−1 = 0,

π ◦ S ′′(xn) = π(S ′′(x)n) = (−xyn−1)n = (−1)n(xyn−1) · · · (xyn−1) = (−1)nq(n−1)(1+...+n)yn(n−1)xn = 0,

π ◦ S ′′(yn − 1) = π(S ′′(y)n)− 1 = yn(n−1) − 1 = 1n−1 − 1 = 0.

To show that the algebra morphism S : Tq → T opq satisfies the defining condition on the
antipode, it is sufficient to verify

m ◦ (S⊗id) ◦∆(z) = ε(z) = m ◦ (id⊗S) ◦∆(z)

for z ∈ {x, y}, which follows by a direct computation. This shows that Tq is a Hopf algebra. 2

Remark 5.3.7:

1. Taft’s example for q = −1, n = 2 is also known as Sweedler’s example.

2. The elements xiyj ∈ Tq with 0 ≤ i, j ≤ n − 1 form a basis of the vector space Tq. This
follows because every mixed monomial in x and y can be transformed into one of them
by applying the relations, and the elements xiyj are linearly independent. The elements
yixj ∈ Tq with 0 ≤ i, j ≤ n− 1 form as basis as well. In particular, one has dimF Tq = n2.

3. It follows from the proof of Example 5.3.6 that the algebra with generators x, y and the
relation xy − qyx is also a bialgebra for any q ∈ F, because the ideal I ′ = (xy − qyx) is
a coideal in T (V ). This infinite-dimensional bialgebra is sometimes called the quantum
plane. It is not cocommutative, commutative if and only if q = 1, and the elements xiyj

for i, j ∈ N0 form a basis of this bialgebra.

4. The antipode in Taft’s example satisfies S2(y) = y and S2(x) = yxy−1. This shows that
S2 and hence S are invertible, but we do not have S2 = id.
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Our next example of a non-cocommutative and non-commutative bialgebra and Hopf algebra
are the so-called q-deformed matrix algebras Mq(2,F) and SLq(2,F). They are again presented
in terms of generators and relations and their coalgebra structure will be interpreted later as a
generalisation and deformation of the coalgebra Mat(2× 2,F)∗ from Example 5.1.3, 5.

Example 5.3.8: Let F be a field and q ∈ F \ {0}.

1. The matrix algebra Mq(2,F) is the algebra over F with generators a, b, c, d and relations

ba = q ab, db = q bd, ca = q ac, dc = q cd, bc = cb, da− ad = (q − q−1) bc. (56)

It has a bialgebra structure with comultiplication and counit given by

∆(a) = a⊗a+ b⊗c, ∆(b) = a⊗b+ b⊗d, ∆(c) = c⊗a+ d⊗c, ∆(d) = c⊗b+ d⊗d
ε(a) = 1 ε(b) = 0 ε(c) = 0 ε(d) = 1. (57)

2. The q-determinant detq = ad− q−1bc is central in Mq(2,F) with

∆(detq) = detq⊗detq ε(detq) = 1.

3. The bialgebra structure of Mq(2,F) induces a Hopf algebra structure on the algebra
SLq(2,F) = Mq(2,F)/(detq − 1) with the antipode given by

S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.

Proof:
1. The proof is similar to the one of Example 5.3.6. The algebra Mq(2,F) is given as the quotient
Mq(2,F) = T (V )/I, where V is the free vector space with basis {a, b, c, d} and I ⊂ T (V ) the
two-sided ideal generated by the six relations in (56). By the universal property of the tensor
algebra, the maps ∆′ : V → T (V )⊗T (V ) and ε′ : V → F specified by (57) induce algebra
homomorphisms ∆′′ : T (V ) → T (V )⊗T (V ) and ε′′ : T (V ) → F. To show that ∆′′ and ε′′ are
coassociative and counital, it is again sufficient to show that for x ∈ {a, b, c, d}

(∆′′⊗id) ◦∆′′(x) = (id⊗∆′′) ◦∆′′(x)

lT (V ) ◦ (ε′′⊗id) ◦∆′′(x) = rT (V ) ◦ (id⊗ε′′) ◦∆′′(x).

This follows by a direct computation from (57). To show that this induces a bialgebra structure
on Mq(2,F) it is sufficient to prove that I is a two-sided coideal in T (V ), i. e. that we have
∆′′(r) ∈ I⊗T (V )+T (V )⊗I and ε′′(r) = 0 for each relation r. For the latter, note that ε′′(xy) = 0
if x, y ∈ {a, b, c, d} with {x, y}∩{b, c} 6= ∅. This proves that ε′′(r) = 0 for the first five relations.
For the last relation, we have

ε′′(da− ad) = ε′′(d)ε′′(a)− ε′′(a)ε′′(d) = 1− 1 = 0 = (q − q−1)ε′′(b)ε′′(c) = (q − q−1)ε′′(bc).

The identities ∆′′(r) ∈ I⊗T (V ) +T (V )⊗I follow from a direct computation, which we perform
for the first relation, since the other computations are similar

∆′′(ba− qab) = (a⊗b+ b⊗d) · (a⊗a+ b⊗c)− q(a⊗a+ b⊗c) · (a⊗b+ b⊗d)

= a2⊗(ba−q ab) + b2⊗(dc−q cd) + (ba−q ab)⊗da+ q ab⊗(da−ad+ (q−1− q)bc) + ab⊗(cb−bc).

2. That the element detq is central in Mq(2,F) follows by a direct computation from the relations
in Mq(2,F), and so do the formulas coproduct and the counit of the q-determinant.
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3. As we have ∆(detq−1) = detq⊗ detq−1⊗1 = detq⊗(detq−1)+(detq−1)⊗1, ε(detq−1) = 0,
the two-sided ideal (detq−1) in Mq(2,F) is a coideal in Mq(2,F). This implies that the quotient
Mq(2,F)/(detq−1) inherits a bialgebra structure from Mq(2,F).

To show that this bialgebra is a Hopf algebra, one verifies with the expressions for S that
m ◦ (S⊗id) ◦∆(x) = m ◦ (id⊗S) ◦∆(x) = ε(x) for all x ∈ {a, b, c, d} in SLq(2,F). This shows
that S is an antipode for the bialgebra SLq(2,F) and SLq(2,F) is a Hopf algebra. 2

To understand the names Mq(2,F) and SLq(2,F) for these algebras, we note that for q = 1 the
relations of the matrix algebra Mq(2,F) in (56) imply that M1(2,F) is a commutative algebra
with four generators and the coalgebra structure given by (57). If we interpret the generators
a, b, c, d as linear maps a, b, c, d ∈ Mat(2× 2,F)∗ given by

a :

(
a′ b′

c′ d′

)
7→ a′, b :

(
a′ b′

c′ d′

)
7→ b′, c :

(
a′ b′

c′ d′

)
7→ c′, d :

(
a′ b′

c′ d′

)
7→ d′,

we see that M1(2,F) is isomorphic to the algebra of functions f : Mat(2 × 2,F) → F that are
polynomials in the entries a′, b′, c′, d′, with the pointwise addition, scalar multiplication and
multiplication.

Moreover, the coalgebra structure defined by (57) coincides with the one from Example 5.1.3,
5. Hence, we extended the coalgebra structure on Mat(2 × 2,F) to the commutative algebra
M1(2,F) and obtained a bialgebra structure on M1(2,F). We can therefore interpret q as a de-
formation parameter that changes the algebra structure of the commutative bialgebra M1(2,F)
to a non-commutative one given by (56). This justifies the name Mq(2,F).

Note also that for q = 1, we have det1 = ad − bc and hence can interpret det1 ∈ M1(2,F)
as the determinant det : Mat(2 × 2,F) → F. The algebra SL1(2,F) = M1(2,F)/(det1−1) is
obtained from M1(2,F) by identifying those polynomial functions that agree on the subset
SL(2,F) = {M ∈ Mat(2 × 2,F) | det(M) = 1}. Hence, we can interpret SL1(2,F) as the
bialgebra of functions f : SL(2,F) → F that are polynomials in the matrix entries, with the
pointwise addition, scalar multiplication and multiplication.

The antipode of SL1(2,F) is given by S(a) = d, S(b) = −b, S(c) = −c and S(d) = a, and
we can interpret it as a map that sends the matrix elements of a matrix in SL(2,F) to the
matrix elements of the inverse matrix. The algebra SLq(2,F) for general q can then be viewed
a deformation of this algebra, in which the multiplication becomes non-commutative, and the
matrix elements of the inverse matrix are replaced by their image under the antipode.

Our last important example of a q-deformation are the so-called q-deformed universal enveloping
algebras. The simplest non-trivial one is the q-deformed universal enveloping algebra Uq(sl(2)),
which is related to the Lie algebra sl(2) of traceless (2× 2)-matrices with the Lie bracket given
by the matrix commutator. We first give its bialgebra structure in the simplest presentation and
then discuss its relation to the Lie algebra sl(2) and its universal enveloping algebra U(sl(2)).

Example 5.3.9: Let F be a field and q ∈ F \ {0, 1,−1}.
The q-deformed universal enveloping algebra Uq(sl2) is the algebra over F with generators
E,F,K,K−1 and relations

K±1K∓1 = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
. (58)
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A Hopf algebra structure on Uq(sl2) is given by

∆(K±1) = K±1⊗K±1, ∆(E) = 1⊗E + E⊗K, ∆(F ) = F⊗1 +K−1⊗F
ε(K±1) = 1, ε(E) = 0, ε(F ) = 0,

S(K±1) = K∓1 S(E) = −EK−1 S(F ) = −KF. (59)

Proof:
The proof is analogous to the one for the previous two examples and is left as an exercise. 2

Remark 5.3.10: One can show that the set B = {EiF jKk | i, j ∈ N0, k ∈ N} is a basis of
Uq(sl2) and that the Hopf algebra SLq(2,F) from Example 5.3.8 is the finite dual of Uq(sl2) and
vice versa. The duality is given by the unique linear map 〈 , 〉 : SLq(2)⊗Uq(sl2)→ F with

〈a,K±1〉 = q∓1 〈d,K±1〉 = q±1 〈b, E〉 = 1 〈c, F 〉 = 1

and 〈x, U〉 = 0 for all other combinations of x ∈ {a, b, c, d} and U ∈ {K±1, E, F}. The proofs
of these statements, which are are lengthy and technical, are given in [Ka].

We will now relate the bialgebra Uq(sl2) to the universal enveloping algebra of the Lie algebra
sl2 of traceless (2× 2)-matrices. However, for this the presentation of Uq(sl2) in Example 5.3.9
is unsuitable, since it is ill-defined for q = 1. It turns out that this is not a problem with its
Hopf algebra structure but with its presentation in terms of generators and relations.

We show that there is a bialgebra U ′q(sl2) defined for all q ∈ F \ {0} which is isomorphic to
Uq(sl2) for q 6= ±1 and closely related to the universal enveloping algebra U(sl2) for q = 1. The
price one has to pay is a higher number of generators and relations.

Proposition 5.3.11: Let q ∈ F \ {0}.

For q 6= ±1 the Hopf algebra Uq(sl2) is isomorphic to the Hopf algebra U ′q(sl2) over F with
generators e, f, k, k−1, l and relations

kk−1 = k−1k = 1, kek−1 = q2e, kfk−1 = q−2f, [e, f ] = l,

(q − q−1)l = k − k−1, [l, e] = q(ek + k−1e), [l, f ] = −q−1(fk + k−1f) (60)

and the Hopf algebra structure

∆′(k±1) = k±1⊗k±1, ∆′(e) = 1⊗e+ e⊗k, ∆′(f) = f⊗1 + k−1⊗f, ∆′(l) = l⊗k + k−1⊗l
ε′(k±1) = 1, ε′(e) = 0, ε′(f) = 0, ε′(l) = 0,

S ′(k±1) = k∓1, S ′(e) = −ek−1, S ′(f) = −kf, S ′(l) = −l. (61)

For q = 1, the element k is central in U ′q(sl2) with k2 = 1, and U ′1(sl2)/(k − 1) is isomorphic to
U(sl2) as a bialgebra.

Proof:
1. Let V be the free vector space generated by E,F,K±1 and V ′ be the free vector space
generated by e, f, k±1, l. Let I ⊂ T (V ) and I ′ ⊂ T (V ′) be the two-sided ideals generated by
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the relations (58) and (60), respectively. To show that Uq(sl2) and U ′q(sl2) are isomorphic, we
consider for q 6= ±1 the linear maps

φ : V → T (V ′) with φ(E) = e, φ(F ) = f, φ(K±1) = k±1

ψ : V ′ → T (V ) with ψ(e) = E, ψ(f) = F, ψ(k±1) = K±1, ψ(l) = [E,F ].

By the universal property of the tensor algebra, there are unique algebra homomorphisms
φ′ : T (V ) → T (V ′) and ψ′ : T (V ′) → T (V ) with φ′ ◦ ιV = φ and ψ′ ◦ ιV ′ = ψ. To prove that
the latter descend to algebra homomorphisms between Uq(sl2) and U ′q(sl2), we have to show
that φ′(r) ∈ I ′ and ψ′(r′) ∈ I for each relation r of Uq(sl2) and r′ of U ′q(sl2). For the first four
relations of Uq(sl2) and the first five relations of U ′q(sl2), this is obvious. For the 5th relation of
Uq(sl2) and the 6th relation of U ′q(sl2), we have

φ′([E,F ]− (q − q−1)−1(K −K−1)) = [e, f ]− (q − q−1)−1(k − k−1) = l − l = 0 mod I ′

ψ′((q − q−1)l − k + k−1) = (q − q−1)[E,F ]−K +K−1 = 0 mod I,

and for the last two relations in I ′, we obtain

ψ′([l, e]− q(ek + k−1e)) = [[E,F ], E]− q(EK +K−1E)

= (q − q−1)−1[K −K−1, E]− q(EK +K−1E) mod I

= (q2 − 1)(q − q−1)−1(EK +K−1E)− q(EK +K−1E) mod I = 0 mod I

ψ′([l, f ] + q−1(fk + k−1f)) = [[E,F ], F ] + q−1(FK +K−1F )

= (q − q−1)−1[K −K−1, F ] + q−1(FK +K−1F ) mod I

= (q−2 − 1)(q − q−1)−1(FK +K−1F ) + q−1(FK +K−1F ) mod I = 0 mod I,

where we use the shorthand notation a = bmod I for a − b ∈ I. This shows that φ′ and ψ′

induce algebra homomorphisms φ : Uq(sl2)→ U ′q(sl2) and ψ : U ′q(sl(2))→ Uq(sl2).

That they are mutually inverse algebra isomorphisms follows with the universal properties of the
tensor algebra and the characteristic property of the quotient and the identities ψ◦φ(X) = X for
X ∈ {E,F,K±1} and φ ◦ ψ(x) = x for x ∈ {e, f, k±1, l}, which follow by a direct computation.
By setting ∆′ = (φ⊗φ) ◦ ∆ ◦ ψ, ε′ = ε ◦ φ and S ′ = φ ◦ S ◦ ψ, we obtain the Hopf algebra
structure from (61), and φ becomes an isomorphism of Hopf algebras with inverse ψ.

2. The algebra U ′q(sl2) is defined for q = 1. In this case its relations (60) reduce to

k2 = 1, [k, e] = 0, [k, f ] = 0, [e, f ] = l, [l, e] = 2ek, [l, f ] = −2fk,

and its Hopf algebra structure is given by ε(k) = 1, ε(e) = ε(f) = ε(l) = 0, and

∆(k) = k⊗k, ∆(e) = 1⊗e+ e⊗k, ∆(f) = f⊗1 + k⊗f, ∆(l) = l⊗k + k⊗l
S(k) = k−1, S(e) = −e, S(f) = −f, S(l) = −l.

As k is central in U ′1(sl(2)) with k2 = 1 and ∆(k) = k⊗k, the quotient U ′1(sl(2))/(k−1) inherits
a bialgebra structure from U ′1(sl2). Its algebra structure is given by

[e, f ] = l, [l, e] = 2e, [l, f ] = −2f, (62)

and its Hopf algebra structure by

ε(X) = 0, ∆(X) = X⊗1 + 1⊗X, S(X) = −X ∀X ∈ {e, f, l}. (63)
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If we choose as a basis of sl2 = {M ∈ Mat(2× 2,F) | tr(M) = 0} the matrices

l =

(
1 0
0 −1

)
e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
, (64)

then the Lie bracket of sl2 is given by (62), and the bialgebra structure of the universal
enveloping algebra U(sl2) from Example 5.3.2 by (62) and (63). This shows that the Hopf
algebras U ′1(sl2)/(k − 1) and U(sl2) are isomorphic. 2

Proposition 5.3.11 motivates the name q-deformed universal enveloping algebra and the notation
Uq(sl2), since it relates Uq(sl2) for q = 1 to the universal enveloping algebra U(sl2).

Besides q = 1, there are other values of q, for which the q-deformed universal enveloping algebra
Uq(sl2) has special structure, namely the case where q is a root of unity. In this case, one can
take a quotient of Uq(sl2) by a two-sided ideal to obtain a finite-dimensional Hopf algebra.
This finite-dimensional Hopf algebra is often called the q-deformed universal enveloping
algebra Uq(sl2) at a root of unity, but the name is slightly misleading since it is a quotient
of Uq(sl2). The proof of the following proposition is left as an exercise.

Proposition 5.3.12: Let F be a field, q ∈ F \ {1,−1} a primitive dth root of unity and
r := d if d is odd and r := d/2 if d is even.

1. The elements K±r, Er, F r are central in Uq(sl2).

2. U r
q (sl2) = Uq(sl2)/(F r, Er, Kr − 1) inherits a Hopf algebra structure from Uq(sl2).

3. U r
q (sl2) is finite-dimensional and spanned by {EiF jKk | i, j, k = 0, 1, ..., r − 1}.

Clearly, the q-deformed universal enveloping algebra Uq(sl2), its counterpart U ′q(sl2) and its
quotient U r

q (sl2) at a root of unity have a complicated mathematical structure, and it is not
obvious at all how to generalise this construction to other Lie algebras in a systematic way.

Nevertheless, they are part of a general construction that is possible for all complex, simple Lie
algebras and can be generalised to affine Kac-Moody algebras. These are the so-called Drinfeld-
Jimbo deformations of of universal enveloping algebras. For complex simple Lie-algebras of type
A,D,E, they take a particularly simple form.

Remark 5.3.13: (Drinfeld-Jimbo deformations)

Let g be a complex, simple Lie algebra and B = {Hi, Ei, Fi | i = 1, ..., r}, the Chevalley basis
of g, in which the Lie bracket takes the form

[Hi, Hj] = 0, [Hi, Ej] = aijEj, [Hi, Fj] = −aijFj, [Ei, Fj] = δijHi,

(adEi)
1−aijEj = 0, (adFi)

1−aijFj = 0,

where adX is the linear map adX : g → g, Y 7→ [X, Y ] and A = (aij) ∈ Mat(r × r,Z) the
Cartan matrix of g.

If g is a complex simple Lie algebra of type A,D or E, its Cartan matrix is positive definite and
symmetric with aii = 2 for i ∈ {1, ..., r} and aij ∈ {0,−1} for i 6= j. In this case, the q-deformed
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universal enveloping algebra Uq(g) is has generators {Ki, Ei, Fi | i = 1, ..., r} and relations

K±1
i K±1

i = 1, [Ki, Kj] = 0,

[Ei, Fj] = δij(q − q−1)−1(Ki −K−1
i ) KiEjK

−1
i = qaijEj, KiFjK

−1
i = q−aijFj,

[Ei, Ej] = 0 [Fi, Fj] = 0 if aij = 0,

E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0 F 2

i Fj − (q + q−1)FiFjFi + FjF
2
i = 0 if aij = −1.

Its Hopf algebra structure is given by

∆(K±1
i ) = K±1

i ⊗K±1
i ∆(Ei) = 1⊗Ei + Ei⊗Ki ∆(Fi) = Fi⊗1 +K−1

i ⊗Fi
ε(K±1

i ) = 1 ε(Ei) = 0 ε(Fi) = 0

S(K±1
i ) = K∓1

i S(Ei) = −EiK−1
i S(Fi) = −KiFi.

There is also a presentation of Uq(g) similar to the one in Proposition 5.3.11 that is well-defined
at q = 1 and relates the Hopf algebra Uq(g) to the universal enveloping algebra U(g). If q is a
root of unity, then there is a finite-dimensional quotient U r

q (g), which inherits a Hopf algebra
structure from Uq(g) and generalises the Hopf algebra U r

q (sl2) from Proposition 5.3.12.

6 Structure and Properties of Hopf algebras

6.1 Grouplike and primitive elements

Before investigating the representation theory of bialgebras and Hopf algebras in more depth,
we focus on their structure. Many features of Hopf algebras can be understood by focusing on
two types of special elements. The first are the grouplike elements, which behave in a similar
way to the elements g ∈ G in the group algebra F[G]. The second are primitive elements, which
generalise the elements v ∈ V in the tensor algebra T (V ) and the elements x ∈ g in the universal
enveloping algebra U(g) of a Lie algebra. Such elements play an important role in the classifi-
cation of Hopf algebras, especially in the cocommutative and finite-dimensional case. Although
these classification results are rather involved and cannot be proven here, understanding the
properties of grouplike and primitive elements is helpful to develop an intuition.

Definition 6.1.1: Let H be a Hopf algebra.

1. An element g ∈ H is called grouplike if g 6= 0 and ∆(g) = g⊗g. The set of grouplike
elements of H is denoted Gr(H).

2. An element h ∈ H is called primitive if ∆(h) = 1⊗h + h⊗1. The set of primitive
elements of H is denoted Pr(H).

Example 6.1.2:

1. The elements g ∈ G are grouplike elements of the group algebra F[G]. The element y in
Taft’s example and the elements K±1 in Uq(sl2) are grouplike.

2. The elements v ∈ V are primitive elements of the tensor algebra T (V ) and the elements
x ∈ g are primitive elements of the universal enveloping algebra U(g).
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3. Let H∗ be the (finite) dual of a Hopf algebra H.

Then grouplike elements of H∗ are the algebra homomorphisms α : H → F, also called
characters of H. This follows, because an element 0 6= α ∈ H∗ is grouplike if and only
if for all h, k ∈ H α(h · k) = ∆(α)(h⊗k) = (α⊗α)(h⊗k) = α(h)α(k). As α 6= 0, this
implies α(1) = ε(α) = 1.

An element β ∈ H∗ is primitive if and only if for all h, k ∈ H it satisfies the condition
β(h · k) = ∆(β)(h⊗k) = (1⊗β + β⊗1)(h⊗k) = ε(h)β(k) + ε(k)β(h). A linear map
β : H → F that satisfies this condition is called a derivation on H.

The reason for the name grouplike element is not only that grouplike elements mimic the
behaviour of elements g ∈ G in the group algebra F[G], but one can show that they form
indeed a group. Primitive elements could in principle be called Lie algebra-like since they form
a Lie algebra with the commutator. One can show that both, grouplike and primitive elements
generate Hopf subalgebras of H.

Proposition 6.1.3: Let H be a Hopf algebra.

1. Every grouplike element g ∈ H satisfies ε(g) = 1 and S(g) = g−1.

2. The set Gr(H) ⊂ H is a group and spanFGr(H) ⊂ H is a Hopf subalgebra.

3. Every primitive element h ∈ H satisfies ε(h) = 0 and S(h) = −h.

4. The set Pr(H) ⊂ H is a Lie subalgebra of the Lie algebra H with the commutator, and
the subalgebra of H generated by Pr(H) is a Hopf subalgebra.

5. If g ∈ H is grouplike and h ∈ H primitive, then ghg−1 is primitive.

Proof:
1. If g ∈ H is grouplike, then ∆(g) = g⊗g and g 6= 0. The counitality condition then implies
1⊗g = (ε⊗id) ◦ ∆(g) = (ε⊗id)(g⊗g) = ε(g)⊗g = 1⊗ε(g)g. As g 6= 0 it follows that ε(g) = 1.
Similarly, we have η ◦ ε(g) = 1 = m ◦ (S⊗id) ◦∆(g) = S(g) · g = m ◦ (id⊗S) ◦∆(g) = g · S(g).
This shows that S(g) is an inverse of g.

2. As ∆ is an algebra homomorphism, we have ∆(1) = 1⊗1 and 1 ∈ Gr(H). If g, h ∈ Gr(H), then
∆(gh) = ∆(g) ·∆(h) = (g⊗g)(h⊗h) = gh⊗gh and hence gh ∈ Gr(H). As S is an anti-algebra
homomorphism, we obtain ∆(g−1) = ∆(S(g)) = (S⊗S)(∆(g)) = S(g)⊗S(g) = g−1⊗g−1 and
hence gh, g−1 ∈ Gr(H). This shows that Gr(H) is a group. By definition of a grouplike element,
one has ∆(g) = g⊗g and hence spanFGr(H) ⊂ H is a Hopf subalgebra.

3. As 1⊗h = (ε⊗id) ◦ ∆(h) = (ε⊗id) ◦ (1⊗h + h⊗1) = ε(1)⊗h + ε(h)⊗1 = 1⊗h + ε(h)⊗1 for
each primitive h ∈ H, we have ε(h) = 0. Similarly, for each primitive element h ∈ H we have
m ◦ (S⊗id) ◦∆(h) = (m ◦ S)(1⊗h+ h⊗1) = S(1) · h+ S(h) · 1 = h+ S(h) = η ◦ ε(h) = 0 and
hence S(h) = −h.

4. It follows from the definition of a primitive element that Pr(H) ⊂ H is a linear subspace. If
h, k ∈ Pr(H), then their commutator [h, k] = h · k − k · h satisfies

∆([h, k]) = [∆(h),∆(k)] = (1⊗h+ h⊗1) · (1⊗k + k⊗1)− (1⊗k + k⊗1) · (1⊗h+ h⊗1)

= 1⊗hk + k⊗h+ h⊗k + hk⊗1− (1⊗kh+ h⊗k + k⊗h+ kh⊗1) = 1⊗[h, k] + [h, k]⊗1.

This shows that [h, k] ∈ Pr(H) and hence Pr(H) ⊂ H is a Lie subalgebra of the Lie algebra H
with the commutator.
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As ∆(h) = 1⊗h + h⊗1 and S(h) = −h for every primitive element h ∈ H and the maps
∆ : H → H⊗H and S : H → Hop are algebra homomorphisms, it follows that the subalgebra
of H generated by the primitive elements is a Hopf subalgebra of H.

5. If g ∈ H is grouplike and h ∈ H primitive, then

∆(ghg−1) = ∆(g)∆(h)∆(g−1) = (g⊗g)(1⊗h+ h⊗1)(g−1⊗g−1) = 1⊗ghg−1 + ghg−1⊗1.

2

Proposition 6.1.3 suggests that every Hopf algebra H should contains a Hopf subalgebra K
that is a semidirect product K = F[Gr(H)] n A of the group algebra of Gr(H) and the Hopf
subalgebra A ⊂ H generated by the primitive elements. In other words,K ∼= F[G]⊗A as a vector
space with the multiplication law (a⊗g)·(b⊗h) = a(gbg−1)⊗gh for all a, b ∈ A and g, h ∈ Gr(H).
To show that this is indeed the case, we need to prove that different grouplike elements of H
are linearly independent, i. e. that spanFGr(H) ∼= F[Gr(H)] and that Gr(H) ∩ A = {1H}.

Proposition 6.1.4: Let H be a Hopf algebra over F.

1. The set Gr(H) of grouplike elements is linearly independent.

2. If H is generated as an algebra by primitive elements, then Gr(H) = {1}.

Proof:
1. We show by induction over n that Σn

i=1λigi = 0 with λi ∈ F and distinct gi ∈ Gr(H) implies
λ1 = ... = λn = 0. For n = 1, this follows from g 6= 0 for all g ∈ Gr(H). Suppose the claim
holds for all linear combinations with at most n nontrivial coefficients, and let Σn+1

i=1 λigi = 0
with pairwise distinct gi ∈ Gr(H).

Let ι : H → H∗∗, h 7→ h′ be the canonical injection defined by h′(α) = α(h) for all α ∈ H∗. Then
the elements g′i ∈ H∗∗ satisfy g′i(α · β) = (α · β)(gi) = (α⊗β)∆(gi) = α(gi)β(gi) = g′i(α) · g′i(β)
for all α, β ∈ H∗ and g′i(1) = ε(gi) = 1F. As gn+1 /∈ {g1, ..., gn} there is an element α ∈ H∗ with
g′n+1(α) = α(gn+1) = 1 and g′i(α) = α(gi) 6= 1 for all i ∈ {1, ..., n} by Exercise 37 (a). This
implies for all β ∈ H∗

0 = Σn+1
i=1 λig

′
i(β)− Σn+1

i=1 λig
′
i(α · β) = Σn+1

i=1 λi(1− g′i(α))g′i(β) = β(Σn
i=1λi(1− α(gi))gi)

and hence Σn
i=1λi(1 − α(gi))gi = 0. With the induction hypothesis and α(gi) 6= 1 one obtains

λ1 = ... = λn = 0, and this implies λn+1 = 0 since gn+1 6= 0.

2. Let H0 = F1H , X ⊂ H a set of primitive generators and Hn the linear subspace of H spanned
by all elements of the form xm1

i1
· · · xmkik with xij ∈ X and m1 + ... + mk ≤ n. Then we have

H = ∪∞n=0Hn, Hn ⊂ Hm for all m ≥ n, and Hn ·Hm ⊂ Hn+m. It follows by induction with the
Pascal identity for the binomial coefficients that for any primitive element h ∈ H, one has

∆(hn) =
n∑
k=0

(
n
k

)
hk⊗hn−k. (65)

This implies

∆(xm1
i1
· · ·xmkik ) = ∆(xi1)m1 · · ·∆(xik)

mk =

m1∑
l1=0

· · ·
mk∑
lk=0

(
m1

l1

)
· · ·
(
mk

lk

)
xl1i1 · · ·x

lk
ik
⊗xm1−l1

i1
· · ·xmk−lkik
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and hence ∆(Hn) ⊂ Σn
k=0Hk⊗Hn−k. If g ∈ H is grouplike with m = min{n ∈ N0 | g ∈ Hn} ≥ 1,

then there is an α ∈ H∗ with α(g) = 1 and α(1H) = 0, and this implies

1F⊗g = (α⊗id)(g⊗g) = (α⊗id) ◦∆(g) ∈ (α⊗id) (Σm
k=0Hk⊗Hm−k) ⊂ 1F⊗Hm−1

where we used in the last step that α(H0) = α(F1H) = {0}. As g 6= 0, it follows that g ∈ Hm−1,
which contradicts the minimality of m. Hence Gr(H) ⊂ H0, and the only grouplike element in
H0 is 1H . 2

Corollary 6.1.5: Let G be a group and F a field. Then Pr(F[G]) = {0} and Gr(F[G]) = G.

Proof:
If x = Σg∈Gλg g is primitive, then ∆(x) = Σg∈Gλg g⊗g = Σg∈Gλg(1⊗g + g⊗1). As the set
{g⊗h | g, h ∈ G} is a basis of F[G]⊗F[G], this implies λg = 0 for all g ∈ G and x = 0. Clearly,
every element g ∈ G is grouplike. If there was a grouplike element y ∈ F[G] \ G, then the set
G ∪ {y} ) G would be linearly independent by Proposition 6.1.4, a contradiction to the fact
that G ⊂ F[G] is a basis of F[G]. 2

This corollary confirms the expectation that the only grouplike elements in a group algebra
F[G] are the group elements g ∈ G and that the group algebra contains no non-trivial primitive
elements. Similarly, Proposition 6.1.4 implies that the only grouplike element in the tensor
algebra T (V ) and in a universal enveloping algebra U(g) is the unit element, since both Hopf
algebras are generated by primitive elements. In analogy to the statement about the grouplike
elements in a group algebra F[G], one would expect that the primitive elements in a universal
enveloping algebra U(g) are precisely the elements of the Lie algebra g ⊂ U(g). However, this
is only true for Lie algebras over fields of characteristic zero.

Proposition 6.1.6: Let g be a finite-dimensional Lie algebra over F and U(g) its universal
enveloping algebra.

1. If char(F) = 0 then Pr(U(g)) = g.

2. If char(F) = p then Pr(U(g)) = spanF{xp
l |x ∈ g, l ∈ N0}.

Proof:
Every element x ∈ g ⊂ U(g) is primitive, and hence g ⊂ Pr(U(g)). If B = (x1, ..., xn) is an
ordered basis of g, then the Poincaré-Birkhoff-Witt basis B = {xm1

1 · · · xmnn |m1, ...,mn ∈ N0}
is a basis of U(g), and hence every element x ∈ U(g) can be expressed as a linear combination

x =
K∑

m1=0

· · ·
K∑

mn=0

λm1...mnx
m1
1 · · ·xmnn

with λm1...mn ∈ F for some K ∈ N. Equation (65) from the proof of Proposition 6.1.4 implies

∆(x) =
K∑

m1=0

· · ·
K∑

mn=0

m1∑
k1=0

· · ·
mn∑
kn=0

λm1...mn

(
m1

k1

)
· · ·
(
mn

kn

)
xk1

1 · · ·xknn ⊗x
m1−k1
1 · · ·xmn−knn .
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As the set {xk1
1 · · ·xknn | k1, ..., kn ∈ {0, ..., K}} is linearly independent by the Poincaré-Birkhoff-

Witt Theorem, this shows that x cannot be primitive, unless it is of the form x = Σn
i=1µix

mi
i

for some µi ∈ F. In this case, one has

∆(x) =
n∑
i=1

mi∑
k=0

µi

(
mi

k

)
xki⊗x

mi−k
i .

If char(F) = 0, all binomial coefficients in this formula are non-zero, and this shows that x
can only be primitive if mi ∈ {0, 1} for all i ∈ {1, ..., n} with µi 6= 0, which implies x ∈ g.
If char(F) = p, then all binomial coefficients for i ∈ {1, ..., n} with µi 6= 0 and k = 1 < mi

must vanish in order for x to be primitive. This is the case if and only if mi = pli for some
li ∈ N and all i ∈ {1, ..., n} with µi 6= 0. Conversely, if mi = pli with li ∈ N0, then all binomial
coefficients for k /∈ {0,mi} vanish, since they are divisible by p, and this shows that x is a
linear combination of elements yp

l
with y ∈ g and l ∈ N0. 2

As the restrictions of the comultiplication of a Hopf algebra H to the Hopf subalgebras
spanFGr(H) and to the Hopf subalgebra generated by the set Pr(H) are cocommutative, one
cannot hope in general that every Hopf algebra can be decomposed into Hopf subalgebras
spanned by grouplike or generated by primitive elements, since this would imply that H is co-
commutative. However, one can show that this is indeed possible for every cocommutative Hopf
algebra over an algebraically closed field of characteristic zero. This is known as the Cartier-
Kostant-Milnor-Moore Theorem. Parts of the proof are given in [Mo, Chapter 5].

Theorem 6.1.7: (Cartier-Kostant-Milnor-Moore Theorem)
If H is a cocommutative Hopf algebra over an algebraically closed field F with char(F) = 0,
then H is isomorphic to the semidirect product U(Pr(H))oF[Gr(H)], i. e. to the vector space
U(Pr(H))⊗F[Gr(H)] with the product

(x⊗g) · (y⊗h) = (x+ gyg−1)⊗gh ∀g, h ∈ Gr(H), x, y ∈ Pr(H).

Corollary 6.1.8: Every finite-dimensional cocommutative Hopf algebra over an algebraically
closed field of characteristic zero is isomorphic to the group algebra of a finite group.

6.2 Integrals and the antipode

The fact that representations of bialgebras and Hopf algebras behave quite similarly to group
representations allows one to generalise concepts from the representation theory of groups to
Hopf algebras. In particular, there is a notion of invariants for each module over a bialgebra
and a dual notion of coinvariants for a comodule.

For a module M over a group algebra F[G], an element m ∈ M is called an invariant, if
g �m = m for all group elements g ∈ G. Using the fact that the group elements g ∈ G form a
basis of F[G] and the expression for the counit of F[G] from Example 5.2.9, we can reformulate
this condition as h�m = ε(h)m for all h ∈ H. The latter can be formulated and imposed for
any bialgebra B over F. Replacing the module over a bialgebra by a comodule, we can then
formulate a dual condition, namely δ(m) = 1⊗m. This leads to the notion of a coinvariant.
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Definition 6.2.1: Let B be a bialgebra over F.

1. An element m ∈ M of a B-module (M,�) is called an invariant, if b �m = ε(b)m for
all b ∈ B. The submodule of invariants of M is denoted MB.

2. An element m ∈M of a B-comodule (M, δ) is called a coinvariant of M if δ(m) = 1B⊗m.
The subcomodule of invariants in M is denoted M coB.

The notions of invariants and coinvariants capture many familiar concepts such as invariant
functions on a set with a group action, the centre of a Hopf algebra H and H-linear maps
between H-modules.

Example 6.2.2:

1. Let � : G × X → X be an action of a group G on a set X and denote by
� : F[G]⊗Map(X,F) → Map(X,F) be the associated F[G]-module structure on
Map(X,F) with (g � f)(x) = f(g−1 � x) for all g ∈ G and x ∈ X. Then the invari-
ants are given by

Map(X,F)F[G] = {f : X → F | f(g � x) = f(x)∀g ∈ G}.

2. Let H be a Hopf algebra acting on itself via the adjoint action �ad : H⊗H → H with
h�ad k = Σ(h) h(1) · k · S(h(2)). Then the submodule of invariants is the centre of H

H�ad = Z(H) = {k ∈ H |h · k = k · h∀h ∈ H}.

If k ∈ Z(H), then h �ad k = Σ(h)h(1) · k · S(h(2)) = (Σ(h)h(1)S(h(2))) · k = ε(h) k for all
h ∈ H. Conversely, if k ∈ H�ad then for all h ∈ H

h · k = (Σ(h)h(1)ε(h(2))) · k = Σ(h)h(1)kS(h(2)(1))h(2)(2) = Σ(h)(h(1)(1)kS(h(1)(2)))h(2)

= Σ(h)(h(1) �ad k)h(2) = Σ(h)ε(h(1)) kh(2) = k ·
(
Σ(h)ε(h(1))h(2)

)
= k · h.

3. Let H be a Hopf algebra and M,N modules over H. Then the H-linear maps f : M → N
are the invariants of the H-left module structure

� : H⊗HomF(M,N)→ HomF(M,N), (h� f)(m) = Σ(h) h(1) �N f(S(h(2)) �M m).

That � defines an H-module structure on HomF(M,N) follows by a direct computation
(Exercise). For each H-linear map f : M → N we have

(h� f)(m) = Σ(h)h(1) �N f(S(h(2)) �M m) = Σ(h) (h(1)S(h(2))) �N f(m) = ε(h)f(m)

and hence f ∈ HomF(M,N)H . Conversely, if f ∈ HomF(M,N)H , then for all m ∈M

h�N f(m) = Σ(h)h(1) �N f((S(h(2))h(3)) �M m) = Σ(h)(h(1) � f)(h(2) �M m)

= Σ(h)ε(h(1)) f(h(2) �M h) = Σ(h)f((Σ(h)ε(h(1))h(2)) �M m) = f(h�M m).

Just as for any ring, every module M over a bialgebra B can be related to the action of B on
itself by left multiplication. This is achieved by the B-linear maps �m : B →M , b 7→ b�m for
elements m ∈ M . Any B-linear map f : M → N sends invariants to invariants, since one has
b � f(m) = f(b �m) = ε(b)f(m) for all m ∈ MB. We can thus describe the invariants of an
B-module M in terms of the invariants for the left action of B on itself by left multiplication.
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Analogously, one can describe invariants of H-right modules in terms of the invariants of B
with the right action by right multiplication.

The invariants of a bialgebra action on itself by left or right multiplication play a special role and
are called integrals. They can be viewed as the counterparts of left or right invariant integrals
on a Lie group. For the same reason, an integral in a bialgebra B that is both left and right
invariant is sometimes called a Haar integral in B. Just as Haar integrals over compact Lie
groups can be used to construct invariant functions on Lie groups, integrals in a bialgebra that
satisfy certain normalisation conditions define projectors on the invariants of B-modules.

Definition 6.2.3: Let B be a bialgebra over F.

1. A left (right) integral in B is an invariant for the left (right) regular action of B on
itself: an element ` ∈ B with b · ` = ε(b) ` (with ` · b = ε(b) `) for all b ∈ B.

2. The linear subspaces of left and right integrals in B are denoted IL(B) and IR(B). If
IL(B) = IR(B), then the bialgebra B is called unimodular.

3. A left or right integral ` ∈ B is called normalised if ε(`) = 1. A (normalised) element
` ∈ IL(B) ∩ IR(B) is called a (normalised) Haar integral.

Example 6.2.4:

1. If G is a finite group, then F[G] and F[G]∗ are unimodular with

IL(F[G]) = IR(F[G]) = spanF {Σg∈G g} IL(F[G]∗) = IR(F[G]∗) = spanF {δe} .

The integral δe is normalised. The integral Σg∈Gg can be normalised iff char(F) 6 | |G|.

2. The Taft algebra from Example 5.3.6. is not unimodular. One has (Exercise 50)

IL(H) = spanF{Σn−1
j=0 y

jxn−1} IR(H) = spanF{Σn−1
j=0 q

−jyjxn−1}.

3. The q-deformed universal enveloping algebra Uq(sl2) from Example 5.3.9 has no non-
trivial left or right integrals: IL(Uq(sl2)) = IR(Uq(sl2)) = {0}. The q-deformed universal
enveloping algebra U r

q (sl2) at a root of unity from Proposition 5.3.12 is unimodular with

IL(U r(sl2)) = IR(U r(sl2)) = spanF{Σr−1
j=0K

jEr−1F r−1}

The usefulness of integrals comes from the fact that given a normalised left or right integral for
a bialgebra, we can construct a projector on the invariants of any left or right module over B.
This allows one to determine the invariants of any module over B explicitly and systematically.

Lemma 6.2.5: Let B be a bialgebra and ` ∈ B a normalised left integral. Then for any
B-module (M,�), the linear map P : M →M , m 7→ `�m is a projector on MB.

Proof:
This follows directly from the properties of the normalised left integral ` ∈ B. One has

b� P (m) = b� (`�m) = (b`) �m = (ε(b)`) �m = ε(b) (`�m) = ε(b)P (m)

(P ◦ P )(m) = `� (`�m) = (`2) �m = (ε(`) `) �m = `�m = P (m)
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for all m ∈M and b ∈ B, and this shows that P is a projector with im(P ) ⊂MB. Conversely,
if m ∈MB, one has P (m) = `�m = ε(`)m = m and hence m ∈ P (M). 2

This lemma and Example 6.2.4 make it worthwhile to investigate left and right integrals in
bialgebras and Hopf algebras. The first point to address is their existence and uniqueness. For
finite-dimensional Hopf algebras, the existence and uniqueness of integrals can be established
using the concept of a Hopf module.

A Hopf module can be seen as a structure that generalises a bialgebra in the same way as
a module generalises an algebra and a comodule a coalgebra. It has both, a module and a
comodule structure, and these structures must satisfy a compatibility condition that generalises
the compatibility condition between the multiplication and comultiplication in a bialgebra. Hopf
modules exist in several variants, depending on if one works with a right or left module and
comodule structure. For us, it is sufficient to consider right Hopf modules.

Definition 6.2.6: Let B be a bialgebra over F.

1. A right Hopf module over B is an B-right module and B-right comodule

� : V⊗B → V, b⊗v 7→ v � b δ : V → V⊗B, v 7→ Σ(v)v(0)⊗v(1),

such that δ is a morphism of B-right modules:

δ(v � b) = δ(v) � b = Σ(v)(b) (v(0) � b(1))⊗(v(1) · b(2))

2. A homomorphism of right Hopf modules from (V,�V , δV ) to (W,�W , δW ) is a linear
map φ : V → W that is a homomorphism of right b-modules and right b-comodules:

φ ◦�V = �W ◦ (φ⊗idB) (φ⊗idB) ◦ δV = δW ◦ φ.

Example 6.2.7:

1. Every bialgebra B is a right Hopf module over itself with its right action by right
multiplication �R : B⊗B → B, k� b = k · b and the comultiplication δ = ∆ : B → B⊗B.

2. For every right module (M,�) over a bialgebra B, the vector space M⊗B is a Hopf
module with

� : (M⊗B)⊗B →M⊗B, (m⊗k) � b = Σ(b) (m� b(1))⊗(k · b(2))

δ = (idM⊗∆) : M⊗B → (M⊗B)⊗B, δ(m⊗k) = Σ(k)m⊗k(1)⊗k(2).

3. In particular, for every vector space V over F, the vector space V⊗B is a Hopf module
over B with the trivial Hopf module structure

� = id⊗m : (V⊗B)⊗B → V⊗B, (v⊗k) � b = v⊗kb
δ = (id⊗∆) : V⊗B → (V⊗B)⊗B, δ(v⊗k) = Σ(k)v⊗k(1)⊗k(2).

The fact that these examples are largely trivial is not due to the choice of examples. In fact, the
distinguishing property of Hopf modules over a Hopf algebra is that they factorise into their
subspace of coinvariants and the underlying Hopf algebra H. Every Hopf module is isomorphic
as a Hopf module to the tensor product of its coinvariants with H, equipped with the trivial
Hopf module structure from Example 6.2.7, 3.
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Theorem 6.2.8: (Fundamental theorem of Hopf modules)
Let H be a Hopf algebra over F and (M,�, δ) a right Hopf module over H.

1. An H-invariant projector on M coH ⊂M is given by

P = � ◦ (id⊗S) ◦ δ : M →M, m 7→ Σ(m)m(0) � S(m(1)).

2. If M coH⊗H is equipped with the trivial Hopf module structure from Example 6.2.7, 3,
then the action map defines an isomorphism of Hopf modules

φ = � : M coH⊗H →M, m⊗h 7→ m� h.

Proof:
We denote by � : M⊗H → M the H-right module structure and by δ : M → M⊗H the
H-right comodule structure on M . Then we have in Sweedler notation δ(m) = Σ(m)m(0)⊗m(1)

and the Hopf module conditions on δ read

(δ⊗id) ◦ δ(m) = Σ(m)m(0)⊗m(1)⊗m(2) = (id⊗∆) ◦ δ(m)

(id⊗ε) ◦ δ(m) = Σ(m)m(0)ε(m(1)) = m

δ(m� h) = δ(m) � h = Σ(m)(h)m(0) � h(1)⊗m(1)h(2).

The trivial Hopf module structure on M coH⊗H is given by

(m⊗k) �′ h = m⊗kh δ′(m⊗k) = Σ(k)m⊗k(1)⊗k(2).

1. We show that P is an H-invariant projector on M coH : for all m ∈M and h ∈ H we have

δ(P (m)) = δ
(
Σ(m)m(0) � S(m(1))

)
= Σ(m)δ(m(0)) � S(m(1))

= Σ(m)(m(0)⊗m(1)) � S(m(2)) = Σ(m)[m(0) � S(m(2))(1)]⊗[m(1)S(m(2))(2)]

= Σ(m)[m(0) � S(m(2)(2))]⊗[m(1)S(m(2)(1))] = Σ(m)[m(0) � S(m(3))]⊗[m(1)S(m(2))]

= ε(m(1))[Σ(m)m(0) � S(m(2))]⊗1 = Σ(m)[m(0) � S(m(1))]⊗1 = P (m)⊗1

P (m� h) = � ◦ (id⊗S) ◦ δ(m� h) = � ◦ (id⊗S)(δ(m) � h)

= � ◦ (id⊗S)(Σ(m)(h)m(0) � h(1)⊗m(1)h(2))

= Σ(m)(h) (m(0) � h(1)) � S(m(1)h(2)) = Σ(m)(h)(m(0) � h(1)) � (S(h(2))S(m(1)))

= Σ(m)(h)(m(0) � (h(1)S(h(2)))) � S(m(1))) = ε(h)Σ(m)(m(0) � 1) � S(m(1))

= ε(h)P (m).

For all coinvariants m ∈M coH this yields

P (m) = � ◦ (id⊗S) ◦ δ(m) = � ◦ (id⊗S)(m⊗1) = m� S(1) = m� 1 = m.

This implies (P ◦ P )(m) = P (m) for all m ∈M and shows that P is a projector on M coH .

2. We show that the map φ : M coH⊗H →M is a homomorphism of Hopf modules.
For all m ∈M coH and h, k ∈ H, we have

φ(m⊗k) � h = (m� k) � h = m� (kh) = φ(m⊗kh) = φ((m⊗k) �′ h)

(δ ◦ φ)(m⊗k) = δ(m� k) = δ(m) � k = (m⊗1) � k = Σ(k)(m� k(1))⊗k(2)

= (φ⊗id)
(
Σ(k)m⊗k(1)⊗k(2)

)
= ((φ⊗id) ◦ δ′)(m⊗k).
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3. We show that the linear map

χ = (P⊗id) ◦ δ : M →M coH⊗H, m 7→ Σ(m)[m(0) � S(m(1))]⊗m(2)

is inverse to φ. Using the fact that P is a projector on M coH that is invariant under the action
of H on M , we obtain for all m ∈M , n ∈M coH and h ∈ H

φ ◦ χ(m) = φ(Σ(m)[m(0) � S(m(1))]⊗m(2)) = Σ(m)(m(0) � S(m(1))) �m(2)

= Σ(m)m(0) � (S(m(1))m(2)) = Σ(m)m(0) � (ε(m(1))1) = Σ(m)(ε(m(1))m(0)) � 1 = m

χ ◦ φ(n⊗h) = χ(n� h) = (P⊗id)δ(n� h) = (P⊗id)(δ(n) � h) = (P⊗id)((n⊗1) � h)

= Σ(h)P (n� h(1))⊗h(2) = Σ(h)ε(h(1))P (n)⊗h(2) = P (n)⊗(Σ(h)ε(h(1))h(2)) = n⊗h.

This proves that χ = φ−1 and that φ : M coH⊗H →M is an isomorphism of Hopf modules. 2

Note that the projector P on the subspace M coH ⊂ M can be viewed as the Hopf module
counterpart of the defining condition m◦(id⊗S)◦∆ = η◦ε of the antipode of a Hopf algebra and
the isomorphism χ as the counterpart of the identity (m◦ (S⊗id)◦∆⊗id)◦∆ = (ε⊗id)◦∆ = id
in a Hopf algebra H.

With the fundamental theorem of Hopf modules, we can settle the question of existence and
uniqueness of left and right integrals for finite-dimensional Hopf algebras H. This is achieved by
defining an H-Hopf module structure on H∗ that has the right integrals of H∗ as its coinvariants.

Theorem 6.2.9: Let H be a finite-dimensional Hopf algebra, (x1, ..., xn) an ordered basis
of H and (α1, ..., αn) the dual basis of H∗.

1. There is an H-right Hopf module structure on H∗ with H∗coH = IL(H∗) given by

� : H∗⊗H → H∗, α⊗h 7→ Σ(α)α(2)(S(h)) α(1) (66)

δ : H∗ → H∗⊗H, α 7→ Σn
i=1α

iα⊗xi.

2. For any 0 6= λ ∈ IL(H∗), the Frobenius map is an isomorphism of right H-Hopf modules:

φλ : H → H∗, h 7→ Σ(λ)λ(2)(S(h))λ(1).

3. One has dimF IL(H) = dimF IR(H) = 1.

4. The antipode of H is bijective with S±1(IL(H)) = IR(H) and S±1(IR(H)) = IL(H).

Proof:
1. That (66) defines a right H-Hopf module structure on H∗ follows by a direct, but lengthy
computation. We show first that � is an H-right module structure on H∗:

(α� h) � k = Σ(α)α(2)(S(h)) α(1) � k = Σ(α)α(3)(S(h))α(2)(S(k)) α(1)

= Σ(α)α(2)(S(k)S(h)) α(1) = Σ(α)α(2)(S(hk)) α(1) = α� (hk)

α� 1 = Σ(α)α(2)(S(1)) α(1) = Σ(α)α(2)(1) α(1) = Σ(α)ε(α(2))α(1) = α.

To show that δ is an H-right comodule structure on H∗, we use the auxiliary identities

Σn
i=1α

i⊗∆(xi) = Σn
i,j=1α

iαj⊗xi⊗xj Σn
i=1∆(αi)⊗xi = Σn

i,j=1α
i⊗αj⊗xixj (67)
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which follow by evaluating both sides of the equation on elements β, γ ∈ H∗ or x, y ∈ H

(id⊗β⊗γ)(Σn
i=1α

i⊗∆(xi)) = Σn
i=1(βγ)(xi)α

i = βγ = Σn
i=1α

iαjβ(xi)γ(xj)

= (id⊗β⊗γ)(Σn
i,j=1α

iαj⊗xi⊗xj)
(x⊗y⊗id)(Σn

i=1∆(αi)⊗xi) = Σn
i=1(xy)(αi)⊗xi = xy = Σn

i=1x(αi)y(αj)xixj

= (x⊗y⊗id)(Σn
i=1α

i⊗αj⊗xixj).

Applying these identities we obtain

(δ⊗id) ◦ δ(α) = Σn
i=1δ(α

iα)⊗xi = Σn
i,j=1α

jαiα⊗xj⊗xi
(67)
= Σn

i=1α
iα⊗∆(xi) = (id⊗∆) ◦ δ(α)

(id⊗ε)δ(α) = Σn
i=1α

iαε(xi) = α.

To show that δ is H-linear, we compute

δ(α) � h = Σn
i=1(αiα⊗xi) � h = Σn

i=1Σ(h)[(α
iα) � h(1)]⊗xih(2)

= Σn
i=1Σ(h),(α),(αi)(α

i
(2)α(2))(S(h(1))) α

i
(1)α(1)⊗xih(2)

= Σn
i=1Σ(h),(α),(αi)α

i
(2)(S(h(2)))α(2)(S(h(1))) α

i
(1)α(1)⊗xih(3)

(67)
= Σn

i=1Σ(h),(α)α(2)(S(h(1))) α
iα(1)⊗xiS(h(2))h(3)

= Σn
i=1Σ(α)α(2)(S(h)) αiα(1)⊗xi = Σ(α)α(2)(S(h)) δ(α(1)) = δ(α� h).

This shows that (66) defines a right H-Hopf module structure on H∗.

Its coinvariants are the elements α ∈ H∗ with Σn
i=1α

iα⊗xi = δ(α) = α⊗1. This condition
implies βα = (id⊗β)(Σn

i=1α
iα⊗xi) = (id⊗β)δ(α) = (id⊗β)(α⊗1) = ε(β)α for all β ∈ H∗,

and hence one has H∗coH ⊂ IL(H∗). Conversely, for each left integral α ∈ IL(H∗) one has
δ(α) = Σn

i=1α
iα⊗xi = Σn

i=1ε(α
i)α⊗xi = α⊗1, and hence IL(H∗) = H∗coH .

2. and 3.: Theorem 6.2.8 implies with 1. that � : IL(H∗)⊗H → H∗, λ⊗h 7→ λ � h is an
isomorphism of Hopf modules. As H is finite-dimensional, we obtain

dimF IL(H∗) · dimFH
∗ = dimF(IL(H∗)⊗H) = dimF(H) ⇒ dimF IL(H∗) = 1.

It follows that the Frobenius map φλ = λ � − : H → H∗ is an isomorphism of Hopf modules
for all 0 6= λ ∈ IL(H∗). Claim 3. for IL(H) then follows, because the finite-dimensionality of H
implies H∗∗ ∼= H, and claim 3. for IR(H) from 4.

4. If h ∈ ker(S), then φλ(h) = 0 and hence ker(S) ⊂ ker(φλ) = {0}. This shows that the
antipode is injective, and because H is finite-dimensional, it follows that S is bijective. As
S±1 : H → Hop,cop is a Hopf algebra homomorphism, one has for ` ∈ IL(H), `′ ∈ IR(H), h ∈ H

S±1(`) · h = S±1(S∓1(h) · `) = ε(S∓1(h))S±1(`) = ε(h)S±1(`) ⇒ S±1(`) ∈ IR(H)

h · S±1(`′) = S±1(`′ · S∓1(h)) = ε(S∓1(h))S±1(`′) = ε(h)S±1(`′) ⇒ S±1(`′) ∈ IL(H).

This shows that S±1(IL(H)) = IR(H) and S±1(IR(H)) = IL(H). 2

Corollary 6.2.10: Let H be a finite-dimensional Hopf algebra and 0 6= λ ∈ IL(H∗) a non-
trivial left integral. Then H is a Frobenius algebra with Frobenius form

κ : H⊗H → F, κ(h⊗k) = λ(h · k).
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Proof:
The Frobenius condition follows directly from the associativity of the product in H:

κ((h · k)⊗l) = λ((h · k) · l) = λ(h · (k · l)) = κ(h⊗(k · l)) ∀h, k, l ∈ H.

That κ is non-degenerate follows, because by Theorem 6.2.9 the antipode S : H → H and the
Frobenius map φλ : H → H∗ are linear isomorphisms and

κ(h⊗k) = λ(h · k) = Σ(λ)λ(1)(h)λ(2)(k) = φλ(S
−1(k))(h).

Hence κ(h⊗k) = 0 for all h ∈ H implies φλ(S
−1(k)) = 0 and k = 0. As H is finite-dimensional,

this shows that φκ : H → H∗, h 7→ κ(−⊗h) is a linear isomorphism. 2

Theorem 6.2.9 clarifies the existence and uniqueness of left and right integrals for finite-
dimensional Hopf algebras H. In fact, one can show that the finite-dimensionality of H is
not only a sufficient but also a necessary condition for the existence of non-trivial left and right
integrals: if a Hopf algebra H has a left or right integral integral ` 6= 0, then it follows that H is
finite-dimensional. We will not prove this statement here. A proof is given in [R, Prop. 10.2.1].

Having established the existence and uniqueness of integrals for a finite-dimensional Hopf al-
gebra H, we may ask what is the role of a normalised integral. In Lemma 6.2.5, we established
that a normalised left integral in H defines a projector on the invariants of any H-module M .
It is clear that the existence of a normalised integral on H is equivalent to the existence of
an integral ` ∈ H with ε(`) 6= 0, since any such integral can be normalised by rescaling it. It
turns out that the existence of such an integral is closely relate to the representation theoret-
ical properties of H. More specifically, it encodes the semisimplicity of H, and one obtains a
generalisation of Maschke’s theorem for representations of finite groups.

Theorem 6.2.11: (Maschke’s Theorem for Hopf algebras)
Let H be a finite-dimensional Hopf algebra over F. The the following are equivalent:

(i) H is semisimple.

(ii) There is a left integral ` ∈ H with ε(`) 6= 0.

(iii) There is a right integral ` ∈ H with ε(`) 6= 0.

Proof:
We prove the claim for left integrals. The claim for right integrals then follows because
S(IL(H)) = IR(H) and ε ◦ S = ε.

(i)⇒ (ii): The linear map ε : H → F is a module homomorphism with respect to the action
of H on itself by left multiplication and the trivial H-module structure on F, since we have
ε(h�L k) = ε(hk) = ε(h)ε(k) = h� ε(k) for all h, k ∈ H. Hence ker(ε) ⊂ H is a submodule, or,
equivalently, a left ideal in H. As H is semisimple, there is a left ideal I ⊂ H with H = ker(ε)⊕I.
As we have (h− ε(h) 1) · k ∈ ker(ε) and h · i ∈ I for all h, k ∈ H and i ∈ I, we obtain

h · i︸︷︷︸
∈I

= (h− ε(h) 1)i︸ ︷︷ ︸
∈ker(ε)

+ ε(h)i︸︷︷︸
∈I

= ε(h)i︸︷︷︸
∈I

,

and this implies I ⊂ IL(H). As ε(1) = 1 implies dimF(ker(ε)) < dimFH and I ∩ ker(ε) = {0},
we have 1 ≤ dimF I, and there is a left integral ` ∈ I ⊂ IL(H) with ε(`) 6= 0.
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(ii) ⇒ (i): Suppose there is an integral ` ∈ IL(H) with ε(`) 6= 0. Then by multiplying with an
element λ ∈ F, one can achieve ε(`) = 1. Let M be a module over H, U ⊂ M a submodule
and choose a linear map φ : M → U with φ|U = idU . If we equip the vector space HomF(M,U)
with the H-module structure from Example 6.2.2, 3. then the linear map

π = `� φ : M → U, m 7→ (`� φ)(m) = Σ` `(1) � φ(S(`(2)) �m)

is an invariant of the module HomF(M,U) by Lemma 6.2.5 and hence H-linear by Example
6.2.2, 3. It follows that ker(π) ⊂M is a submodule of M . Moreover, one has for all u ∈ U

π(u) = (`� P )(u) = Σ(`) `(1) � φ(S(`(2)) � u) = `(1) � (S(`(2)) � u) = ε(`)u = u.

This implies ker(π) ∩ U = {0} and since every element m ∈ M can be written as
m = m− π(m) + π(m) with m− π(m) ∈ ker(π) and π(m) ∈ U it follows that M = U ⊕ ker(π).
Hence, every submodule of M has a complement and H is semisimple. 2

Corollary 6.2.12: (Maschke’s Theorem for finite groups)
Let G be a finite group. Then the group algebra F[G] is semisimple if and only if char(F) 6 | |G|.

Proof:
By Example 6.2.4, we have IL(F[G]) = spanF {Σg∈G g}. As ε (Σg∈G g) = Σg∈G ε(g) = |G|, it
follows that ε(IL(F[G])) 6= {0} if and only if char(F) - |G|, and by Theorem 6.2.11, this is
equivalent to the semisimplicity of F[G]. 2

We will now relate the existence of normalised left and right integrals and hence the semisim-
plicity of a Hopf algebra H to the properties of its antipode. This requires some technical results
on the properties of left and right integrals and the relation between them.

The first result is a characterisation of the unimodularity of a finite-dimensional Hopf algebra
H in terms of a special element α ∈ H∗. This is obtained by realising that the linear subspace of
left integrals is invariant under right multiplication with H. As it is one-dimensional, it follows
that multiplying a left integral ` on the right by an element h ∈ H yields a scalar multiple
α(h)` of the left integral `. The assignment h 7→ α(h) then defines a distinguished element
α ∈ H∗ that determines if H is unimodular.

Proposition 6.2.13: Let H be a finite-dimensional Hopf algebra over F. Then:

1. There is a unique α ∈ H∗, the the modular element of H, with ` · h = α(h)` for all
h ∈ H and ` ∈ IL(H).

2. The element α ∈ H∗ is grouplike.

3. One has h · `′ = α−1(h)`′ for all h ∈ H and `′ ∈ IR(H).

4. The Hopf algebra H is unimodular if and only if α = ε.

Proof:
1. For every left integral ` ∈ IL(H) and h, k ∈ H, one has k(`h) = (k`)h = ε(k) `h for all
k ∈ H and hence `h ∈ IL(H). As dimF IL(H) = 1 by Theorem 6.2.9 and the multiplication is
linear, this implies `h = α(h)` for some element α ∈ H∗. If ` 6= 0 and `′ ∈ IL(H) is another
left integral, then `′ = µ` for some µ ∈ F, and we have `′h = µ `h = µα(h) ` = α(h) `′ for all
h ∈ H. This shows that the identity ` · h = α(h) ` holds for all ` ∈ IL(H).
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2. We have for all h, k ∈ H

α(hk) ` = `hk = (`h)k = (α(h)`)k = α(h) `k = α(h)α(k)` ` = `1H = ` = α(1H) `.

This shows that α : H → F is an algebra homomorphism and hence a grouplike element of H∗

by Example 6.1.2.

3. As IR(H) = S±1(IL(H)) by Theorem 6.2.9 and S±1(α) = α◦S±1 = α−1 for any α ∈ Gr(H∗),
we obtain for all right integrals `′ ∈ IR(H)

h · `′ = S−1(S(h)) · S−1(S(`′)) = S−1(S(`′) · S(h)) = α(S(h))S−1(S(`′)) = α−1(h) `′.

4. The Hopf algebra H is unimodular if and only if IL(H) = IR(H). This is the case if and
only if `h = α(h)` = ε(h)` for all h ∈ H and left integrals ` ∈ IL(H), which is equivalent to
α = ε since dimF IL(H) = 1. 2

Corollary 6.2.14: Every finite-dimensional semisimple Hopf algebra is unimodular.

Proof:
If H is finite-dimensional and semisimple, there is a left integral ` ∈ IL(H) with ε(`) = 1 by
Theorem 6.2.11. Then the modular element α ∈ Gr(H∗) with ` · h = α(h) ` for all h ∈ H from
Proposition 6.2.13 satisfies

α(h) ` = α(h) ε(`)` = α(h) `2 = (`h)` = `(h`) = ε(h) `2 = ε(h)ε(`) ` = ε(h) `.

As ` 6= 0, this implies α(h) = ε(h) for all h ∈ H, and by Proposition 6.2.13 H is unimodular. 2

To relate the existence of normalised left and right integrals and hence the semisimplicity of H
to the properties of the antipode, we require some additional results on the properties of the
integrals and need to relate the integrals of H and H∗.

Lemma 6.2.15: Let H be a finite-dimensional Hopf algebra over F.

1. For each right integral 0 6= λ ∈ IR(H∗) there is a left integral ` ∈ IL(H) with λ(`) = 1.

2. Under these assumptions one has for each element h ∈ H

h = Σ(`) λ(h`(1))S(`(2)). (68)

Proof:
1. Let 0 6= λ ∈ IR(H∗) be a non-trivial left integral. Then by Theorem 6.2.9 one has 0 6=
S−1(λ) ∈ IL(H∗) and the Frobenius map φS−1(λ) : H → H∗, h 7→ Σ(λ)λ(1)(h)S−1(λ(2)) is a
linear isomorphism. This implies φS−1(λ)(`) 6= 0 for each non-trivial left integral 0 6= ` ∈ IL(H),
and hence there is a k ∈ H with

0 6= φS−1(λ)(`)S(k) = Σ(λ)λ(1)(`)λ(2)(k) = λ(` · k) = α(k)λ(`).

This implies λ(`) 6= 0, and by multiplying ` with a suitable element of F×, we obtain λ(`) = 1.

2. Let now ` ∈ IL(H), λ ∈ IR(H∗) left and right integrals with λ(`) = 1. Then we have

Σ(`) h`(1)⊗S(`(2)) = Σ(`) `(1)⊗S(`(2))h ∀h ∈ H. (69)

113



This follows by a direct computation using the fact that ` ∈ IL(H) is a left integral, the
counitality and antipode condition:

Σ(`) h`(1)⊗S(`(2)) = Σ(`)(h)h(1)`(1)⊗S(ε(h(2))`(2)) = Σ(`)(h) h(1)`(1)⊗S(S−1(h(3))h(2)`(2))

= Σ(`)(h) h(1)`(1)⊗S(h(2)`(2))h(3) = Σ(h)(id⊗S)(∆(h(1)`)) · (1⊗h(2))

= Σ(h)ε(h(1))(id⊗S) ◦∆(`) · (1⊗h(2)) = (id⊗S) ◦∆(`) · (1⊗h) = Σ(`)`(1)⊗S(`(2))h.

As λ ∈ IR(H∗) is a right integral, we have (λ⊗id)◦∆(h) = Σ(h) λ(h(1))h(2) = λ(h) for all h ∈ H.
Combining this with the condition λ(`) = 1 and identity (69) we obtain

Σ(`) λ(h`(1))S(`(2))
(69)
= Σ(`) λ(`(1))S(`(2))h = λ(`)S(1) · h = h.

2

We will now show that the semisimplicity of a finite-dimensional Hopf algebra H is related to
the square of its antipode. This is achieved via formula (68) in Lemma 6.2.15. The fact that
every element of H can be expressed in terms of a left integral ` ∈ IL(H) and right integral
λ ∈ IR(H∗) allows one to express the traces of a linear maps φ : H → H in terms of integrals
and to relate the existence of normalised left or right integrals to the square of the antipode.

Proposition 6.2.16: Let H be a finite-dimensional Hopf algebra over F, ` ∈ IL(H) a left
integral and λ ∈ IR(H∗) a right integral with λ(`) = 1, as in Lemma 6.2.15. Then:

1. For all linear maps φ : H → H one has Tr(φ) = Σ(`)λ
(
φ(S(`(2))) · `(1)

)
,

2. The square of the antipode satisfies Tr(S2) = ε(`)λ(1).

Proof:
We choose an ordered basis (x1, ..., xn) of H and the dual basis (α1, ..., αn) of H∗. Then we
have Tr(φ) = Σn

i=1α
i(φ(xi)) for all φ ∈ EndF(H). As φ(xi) = Σ(`) λ(φ(xi)`(1))S(`(2)) for all

i = 1, ..., n by formula (68) in Lemma 6.2.15, we obtain

Tr(φ) = Σn
i=1α

i(φ(xi)) = Σn
i=1 α

i
(
Σ(`) λ(φ(xi)`(1))S(`(2))

)
= Σn

i=1Σ(`) α
i(S(`(2)))λ(φ(xi)`(1))

= Σ(`)λ
(
φ(Σn

i=1α
i(S(`(2)))xi) · `(1)

)
= Σ(`)λ

(
φ(S(`(2))) · `(1)

)
.

Inserting φ = S−2 into this equation yields

Tr(S−2) = Σ(`) λ
(
S−1(`(2))`(1)) = λ

(
Σ(`) S

−1(`(2))`(1) ) = λ(ε(`)) = ε(`)λ(1).

Replacing H with Hcop exchanges the antipode and its inverse and yields Tr(S2) = 1. 2

Corollary 6.2.17: Let H be a finite-dimensional Hopf algebra over F.

1. H and H∗ are semisimple if and only if Tr(S2) 6= 0.

2. If S2 = idH and char(F) 6 | dimFH, then H and H∗ are semisimple.

Proof:
1. By Lemma 6.2.15 there are integrals ` ∈ IL(H) and λ ∈ IR(H∗) with λ(`) = 1, and by
Proposition 6.2.16 we have Tr(S2) = ε(`)λ(1). Hence, we have Tr(S2) 6= 0 if and only if
ε(`), λ(1) 6= 0. As dimF IL(H) = dimF IR(H∗) = 1, this is equivalent to the existence of a
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left integral ` ∈ IL(H) and a right integral λ ∈ IR(H∗) with ε(`) 6= 0 and λ(1) 6= 0. By
Theorem 6.2.11 the first condition is equivalent to the semisimplicity of H and the second to
the semisimplicity of H∗.

2. If S2 = idH , then Tr(S2) = Tr(idH) = dimFH. If char(F) 6 | dimF(H), this implies Tr(S2) 6= 0,
and 1. implies that H and H∗ are semisimple. 2

Corollary 6.2.17 relates the the semisimplicity of a finite-dimensional Hopf algebra H and its
dual to the square of the antipode. In fact, for fields of characteristic zero there is a stronger
result that shows that the condition S2 = idH is not just sufficient, but also necessary for the
semisimplicity of H and H∗. This is the theorem of Larson and Radford, for a proof see the
original article [LR].

Theorem 6.2.18: (Larson-Radford Theorem)
Let H be a finite-dimensional Hopf algebra over a field F of characteristic zero. Then the
following are equivalent:

(i) H is semisimple.

(ii) H∗ is semisimple.

(iii) S2 = idH .

The Larson-Radford Theorem is useful to establish that a given Hopf algebra over a field of
characteristic zero is not semisimple. Instead of a time-consuming search for indecomposable
modules that are not simple, one can simply compute the square of the antipode.

Example 6.2.19: Let F be a field of characteristic zero.

1. The q-deformed universal enveloping algebra U r
q (sl2) at a primitive nth root of unity from

Proposition 5.3.12 is unimodular, but it is not semisimple. This follows because the square
of its antipode is given by

S2(K) = K, S2(E) = KEK−1 = q2E S2(F ) = −KFK−1 = q−2F

Hence, the antipode of U r
q (sl2) has order 2r > 2 with r = n/2 for n even and r = n for n

odd and U r
q (sl2) cannot be semisimple by Theorem 6.2.18.

2. The Taft algebra Tq from Example 5.3.6 is not semisimple, since one has

S2(x) = S(−xy−1) = −S(xy−1) = −S(y)−1S(x) = −y(−xy−1) = yxy−1 = q−1x 6= x.

The theorem by Larson and Radford also relates the semisimplicity of a Hopf algebra H to the
properties of the Frobenius algebra from Corollary 6.2.10. By combining Theorem 6.2.18 with
the formulas from Lemma 6.2.15, one finds that this Frobenius algebra is symmetric, if H is
semisimple. This implies in particular that the coproduct of an integral in a finite-dimensional
semisimple Hopf algebra is always symmetric.
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Corollary 6.2.20: Let H be a finite-dimensional semisimple Hopf algebra over a field F of
characteristic zero. Then:

1. The Frobenius algebra from Corollary 6.2.10 is symmetric.

2. For all integrals ` ∈ H the element ∆(n)(`) = (∆⊗idH⊗(n−1)) ◦ · · · ◦ (∆⊗idH) ◦ ∆(`) is
invariant under cyclic permutations for all n ∈ N.

Proof:
1. Let H be a finite-dimensional semisimple Hopf algebra over F. The by Theorem 6.2.18 one
has S2 = idH , the dual H∗ is semisimple as well and H and H∗ are unimodular by Corollary
6.2.14. By Lemma 6.2.15 there is a right integral λ ∈ IR(H∗) and a left integral ` ∈ IL(H) with
λ(`) = 1. As H is unimodular, we have S(`) ∈ IL(H) and hence S(`) = µ` with µ ∈ F×. The
identity ε(S(`)) = µε(`) = ε(`) and ε(`) 6= 0 imply µ = 1 and S(`) = `.

Using the identity S2 = idH , one can then derive a counterpart of formula (69) where h is on
the right in the first and on the left in the second argument

Σ(`) h`(1)⊗S(`(2)) = Σ(`) `(1)⊗S(`(2))h Σ(`) `(1)h⊗S(`(2)) = `(1)⊗hS(`(2)). (70)

As λ ∈ IL(H∗) = IR(H∗) with λ(`) = 1, we have for all h ∈ H

(λ⊗id)∆(h) = Σ(h)λ(h(1))h(2) = λ(h)1 = Σ(h)λ(h(2))h(1) = (id⊗λ)∆(h),

and applying these identities to (70) yields a generalisation of (68)

h = Σ(`) λ(h`(1))S(`(2))= Σ(`) λ(S(`(2))h) `(1) = Σ(`)λ(h`(2))S(`(1)) = Σ(`)λ(S(`(1))h) `(2). (71)

This yields for all h, k ∈ H

λ(k · h)
(71)
= λ

( (
Σ(`)λ(S(`(1))k) `(2)

)
· h
)

= Σ(`) λ(S(`(1))k) λ(`(2)h)
(70)
= Σ(`) λ(hS(`(1))k) λ(`(2))

(70)
= Σ(`)λ(hS(`(1))) λ(k`(2)) = λ

(
h ·
(
Σ(`)λ(k`(2))S(`(1))

)) (71)
= λ(h · k).

2. Clearly, this holds if ` = 0. We prove it for non-trivial integrals 0 6= ` ∈ H. As the associated
Frobenius form κ on H∗ is symmetric by 1, one has

(α⊗β)(∆(`)) = (α · β)(`) = κ(α⊗β) = κ(β⊗α) = (β · α)(`) = (α⊗β)(∆op(`))

for all α, β ∈ H∗ and hence ∆(`) = ∆op(`). This yields for all k ∈ N0

Σ(`)`(1)⊗`(2)⊗...⊗`(k+1) = Σ(`)∆
(k−1)(`(1))⊗`(2) = (∆(k−1))⊗id) ◦∆(`)

= (∆(k−1))⊗id) ◦∆op(`) = Σ(`)∆
(k−1)(`(2))⊗`(1) = Σ(`)`(2)⊗...⊗`(k+1)⊗`(1).

2
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6.3 Quasitriangular Hopf algebras

Bialgebras were motivated by the requirement that their representation categories are monoidal
(Theorem 5.1.10) and Hopf algebras by the requirement that their categories of finite-
dimensional representations are right rigid monoidal categories (Corollary 5.2.7). In this section
we investigate the additional structure on a bialgebra or Hopf algebra B that ensures that its
representation category B−Mod is a braided monoidal category.

This additional structure must relate the representation of B on the tensor product of two
representation spaces to the one on the opposite tensor product. More specifically, for all B-
modules V,W the B-modules V⊗W and W⊗V must be isomorphic, these isomorphisms are
natural in both arguments and compatible with tensor products. We will show that this is
equivalent to the following conditions on the bialgebra B.

Definition 6.3.1:

1. A quasitriangular bialgebra is is a pair (B,R) of a bialgebra B and an an invertible
element R = R(1)⊗R(2) ∈ B⊗B, the universal R-matrix, that satisfies

∆op(b) = R ·∆(b) ·R−1 (∆⊗id)(R) = R13 ·R23 (id⊗∆)(R) = R13 ·R12,

where R12 = R(1)⊗R(2)⊗1, R13 = R(1)⊗1⊗R(2) and R23 = 1⊗R(1)⊗R(2) ∈ B⊗B⊗B.

2. A homomorphism of quasitriangular bialgebras from (B,R) to (B′, R′) is a bialgebra
homomorphis φ : B → B′ with R′ = (φ⊗φ)(R).

3. A quasitriangular bialgebra is called triangular if its R-matrix satisfies τ ◦ R = R−1,
where τ : B⊗B → B⊗B, b⊗b′ 7→ b′⊗b denotes the flip map.

4. A (quasi)triangular Hopf algebra is a (quasi)triangular bialgebra that is a Hopf algebra.

Note that the notation R = R(1)⊗R(2) is symbolic. It stands for a finite sum R = Σn
i=1bi⊗b′i with

bi, b
′
i ∈ B. To distinguish it from the Sweedler notation for a coproduct ∆(b) = Σ(b)b(1)⊗b(2),

we do not use a summation sign in this case.

It is plausible that a quasitriangular structure on a bialgebra is related to a braiding on its
representation category B−Mod, since the representation of B on the tensor product V⊗W is
given by the coproduct (ρV⊗ρW ) ◦ ∆ : B → EndF(V⊗W ), while its representation on W⊗V
is given by (ρW⊗ρV ) ◦ ∆ = τ ◦ (ρV⊗ρW ) ◦ ∆op : B → EndF(W⊗V ). The braiding of the
representations on V and W should thus be given by the action of the universal R-matrix.

Theorem 6.3.2: Let B be a bialgebra. Then (symmetric) braidings on the representation
category B−Mod correspond bijectively to quasitriangular (triangular) structures on B.

Proof:
1. Suppose that (B,R) is a quasitriangular bialgebra and denote by R21 = τ(R) the flipped
R-matrix. We define for B-modules (V,�V ) and (W,�W ) a linear map cV,W : V⊗W → W⊗V

cV,W (v⊗w) = τ(R�V⊗W v⊗w) = R21 �W⊗V τ(v⊗w) ∀v ∈ V,w ∈ W. (72)
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Then cV,W has inverse c−1
V,W (w⊗v) = τ(R−1

21 �W⊗V w⊗v) = R−1 �V⊗W τ(w⊗v) and is B-linear:

b�W⊗V cV,W (v⊗w) = τ((∆op(b) ·R) �V⊗W v⊗w) = τ((R ·∆(b)) �V⊗W v⊗w)

= τ(R�V⊗W (b�V⊗W v⊗w)) = cV,W (b�V⊗W (v⊗w)).

To show that this defines a natural isomorphism c : ⊗ → ⊗op in B-Mod, we consider B-linear
maps f : V → V ′ and g : W → W ′ and compute

(cV ′,W ′ ◦ (f⊗g))(v⊗w) = τ(R�V ′,W ′ f(v)⊗g(w)) = (τ ◦ (f⊗g))(R�V⊗W v⊗w)

= ((g⊗f) ◦ τ)(R�V⊗W v⊗w) = ((g⊗f) ◦ cV,W )(v⊗w)

where we used first the definition of cV ′,W ′ , then the B-linearity of f and g and then the
definition of cV,W . This proves the naturality of c.

For the proof of the hexagon relations note that in Sweedler notation the conditions on the
universal R-matrix read

(∆⊗id)(R) = R13R23 ⇔ Σ(R(1))R(1)(1)⊗R(1)(2)⊗R(2) = R′(1)⊗R(1)⊗R′(2)R(2)

(id⊗∆)(R) = R13R12 ⇔ Σ(R(2))R(1)⊗R(2)(1)⊗R(2)(2) = R′(1)R(1)⊗R(2)⊗R′(2).

With this, we obtain the two hexagon relations

(1V⊗cU,W ) ◦ aV,U,W ◦ (cU,V⊗1W )((u⊗v)⊗w) = (1V⊗cU,W )(R(2) �V v)⊗((R(1) �U u)⊗w)

= (R(2) �V v)⊗((R′(2) �W w)⊗((R′(1)R(1)) �U u))

= Σ(R(2)) (R(2)(1) �V v)⊗((R(2)(2) �W w)⊗(R(1) �U u))

= aV,W,U((R(2) �V⊗W (v⊗w))⊗(R(1) �U u)) = aV,W,U ◦ cU,V⊗W ◦ aU,V,W ((u⊗v)⊗w)

(cU,W⊗1V ) ◦ a−1
U,W,V ◦ (1U⊗cV,W )(u⊗(v⊗w)) = (cU,W⊗1V )((u⊗(R(2) �W w))⊗(R(1) �V v))

= ((R′(2)R(2)) �W w)⊗(R′(1) �U u))⊗(R(1) �V v)

= Σ(R(1)) ((R(2) �W w)⊗(R(1)(1) �U u))⊗(R(1)(2) �V v)

= a−1
W,U,V ((R(2) �W w)⊗(R(1) �U⊗V (u⊗v)) = a−1

W,U,V ◦ cU⊗V,W ◦ a
−1
U,V,W (u⊗(v⊗w)).

This shows that the B-module isomorphisms cV,W : V⊗W → W⊗V define a braiding.

2. Let now B be a bialgebra and c : ⊗ → ⊗op a braiding for B-Mod. We define

R := τ ◦ cB,B(1⊗1) ∈ B⊗B ⇒ R−1 := c−1
B,B(1⊗1) ∈ B⊗B. (73)

To show that R−1 is inverse to R, we use the B-linearity of the braiding and compute

R ·R−1 = R� c−1
B,B(1⊗1) = c−1

B,B(R21 � (1⊗1)) = c−1
B,B(R21 · (1⊗1)) = c−1

B,B(cB,B(1⊗1)) = 1⊗1

R−1 ·R = R−1 � τ(cB,B(1⊗1)) = τ(cB,B(R−1 � (1⊗1))) = τ ◦ cB,B(c−1
B,B(1⊗1)) = τ(1⊗1) = 1⊗1.

To prove that R satisfies the conditions on the universal R-matrix, note that for all B-modules
V,W and v ∈ V , w ∈ W , the map φv,w : B⊗B → V⊗W , a⊗b 7→ (a�V v)⊗(b�W w) is B-linear.
The naturality of the braiding then implies cV,W ◦ φv,w = φw,v ◦ cB,B and for all v ∈ V , w ∈ W

R� (v⊗w) = φv,w(R) = τ(φw,v ◦ cB,B(1⊗1)) = τ(cV,W ◦ φv,w(1⊗1)) = τ(cV,W (v⊗w)). (74)
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With the B-linearity of the braiding we then obtain

∆op(b) ·R = τ(∆(b) · cB,B(1⊗1))
∗∗
= τ(b�B⊗B cB,B(1⊗1))

∗
= τ(cB,B(b�B⊗B 1⊗1))

∗∗
= τ(cB,B(∆(b)))

(74)
= R�B⊗B ∆(b)

∗∗
= R ·∆(b),

where we used first the definition of R, in * the B-linearity of cB,B and in ** the B-module
structure on B⊗B. This shows that ∆op = R ·∆ ·R−1.

With the hexagon relations we compute

(idB⊗∆)(R) = R�B⊗(B⊗B) (1⊗(1⊗1))
(74)
= τ(cB,B⊗B(1⊗(1⊗1)))

hex
= τ((a−1

B,B,B ◦ (idB⊗cB,B) ◦ aB,B,B ◦ (cB,B⊗idB) ◦ a−1
B,B,B)(1⊗(1⊗1))

def R
= R13R12 �(B⊗B)⊗B ((1⊗1)⊗1) = R13R12

(∆⊗idB)(R) = R�(B⊗B)⊗B ((1⊗1)⊗1)
(74)
= τ(cB⊗B,B((1⊗1)⊗1))

hex
= τ(aB,B,B ◦ (cB,B⊗idB) ◦ a−1

B,B,B ◦ (idB⊗cB,B) ◦ aB,B,B)((1⊗1)⊗1)

def R
= R13R23 �B⊗(B⊗B) (1⊗(1⊗1)) = R13R23.

3. That the representation category B-Mod is symmetric if and only if (B,R) is triangular
follows directly from the expressions for the braiding in terms of the universal R-matrix:

cV,W (v⊗w) = τ(R�V⊗W v⊗w) c−1
W,V (v⊗w) = τ(R−1

21 �V⊗W v⊗w).

If R = R−1
21 , this implies cV,W = c−1

W,V for all B-modules V,W . Conversely, if cV,W = c−1
W,V for all

B-modules V,W , then this holds in particular for V = W = B and we obtain with (73)

R
(73)
= τ ◦ cB,B(1⊗1) = τ ◦ c−1

B,B(1⊗1)
(73)
= τ(R−1) = R−1

21 .

4. It remains to show that the construction of a quasitriangular structure for B from a braiding
on B−Mod and the construction of a braiding on B−Mod from a quasitriangular structure on
B are inverse to each other. If (B,R) is a quasitriangular bialgebra, c the braiding defined by
(72) and R′ the universal R-matrix defined by c via (73), we have

R′
(73)
= τ(cB,B(1⊗1))

(72)
= τ(τ(R�B⊗B 1⊗1)) = τ ◦ τ(R) = R.

Conversely, if c is a braiding on B-Mod, R the associated universal R-matrix defined by (73)
and c′ is the braiding defined by R via (72), then we have

c′V,W (v⊗w)
(72)
= τ(R�V⊗W (v⊗w))

(74)
= τ(τ(cV,W (v⊗w))) = cV,W (v⊗w)

for all B-modules V,W and all v ∈ V , w ∈ W . This shows that the two constructions are
inverse to each other. 2

Example 6.3.3:

1. Every cocommutative bialgebra is quasitriangular with universal R-matrix R = 1⊗1. This
includes group algebras of finite groups, tensor algebras of vector spaces and universal
enveloping algebras of Lie algebras.
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2. A commutative bialgebra B is quasitriangular if and only if it is cocommutative, since
in this case, one has ∆op(b) = R · ∆(b) · R−1 for all b ∈ B if and only if ∆ = ∆op. This
shows that the algebra of functions F[G]∗ = MapF(G) on a non-abelian finite group G
cannot be quasitriangular - it is commutative, but not cocommutative.

3. The group algebra C[Z/nZ] is quasitriangular with universal R-matrix

R = 1
n
Σn−1
j,k=0e

2πi jk/n ⊗k.

4. For n = 2 and char(F) 6= 2, the Taft algebra from Example 5.3.6 is presented with
generators x, y and relations xy = −yx, y2 = 1, x2 = 0, and Hopf algebra structure

∆(y) = y⊗y, ∆(x) = 1⊗x+ y⊗x, ε(y) = 1, ε(x) = 0, S(y) = y, S(x) = −xy.

This Hopf algebra is quasitriangular with universal R-matrices

Rα = 1
2

(1⊗1 + 1⊗y + y⊗1− y⊗y) + α
2

(x⊗x− x⊗xy + xy⊗xy + xy⊗x) for α ∈ F.

5. Let q ∈ F be a primitive rth root of unity with r > 1 odd. Then the Hopf algebra U r
q (sl2)

from Proposition 5.3.12 is quasitriangular with universal R-matrix

R =
1

r

r−1∑
i,j,k=0

(q − q−1)k

(k)!q2

qk(k−1)+2k(i−j)−2ij EkKi⊗F kKj. (75)

The examples show that quasitriangularity is a structure, not a property, just like a braiding
in a monoidal category. In fact, every universal R-matrix that is not triangular yields another
universal R-matrix. This is a consequence of the following proposition that contains the bial-
gebra counterparts of the statement that the braiding with the tensor unit is trivial, of the
dodecagon identity and of the opposite braiding from Remark 3.1.2.

Proposition 6.3.4: Let (B,R) be a quasitriangular bialgebra.

1. Then the universal R-matrix satisfies

(ε⊗id)(R) = (id⊗ε)(R) = 1 R12R13R23 = R23R13R12.

2. (B,R−1
21 ) with R−1

21 = τ(R−1) is a quasitriangular bialgebra.

The equation R12R13R23 = R23R13R12 is called quantum Yang-Baxter equation (QYBE).

Proof:
1. With the defining condition on the universal R-matrix we compute

R = (id⊗id)(R) = (ε⊗id⊗id) ◦ (∆⊗id)(R) = (ε⊗id⊗id)(R13 ·R23)

= (ε⊗id⊗id)(R13) · (ε⊗id⊗id)(R23) = ε(1) (ε⊗id⊗id)(R13) ·R = (1⊗(ε⊗id)(R)) ·R

As R is invertible, right multiplication of this equation with R−1 yields 1⊗(ε⊗id)(R) = 1⊗1,
and applying ε⊗id to this equation we obtain (ε⊗id)(R) = (ε⊗id)(1⊗1) = ε(1)1 = 1. The
proof of the identity (id⊗ε)(R) = 1 is analogous. The QYBE follows directly from the defining
properties of the universal R-matrix:

R12R13R23 = R12 · (∆⊗id)(R) = (∆op⊗id)(R) ·R12 = (τ⊗id)(R13R23) ·R12 = R23R13R12.
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2. Applying the flip map τ : B⊗B → B⊗B, b⊗c 7→ c⊗b to the defining conditions in Definition
6.3.1 yields for all b ∈ B

∆(b) = τ ◦∆op(b) = τ(R ·∆(b) ·R−1) = R21 ·∆op(b) ·R−1
21

(id⊗∆)(R−1
21 ) = (τ⊗id) ◦ (id⊗τ) ◦ (∆⊗id)(R−1) = (τ⊗id) ◦ (id⊗τ)(R−1

23 R
−1
13 ) = (R−1

21 )13(R−1
21 )12

(∆⊗id)(R−1
21 ) = (id⊗τ) ◦ (τ⊗id) ◦ (id⊗∆)(R−1) = (id⊗τ) ◦ (τ⊗id)(R−1

12 R
−1
13 ) = (R−1

21 )13(R−1
21 )23.

Conjugating the first equation with R−1
21 shows that R−1

21 is another universal R-matrix for B.
2

If (H,R) is not just a quasitriangular bialgebra, but a quasitriangular Hopf algebra, then the
quasitriangularity has important consequences for the antipode. It implies that the antipode is
invertible and that its square is given by conjugation with a distinguished element of H, the
Drinfeld element. Moreover, there is a distinguished grouplike g ∈ H element such that the
fourth power of the antipode is given by conjugation with g.

Theorem 6.3.5: Let (H,R) be a quasitriangular Hopf algebra. Then:

1. The antipode of H is invertible.

2. The universal R-matrix satisfies

(S⊗id)(R) = (id⊗S−1)(R) = R−1 (S⊗S)(R) = (S−1⊗S−1)(R) = R.

3. The Drinfeld element u = S(R(2))R(1) is invertible with inverse u−1 = R(2)S
2(R(1))

and coproduct ∆(u) = (u⊗u) · (R21R)−1.

4. The element g = uS(u)−1 is grouplike.

5. The antipode satisfies S2(h) = uhu−1 and S4(h) = ghg−1 for all h ∈ H.

Proof:
2. To prove the identities (S⊗id)(R) = R−1 and (S⊗S)(R) = R, we compute

(m⊗id) ◦ (S⊗id⊗id) ◦ (∆⊗id)(R) = (1Hε⊗id)(R) = 1⊗1

=(m⊗id) ◦ (S⊗id⊗id)(R13R23) = (S⊗id)(R) ·R.

Right multiplication by R−1 then yields (S⊗id)(R) = R−1. As τ ◦ R−1 = R−1
21 is another

universal R-matrix for H by Proposition 6.3.4, we also obtain (id⊗S)(R−1) = R and

(S⊗S)(R) = (id⊗S) ◦ (S⊗id)(R) = (id⊗S)(R−1) = R. (76)

The identities (id⊗S−1)(R) = R−1 and (S−1⊗S−1)(R) = R then follow by applying S−1⊗S−1

to these two equations, once it is established that S is invertible.

3.(a) We show that u is invertible with inverse u−1 = R(2)S
2(R(1)) with the auxiliary identity

S2(h)u = hu ∀h ∈ H. (77)

To prove (77) note that the condition ∆op(h) · R = R · ∆(h) reads in Sweedler notation
Σ(h)h(2)R(1)⊗h(1)R(2) = Σ(h)R(1)h(1)⊗R(2)h(2). With the condition on the antipode this gives

S2(h)u = S2(h)S(R(2))R(1) = Σ(h)S
2(h(3))S(R(2))S(h(1))h(2)R(1) = Σ(h)S

2(h(3))S(h(1)R(2))h(2)R(1)

= Σ(h)S
2(h(3))S(R(2)h(2))R(1)h(1) = Σ(h)S

2(h(3))S(h(2))S(R(2))R(1)h(1) = Σ(h)S
2(h(3))S(h(2))uh(1)

= Σ(h)S(h(2)S(h(3)))uh(1) = Σ(h)ε(h(2))uh(1) = uh,
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where we used first the definition of u, then the identity Σ(h)S(h(1))h(2)⊗h(3) = 1⊗h, then the
fact that S is an anti-algebra homomorphism, then the identity ∆op(h) · R = R · ∆(h), then
that S is an anti-algebra homomorphism, the definition of u and Σ(h)h(1)⊗h(2)S(h(3)) = h⊗1.

To show that u is invertible, we compute with (77) and the identity (S⊗S)(R) = R

u ·R(2)S
2(R(1))

(77)
= S2(R(2))uS

2(R(1))
(76)
= R(2)uR(1)

(77)
= R(2)S

2(R(1)) · u. (78)

Using this equation together with the definition of u, the identities (S⊗S)(R) = R and
(S⊗id)(R) = R−1, that S is an anti-algebra homomorphism and (77) we then obtain

u ·R(2)S
2(R(1))

(78)
= R(2)S

2(R(1)) · u
(77)
= R(2)uR(1) = R(2)S(R′(2))R

′
(1)R(1)

(76)
= S(R(2))S(R′(2))R

′
(1)S(R(1)) = S(R′(2)R(2))R

′
(1)S(R(1))

= mop ◦ (id⊗S)(R · (S⊗id)(R)) = mop ◦ (id⊗S)(R ·R−1) = mop(1⊗1) = 1.

2. Identity (77) and the invertibility of u from 2.(a) imply that S2(h) = uhu−1 for all h ∈ H,
and this implies that S2 and hence S are invertible. This concludes the proof of 1. and 2. and
proves the first identity in 5.

3.(b) To prove the identity ∆(u) = (u⊗u) · (R21R)−1 we use the identities (∆⊗id)(R) = R13R23

and (id⊗∆)(R) = R13R12 to compute

∆(u) = ∆(S(R(2))R(1)) = ∆(S(R(2))) ·∆(R(1)) = ∆(S(R(2)R
′
(2))) · (R(1)⊗R′(1))

=(S⊗S)(∆op(R(2)) ·∆op(R′(2))) · (R(1)⊗R′(1)) = (S⊗S)(R(2)R
′
(2)⊗R̃(2)R̃

′
(2)) · (R(1)R̃(1)⊗R′(1)R̃

′
(1))

=S(R′(2))S(R(2))R(1)R̃(1)⊗S(R̃′(2))S(R̃(2))R
′
(1)R̃

′
(1) = S(R′(2))uR̃(1)⊗S(R̃′(2))S(R̃(2))R

′
(1)R̃

′
(1))

(77)
= uS−1(R′(2))R̃(1)⊗S(R̃′(2))S(R̃(2))R

′
(1)R̃

′
(1))

(76)
= uR′(2)R̃(1)⊗S(R̃′(2))S(R̃(2))S(R′(1))R̃

′
(1))

To simplify this expression, we consider the QYBE and multiply it with from the left and from
the right with R−1

12 , which yields R13R23R
−1
12 = R−1

12 R23R13. In Sweedler notation, this reads

R(1)S(R′(1))⊗R̃(1)R
′
(2)⊗R(2)R̃(2) = S(R(1))R

′
(1)⊗R(2)R̃(1)⊗R̃(2)R

′
(2).

Applying the map (m⊗id) ◦ τ12 ◦ τ23 ◦ (id⊗id⊗S) to both sides of this equation yields

S(R̃(2))S(R(2))R(1)S(R′(1))⊗R̃(1)R
′
(2) = S(R′(2))S(R̃(2))S(R(1))R

′
(1)⊗R(2)R̃(1),

and by inserting this equation into the last term in the expression for ∆(u), we obtain

∆(u) = uR̃(1)R
′
(2)⊗S(R̃(2))S(R̃′(2))R̃

′
(1)S(R′(1)) = uR̃(1)R

′
(2)⊗S(R̃(2))uS(R′(1))

(77)
= uR̃(1)R

′
(2)⊗uS−1(R̃(2))S(R′(1))

(76)
= uS(R̃(1))R

′
(2)⊗uR̃(2)S(R′(1))

= (u⊗u) · (R−1R−1
21 ) = (u⊗u) · (R21R)−1.

5. To prove that S4(h) = ghg−1 with g = uS(u)−1, we consider the quasitriangular Hopf algebra
(Hop,cop, R). Then S(u) = R(1)S(R(2)) takes the role of u = S(R(2))R(1) for (Hop,cop, R). This
implies S2(h) = S(u)−1hS(u) and S4(h) = uS2(h)u−1 = uS(u)−1hS(u)u−1 = ghg−1 for all
h ∈ H and concludes the proof of 5.

4. The identities S2(h) = S(u)−1hS(u) and (S⊗S)(R) = R imply

(S(u)−1⊗S(u)−1)(R21R) = (S2⊗S2)(R21R)(S(u)−1⊗S(u)−1) = (R21R) · (S(u)−1⊗S(u)−1),

122



and by combining these equations with the expression for the coproduct of u we obtain

∆(g) = ∆(uS(u)−1) = ∆(u) ·∆(S(u))−1 = (u⊗u)(R21R)−1 · (S(u)−1⊗S(u)−1) · (R21R)

= (u⊗u)(R21R)−1 · (R21R) · (S(u)−1⊗S(u)−1) = uS(u)−1⊗uS(u)−1 = g⊗g.

As ε(g) = ε(u)ε(u−1) = 1 6= 0, it follows that g is grouplike. 2

In Section 3.2 we showed that there is a canonical construction, the centre construction that
associates to each monoidal category a braided monoidal category. For monoidal categories
that arise as the representation categories of finite-dimensional Hopf algebras, this construction
has a Hopf algebraic counterpart. This is the Drinfeld double construction. It assigns to each
finite-dimensional Hopf algebra H over F a quasitriangular Hopf algebra D(H) that contains
both, H and the dual H∗cop as Hopf subalgebras.

Theorem 6.3.6: For every finite-dimensional Hopf algebra H there is a unique quasitrian-
gular Hopf algebra structure on the vector space H∗⊗H such that the inclusion maps

ιH : H → H∗⊗H, h 7→ 1⊗h ιH∗ : H∗cop → H∗⊗H, α 7→ α⊗1

are homomorphisms of Hopf algebras. It is called the Drinfeld double or quantum double
D(H) and given by

(α⊗h) · (β⊗k) = Σ(h),(β) β(3)(h(1)) β(1)(S
−1(h(3))) αβ(2)⊗h(2)k 1 = 1H∗⊗1H

∆(α⊗h) = Σ(h),(α) α(2)⊗h(1)⊗α(1)⊗h(2) ε(α⊗h) = εH∗(α)εH(h)

S(α⊗h) = (1⊗S(h)) · (S−1(α)⊗1) (79)

A universal R-matrix for D(H) is given by R = Σn
i=11⊗xi⊗αi⊗1, where (x1, ..., xn) is an ordered

basis of H with dual basis (α1, ..., αn).

Proof:
1. We show that (79) defines a Hopf algebra structure on H∗⊗H.

The coassociativity and counitality follow directly from the coassociativity and counitality for
H and H∗cop. That ∆ and ε are algebra homomorphisms follows, because this holds in H and
H∗ and from the identity α⊗h = (α⊗1) · (1⊗h) for all h ∈ H and α ∈ H∗. The same holds for
the condition on the antipode. As S−1 is an antipode for H∗cop by Lemma 5.2.6, we have

m ◦ (S⊗id) ◦∆(α⊗h) = Σ(h)(α) (1⊗S(h(1))) · (S−1(α(2))⊗1) · (α(1)⊗1) · (1⊗h(2))

= (1⊗S(h(1))) · (S(α(1))α(2)⊗1) · (1⊗h(2)) = ε(α)Σ(h) 1⊗S(h(1))h(2) = ε(α)ε(h) 1H∗⊗1H

and the identity m ◦ (S⊗id) ◦∆(α⊗h) = η ◦ ε follows analogously. That 1H∗⊗1H is a unit for
the multiplication follows directly from the formulas

(α⊗h) · (1H∗⊗1H) = Σ(h) 1H∗(h(1)) 1H∗(S
−1(h(3))) α1H∗⊗h(2)1H

= Σ(h) ε(h(1)) ε(S
−1(h(3))) αε⊗h(2) = α⊗h

(1H∗⊗1H) · (β⊗k) = Σ(β) β(3)(1H) β(1)(S
−1(1H)) 1H∗β(2)⊗1Hk

= Σ(β) ε(β(3))ε(β(1))β(2)⊗k = β⊗k.
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It remains to prove the associativity of the multiplication, which follows by a direct computation:(
(α⊗h) · (β⊗k)

)
· (γ⊗l) = Σ(h),(β) β(3)(h(1)) β(1)(S

−1(h(3))) (αβ(2)⊗h(2)k) · (γ⊗l)
= Σ(h),(k),(β),(γ) β(3)(h(1)) β(1)(S

−1(h(3)))γ(3)(h(2)k)(1))γ(1)(S
−1((h(2)k)(3))) αβ(2)γ(2)⊗(h(2)k)(2)l

= Σ(h),(k),(β),(γ) β(3)(h(1)) β(1)(S
−1(h(5)))γ(3)(h(2)k(1))γ(1)(S

−1(h(4)k(3))) αβ(2)γ(2)⊗h(3)k(2)l

(α⊗h) ·
(
(β⊗k) · (γ⊗l)

)
= Σ(k),(γ) γ(3)(k(1)) γ(1)(S

−1(k(3))) (α⊗h) · (βγ(2)⊗k(2)l)

= Σ(k),(h),(β),(γ) γ(3)(k(1)) γ(1)(S
−1(k(3)))(βγ(2))(3)(h(1))(βγ(2))(1)(S(h(3))) α(βγ(2))(2)⊗h(2)k(2)l

= Σ(k),(h),(β),(γ) γ(5)(k(1)) γ(1)(S
−1(k(3)))(β(3)γ(4))(h(1))(β(1)γ(2))(S

−1(h(3))) αβ(2)γ(3)⊗h(2)k(2)l

= Σ(k),(h),(β),(γ) β(3)(h(1))γ(3)(h(2)k(1)) γ(1)(S
−1(h(4)k(3)))β(1)(S

−1(h(5))) αβ(2)γ(2)⊗h(3)k(2)l.

2. That the inclusion maps ιH : H → H∗⊗H and ιH∗ : H∗cop → H∗⊗H are homomorphisms of
Hopf algebras follows directly from the expressions for (co)multiplication, (co)unit and antipode.

3. To show that R = Σn
i=11⊗xi⊗αi⊗1 is a universal R-matrix for D(H) we use the auxiliary

identities (67) from the proof of Theorem 6.2.9

Σn
i=1∆(xi)⊗αi = Σn

i,j=1xi⊗xj⊗αiαj Σn
i=1xi⊗∆(αi) = Σn

i,j=1xixj⊗αi⊗αj.

With the identities (67) we compute

(∆⊗id)(R) = Σn
i=1∆(1⊗xi)⊗αi⊗1 = Σn

i=11⊗xi(1)⊗1⊗xi(2)⊗αi⊗1 = Σn
i,j=11⊗xi⊗1⊗xj⊗αiαj⊗1

= (Σn
i=11⊗xi⊗1⊗1⊗αi⊗1) · (Σn

j=11⊗1⊗1⊗xj⊗αj⊗1) = R13 ·R23

(id⊗∆)(R) = Σn
i=11⊗xi⊗∆(αi⊗1) = Σn

i=11⊗xi⊗αi(2)⊗1⊗αi(1)⊗1 = Σn
i,j=11⊗xixj⊗αj⊗1⊗αi⊗1

= (Σn
i=11⊗xi⊗1⊗1⊗αi⊗1) · (Σn

j=11⊗xj⊗αj⊗1⊗1⊗1) = R13 ·R12,

and show that R is invertible:

R · (S⊗id)(R) = (Σn
i=11⊗xi⊗αi⊗1) · (Σn

i=11⊗S(xj)⊗αj⊗1) = Σn
i,j=11⊗xiS(xj)⊗αiαj⊗1

= Σn
i=11⊗xi(1)S(xi(2))⊗αi⊗1 = Σn

i=1ε(xi)1⊗1⊗αi⊗1 = 1⊗1⊗1⊗1.

The condition R ·∆ = ∆op ·R then follows again from (67) by a direct computation

R ·∆(α⊗h) = Σ(h),(α)Σ
n
i=1(1⊗xi⊗αi⊗1) · (α(2)⊗h(1)⊗α(1)⊗h(2))

= Σ(h),(α)Σ
n
i=1α(2)(3)(xi(1))α(2)(1)(S

−1(xi(3)))α(2)(2)⊗xi(2)h(1)⊗αiα(1)⊗h(2)

= Σ(h),(α)Σ
n
i,j,k=1α(4)(xi)α(2)(S

−1(xk))α(3)⊗xjh(1)⊗αiαjαkα(1)⊗h(2)

= Σ(h),(α)Σ
n
j=1α(3)⊗xjh(1)⊗α(4)α

jS−1(α(2))α(1)⊗h(2)

= Σ(h),(α)Σ
n
j=1ε(α(1))α(2)⊗xjh(1)⊗α(3)α

j⊗h(2) = Σ(h),(α)Σ
n
j=1α(1)⊗xjh(1)⊗α(2)α

j⊗h(2)

∆op(α⊗h) ·R = Σ(h),(α)Σ
n
i=1(α(1)⊗h(2)⊗α(2)⊗h(1)) · (1⊗xi⊗αi⊗1)

= Σ(h),(α)Σ
n
i=1α

i
(3)(h(1)(1))α

i
(1)(S

−1(h(1)(3)))α(1)⊗h(2)xi⊗α(2)α
i
(2)⊗h(1)(2)

= Σ(h),(α)Σ
n
i,j,k=1α

k(h(1))α
i(S−1(h(3)))α(1)⊗h(4)xixjxk⊗α(2)α

j⊗h(2)

= Σ(h),(α)Σ
n
i,j,k=1α(1)⊗h(4)S

−1(h(3))xjh(1)⊗α(2)α
j⊗h(2)

= Σ(h),(α)Σ
n
i,j,k=1ε(h(3))α(1)⊗xjh(1)⊗α(2)α

j⊗h(2) = Σ(h),(α)Σ
n
i,j,k=1α(1)⊗xjh(1)⊗α(2)α

j⊗h(2). 2

By definition, the algebra structure on D(H) is given by the relations (α⊗1)(1⊗h) = α⊗h, by
the relations (1⊗h)(1⊗k) = 1⊗hk and (α⊗1)(β⊗1) = αβ⊗1, which encode the inclusions of
the algebras H and H∗cop and by the crossed relations

(1⊗h) · (α⊗1) = Σ(h),(α) α(3)(h(1))α(1)(S
−1(h(3))) (α(2)⊗1) · (1⊗h(2)).
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In proofs it is often simpler to work with these relations than with the full multiplication law
of D(H), since this reduces the complexity of the computations.

Example 6.3.7: Let G be a finite group. Then the Drinfeld double D(F[G]) is the vector
space Map(G,F)⊗F[G] with the quasitriangular Hopf algebra structure

(δu⊗g) · (δv⊗h) = δu(gvg
−1)δu⊗gh 1 = 1⊗e = Σg∈G δg⊗e

∆(δu⊗g) = Σxy=u δy⊗g⊗δx⊗g ε(δu⊗g) = δu(e)

S(δu⊗g) = δg−1u−1g⊗g−1 R = Σg∈G1⊗g⊗δg⊗e

The formulas for the Hopf algebra structure of the Drinfeld double D(H) describe its Hopf
algebra structure in terms of the Hopf algebras H and H∗. Over a field of characteristic zero,
this allows one to directly draw conclusions about its integrals and semisimplicity.

Corollary 6.3.8: For a finite-dimensional Hopf algebra H over a field F with char(F) = 0,
the following are equivalent:

(i) H is semisimple.
(ii) H∗ is semisimple.

(iii) D(H) is semisimple.

If one of these conditions is satisfied, then the normalised Haar integral for D(H) is given by
λ⊗`, where ` ∈ H and λ ∈ H∗ are the normalised Haar integrals of H and H∗.

Proof:
1. The equivalence of (i) and (ii) follows from Theorem 6.2.18 by Larson and Radford, which
also implies that (i) and (ii) are equivalent to S2

H = idH and S2
H∗ = idH∗ . As one has from (79)

for all α ∈ H∗ and h ∈ H

S2
D(H)(α⊗h) = S2

D(H)((α⊗1)(1⊗h)) = S2
D(H)(α⊗1)S2

D(H)(1⊗h) = (S−2
H∗(α)⊗1)(1⊗S2

H(h))

= (S−2
H∗(α)⊗S2

H(h)),

if follows that (i) and (ii) are equivalent to the condition S2
D(H) = id, which by Theorem 6.2.18

is equivalent to (iii).

2. With formulas (79) one computes

(λ⊗`) · (α⊗h) = Σ(`),(α)α(3)(`(1))α(1)(S
−1(`(3))) λα(2)⊗`(2)h

= Σ(`),(α)α(3)(`(1))α(1)(S
−1(`(3)))ε(α(2)) λ⊗`(2)h

= Σ(`),(α)α(2)(`(1))α(1)(S
−1(`(3))) λ⊗`(2)h = Σ(`)α(S−1(`(3))`(1)) λ⊗`(2)h

= Σ(`)α(S(`(3))`(1)) λ⊗`(2)h
∗
= Σ(`)α(S(`(2))`(3)) λ⊗`(1)h

= Σ(`)ε(`(2))ε(α)λ⊗`(1)h = ε(α) λ⊗`h = ε(α)ε(h) λ⊗`,

where we used that λ ∈ IR(H∗) to pass to the second line, the identity S2 = id to pass to the
fourth line and in * that ∆(2)(`) is invariant under cyclic permutations by Corollary 6.2.20. This
shows that λ⊗` is a left integral in D(H). As D(H) is semisimple, it is a right integral as well
by Corollary 6.2.14. That it is normalised follows directly from (79) εD(H)(λ⊗`) = ε(λ)ε(`) = 1.
2

Given the centre construction from Section 3.2 and the Drinfeld double construction from
Theorem 6.3.6, one has two constructions that associate to a finite-dimensional Hopf algebra H
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a braided monoidal category. One may either consider the centre of its representation category
H−Mod or the representation categoryD(H)−Mod of its Drinfeld double. In fact, these braided
monoidal categories are braided equivalent. This gives a more concrete description of the centre
construction and allows one to realise it as a representation category.

Theorem 6.3.9: Let H be a finite-dimensional Hopf algebra over F and D(H) its Drin-
feld double. Then the representation category D(H)−Mod is braided equivalent to the centre
Z(H−Mod), and D(H)−Modfd is braided equivalent to Z(H−Modfd).

Proof:
1. We consider the functor G : D(H)−Mod → Z(H−Mod) that assigns to a D(H)-module
(M,�) the H-module (M,�′) with h�′ m = (1⊗h) �m and the family of linear maps

cN,M : N⊗M →M⊗N, n⊗m 7→ τ ◦ (R� n⊗m) = Σn
i=1[(αi⊗1) �m]⊗[xi �N n]

for each H-module (N,�N). To a D(H)-linear map f : M → M ′ it assigns the H-linear map
G(f) = f : M →M ′.

The H-linearity of the maps cN,M follows from the identity ∆op(1⊗h)R = R∆(1⊗h), and they
are natural in the first argument because for every H-linear map f : N → N ′ one has

(id⊗f) ◦ cN,M(n⊗m) = (id⊗f)
(
Σn
i=1[(αi⊗1) �m]⊗[xi � n]) = Σn

i=1[(αi⊗1) �m]⊗f(xi � n)

= Σn
i=1[(αi⊗1) �m]⊗[xi � f(n)] = cN,M ◦ (f⊗id)(n⊗m).

They also satisfy condition (32) due to the identity (∆⊗id)(R) = R13R23. This shows that
(M, c−,M) is indeed an element of Z(H−Mod). That G(f) = f : M → M ′ is a morphism in
Z(H−Mod) for each D(H)-linear map f : M →M ′ follows again directly from the definition:

(f⊗id) ◦ cN,M(n⊗m) = Σn
i=1f((αi⊗1) �′ m)⊗[xi � n]

= Σn
i=1[(αi⊗1) �′ f(m)]⊗[xi � n] = cN,M ′ ◦ (id⊗f)(n⊗m).

This shows that we have a functor G : D(H)−Mod→ Z(H−Mod). The functor G is monoidal
due to the identity (id⊗∆)(R) = R13R12 and braided, since for all D(H)-modules M,N the
braiding of G(M) and G(N) in Z(H−Mod) is

cG(N),G(M)(n⊗m) = τ ◦ (R� n⊗m) = Σn
i=1[(αi⊗1) �m]⊗[(1⊗xi) � n] = G(c

D(H)
N,M )(n⊗m).

2. We consider the functor F : Z(H−Mod)→ D(H)−Mod that assigns to an object (V, c−,V )
in Z(H−Mod) the D(H)-module (V,�′) with

(α⊗h) �′ v = (id⊗α) ◦ cH,V (1⊗(h� v))

and to a morphism f : V → W in Z(H−Mod) the D(H)-linear map F (f) = f : V → W .

To show that F is well-defined, we need to verify that �′ : D(H)⊗V → V is indeed a D(H)-
module structure on V and that f : V → W is D(H)-linear. For the former, we note that
(α⊗h) �′ v = (α⊗1) �′ ((1⊗h) �′ v) and compute

(α⊗1) �′ ((β⊗1) �′ v) = (id⊗α)cH,V (1⊗(id⊗β)cH,V (1⊗v))

= (id⊗α⊗β)(cH,V⊗id)(id⊗cH,V )(1⊗1⊗v)

= (id⊗α⊗β)cH⊗H,V (1⊗1⊗v) = (id⊗α⊗β)cH⊗H,V (∆⊗id)(1⊗v)

= (id⊗α⊗β)(id⊗∆) ◦ cH,V (1⊗v) = (id⊗(αβ))cH,V (1⊗v) = (αβ⊗1) �′ v,
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where we used first the definition of �′, then identity (32) to pass to the third line, then the
fact that ∆ : H → H⊗H is H-linear to pass to the fourth line and then the duality between
H∗ and H.

To prove the corresponding identity for elements 1⊗h ∈ 1⊗H ⊂ D(H), α⊗1 ∈ H∗⊗1 ⊂ D(H),
we consider the maps Lh : H → H, k 7→ hk and Rh : H → H, k 7→ kh and compute

(1⊗h) �′ ((α⊗1) �′ v) = h� (id⊗α)cH,V (1⊗v) = (id⊗α)((h�−)⊗id)cH,V (1⊗v)

= Σ(h)(id⊗α)((h(1) �−)⊗LS−1(h(3))h(2)
)cH,V (1⊗v)

= Σ(h)(id⊗α)(id⊗LS−1(h(3)))((h(1) �−)⊗Lh(2)
)cH,V (1⊗v))

= Σ(h)(id⊗α)(id⊗LS−1(h(2)))(h(1) � cH,V (1⊗v)) = Σ(h)(id⊗α)(id⊗LS−1(h(2)))cH,V (h(1) � (1⊗v))

= Σ(h)(id⊗α)(id⊗LS−1(h(3)))cH,V (h(1)⊗h(2) � v)

= Σ(h)(id⊗α)(id⊗LS−1(h(3)))(id⊗Rh(1)
)cH,V (1⊗h(2) � v)

= Σ(h),(α)α(3)(h(1))S
−1(α(1))(h(3)) (id⊗α(2))cH,V (1⊗h(2) � v) = ((1⊗h) · (α⊗1)) �′ v,

where we first used the definition of �′, then the identities mop ◦ (id⊗S−1) ◦ ∆ = η ◦ ε and
Le = idH to pass to the second line, then the identity Lhh′ = LhLh′ to pass to the third line,
the definition of the H-module structure on V⊗H to pass to the fourth line and then the
H-linearity of cH,V , the definition of the H-module structure on H⊗V to pass to the fifth line,
then the fact that Rh : H → H is H-linear and the naturality of cH,V in H, then the duality
between H and H∗ and finally the multiplication law of D(H). The corresponding condition
for the action of two elements 1⊗h, 1⊗k ∈ 1⊗H ⊂ D(H) follows directly from the definition of
the H-module. This shows that �′ is a D(H)-module structure on V .

To see that f : V → W is D(H)-linear for all morphisms f : V → W in Z(C), we compute

f((α⊗h) �′ v) = (f⊗α)cH,V (1⊗(h� v)) = (id⊗α)(f⊗id)cH,V (1⊗(h� v))

= (id⊗α)cH,W (1⊗f(h� v)) = (id⊗α)cH,W (1⊗(h� f(v))) = (α⊗h) �′ f(v),

where we first used the definition of �′ and the properties of the tensor product, then the
fact that f is a morphism in Z(H−Mod) to pass to the second line, then the H-linearity
of f and then again the definition of �′. This shows that the assignments define a functor
F : Z(H−Mod)→ D(H)−Mod.

We show that F is a braided monoidal functor. To show that F is monoidal, we have to show that
the D(H)-module structure on V⊗V ′ for the tensor product of two objects (V, c−,V ), (V ′, c−,V ′)
is the one of the tensor product of the D(H)-modules V and V ′ and that the D(H)-module
structure on the tensor unit (F, c−,F) in Z(H−Mod) is the trivial D(H)-module structure. The
second statement follows directly from the definition of �′ and the fact that cM,F = l−1

M ◦rM . To
prove the first statement, note that the two H-module structures on V⊗V ′ agree by definition.
To show that the H∗-module structures agree, note that the H-linearity of Rh : H → H, k 7→ kh
and the naturality of cH,V in the first argument imply cH,V (h⊗v) = cH,V ◦ (Rh⊗id)(1⊗v) =
(id⊗Rh)cH,V (1⊗v) for all v ∈ V , h ∈ H. Consequently, one has

(id⊗α)cH,V (h⊗v) = (id⊗α)(id⊗Rh)cH,V (1⊗v) = (id⊗∆(α))(cH,V (1⊗v)⊗h).

Using the definition of the tensor product in Z(H−Mod) from (34), one obtains

(α⊗1) �′ (v⊗v′) = (id⊗α)cH,V⊗V ′(1⊗v⊗v′) = (id⊗α)(id⊗cH,V ′)(cH,V⊗id)(1⊗v⊗v′)
= Σ(α)(id⊗α(2)⊗id⊗α(1))(cH,V⊗cH,V ′)(1⊗v⊗1⊗v′)
= Σ(α)((α(2)⊗1) �′ v)⊗((α(1)⊗1) �′ v′) = ∆(α⊗1)(�⊗�)(v⊗v′).
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This shows that F is monoidal. To see that F is braided, we note that for any H-module V
and v ∈ V the H-linear map fv : H → V , h 7→ h� v is given in terms of the basis (x1, ..., xn)
of H and the dual basis (α1, ..., αn) of H∗ by fv(h) = Σn

i=1α
i(h)xi� v. With the formula for the

braiding in D(H)−Mod we then compute for objects (V, c−,V ) and (W, c−,W ) in Z(H−Mod)

c
D(H)
V,W (v⊗w) = Σn

i=1[(αi⊗1) �′ w]⊗[(1⊗xi) �′ v]

= Σn
i=1[(id⊗αi)cH,W (1⊗w)]⊗[xi � v] = (id⊗fv)cH,W (1⊗v) = cV,W (fv⊗id)(1⊗w) = cV,W (v⊗w),

where we used the formula for the braiding of D(H)−Mod, then the identity for the H-linear
map fv, then the naturality of cH,V in the first argument and then the definition of fv. This
shows that F is braided.

3. We show that F and G form a braided equivalence between Z(H−Mod) and D(H)−Mod.
For each object (V, c−,V ) in Z(H−Mod), we have GF (V, c−,V ) = (V, c′−,V ) with

c′M,V (m⊗v) = Σn
i=1[(αi⊗1) �′ v]⊗[xi �M m] = Σn

i=1[(id⊗αi)cH,V (1⊗v)]⊗[xi �M m]

= (id⊗fm)cH,V (1⊗v) = cM,V (fm⊗id)(1⊗v) = cM,V (m⊗v)

for each H-module (M,�M). This shows that GF (V, c−,V ) = (V, c−,V ) for each object (V, c−,V )
in Z(H−Mod). As F and G are the identity on the morphisms, we have FG = idZ(H−Mod).

For each D(H)-module (M,�M), we have FG(M) = M with the D(H)-module structure

(α⊗h) �m = (id⊗α)c
D(H)
H,M (1⊗((1⊗h) �M m)) = Σn

i=1α(xi) (αi⊗1) �M ((1⊗h) �M m)

= (α⊗1) �M ((1⊗h) �M m) = (α⊗h) �M m

and hence FG(M,�M) = (M,�M). As F and G are the identity on the morphisms, this implies
FG = idD(H)−Mod. We thus have shown that F and G form a braided monoidal equivalence
between Z(H−Mod) and D(H)−Mod.

4. The claim for the categories Z(H−Modfd) and D(H)−Modfd follows directly, since the
functors F and G send finite-dimensional H-modules to finite-dimensional H-modules. 2

6.4 Pivotal and ribbon Hopf algebras

Given a quasitriangular Hopf algebra (H,R), we can deduce from Theorem 6.3.2 that its rep-
resentation category H−Mod and its full subcategory H−Modfd of finite-dimensional repre-
sentations are braided. By Theorem 6.3.5 the antipode of H is invertible, and this implies with
Corollary 5.2.7, 3. that H−Modfd is rigid.

We may thus ask under which additional assumptions on H the category H−Modfd of finite-
dimensional H-modules is pivotal or ribbon. The first question does not have anything to do
with quasitriangularity, except that quasitriangularity guarantees rigidity, which is required for
pivotality. It turns out that H−Modfd is pivotal if and only if the square of the antipode is
given by conjugation with a grouplike element.

Definition 6.4.10: A pivotal Hopf algebra is a Hopf algebra H over F together with an
element g ∈ Gr(H), the pivot, such that S2(h) = g · h · g−1 for all h ∈ H.
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Example 6.4.11:

1. Every involutive Hopf algebra H is pivotal with pivot 1 ∈ H.

2. Every triangular Hopf algebra is pivotal with the Drinfeld element u = S(R(2))R(1) as
the pivot, since triangularity implies R21R = 1 and u grouplike by Theorem 6.3.5, 4.

Note that this does not hold for quasitriangular Hopf algebras. Although their antipode
satisfies S2(h) = uhu−1 for all h ∈ H, the element u ∈ H need not be grouplike.

3. In general, the pivot of a pivotal Hopf algebra is not unique. If g ∈ Gr(H) is a pivot for
H and v ∈ Gr(H) a central grouplike element, then gv is another pivot for H.

Proposition 6.4.12:

1. If (H, g) is a pivotal Hopf algebra, then the representation category H−Modfd is pivotal
with ωV : V → V ∗∗, v 7→ canV (g � v) for all finite-dimensional H-modules (V, ρV ).

2. If H is a finite-dimensional Hopf algebra and H−Modfd is pivotal with pivot ω : idC ⇒ ∗∗,
then H is a pivotal Hopf algebra with pivot g = can−1

H ◦ ωH(1).

Proof:
1. Let (H, g) be a pivotal Hopf algebra. Then S : H → H is invertible with S−1(h) = g−1S(h)g
and hence H−Modfd is rigid by Corollary 5.2.7, 3.

Denote for each finite-dimensional H-module V by canV : V → V ∗∗ the canonical linear
isomorphism with canV (v)(α) = α(v) for all v ∈ V and α ∈ V ∗. Define ωV : V → V ∗∗,
v 7→ canV (g � v). Then ωV is invertible with inverse ω−1

V : V ∗∗ → V , x 7→ g−1 � can−1
V (x). The

functor ∗∗ : H−Modfd → H−Modfd assigns to an H-module (V,�) the H-module (V ∗∗,�∗∗)
with (h�∗∗ canV (v))(α) = α(S2(h) � v) = canV (S2(h) � v)(α) for v ∈ V , α ∈ V ∗. This implies

h�∗∗ ωV (v) = h�∗∗ canV (g � v) = canV ((S2(h)g) � v) = canV ((gh) � v) = ωV (h� v)

for all h ∈ H and v ∈ V and shows that the maps ωV are H-linear. The naturality of ω follows
from the naturality of can, which implies for all H-linear maps f : V → W and v ∈ V

f ∗∗ ◦ ωV (v) = f ∗∗ ◦ canV (g � v) = canW ◦ f ◦ (g � v) = canW (g � f(v)) = ωW ◦ f(v)

That ω is a monoidal natural isomorphism follows from the fact that g is grouplike

ωV⊗V (v⊗v′) = canV⊗V (g � (v⊗v′)) = (canV⊗canV )((g � v)⊗(g � v′)) = ωV (v)⊗ωV (v′)

This shows that H−Modfd is pivotal with pivot ω.

2. Let H be a finite-dimensional Hopf algebra such that H−Modfd is pivotal and consider the
element g = can−1

H (ωH(1)) ∈ H. Then g 6= 0 since canH is a linear isomorphism and ωH is
invertible, which implies ωH(1) 6= 0.

For all h ∈ H, the linear map φh : H → H, k 7→ kh is H-linear, and by the naturality of ω, one
has ωH ◦ φh = φ∗∗h ◦ ωH . Using the identity h�∗∗ canH(k) = canH(S2(h)k) from 1. and setting
k = g, we then obtain

canH(S2(h)g) = h�∗∗ canH(g) = h�∗∗ ωH(1) = ωH(h� 1)

= ωH(h) = ωH ◦ φh(1) = φ∗∗h ◦ ωH(1) = φ∗∗h ◦ canH(g) = canH ◦ φh(g) = canH(gh),
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where we used that ωH : H → H∗∗ is H-linear in the first line and then the condition ωH ◦φh =
φ∗∗h ◦ ωH together with the definition of g. As canH : H → H∗∗ is a linear isomorphism, this
implies S2(h)g = gh for all h ∈ H.

To show that g is grouplike, we note that ∆ : H → H⊗H is a module homomorphism, which
implies ωH⊗H◦∆ = ∆∗∗◦ωH , and that ω is monoidal, which implies ωH⊗H = ωH⊗ωH . Identifying
the vector spaces (H⊗H)∗∗ ∼= H∗∗⊗H∗∗, we then obtain

canH(g)⊗canH(g) = ωH(1)⊗ωH(1) = ωH⊗H(1⊗1) = ωH⊗H ◦∆(1)

= ∆∗∗ ◦ ωH(1) = ∆∗∗ ◦ canH(g) = canH⊗H ◦∆(g) = (canH⊗canH) ◦∆(g)

As canH is an isomorphism, this shows that ∆(g) = g⊗g and (H, g) is a pivotal Hopf algebra. 2

We have thus clarified under which additional assumptions on a Hopf algebra H its represen-
tation category H−Modfd is braided or pivotal. The former corresponds to quasitriangularity
of H and he latter to pivotality. We now assume that H is equipped with both, a quasitrian-
gular and a pivotal structure, and determine under which additional conditions the category
H−Modfd is ribbon.

Definition 6.4.13: A ribbon Hopf algebra is a quasitriangular Hopf algebra (H,R) to-
gether with an invertible central element ν ∈ H, the ribbon element, such that

uS(u) = ν2 ∆(ν) = (ν⊗ν) · (R21R)−1.

Remark 6.4.14:

1. A ribbon element is unique only up to right multiplication with a central grouplike
element g ∈ H satisfying g2 = 1.

2. One can show that any ribbon element satisfies ε(ν) = 1 and S(ν) = ν (Exercise).

Example 6.4.15:

1. If H is quasitriangular and involutive, then H is ribbon with ribbon element u.

The identity S2 = idH implies u = S(R(2))R(1) = R(2)S(R(1)), u
−1 = R(2)R(1) and

S(u) = S(R(1))R(2) = R(1)S(R(2)). It follows that

S(u)u−1 = R(1)S(R(2))R
′
(2)R

′
(1) = 1 = R′(2)R

′
(1)S(R(1))R(2) = u−1S(u)

This shows that u = S(u) and uS(u) = u2. we also have ∆(u) = (u⊗u)(R21R)−1 by
Theorem 6.3.5, 3. and uhu−1 = S2(h) = h for all h ∈ H by Theorem 6.3.5, 5., which
shows that u is central.

2. The Drinfeld double of any finite-dimensional semisimple Hopf algebra H over a field of
characteristic zero is a ribbon Hopf algebra with ribbon element ν = u = S(R(2))R(1).

By corollary 6.3.8, the Drinfeld double D(H) of a finite-dimensional semisimple Hopf
algebra H is semisimple as well, and its antipode satisfies S2 = idH . Hence, D(H) is a
ribbon Hopf algebra by 1.
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3. Let q ∈ F be a primitive rth root of unity with r > 1 odd. Then the Hopf algebra
U r
q (sl2) from Proposition 5.3.12 is ribbon with ribbon element ν = K−1u = uK−1 where

u = S(R(2))R(1) for the R-matrix (75).

That ν is central follows from the identity S2(h) = KhK−1 = uhu−1 for all h ∈ U r
q (sl2).

The identity ∆(ν) = (ν⊗ν)(R21R)−1 follows from the identity ∆(K±1) = K±1⊗K±1 and
the corresponding identity for u in Theorem 6.3.5.

Proposition 6.4.16:

1. If (H,R, ν) is a ribbon Hopf algebra, then H−Modfd is a ribbon category.

2. If (H,R, g) is a finite-dimensional quasitriangular pivotal Hopf algebra and ν ∈ H such
that the linear maps θV : V → V , v 7→ ν−1�v define a twist on H−Modfd, then ν = g−1u
and ν is a ribbon element.

Proof:
1. If ν ∈ H is invertible and central with uS(u) = ν2 and ∆(ν) = (ν⊗ν)(R21R)−1, then its
inverse satisfies ∆(ν−1) = (ν−1⊗ν−1)(R21R). It follows that the element g := uν−1 is grouplike,
since we obtain with the coproduct of u from Theorem 6.3.5 and the fact that ν is central

∆(g) = ∆(u) ·∆(ν−1) = (u⊗u)(R21R)−1 · (ν−1⊗ν−1)(R21R) = uν−1⊗uν−1 = g⊗g.

Moreover, since ν is central, we have ghg−1 = (uν−1)h(νu−1) = uhu−1 = S2(h) for all h ∈ H.
This shows that g = uν−1 is a pivot for H and hence H−Modfd a braided pivotal category by
Theorem 6.3.2 and Proposition 6.4.12.

It remains to check that the twist in H−Modfd satisfies the condition in Lemma 3.3.2, 4. Let V
be a finite-dimensional H-module with basis (x1, ..., xn) and dual basis (α1, ..., αn) of V ∗. With
formulas (17) and (23) for the evaluation and coevaluation maps, formula (72) for the braiding
and the formulas from Theorem 6.3.5 we compute

θV (v) = Σn
i=1α

i((gR(1)) � v)R(2) � xi = (R(2)gR(1)) � v = (R(2)S
2(R(1))g) � v = (u−1g) � v

= ν−1 � v

θ′V (v) = Σn
i=1α

i(R(2)) � v)(R(1)g
−1) � xi = (R(1)g

−1R(2)) � v = (g−1S2(R(1))R(2)) � v

= (νu−1S(u−1)) � v = (ν(S(u)u)−1) � v = (ν(uS(u))−1) � v = (νν−2) � v = ν−1 � v.

This shows that the condition from Lemma 3.3.2 is satisfied and H−Modfd is a ribbon category.

2. Let H be a finite-dimensional quasitriangular pivotal Hopf algebra with pivot g ∈ H and
ν ∈ H such that θV : V → V , v 7→ ν−1 � v define a twist for H−Modfd. Then by Lemma 3.3.2,
4. and the computation above we have

u−1g = θH(1) = ν−1 = θ′H(1) = g−1S(u)−1

and this implies ν−2 = (u−1g)(g−1S(u)−1) = (S(u)u)−1 = (uS(u))−1 and ν2 = uS(u). By
Lemma 3.3.2, 2, we also have

∆(ν−1) = ∆(ν)−1 = θH⊗H(1) = cH,H ◦ cH,H ◦ (θH⊗θH)(1) = (R21R)(ν−1⊗ν−1),

which implies ∆(ν) = (ν⊗ν)(R21R)−1. As θH : H → H is a H-module homomorphism, we
have ν−1h = θH(h) = θH(h�1) = h�θH(1) = hν−1 for all h ∈ H and hence ν is central in H. 2
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7 Application: Kitaev models

7.1 Kitaev lattice models

Kitaev models were first introduced in 2003 by Alexei Kitaev [Ki] to obtain a realistic model for
a quantum computer that is protected against errors by topological effects. The original model,
the toric code, was based on the group algebra C[Z/2Z]. The model was then generalised to the
group algebra C[G] for a finite group G in [BMD] and to finite-dimensional semisimple Hopf
algebras in [BMCA]. These models became very prominent and are a topic of current research
in condensed matter physics and topological quantum computing. They are also interesting
from the mathematical perspective since they are related to topological quantum field theories.

The ingredients of the Kitaev model are

(i) a finite-dimensional semisimple Hopf algebra H over a field F of characteristic zero,
(ii) an oriented surface Σ: a connected, compact oriented 2d topological manifold Σ,
(iii) a finite directed graph Γ embedded into Σ such that Σ \ Γ is a disjoint union of discs.

Recall that compact oriented surfaces are classified up to homeomorphisms by their genus g,
the number of handles, and their fundamental group is presented as

π1(Σ) = 〈a1, b1, ..., ag, bg | [bg, ag] · · · [b1, a1] = 1〉,

where ai, bi are the a and b-cycles of the ith handle. The condition (iii) that Σ \ Γ is a disjoint
union of discs ensures that the graph Γ is sufficiently refined to resolve the topology of the
surface Σ: one can realise a set of generators of the fundamental group π1(Σ) as paths in Γ.

an embedded graph satisfying (iii) an embedded graph that does not satisfy (iii).

We denote by E and V the sets of edges and vertices of Γ and use the same letters for their
cardinalities. We also require the notion of a face. A face of Γ is defined as a connected
component of Σ\Γ. It is represented by closed paths in Γ that start and end at a vertex v ∈ V ,
turn maximally right at each vertex and traverse each edge at most once in each direction.
More precisely, it is an equivalence class of such paths under cyclic permutations, which change
the starting vertex of the path. The set of faces of Γ and its cardinality are denoted F .

By placing a marking at a vertex v ∈ V between two incident edges at v, one obtains an
ordering of the edges at v by counting them counterclockwise from the marking. Similarly,
placing a marking at one of the vertices in a face yields an ordering of the edges in the face by
counting them counterclockwise from the marking. A vertex together with a marking is called
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Figure 1: Embedded graph Γ with markings (red) and the induced ordering of edges at the
vertices and faces of Γ.

a marked vertex and a face with a marking a marked face. In the following, we assume that
each face and each vertex is equipped with a marking, as in Figure 1. A pair (v, f) of a marked
vertex v and a marked face f that share a marking is called a site.

With these definitions, we can define the Kitaev model associated with the triple (Σ,Γ, H) that
satisfies conditions (i) to (iii).

Definition 7.1.1: The Kitaev model for (Σ,Γ, H) consists of the following data:

1. The extended space: the vector space H⊗E.

2. The edge operators:

The edge operators for a triple (e, h, α) of an edge e ∈ E and elements h ∈ H, α ∈ H∗
are the linear maps Lhe±, T

α
e± : H⊗E → H⊗E that act as the identity on all copies of H in

H⊗E that are not associated with e and on the copy for e according to

Lhe+ : ...⊗ke⊗... 7→ ...⊗hke⊗... Lhe− : ...⊗ke⊗... 7→ ...⊗keS(h)⊗... (80)

Tαe+ : ...⊗ke⊗... 7→ Σ(ke)α(ke(2)) ...⊗ke(1)⊗... Tαe− : ...⊗ke⊗... 7→ Σ(ke)α(S(ke(1))) ...⊗ke(2)⊗...

3. The vertex and face operators:

• The vertex operator for a pair (v, h) of a vertex v ∈ V and h ∈ H is the linear map

Ahv = Σ(h) L
h(1)
e1,ε1 ◦ L

h(2)
e2,ε2 ◦ ... ◦ L

h(n)
en,εn : H⊗E → H⊗E

where e1, ..., en are the incident edge ends at v, numbered counterclockwise from the
marking at v, εi = + if ei is incoming at v and and εi = − if ei is outgoing from v.

• The face operator for a pair (f, α) of a face f ∈ F and α ∈ H∗ is the linear map

Bα
f = Σ(α) T

α(1)
e1,ε1 ◦ T

α(2)
e2,ε2 ◦ ... ◦ T

α(n)
en,εn : H⊗E → H⊗E,
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where e1, ..., en are the edges traversed by f , numbered counterclockwise from the
marking, εi = + if ei is traversed in its orientation and εi = − if ei is traversed against
its orientation.

4. The protected space or ground state:

The protected space of a Kitaev model is the linear subspace

H⊗Einv = {x ∈ H⊗E |Ahvx = ε(h)x, Bα
f (x) = ε(α)x ∀h ∈ H,α ∈ H∗, v ∈ V, f ∈ F}.

We can visualise the definition of vertex, edge and face operators by assigning the edge operators
to the two ends and the two sides of an edge as follows

Lh+Lh−

Tα+

Tα−

The vertex Ahv and face operators Bα
f are obtained by appplying the comultiplication to h and

α to create as many copies as there are edge ends in the path around v and edge sides in the
face, assigning these copies to the edge ends and edge sides in the order in which they are
traversed by these paths and then applying L± and T± depending on the relative orientation.
If we visualise the factors of H in the extended space by assigning Hopf algebra elements to
the edges of a graph, the vertex and face operator are then given as follows.

Example 7.1.2:

a

b

c

d

h
h(1)a

h(2)bS(h(4))

h(5)cS(h(3))

h(6)d

α

a

f
e b

c

d

a(1)

f(2)

e(2) b(1)

c(1)

d(2)

α(b(2)d(3)S(d(1))c(2)S(e(1))S(f(1))a(2))

The main reason why Kitaev models are interesting from the mathematics perspective is that
their protected space H⊗Einv does not depend on the choice of the graph Γ or its embedding into
Σ but only on the homeomorphism class of the surface Σ. It is a topological invariant of Σ,
which was related to Turaev-Viro topological quantum field theories in [BK].
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(a) (b)

(c) (d)

(e)

Figure 2: Contracting the edges of a maximal tree in a graph: (b)→(c), (c)→(d) and removing
loops: (d)→(e).

Theorem 7.1.3 ([BMCA]): The protected space of a Kitaev model is a topological in-
variant: Its dimension depends only on the homeomorphism class of the surface Σ an not on
the embedded graph Γ.

Sketch of Proof: The proof is performed by selecting a maximal tree T ⊂ Γ as in Figure 2
(b). This is a subgraph T ⊂ Γ with no non-trivial closed paths or, equivalently, with trivial fun-
damental group that contains each vertex of Γ. One then contracts all edges in the tree towards
a chosen vertex as in Figure 2 (b),(c),(d). One can show that these edge contractions induce
isomorphisms between the protected spaces of the associated Kitaev models. By contracting all
edges in the tree T one obtains a graph Γ′ as in Figure 2 (d) whose ground state is isomorphic
to the one of Γ and which contains only a single vertex.

By removing those loops of Γ′ that can be removed without violating the condition that Σ\Γ is
a disjoint union of discs as in Figure 2 (d),(e) one obtains another graph Γ′′ with a single vertex,
a single face and 2g edges, where g is the genus of Σ. As removing loops induces isomorphisms
between the protected spaces, its protected space is isomorphic to the one of Γ,

After performing some further graph transformations which again induce isomorphisms between
the protected spaces of the associated Kitaev models, one obtains a standard graph Γ′′′ which
depends only on the genus of the surface Σ and such that the protected space of the associated
Kitaev model is isomorphic to the one for Γ. This shows that the protected space of the Kitaev
model for (Σ,Γ, H) depends only on H and the genus of Σ. 2
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7.2 Algebraic structures in Kitaev lattice models

We now investigate the algebraic structure of the Kitaev model and and show that it is an
application of the concepts introduced in the last chapter. For this, we fix a finite-dimensional
semisimple Hopf algebra H over a field F with char(F) = 0 and a directed graph Γ with vertex
set V , edge set E and face set F that is embedded into an oriented surface Σ such that Σ \ Γ
is a disjoint union of discs.

We consider the Kitaev lattice model associated with (Σ,Γ, H) from Definition 7.1.1 and start
by noting that the edge operators Lhe± and Tαe± associated to each edge e of Γ are related to
two standard right H-Hopf module structures on H.

Lemma 7.2.1: Let H be a finite-dimensional semisimple Hopf algebra over a field F with
char(F) = 0. Then:

1. The H-right module and H-right comodule structures

� : H⊗H → H, k � h = kh δ = ∆ : H → H⊗H, h 7→ Σ(h)h(1)⊗h(2)

�′ : H⊗H → H, k � h = S(h)k δ′ = (id⊗S)∆op : H → H⊗H, h 7→ Σ(h)h(2)⊗S(h(1))

define H-right Hopf module structures (H,�, δ) and (H,�′, δ′) on H.

2. The edge operators from (80) are given by

Lh+k = k �′ S(h) Lh−k = k � S(h) Tα+k = (id⊗α)δ(k) Tα−k = (id⊗α)δ′(k),

where we omit the copies of H⊗E on which they act as the identity.

Proof:
1. That the H-right actions and H-right coactions are indeed right actions and coactions follows
by a direct computation. The same holds for the claim that they define Hopf module structures
on H. Using the properties of the antipode and the identity S2 = idH , which follows from the
semisimplicity by the Larson-Radford theorem, we obtain

δ(k � h) = δ(kh) = Σ(h),(k)k(1)h(1)⊗k(2)h(2) = Σ(h),(k)(k(1) � h(1))⊗k(2)h(2) = δ(k) � h

δ′(k �′ h) = δ′(S(h)k) = Σ(h),(k)S(h(1))k(2)⊗S(k(1))h(2) = δ′(k) � h.

2. The second claim follows directly from the definition of the H-module and comodule
structures and the definition of the edge operators in (80). 2

For a better understanding of the edge operators, we need to describe their interaction in terms
of commutation relations and to identify the subalgebra of EndF(H⊗E) that is generated by
these operators. The latter can be achieved most easily via the Haar integrals of the Hopf
algebra H and its dual H∗.

Proposition 7.2.2 ([BMCA]):

1. The edge operators associated with distinct edges commute.

2. The edge operators for an edge e satisfy the commutation relations

Lhe±L
k
e± = Lhke± Lhe±L

k
e∓ = Lke∓L

h
e± (81)

Tαe±T
β
e± = Tαβe± Tαe±T

β
e∓ = T βe∓T

α
e±

Tαe±L
h
e± = Σ(h),(α)α(1)(h(2)) L

h(1)

e± T
α(2)

e± Tαe±L
h
e∓ = Σ(h),(α)α(2)(S(h(1))) L

h(2)

e∓ T
α(1)

e± .
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3. Let Se : H⊗E → H⊗E be the application of the antipode to the copy of H for e. Then:

Lhe± ◦ Se = Se ◦ Lhe∓ Tαe± ◦ Se = Se ◦ Tαe∓.

4. The edge operators Lhe+, Tαe+ for edges e generate the algebra EndF(H⊗E) ∼= EndF(H)⊗E.

Proof:
1. The first claim follows from the fact that the edge operators Lhe±, Tαe± act trivially on all
copies of H that are associated with edges f 6= e.

2. and 3. The second and third claim follow by a direct computation using the formulas (80) for
the edge operators Lhe±, Tαe± and the identity S2 = idH which holds because H is semisimple.

4. To show that the edge operators Lhe+, Tαe+ generate the algebra EndF(H⊗E) ∼= EndF(H)⊗E,
it is sufficient to show that for each edge e, the associated edge operators Lhe+, Tαe+ generate the
algebra EndF(H). For this, we consider an ordered basis (x1, ..., xn) of H with the dual basis
(α1, ..., αn) of H∗. Then the linear maps φij : H → H, xk 7→ δikxj form a basis of EndF(H).

We show that they can be expressed as a product of the edge operators Lhe+, Tαe+. For this,
let ` ∈ H and λ ∈ H∗ be two-sided integrals of H and H∗ with λ(`) = 1. Thewy exist by
Lemma 6.2.15, because H is semisimple by assumption, the semisimplicity of H implies the
semisimplicity of H∗ by the Larson-Radford Theorem 6.2.18 and finite-dimensional semisimple
Hopf algebras are unimodular by Corollary 6.2.14. Then we have

L
xj
e+T

λ
e+L

`
e+T

αi

e+(xk) = Σ(k)α
i(xk(2)) L

xj
e+T

λ
e+(`xk(1)) = Σ(k)α

i(xk(2))ε(xk(1)) L
xj
e+T

λ
e+(`)

= αi(xk)L
xj
e+T

λ
e+(`) = Σ(`)δikλ(`(2))xj`(1) = δikλ(`)xj = δikxj = φij(xk)

for all i, j, k ∈ {1, .., n} and this shows that L
xj
e+T

λ
e+L

`
e+T

αi

e+ = φij. 2

We now consider the vertex and face operators in the Kitaev model. From the definition of the
model it is apparent that they play the role of a symmetry algebra that acts on the extended
space and defines the protected space by the condition that their action on an element of H⊗Einv
is trivial, that is, given by the counits of H and H∗. It turns out that these are the invariants
of associated module and comodule structures on H⊗E.

Moreover, for every pair (v, f) of a vertex and a face that share a marking, it is natural to com-
bine the vertex and face operators Ahv and Bα

f and to investigate their commutation relations.
It turns out that for every such pair the vertex and face operators form a representation of the
Drinfeld double D(H). They have the interpretation of excited states in Kitaev models.

Proposition 7.2.3 ([BMCA]):

1. For every vertex v ∈ V and face f ∈ F the associated vertex and face operators define
representations

ρv : H → EndF(H⊗E), h 7→ Ahv ρf : H∗ → EndF(H⊗E), α 7→ Bα
f .

This induces representations

ρV : H⊗V → EndF(H⊗E) ρF : H∗⊗F → EndF(H⊗E).
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2. If a vertex v and face f share a marking, then the associated vertex and face operator
define a representation of D(H) on H⊗E

ρ(v,f) : D(H)→ EndF(H⊗E), α⊗h 7→ Bα
f ◦ Ahv .

3. Let λ ∈ H∗ and ` ∈ H be normalised Haar integrals. Then all vertex and face operators
A`v and Bλ

f are independent of the choice of markings and commute.

4. A projector on H⊗Einv is given by

P = Πv∈V Πf∈F B
λ
fA

`
v : H⊗E → H⊗E

Proof:
1. To prove the first claim, note that for each edge e the maps ρe± : H → EndF(H⊗E), h 7→ Lhe±
are representations of H and the maps ρ′e± : H∗ → EndF(H⊗E), α 7→ Tαe± are representations
of H∗ by the first and third relation in (81). Also by (81) the operator Lhe± commute with Lke∓
and with Lke′±, Lke′∓ for all e′ 6= e ∈ E and likewise for the operators Tαf±. As the vertex and
face operators are composites of these commuting operators constructed via the coproducts of
H and H∗ the first claim follows.

As a direct consequence of the commutation relations in (81) we have Ahv ◦Akv′ = Akv′ ◦Ahv and
Bα
f ◦B

β
f ′ = Bβ

f ′ ◦Bα
f for all v 6= v′ ∈ V and f 6= f ′ ∈ F . This proves the second claim.

2. For simplicity, we suppose that there are no loops at v and that the edges at v are only
traversed once by f . The proof for the general case without this assumptions is similar, but
more complicated and requires case distinctions.

Suppose that e1, ..., en are the edges at v, numbered counterclockwise from the marking as
in Figure 1. By Proposition 7.2.2, 3. applying the antipode to the copy of H for an edge e
exchanges the operators Lhe+ and Lhe− which corresponds to a reversal of the edge orientation.
We may thus assume that all edges e1, ..., en are incoming. Then the vertex operator for v is

Ahv = L
h(1)

e1+ ◦X(h(2)) ◦ L
h(3)

en+ (82)

with a linear map X : H → EndF(H⊗E), h 7→ X(h) such that X(h) commutes with Lke1± and
Lken± for all k ∈ H and with Tαe1± and Tαen± for all α ∈ H∗. This follows because the vertex
operator Avh contains no contributions from edge operators of e1 and en apart from the ones at
the beginning and the end.

As the face f shares a marking with v and turns maximally right at each vertex, the edge en
is the first edge in f and traversed with its orientation. The edge e1 is the last edge in f and
traversed against its orientation, as shown in Figure 1. The face operator for f has the form

Bα
f = Σ(α) T

α(1)

en+ ◦ Y (α(2)) ◦ T
α(3)

e1− (83)

with a linear map Y : H∗ → EndF(H⊗E), α 7→ Y (α). Because e1 and en are only traversed
once by f , the face operator contains no further contributions from edge operators for e1 and
en, and this implies that the linear endomorphism Y (α) commutes with T βe1±, T βen± and with
Lhe1±, Lhen± for all β ∈ H∗ and h ∈ H.

If f does not traverse any edges incident at v except e1, en then this also implies that Y (α)
commutes with X(h) for all h ∈ H.

If f traverses any edge ei with i ∈ {2, .., n−1} in the direction of its orientation, it also traverses
the edge ei+1 against its orientation and i < n−1, since f turns maximally right at each vertex
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and traverses each edge only once. Conversely, if f traverses the edge ei+1 against its orientation,
then it also traverses ei with its orientation. This is pictured in Figure 1. The contribution for the
edges ei and ei+1 to the face operator is then of the form Σ(α) T

α(1)

ei+1−◦T
α(2)

ei+ with i ∈ {2, ..., n−2}.
This commutes with Lhek+ for all k /∈ {i, i+ 1}. To show that L(α) commutes with X(h) for all
h ∈ H, we use the commutation relations (81) of the edge operators and the identity S2 = idH ,
which follows with the semisimplicity of H from Theorem 6.2.18. This implies(

Σ(α) T
α(1)

ei+1−T
α(2)

ei+

)
(Σ(h) L

h(1)

ei+L
h(2)

ei+1+)

(81)
= Σ(α)(h) α(2)(1)(h(1)(2))α(1)(2)(S(h(2)(1)))L

h(1)(1)

ei+ L
h(2)(2)

ei+1+T
α(1)(1)

ei+1− T
α(2)(2)

ei+

= Σ(α)(h) α(3)(h(2))α(2)(S(h(3)))L
h(1)

ei+L
h(4)

ei+1+T
α(1)

ei+1−T
α(4)

ei+

= Σ(α)(h) α(2)(S(h(3))h(2))L
h(1)

ei+L
h(4)

ei+1+T
α(1)

ei+1−T
α(3)

ei+

S2=id
= Σ(α)(h) ε(α(2))ε(h(2))L

h(1)

ei+L
h(3)

ei+1+T
α(1)

ei+1−T
α(3)

ei+ = (Σ(h) L
h(1)

ei+L
h(2)

ei+1+)(Σ(α) T
α(1)

ei+1−T
α(2)

ei+ ),

and hence the elements Y (α) and X(h) commute for all h ∈ H, α ∈ H∗. With this, we compute

ρ(v,f)(α⊗h)ρ(v,f)(β⊗k) = Bα
f L

h
vB

β
fA

k
v

= Σ(h)(k)
(α)(β)

[T
α(1)

en+Y (α(2))T
α(3)

e1− ] · [Lh(1)

e1+X(h(2))L
h(3)

en+] · [T β(1)

en+Y (β(2))T
β(3)

e1− ] · [Lk(1)

e1+X(k(2))L
k(3)

en+]

= Σ(h)(h)
(α)(β)

β(1)(1)(S(h(3)(2)))β(3)(2)(h(1)(1))

T
α(1)

en+T
β(1)(2)

en+ Y (α(2))Y (β(2))T
α(3)

e1− T
β(3)(1)

e1− L
h(1)(1)

e1+ L
k(1)

e1+X(h(2))X(k(2))L
h(3)(1)

en+ L
k(3)

en+

= Σ(h)(k)
(α)(β)

β(1)(S(h(5)))β5(h(1)) T
α(1)β(2)

en+ Y (α(2)β(3))T
α(3)β(4)

e1− L
h(2)k(1)

e1+ X(h(3)k(2))L
h(4)k(3)

en+

= Σ(β)(h) β(1)(S(h(3)))β3(h(1)) ρ(v,f)(αβ(2)⊗h(2)k)
S2=id

= ρ(v,f)((α, h) ·D(H) (β⊗k)),

where we used equations (82) and (83) to pass to the second line, then the fact that X(h)
and Y (α) commute with each other and with Lhe1±, Lhen±, Tαe1± and Tαen± and the commutation
relations (81) to pass to the third line. We then combined adjacent edge operators using again
(81) and then simplified the resulting expressions using the properties of the Hopf algebra. In
the last step, we used the identity S2 = idH and the formula (79) for the multiplication of the
Drinfeld double D(H). As we also have ρ(1H∗⊗1H) = B1H∗

f A1H
v = idH⊗E , this proves that ρ(v,f)

is a representation of D(H).

3. As H is finite-dimensional semisimple, by Theorem 6.2.18, the dual Hopf algebra H∗ is finite-
dimensional semisimple as well. By Theorem 6.2.11 and Corollary 6.2.14 there are normalised
Haar integrals ` ∈ H and λ ∈ H∗, and by Corollary 6.2.20 the elements ∆(n−1)(`) and ∆(m−1)(λ)
are invariant under cyclic permutations of the tensor factors for all m,n ∈ N.

As different choices of the markings at a vertex v are related by cyclic permutations of the tensor
factors of ∆(n−1)(`) in A`v, it follows that A`v does not depend on the choice of the marking at
v. Similarly, different choices of a marking of a face f correspond to cyclic permutations of the
tensor factors of ∆(m−1)(λ) in Bλ

f , and the cyclic invariance of ∆(m−1)(λ) implies that Bλ
f does

not depend on the choice of the marking at f .

As vertex operators for different vertices and face operators for different faces commute by 1,
it remains to show that any vertex operator A`v commutes with all face operators Bλ

f . If f is a
face that is not incident at v, this follows because there is no edge that is both, incident at v
and traversed by f . Thus, Ahv and Bα

f act on different copies of H in the tensor product H⊗E
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and hence commute. If f is a face incident at v, we can choose a common marking for v and f
and obtain a representation of D(H) as in 2. The claim then follows by a direct computation

A`v ◦Bλ
f = ρ(v,f)(1⊗`) ◦ ρ(v,f)(λ⊗1) = ρ(v,f)(Σ(`)(λ) λ(3)(`(1))λ(1)(S(`(3)))λ(2)⊗`(2) )

= ρ(v,f)(Σ(`)(λ) λ(1)(`(2))λ(2)(S(`(1)))λ(3)⊗`(3) ) = ρ(v,f)(Σ(`)(λ) λ(1)(`(2)S(`(1)))λ(2)⊗`(3) )

= ρ(v,f)(Σ(`)(λ) ε(λ(1))ε(`(1))λ(2)⊗`(2) ) = ρ(v,f)(λ⊗`) = ρ(v,f)(λ⊗1) ◦ ρ(v,f)(1⊗`) = Bλ
f ◦ A`v,

where we used first the fact that ρ(v,f) is an algebra homomorphism and the multiplication law
of D(H), then the cyclic invariance of ∆(2)(`) and ∆(2)(λ) to pass to the second line, then the
duality between multiplication in H and comultiplication in H∗, the antipode condition to pass
to the third line, the counit condition and again the fact that ρ(v,f) is an algebra homomorphism
and the multiplication law of D(H).

4. By Corollary 6.3.8 the normalised Haar integrals for H and H∗ define projectors on the
invariants of any H-module or H∗ module. Thus, for any vertex v and face f , the operators
A`v and Bα

f are projectors on the invariants on the associated representation ρv and ρf of H
and H∗. By 3. all such projectors commutes and thus define a projector on the linear sub-
space of H that consists of the elements that are invariant under all vertex and face operators. 2
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8 Reconstruction theory

8.1 F-linear abelian categories

In the last section we constructed monoidal categories as the categories B−Mod of B-modules
and B-linear maps for a bialgebra B over F and their full subcategories B−Modfd of finite-
dimensional B-modules. It is clear that not every monoidal category is of this form or even
monoidally equivalent to one of these categories. The categories B−Mod and B−Modfd have
additional structure and properties that are carried over by any equivalence of categories. For
instance, they are abelian, and their Hom sets are vector spaces over F.

Many monoidal categories such as the simplex category from Example 1.1.7 or the braid cat-
egory from Example 3.1.5 do not have these additional structures and properties and hence
cannot be equivalent to representation categories of bialgebras. To understand which monoidal
categories arise as representation categories of bialgebras, we need to systematically determine
the additional structures and properties of these representation categories and then restrict
attention to monoidal categories with these structures and properties.

As this problem becomes very difficult if one admits infinite-dimensional B-modules, we focus
on the representation categories B−Modfd of finite-dimensional modules over a bialgebra B
and also impose that B is finite-dimensional in the following.

Proposition 8.1.1: For any bialgebra B over F the categories B−Mod and B−Modfd have
the following structures and properties:

1. They are abelian.

2. The functor ⊗ : B−Mod(fd) ×B−Mod(fd) → B−Mod(fd) is biexact.

3. Their Hom sets are vector spaces over F, and the composition of morphisms is F-bilinear.

4. The endomorphisms of the unit object satisfy EndB(e) = EndF(F) ∼= F.

5. The maps ⊗ : HomB(M,M ′) × HomB(N,N ′) → HomB(M⊗N,M ′⊗N ′) are F-bilinear
for all B-modules M,M ′, N,N ′.

The category B−Modfd has the following additional properties:

6. The Hom sets are finite-dimensional F-vector spaces.

7. Every object is a B-module of finite length.

Proof:
The first claim holds for the category B−Mod of modules over any unital ring. The full sub-
category B−Modfd is additive, because direct sums of finite-dimensional B-modules are again
finite-dimensional. It is abelian, because the kernel, cokernel, image and coimage of a B-linear
map between finite-dimensional modules are again finite-dimensional.

Property 2. follows because the functors M⊗−,−⊗M : VectF → VectF are exact for each vector
space M over F, since every F-vector space is a free F-module and hence projective. As the
kernel ι : ker(f) → M , the image ι′ : im(f) → N , the cokernel π : N → N/im(f) and the
coimage π′ : M → M/ker(f) in VectF for a B-linear map f : M → N are B-linear, it follows
that they are also the kernels, images, cokernels and coimages in B−Mod. This implies that
the functors M⊗−,−⊗M : B−Mod→ B−Mod for a B-module M are exact as well.
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Properties 3., 4., 5. and 6. follow directly, since the B-linear maps f : M → N form a
vector space over F with the pointwise addition and scalar multiplication, the composition of
B-linear maps is F-bilinear, and tensoring F-bilinear maps is F-bilinear by the properties of
the tensor product. One has dimF HomB−Mod(M,N) ≤ dimF HomF(M,N) = dimFM dimFN
for finite-dimensional B-modules M,N , which proves 6. Property 4. follows, since one has
HomB−Mod(e) = HomB−Mod(F) = HomF(F) ∼= F. Property 7. is just Lemma A.24. 2

Any monoidal category that is monoidally equivalent to a category B−Mod or B−Modfd must
have structures and properties analogous to the ones in Proposition 8.1.1. We thus need to
formulate counterparts of these structures and properties for more general monoidal categories.
For items 1. and 2. in Proposition 8.1.1, this requires no additional work. Items 3., 4., 5. and
6. in Proposition 8.1.1 require an F-linear structure on the Hom sets, which can be imposed on
any additive category and is encoded in the concept of an F-linear category.

Definition 8.1.2: Let F be a field.

1. An additive category A is called F-linear, if HomA(A,A′) is a vector space over F for all
objects A,A′ in A and the composition of morphisms is F-linear.

2. A functor F : A → B between F-linear categories A,B is called F-linear, if it is additive
and the maps HomA(A,A′)→ HomB(F (A), F (A′)) are F-linear.

An F-linear functor F : A → B that is an equivalence of categories is called an F-linear
equivalence, and the categories A and B are called F-linearly equivalent.

With this definition of F-linear categories and F-linear functors, one can implement conditions
3. to 6. from Proposition 8.1.1. To formulate condition 7. in Proposition 8.1.1, we need a notion
of a subobject in an abelian category that replaces the notion of a submodule in B−Mod. We
also need a concept of a simple objects and a generalisation of Jordan-Hölder series.

The proper notion of a subobject in an abelian category A is given by monomorphisms, and,
dually, there is a notion of quotient objects given by epimorphisms. Simple, semisimple and
indecomposable objects then can be defined as for modules over rings, by replacing submodules
with subobjects and direct sums with coproducts.

Definition 8.1.3: Let A be an abelian category and A an object in A. A subobject of A is
a monomorphism ι : X → A. A quotient object of A is an epimorphism π : A→ Y .

Definition 8.1.4: Let A be an abelian category. A non-zero object A in A is called

• simple, if the source objects of its subobjects are all isomorphic to 0 or to A,
• semisimple, if it is a coproduct of simple objects,
• indecomposable, if it is not a coproduct of at least two non-zero subobjects.

The category A is called semisimple, if every object in A is semisimple.

With analogous arguments as for modules, one can derive a version of Schur’s lemma for abelian
categories (Exercise 56). The definition of a Jordan-Hölder series also generalises directly from
modules to abelian categories. The only difference is that submodules are replaced by subobjects
and quotient modules by cokernels. There is also a Jordan-Hölder Theorem for abelian categories
that ensures that any two Jordan-Hölder series for a given object have the same lengths and
isomorphic subfactors.
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Definition 8.1.5: An object A in an abelian category A has finite length, if there is a
Jordan-Hölder series of length n ∈ N0 for A, a sequence

0 = A0
ι0−→ A1

ι1−→ A2
ι2−→ . . .

ιn−2−−→ An−1
ιn−1−−→ An = A (84)

of monomorphisms ιi : Ai → Ai+1 such that Ai+1/Ai := coker(ιi) is simple for all i = 0, ..., n−1.

The multiplicity [A : A′] of a simple object A′ in the Jordan-Hölder series (84) is the number
of i with coker(ιi) ∼= A′.

Theorem 8.1.6: (Jordan-Hölder theorem)
Let A be an object of finite length in an abelian category A. Then any sequence of monomor-
phisms as in (84) can be extended to a Jordan-Hölder series of A. All Jordan-Hölder series of
A have the same lengths and the same multiplicities for each simple object A′ in A.

Properties 6. and 7. in Proposition 8.1.1 for the category B−Modfd both follow from 3. to
5. and the fact that the modules are finite-dimensional. In a general F-linear abelian category,
there is no notion of dimension for objects, and these conditions are imposed separately.

Definition 8.1.7: An F-linear abelian category A is called locally finite if

(i) HomA(A,B) is a finite-dimensional F-vector space for all objects A,B in A,
(ii) every object in A has finite length.

The conditions in Definition 8.1.7 are almost sufficient to ensure that an F-linear abelian cat-
egory A is equivalent to the category A−Modfd for a finite-dimensional algebra A over F. In
fact this requires just two supplementary conditions:

(i) there are only finitely many isomorphism classes of simple objects in A,

(ii) every simple object in A has a projective cover: there is a projective object PA and an
epimorphism π : PA → A with the following property: for each epimorphism p : P → A
from a projective object P there is an epimorphism p′ : P → PA with π ◦ p′ = p.

An F-linear abelian category A that satisfies these two condition is called finite.

The first condition generalises the well-known fact that any finite-dimensional algebra has
only finitely many isomorphism classes of simple modules. Understanding the second condition
requires more background on projective objects and projective covers. For this reason, we will
not prove that any finite F-linear abelian category is equivalent to the category A−Modfd of
a finite-dimensional algebra over F, but take equivalence to the representation category of a
finite-dimensional algebra as the definition. A sketch of proof is given in [EGNO, Def 1.8.6 ff].

Definition 8.1.8: An F-linear abelian category A is called finite if it is F-linearly equivalent
to the category A−Modfd of finite-dimensional modules over a finite-dimensional F-algebra A.

Proposition 8.1.1 implies that any monoidal category (C,⊗) that is monoidally equivalent to a
representation category B−Modfd for a bialgebra B over F must have the structure of a locally
finite abelian F-linear category with a biexact and F-bilinear tensor product ⊗ : C×C → C and
with EndC(e) ∼= F. If we require that B is finite-dimensional, then C must be finite.
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This gives a strong motivation to understand F-linear additive functors between finite F-linear
abelian categories and the natural transformations between them. Due to their equivalence with
the representation category A−Modfd for a finite-dimensional algebra A over F, such functors
can be characterised in terms of bimodules. More specifically, it turns out that any right exact F-
linear functor F : A−Modfd → B−Modfd for finite-dimensional F-algebras A, B is obtained, up
to equivalence, by tensoring over A with an (B,A)-bimodule. Natural transformations between
two such functors are then given by (B,A)-bimodule morphisms.

Definition 8.1.9: Let A,B finite-dimensional algebras over F. An additive F-linear functor
F : A−Modfd → B−Modfd is called ⊗-representable if there is a (B,A)-bimodule V such
that F is naturally isomorphic to V⊗A− : A−Modfd → B−Modfd.

Proposition 8.1.10: An F-linear functor G : A−Modfd → B−Modfd is ⊗-representable if
and only if it is right exact.

Proof:
If G is naturally isomorphic to a functor V⊗A− : A−Modfd → B−Modfd for a (B,A)-bimodule
V , then it is right exact, since V⊗A− is right exact, see [Me, Cor 3.1.16]. We show that any
right exact functor G : A−Modfd → B−Modfd is ⊗-representable.

1. We consider the finite-dimensional B-module V = G(A) and for each a ∈ A the A-linear
map rA : A → A, a′ 7→ a′a. Its image G(ra) : V → V is B-linear by definition of G, and the
map � : V × A→ V , v � a = G(ra)v equips V with the structure of a (B,A)-bimodule:

(v � a) � a′ = G(ra′)G(ra)v = G(ra′ ◦ ra)v = G(raa′)v = v � (aa′)

v � 1A = G(r1A)v = G(idA)v = v b� (v � a) = b�G(ra)v = G(ra)(b� v) = (b� v) � a.

2. We construct a natural isomorphism φ : G→ V⊗A−:

• As G is additive, one has for each free A-module F = ⊕IA an A-linear isomorphism

φF : G(F ) = G(⊕IA) ∼= ⊕IG(A) ∼= ⊕I(G(A)⊗AA) ∼= G(A)⊗A(⊕IA) = V⊗AF (85)

that satisfies φF ′ ◦ f = (V⊗Af) ◦ φF for all A-linear maps f : F → F ′ between free A-modules.

• To construct isomorphisms φM : G(M) → V⊗AM for general finite-dimensional A-modules
M , we choose for each finite-dimensional A-module M an exact sequence

F• = F1
d1−→ F0

d0−→M → 0

in A−Modfd with free A-modules F0, F1. For instance, we may choose

F0 = ⊕BA, d0 : F0 →M, (am)m∈B 7→ Σm∈Bam �m

F1 = ⊕B′A, d1 : F1 → F0, (am)m∈B′ 7→ Σm∈B′am �m

for vector space bases B of M and B′ of ker(d0).

The exactness of F• is equivalent to the statement that d0 is a cokernel of d1. As G is right
exact, it follows that G(d0) : G(F0) → G(M) is a cokernel of G(d1) : G(F1) → G(F0), and
consequently G(d0) ◦ φ−1

F0
: V⊗AF0 → G(M) is a cokernel of V⊗Ad1 : V⊗AF1 → V⊗AF0. As

V⊗Ad0 : V⊗AF0 → V⊗AM is another cokernel of V⊗Ad1 due to right exactness of V⊗A−, we
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have a unique isomorphism φM : G(M)→ V⊗AM such that the following diagram commutes

G(F1)

∼= φF1

��

G(d1) // G(F0)

∼= φF0

��

G(d0) // G(M)

∼= φM
��

// 0

V⊗AF1V⊗Ad1

// V⊗AF0 V⊗Ad0

// V⊗AM // 0.

(86)

The morphism φM does not depend on the choice of F0 and F1. If F ′• = F ′1
d′1−→ F ′0

d′0−→ M → 0
is another exact sequence in A−Modfd with free A-modules F ′0, F ′1, then we can construct
A-linear maps f0 : F0 → F ′0 and f ′1 : F1 → F ′1 such that the following diagram commutes

F1

f1

��

d1 // F0

f0

��

d0 //M

idM
��

// 0

F ′1
d′1 // F ′0

d′0 //M // 0.

The isomorphisms φF in (86) satisfy φF ′n ◦ fn = φFn for n = 0, 1. This follows due to the
exactness and projectivity, see for instance the proof of Theorem 4.1.6 in [Me]. By applying G
to this diagram and combining the resulting diagrams with diagram (86) for F• and F ′•, one
finds that that the morphisms φM for F• and φ′M for F ′• in (86) agree.

The isomorphisms φM : G(M)→ V⊗AM define a natural isomorphism φ : G→ V⊗A−. Given
finite-dimensional A-modules M,M ′ and exact sequences

F• = F1
d1−→ F0

d0−→M → 0 F ′• = F ′1
d′1−→ F ′0

d′0−→M ′ → 0,

we can extend any A-linear map f : M →M ′ to a chain map f• : F• → F ′• with f−1 = f by [Me,
Thm 4.1.6]. Applying the functors G and V⊗A− yields chain maps G(f•) : G(F•) → G(F ′•)
and V⊗Af• : V⊗AF• → V⊗AF ′• that link the diagrams (86) for M and M ′. This implies
φN ◦G(f) = (V⊗Af) ◦ φM in degree -1. 2

Proposition 8.1.11: Let A,B be finite-dimensional algebras over F and V,W finite-
dimensional (B,A)-bimodules. Then natural transformations ν : V⊗A− → W⊗A− are in
bijection with elements of EndB⊗Aop(V,W ).

Proof:
We identify V⊗AA with V via the B⊗Aop-linear isomorphism rV : V⊗AA→ V , v⊗a 7→ v � a
with inverse r−1

V : V → V⊗AA, v 7→ v⊗1.

1. To a natural transformation ν : V⊗A− → W⊗A− we assign the B⊗Aop-linear map

fν = rW ◦ νA ◦ r−1
V : V → V, v 7→ rW ◦ νA(v⊗1).

It is B-linear, because νA is B-linear by definition and Aop-linear by naturality of ν: by consid-
ering the A-linear maps Ra : A→ A, a′ 7→ a′a we obtain for all a ∈ A and v ∈ V

fν(v � a) = rW ◦ νA(v � a⊗1) = rW ◦ νA(v⊗a) = rW ◦ νA ◦ (idV⊗Ra)(v⊗1)

= rW ◦ (idV⊗Ra) ◦ νA(1⊗v) = (rW ◦ νA(1⊗v)) � a = fν(v) � a.
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2. To a B⊗Aop-linear map f : V → W , we assign the natural transformation νf with component
morphisms νfM = (f⊗idM) : V⊗AM → W⊗AM , v⊗m 7→ f(v)⊗m. The B⊗Aop-linearity of f
ensures that the maps νfM are well-defined and B-linear:

νfM((v � a)⊗m) = f(v � a)⊗m = (f(v) � a)⊗m = f(v)⊗(a�m) = νfM(v⊗(a�m))

νfM((b� v)⊗m) = f(b� v)⊗m = (b� f(v))⊗m = b� νfM(v⊗m).

They define a natural transformation, because we have for each A-linear map g : M → N

νfN ◦ (idV⊗g) = (f⊗idN) ◦ (idV⊗g) = (idV⊗g) ◦ (f⊗idN) = (idV⊗g) ◦ νfM .

3. To show that the assignments φ : f → νf and ψ : ν → fν are mutually inverse bijections, we
compute for each each B⊗Aop-linear map f : V → W and v ∈ V

fνf (v) = rW ◦ νf (v⊗1) = rW (f(v)⊗1) = f(v)

and hence fνf = f . By considering for each A-module M and m ∈ M the A-linear maps
�m : A→M , a 7→ a�m, we obtain for each natural transformation ν : V⊗A− → V⊗A−

νfνM (v⊗m) = fν(v)⊗m = (idV⊗�m)(fν(v)⊗1) = (idV⊗�m)(rW (νA(v⊗1))⊗1)

=(idV⊗�m) ◦ νA(v⊗1) = νM ◦ (idV⊗�m)(v⊗1) = νM(v⊗m),

for all v ∈ V , m ∈ M and finite-dimensional A-modules M . To pass to the second line we
used the identity (u � a)⊗ �m (1) = u⊗ �m (a) for all a ∈ A, m ∈ M that follows from the
A-linearity of �m and the properties of the tensor product ⊗A. This shows that νfν = ν. 2

8.2 Fiber functors and reconstruction

In the last section, we determined which monoidal categories have a chance to be monoidally
equivalent to the representation category B−Modfd of finite dimensional-modules over a bial-
gebra B over F. From Proposition 8.1.1 we obtained that any such category must have the
structure of a locally finite abelian F-linear category with a biexact and F-bilinear tensor prod-
uct ⊗ : C × C → C and with EndC(e) ∼= F.

We can also impose additional requirements on B that yield additional conditions on C:

• If B is a finite-dimensional bialgebra, then C must not only be locally finite, but finite.

• If B is a Hopf algebra, then C must also be right rigid by Corollary 5.2.7.

• If B is a finite-dimensional Hopf algebra, then C must be rigid by Corollary 5.2.7.

• If B is a finite-dimensional semisimple Hopf algebra, then C must be rigid and semisimple
by Proposition A.19.

Definition 8.2.1: Let C be a locally finite, F-linear abelian monoidal category with F-bilinear
tensor product ⊗ : C × C → C and EndF(e) ∼= F. Then C is called

• a ring category if ⊗ is biexact,

• a tensor category if C is rigid,

• a fusion category if C is rigid, finite and semisimple.
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Remark 8.2.2: Every tensor category is a ring category.

This follows, because in a rigid monoidal category C the functor C⊗− : C → C and the functor
−⊗C : C → C have both, left and right adjoints for each object C in C by Proposition 2.1.4. If
C is abelian, this implies that the functors C⊗− and −⊗C are exact for all objects C in C by
Lemma B.36 and hence ⊗ is biexact.

The conditions in Definition 8.2.1 necessary for a category C to be monoidally equivalent to a
representation category for a bialgebra or Hopf algebra, but not yet fully sufficient. They do not
take into account that the monoidal structure in a category B−Modfd is given by the monoidal
structure in VectfdF . This is encoded in the forgetful functor V : B−Modfd → VectfdF , which is
monoidal, F-linear, faithful and exact. Any monoidal equivalence φ : C → B−Modfd can be
composed with this forgetful functor, and if C is equipped with the F-linear abelian structure
induced by φ, then this yields an F-linear exact faithful monoidal functor F = V φ : C → VectfdF .

Hence, any monoidal category C that is monoidally equivalent to a category B−Modfd must be
equipped with an an F-linear exact faithful monoidal functor F : C → VectfdF . Such a functor
is called a fiber functor.

Definition 8.2.3: Let C be a ring category. A fiber functor for C is an exact faithful F-linear
monoidal functor F : C → VectfdF .

Example 8.2.4: For any bialgebra B over F, the forgetful functor V : B−Modfd → VectfdF
is a fiber functor.

We will now show that every finite ring category C with a fiber functor F : C → VectfdF defines
a finite-dimensional bialgebra B over F. This bialgebra is obtained as the algebra End(F )
of natural transformations ν : F → F with the composition of natural transformations as
multiplication. Its coalgebra structure is induced by the coherence data of the fiber functor, the
isomorphism φe : F→ F (e) and the natural isomorphism φ⊗ : ⊗(F × F )→ F⊗.

Theorem 8.2.5: Let C be a finite ring category, F : C → VectfdF be a fiber functor and
End(F ) the vector space of natural transformations η : F → F .

1. Then End(F ) has the structure of a finite-dimensional bialgebra over F.

2. If C is right rigid, then End(F ) is a finite-dimensional Hopf algebra over F.

Proof:
1. As a finite F-linear abelian category, the category C is equivalent to the category A−Modfd for
a finite-dimensional algebra A over F by Definition 8.1.8. By Exercise 9, this defines a monoidal
structure on A−Modfd such that the equivalence becomes monoidal. As an equivalence of
abelian categories, it is also fully faithful and exact. By composing it with the fiber functor, we
obtain a fiber functor F : A−Modfd → Vectfd. We may thus assume that C = A−Modfd for a
finite-dimensional algebra A over F.

Proposition 8.1.10 with B = F implies that there is a finite-dimensional A-right module V
such that F is naturally isomorphic to V⊗A− : A−Modfd → VectfdF . Proposition 8.1.11 shows
that End(F ) ∼= EndAop(V ) ⊂ EndF(V ) is a finite-dimensional vector space over F. Proposition
8.1.11 also shows that the composition of natural transformations in End(F ) corresponds to
the composition in EndAop(V ) and the identity natural transformation idF to the unit element
idV ∈ EndAop(V ). Thus, End(F ) ∼= EndAop(V ) is a finite-dimensional algebra over F.
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2. The counit and the coproduct on End(F ) ∼= EndAop(V ) are defined by the monoidal structure
of F , the isomorphism φe : F → F (e) and the natural isomorphism φ⊗ : ⊗F(F × F ) → F⊗,
respectively. The counit ε : End(F )→ F, ν 7→ ε(ν) is defined by the commuting diagram

F ε(ν) //

∼=φe

��

F
∼=φe

��
F (e) νe

// F (e).

(87)

The comultiplication ∆ : End(F )→ End(F )⊗End(F ) is defined by the commuting diagram

F (X)⊗F (Y )

∼=φ⊗X,Y
��

∆(ν)X,Y// F (X)⊗F (Y )

∼=φ⊗X,Y
��

F (X⊗Y ) νX⊗Y
// F (X⊗Y ).

(88)

Due to the naturality of φ⊗ and ν, the F-linear maps ∆(ν)X,Y : F (X)⊗F (Y ) → F (X)⊗F (Y )
define a natural transformation ∆′(ν) : (V⊗V )A⊗A− → (V⊗V )A⊗A−, where V⊗V carries the
canonical A⊗A-right module structure (v⊗v′) � (a⊗a′) = (v � a)⊗(v′ � a′).

The canonical isomorphism EndF(V⊗V ) ∼= EndF(V )⊗EndF(V ) induces an F-linear isomor-
phism End(A⊗A)op(V⊗V ) ∼= EndAop(V )⊗EndAop(V ). This yields an F-linear isomorphism

χ : End((V⊗V )A⊗A−) ∼= End(A⊗A)op(V⊗V ) ∼= EndAop(V )⊗EndAop(V ) ∼= End(F )⊗End(F )

that is an algebra isomorphism with respect to the composition of natural transformations.
This defines an F-linear map ∆ : End(F )→ End(F )⊗End(F ), ν 7→ χ(∆′(ν)).

3. That ε : End(F )→ F is an algebra homomorphism follows by composing the diagrams (87)
for natural transformations ν, ν ′ horizontally. Similarly, composing the diagrams (88) horizon-
tally yields ∆′(ν ′) ◦∆′(ν) = ∆′(ν ′ ◦ ν) and hence ∆′ is an algebra homomorphism. As χ is an
algebra isomorphism χ, it follows that ∆ is an algebra homomorphism as well.

4. We verify that ∆ and ε satisfy the coassociativity and counit axioms. The coassociativity of
∆ follows from the commuting diagram

(F (X)⊗F (Y ))⊗F (Z)

aF (X),F (Y ),F (Z) ∼=

��

φ⊗X,Y ⊗1F (Z)
∼=
��

(∆⊗id)◦∆(ν)X,Y,Z// (F (X)⊗F (Y ))⊗F (Z)

φ⊗X,Y ⊗1F (Z)
∼=
��

aF (X),F (Y ),F (Z)∼=

		

F (X⊗Y )⊗F (Z)

φ⊗X⊗Y,Z
∼=
��

∆(ν)X⊗Y,Z // F (X⊗Y )⊗F (Z)

φ⊗X⊗Y,Z
∼=
��

F ((X⊗Y )⊗Z)

F (aX,Y,Z) ∼=
��

ν(X⊗Y )⊗Z // F ((X⊗Y )⊗Z)

F (aX,Y,Z) ∼=
��

F (X⊗(Y⊗Z))

φ⊗−1
X,Y⊗Z

∼=
��

νX⊗(Y⊗Z) // F (X⊗(Y⊗Z))

φ⊗−1
X,Y⊗Z

∼=
��

F (X)⊗F (Y⊗Z)

1F (x)⊗φ⊗−1
Y⊗Z

∼=
��

∆′(ν)X,Y⊗Z // F (X)⊗F (Y⊗Z)

1F (X)⊗φ⊗−1
Y⊗Z

∼=
��

F (X)⊗(F (Y )⊗F (Z))
(id⊗∆)◦∆(ν)X,Y,Z

// F (X)⊗(F (Y )⊗F (Z)),
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in which the left and right diagrams commute, because F is a monoidal functor, the top two
and bottom two rectangles in the middle by definition of ∆(ν) and the rectangle in the middle
by naturality of ν. The counitality follows from the commuting diagram

F⊗F (Y )

lF (Y )
∼=

##

φe⊗1F (Y ) ∼=
��

(ε⊗id)◦∆(ν)e,Y// F⊗F (Y )

φe⊗1F (Y ) ∼=
��

lF (Y )
∼=

{{

F (e)⊗F (Y )

φ⊗e,Y
∼=
��

∆(ν)Y // F (e)⊗F (Y )

φ⊗e,Y
∼=
��

F (e⊗Y )

F (lY ) ∼=
��

νe⊗Y // F (e⊗Y )

F (lY ) ∼=
��

F (Y )
νY // F (Y )

and its counterpart for the right unit constraint, in which the left and right diagram commute
because F is monoidal, the top rectangle by definition of the counit, the middle rectangle by
definition of the comultiplication and the bottom rectangle by naturality of ν.

This shows that (End(F ), ◦, idF ,∆, ε) is a bialgebra.

5. Suppose now that C = A−Mod is right rigid. Then we define the antipode of End(F ) by

F (X)

l−1
F (X)

∼=
��

S(ν)X // F (X)

F⊗F (X)

φe⊗1F (X) ∼=
��

F (X)⊗F

rF (X)∼=

OO

F (e)⊗F (X)

F (coevRX)⊗1F (X)

��

F (X)⊗F (e)

1F (X)⊗φe−1∼=

OO

F (X⊗X∗)⊗F (X)

φ⊗−1
X,X∗⊗1F (X)

∼=
��

F (X)⊗F (X∗⊗X)

1F (X)⊗F (evRX)

OO

(F (X)⊗F (X∗))⊗F (X)

aF (X),F (X∗),F (X)

��

F (X)⊗(F (X∗)⊗F (X))

1F (X)⊗φ⊗X∗,X∼=

OO

F (X)⊗(F (X∗)⊗F (X))
1F (X)⊗(νX∗⊗1F (X))

33

(89)

Diagrammatically, this morphism is given by

νX∗

F (X)

F (X)

S(ν)X = ν∗X∗ =
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All morphisms in diagram (89) except evRX and coevRX are natural in X. For the latter, the
diagrammatic identity (21) implies for all morphisms f : X → Y

νY ∗ F (f)

F (X)

F (Y )

νY ∗

F (f ∗)

F (X)

F (Y )

(21)
=

F (f ∗)

νX∗

F (X)

F (Y )

nat ν
= F (f) νX∗

F (X)

F (Y )

(21)
=

and thus S(ν)Y ◦ F (f) = ν∗Y ∗ ◦ F (f) = F (f) ◦ ν∗X∗ = F (f) ◦ S(ν)X . This shows that the
morphisms S(ν)X : F (X) → F (X) define a natural transformation S(ν) : F → F . As all
morphisms in this diagram are F-linear, this defines an F-linear map S : End(F )→ End(F ).

It remains to show that S satisfies the axiom on the antipode from Definition 5.2.1. For this,
note first that for all natural transformations τ, ρ : F → F the following diagram commutes

F (X)

m◦(S⊗id)(τ⊗ρ)X

**

l−1
F (X)

∼=
��

ρX // F (X)

l−1
F (X)

∼=
��

S(τ)X // F (X)

F⊗F (X)
1⊗ρX //

φe⊗1 ∼=
��

F⊗F (X)

φe⊗1 ∼=
��

F (X)⊗F

rF (X)∼=

OO

F (e)⊗F (X)
1⊗ρX //

F (coevRX)⊗1
��

F (e)⊗F (X)

F (coevRX)⊗1
��

F (X)⊗F (e)

1⊗φe−1∼=

OO

F (X⊗X∗)⊗F (X)
1⊗ρX //

φ⊗−1
X,X∗⊗1 ∼=

��

F (X⊗X∗)⊗F (X)

φ⊗−1
X,X∗⊗1 ∼=

��

F (X)⊗F (X∗⊗X)

1⊗F (evRX)

OO

(F (X)⊗F (X∗))⊗F (X)

a

��

(1⊗1)⊗ρX// (F (X)⊗F (X∗))⊗F (X)

a

��
F (X)⊗(F (X∗)⊗F (X))

1⊗(1⊗ρX)
//

1⊗(τX∗⊗ρX)

44
F (X)⊗(F (X∗)⊗F (X))

1⊗(τX∗⊗1)
// F (X)⊗(F (X∗)⊗F (X))

1⊗φ⊗
X∗,X

∼=

OO

This follows, because the rectangle on the lower left commutes by naturality of the associator,
the other rectangles on the left and the curved triangle at the bottom by the properties of the
tensor product, the diagram on the right by definition of the antipode and the curved triangle
on top by definition of the multiplication m : End(F )⊗End(F )→ End(F ).

By setting τ⊗ρ = ∆(ν) for a natural transformation ν : F → F in the previous diagram, we
find that the component morphisms of the natural transformation m ◦ (S⊗id) ◦∆(ν) : F → F
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are given by the outer rectangle in the diagram

F (X)
1F (X) //

l−1
F (X)

∼=
��

m◦(S⊗id)◦∆(ν)X

++
F (X)

ε(ν)1F (X) // F (X)

F⊗F (X)

φe⊗1∼=
��

F (X)⊗F

rF (X)∼=

OO

1⊗ε(ν) // F (X)⊗F

rF (X)∼=

OO

F (e)⊗F (X)

F (coevRX)⊗1
��

F (X)⊗F (e)
1⊗νe //

1⊗φe−1∼=

OO

F (X)⊗F (e)

1⊗φe−1∼=

OO

F (X⊗X∗)⊗F (X)

φ⊗−1
X,X∗⊗1∼=
��

F (X)⊗F (X∗⊗X)
1⊗νX∗⊗X //

1⊗F (evRX)

OO

F (X)⊗F (X⊗X∗)

1⊗F (evRX)

OO

(F (X)⊗F (X∗))⊗F (X) a

∼= // F (X)⊗(F (X∗)⊗F (X))
1⊗∆′(ν)X∗,X

//

1⊗φ⊗
X∗,X

∼=

OO

F (X)⊗(F (X∗)⊗F (X)).

1⊗φ⊗
X∗,X

∼=

OO

The top rectangle on the right commutes by definition of the tensor product, the second
rectangle on the right by definition (87) of the counit, the third rectangle on the right by
naturality of ν and the rectangle at the bottom right by definition (88) of the comultiplication.
The diagram on the left commutes by Exercise 14, since F (X∗) is a right dual of F (X), the
lower three arrows on the left compose to coevF (X)⊗1F (X) and the lower three arrows on the
right to 1F (X)⊗evF (X). The diagram on the left thus commutes by the snake identity (14). This
shows that m ◦ (S⊗id) ◦∆(ν) = ε(ν)idF . The proof of the identity m ◦ (id⊗S) ◦∆(ν) = ε(ν)id
is analogous. 2

Before investigating the bialgebra End(F ) further, we consider the simplest example. Suppose
that the finite ring category C is the representation category B−Modfd for a finite-dimensional
bialgebra B over F and F : B−Modfd → VectfdF is the forgetful functor.

In this case, there is a distinguished B-module, namely B as a module over itself. It is related
to all other B-modules via B-linear maps: every element m ∈ M of a B-module (M,�),
determines a B-linear map �m : B → M , b 7→ b � m. This allows one to characterise any
natural transformation ν : V → V by its component morphism νB. As right multiplication
with elements of b also defines a B-linear map Rb : B → B, b 7→ b′, this component morphism
is determined uniquely by the element νB(1).

Example 8.2.6: Let B be a finite-dimensional bialgebra over F and V : B−Modfd → VectfdF
the forgetful functor. Then the map φB : End(V )→ B, ν 7→ νB(1) is a bialgebra isomorphism.
If B is a Hopf algebra, it is an isomorphism of Hopf algebras.

Proof:
1. The F-linear map φ is injective, since any natural transformation ν : V → V satisfies

νM(m) = νM ◦�m(1) = V (�m) ◦ νB(1) = νB(1) �m

for all B-modules M and m ∈ M , where �m : B → M , b 7→ b � m. It is surjective since
any element b ∈ B defines a natural transformation νb : V → V with component morphisms
νbM : M → M , m 7→ b �m. Its naturality follows, because for any B-linear map f : M → N
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and any m ∈ M one has νbN ◦ f(m) = b � f(m) = f(b �m) = V (f) ◦ νbM(m), and it satisfies
φ(νb) = νB(1) = b� 1 = b. As φ is F-linear, it is an F-linear isomorphism.

2. The map φ is an algebra homomorphism, since φ(idV ) = idB(1) = 1 and

φ(ν ◦ ρ) = νB ◦ ρB(1) = νB(ρB(1)) = νB(1 · ρB(1)) = νB(1) · ρB(1) = φ(ν) · φ(ρ),

where we used the B-linearity of RρB(1) : B → B, b 7→ bρB(1) and the naturality of νB.

By definition (87) of the counit in End(V ) we have ε(ν)1F = νF and hence

ε(ν) = νF(1F) = νB(1) � 1F = ε(νB(1)) = ε ◦ φ(ν).

Similarly, we have ∆(ν)M,N = νM⊗N by (88) for all finite-dimensional B-modules M,N and

(φ⊗φ) ◦∆(ν) = νB⊗B(1⊗1) = νB(1) � (1⊗1) = ∆(νB(1)) = ∆ ◦ φ(ν).

This shows that φ is an isomorphism of bialgebras. As any bialgebra isomorphism between
Hopf algebras is an isomorphism of Hopf algebras, the second claim follows. 2

In Theorem 5.1.10 and Proposition 8.1.1 we established that the representation category
B−Modfd for a finite-dimensional bialgebra B over F is a finite ring category, equipped with
a the forgetful functor V as a fibre functor. Theorem 8.2.5 shows that any finite ring category
together with a fibre functor F : C → VectfdF defines a finite-dimensional bialgebra over F. In
Example 8.2.6 we saw that for the pair (B−Modfd, V ) this bialgebra is isomorphic to B.

We will now show that this correspondence defines in fact an equivalence of categories between

• the category BialgF with finite-dimensional bialgebras over F as objects and bialgebra
homomorphisms as morphisms,

• the category FibF whose objects are pairs (C, F ) of a finite ring category C over F and
a fiber functor F : C → VectfdF . Morphisms from (C, F ) to (C ′, F ′) are F-linear functors
H : C ′ → C with FH = F ′.

Theorem 5.1.10 and Proposition 8.1.1 define a functor Mod : BialgF → FibF that assigns

• to a finite-dimensional bialgebra B the pair (B−Modfd, V B) with the forgetful functor
V B : B−Modfd → VectfdF ,

• to a bialgebra morphism f : B → B′ the pullback functor f ∗ : B′−Modfd → B−Modfd

with V Bf ∗ = V B′ that sends a B′-module (M,�′) to the B-module (M,�) with b�m =
f(b) �′ m and a B′-linear map f : M → N to the B-linear map f : M → N .

Theorem 8.2.5 defines a functor Rec : FibF → BialgF that assigns

• to a pair (C, F ) the bialgebra End(F ),

• to a morphism H : (C, F ) → (C ′, F ′), given by a functor H : C ′ → C with FH = F ′, the
bialgebra morphism Rec(H) : End(F )→ End(F ′), ν 7→ νH.

With these definitions, we can formulate the correspondence between finite-dimensional bial-
gebras and F-linear abelian monoidal categories from Theorem 5.1.10, Proposition 8.1.1 and
Theorem 8.2.5 as an equivalence of categories.
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We can also consider the full subcategory HopfF ⊂ BialgF with finite-dimensional Hopf algebras
over F as objects and the full subcategory FibrgF ⊂ FibtF, whose objects are pairs (C, F ) of a
finite tensor category C and a fiber functor F . That FibtF is indeed a full subcategory of FibF
follows, because every monoidal functor sends duals to duals by Exercise 14.

Corollary 8.2.7:

1. The functor Rec : FibF → BialgF is an equivalence of categories.
2. It induces an equivalence of categories Rec : FibtF → HopfF.

Proof. 1. The bialgebra isomorphisms φB : End(V B) → B, ν 7→ νB(1) from Example 8.2.6
define a natural isomorphism φ : RecMod → idBialgF . The naturality follows, because the
morphism RecMod(f) : End(V B) → End(V B′) for a bialgebra homomorphism f : B → B′

sends a natural transformation ν : V B → V B to the natural transformation ν ′ = νf ∗ : V B′ →
V B′ with ν ′B′(1) = f(νB(1)) and hence

φB′ ◦ RecMod(f)(ν) = φB′(ν
′f ∗) = (νf ∗)B′(1) = f(νB(1)) = f ◦ φB(ν).

for all bialgebra morphisms f : B → B′ and ν ∈ End(F ).

This implies that Rec is essentially surjective, and that for all bialgebras B,B′ the induced
maps RecMod : HomBialgF(B,B

′)→ HomBialgF(B,B
′) are bijective. It follows that the maps

Rec : HomFibF((C, F ), (C, F ′))→ HomBialgF(End(F ),End(F ′)), H 7→ Rec(H) (90)

are surjective, i. e. that Rec is full. As the maps

Mod : HomBialg(B,B′)→ HomFib((B−Mod, V B), (B′−Mod, V B′)), f 7→ f ∗

are surjective by Exercise 57, it follows that the maps Rec from (90) are also injective and
hence Rec is faithful. We have shown that Rec is essentially surjective and fully faithful and
hence an equivalence of categories.

2. By Corollary 5.2.7 the functor Mod sends a finite-dimensional Hopf algebra, whose antipode is
invertible by Theorem 6.2.9, to a finite tensor category. By Theorem 8.2.5 the functor Rec sends
a finite tensor category with a fiber functor to a finite-dimensional Hopf algebra. As HopfF ⊂
BialgF and FibtF ⊂ FibF are full subcategories, it follows that Rec induces an equivalence of
categories Rec : FibtF → HopfF.

This shows that essentially all finite ring categories with fiber functors arise from representations
of finite-dimensional bialgebras and essentially all finite tensor categories with fiber functors
from representations of Hopf algebras. There is also a generalisation of these reconstruction
results to the infinite-dimensional case. This generalisation states that bialgebras over a field
F correspond to ring categories with fiber functors, Hopf algebras over F to right rigid ring
categories with fiber functors and Hopf algebras over F with invertible antipodes to tensor
categories. These correspondences can also be formulated as equivalences of categories as in
Corollary 8.2.7. However, the proof of these statements requires more advanced methods, such
as Deligne’s tensor product and coends. For a reference see, [EGNO, Chapter 5.4].
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9 Exercises

9.1 Exercises for Chapter 1

Exercise 1: The tensor product of two vector spaces V,W over a field F is the quotient

V⊗W := 〈V ×W 〉/U,

where 〈V ×W 〉 is the free vector space generated by the set V ×W and U ⊂ 〈V ×W 〉 is the
linear span of all elements of the form

(λv, w)− λ(v, w), (v + v′, w)− (v, w)− (v′, w),

(v, λw)− λ(v, w), (v, w + w′)− (v, w)− (v, w′)

for λ ∈ F, v, v′ ∈ V , w,w′ ∈ W . We denote by τ : V ×W → V⊗W , (v, w) 7→ (v, w) + U the
canonical projection and write v⊗w := τ(v, w) = (v, w) + U

(a) Show that the tensor product over a field F has the following universal property:
The map τ is F-bilinear. For every F-bilinear map φ : V ×W → X into an F-vector space
X, there is a unique linear map φ′ : V⊗W → X with φ′ ◦ τ = φ

V ×W φ //

τ
��

X

V⊗W
∃!φ′

;;

(b) Show that for any basis B of V and any basis C of W , the set B × C is a basis of V⊗W .

(c) Show that for all F-linear maps f : V → V ′ and g : W → W ′, there is a unique F-linear
map f⊗g : V⊗W → V ′⊗W ′ such that the following diagram commutes

V ×W
τ
��

f×g // V ′⊗W ′

τ ′

��
V⊗W

∃!f⊗g
// V ′⊗W ′.

(d) Show that this defines a functor F : VectF × VectF → VectF, where VectF is the category
of vector spaces and linear maps over F.

(e) Show that this gives VectF the structure of a monoidal category.

Exercise 2:

• A representation of a group G on a vector space V over F is a group homomorphism
ρ : G→ AutF(V ).

• A morphism of representations from ρ : G → AutF(V ) to ρ′ : G → AutF(V ′) is an
F-linear map f : V → V ′ with ρ′(g)f(v) = f(ρ(g)v) for all g ∈ G and v ∈ V .

The category F[G]−Mod has as objects representations of G and morphisms of representations
as morphisms. Show that it has the structure of a monoidal category with the tensor product,
tensor unit, associator and unit constraints from VectF.
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Exercise 3: Show that the following definition of a monoidal category is equivalent to Defi-
nition 1.1.1:

A monoidal category is a pentuple (C,⊗, a, e, ι) of a category C, a functor ⊗ : C × C → C, a
natural isomorphism a : ⊗(⊗× id)→ ⊗(id×⊗), an object e and an isomorphism ι : e⊗e→ e
such that:

(i) the natural isomorphism a satisfies the pentagon axiom,
(ii) the functors e⊗− : C → C and −⊗e : C → C are equivalences of categories.

Exercise 4: Let G be a group and ω : G×G×G→ F× a 3-cocycle, i. e. a map that satisfies

ω(gh, k, l)ω(g, h, kl) = ω(g, h, k)ω(g, hk, l)ω(h, k, l) ∀g, h, k, l ∈ G.

Let VectωG be the category of G-graded vector spaces over F with

• vector spaces V over F with a decomposition V = ⊕g∈GVg as objects,
• F-linear maps f : V → W with f(Vg) ⊂ Wg as morphisms.

Show that VectωG has the structure of a monoidal category with the tensor product

(V⊗W )g = ⊕xy=gVx⊗FWy,

and the associator given by the linear maps

aUg ,Vh,Wk
: (Ug⊗FVh)⊗FWk → Ug⊗F(Vh⊗FWk), (u⊗v)⊗w 7→ ω(g, h, k)u⊗(v⊗w).

Exercise 5: A crossed module is a quadruple (A,B,�, δ) of groups A,B, a group action
� : B × A→ A by automorphisms and a group homomorphism δ : A→ B such that

δ(b� a) = bδ(a)b−1 δ(a) � a′ = aa′a−1 ∀a, a′ ∈ A, b ∈ B.

(a) Show that every crossed module defines a category C with
• Ob C = B,
• HomC(b, b

′) = {(a, b) ∈ A×B | δ(a)b = b′},
• the composition of morphisms given by (a′, δ(a)b) ◦ (a, b) = (a′a, b).

(b) Show that C has the structure of a strict monoidal category.

Exercise 6: Show that the alternative definitions of a monoidal functor and a monoidal
natural transformation from Remark 1.1.12 are equivalent to the one from Definition 1.1.11.

Proceed as follows:

(a) Show that the assumptions of Remark 1.1.12 imply that there is a unique isomorphism
φe : eD → F (eC) such that the following diagram commutes:

eD⊗F (eC)

φe⊗1
��

lF (eC) // F (eC)

F (l−1
eC )

��
F (eC)⊗F (eC)

φ⊗eC ,eC

// F (eC⊗eC).
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(b) Show that this isomorphism satisfies the compatibility conditions with the unit constraints
from Definition 1.1.11.

(c) Show that any natural transformation that satisfies the assumptions in Remark 1.1.12
satisfies the compatibility condition with the unit constraints from Definition 1.1.11.

Exercise 7: Let G1, G2 be groups and ωi : Gi ×Gi ×Gi → F× 3-cocycles.

(a) Show that monoidal functors from Vectω1
G1

to Vectω2
G2

correspond to pairs (f, µ) of a group
homomorphism f : G1 → G2 and a map µ : G1 ×G1 → F× satisfying for all g, h, k ∈ G1

ω1(g, h, k) = ω2(f(g), f(h), f(k))dµ(g, h, k)

dµ(g, h, k) = µ(h, k)µ−1(gh, k)µ(g, hk)µ−1(g, h).

(b) Let (f, µ), (f ′, µ′) : Vectω1
G1
→ Vectω2

G2
be monoidal functors. Show that monoidal natural

transformations between (f, µ) and (f ′, µ′) exist if and only if f = f ′, are always monoidal
natural isomorphisms and are given by maps η : G1 → F× with

µ(g, h) = µ′(g, h)dη(g, h) dη(g, h) = η(g)η(h)η(gh)−1 ∀g, h ∈ G1.

Hint: Consider the objects δh = ⊕g∈Gδhg with δhg = 0 for g 6= h and δhh = F in Vectω1
G1

.
Work with the alternative definitions from Remark 1.1.12 and Exercise 6.

Exercise 8: Let (Gn)n∈N0 and (Hn)n∈N0 , families of groups, (ρn,m)n,m∈N0 and (τn,m)n,m∈N0

families of group homomorphisms ρn,m : Gm × Gn → Gn+m and τm,n : Hm × Hn → Hn+m

that satisfy the conditions from Example 1.1.8. Denote by G, H the associated strict monoidal
categories from Example 1.1.8.

(a) Characterise essentially surjective strict monoidal functors F : G → H by families (µn)n∈N0

of group homomorphisms µn : Gn → Hn.

(b) Let F be a field. Consider the groups Hn = GL(n,F) of invertible n × n-matrices with
entries in F and

τm,n : GL(m,F)×GL(n,F)→ GL(n+m,F), (A,B) 7→
(
A 0
0 B

)
.

Determine all essentially surjective strict monoidal functors F : B → H and F : S → H.

Hint: For (b) note that any generator σi ∈ Bn = HomB(n, n) can be expressed as a tensor
product of identity morphisms and the generator σ1 ∈ B2 = HomB(2, 2) and similarly for the
elementary transpositions σi = (i, i+ 1) ∈ Sn.

Exercise 9: Let (C,⊗, e, a, l, r) be a monoidal category. Show that any equivalence of cate-
gories F : C → D defines a monoidal structure on D such that F is monoidal.

Hint: You can use without proof that any equivalence of categories can be made into an adjoint
equivalence.

Exercise 10: Let F : C → D be a monoidal functor that is an equivalence of categories.
Show that there is a monoidal functor G : D → C such that FG : D → D and GF : C → C are
isomorphic to the identity functors by monoidal natural transformations.
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Exercise 11: (Mac Lane’s proof of the strictification theorem)

Let (C,⊗, e, a, l, r) be a monoidal category. We consider finite lists ` = (C1, .., Cn) of objects in
C, including the empty list (), and denote by ∗ the concatenation of lists:

(C1, ..., Cn) ∗ (Cn+1, ..., Cn+m) = (C1, ..., Cn, Cn+1, ..., Cn+m) () ∗ ` = ` ∗ () = `.

We assign to each list ` an object F (`) in C defined inductively by F (()) = e, F ((C)) = C and
F (` ∗ (C)) = F (`)⊗C for all C ∈ Ob C and non-empty lists `.

(a) Show that this defines a category D with finite lists of objects in C as objects and an
equivalence of categories F : D → C that is the identity on the Hom-sets.

(b) Define isomorphisms φ`,`′ : F (`)⊗F (`′) → F (` ∗ `′) by setting for all non-empty lists `, `′

and C ∈ Ob C

φ(),() = re = le, φ(),` = lF (`), ;φ`,() = rF (`), φ`,(C) = 1F (`)⊗C , φ`,`′∗(C) = (φ`,`′⊗1C)◦a−1
F (`),F (`′),C .

Show that φ`,m∗n ◦ (1F (`)⊗φm,n) ◦ aF (`),F (m),F (n) = φ`∗m,n ◦ (φ`,m⊗1F (n)) for all lists `,m, n.

(c) Show that D has the structure of a strict monoidal category with the tensor product given
by `⊗`′ = ` ∗ `′ on the objects and on morphisms f : `→ `′ and g : m→ m′ by

F (` ∗m)
F (f∗g) // F (`′ ∗m′)

F (`)⊗F (m)

φ`,m

OO

F (f)⊗F (g)
// F (`′)⊗F (m′).

φ`′,m′

OO

Show that (F, φ) is a monoidal equivalence.

9.2 Exercises for Chapter 2

Exercise 12: Let C = Fun(D,D) the strict monoidal category of endofunctors F : D → D
and natural transformations between them. Show that an object F : D → D is left (right)
dualisable, if and only if it has a right (left) adjoint.

Exercise 13: Let G be a finite group and ω : G × G × G → F× a 3-cocycle. Show that the
monoidal category Vectω fdG of finite-dimensional G-graded vector spaces is rigid. Proceed as
follows:

(a) Show that the 3-cocycle ω can be made into a normalised cocycle ω′ : G × G × G → F×
with ω′(g, 1, h) = 1 for all g, h ∈ G by setting

ω′(g, h, k) = ω(g, h, k)dµ(g, h, k) dµ(g, h, k) = µ(h, k)µ(gh, k)−1µ(g, hk)µ(g, h)−1

for a suitable map µ : G×G→ F×.

(b) Use (a) to assume without restriction of generality that ω is normalised (ω(g, 1, h) = 1 for
all g, h ∈ G) and show that Vectω fdG is rigid.
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Exercise 14: Let F, F ′ : C → D be monoidal functors and η : F → F ′ a monoidal natural
transformation.

(a) Show that F (X) is a right (left) dualisable object in D for every right (left) dualisable
object X in C.

(b) Show that for every right dualisable object X in C

evRF ′(X) ◦ (ηX∗⊗ηX) = evRF (X) (ηX⊗ηX∗) ◦ coevRF (X) = coevRF ′(X)

and for every left dualisable object X in C

evLF ′(X) ◦ (ηX⊗η∗X) = evLF (X) (η∗X⊗ηX) ◦ coevLF (X) = coevLF ′(X)

Exercise 15: Let C,D be rigid monoidal categories and F, F ′ : C → D monoidal functors.
For a rigid monoidal category C we denote by ∗LC , ∗RC : C → Cop,op the functors from Proposition
2.1.5 induced by its left and right duals.

(a) Show that for any rigid monoidal category C, the functor ∗LC∗RC is naturally isomorphic to idC.

(b) Show that for any monoidal functor F : C → D, the functors F∗RC : C → Dop,op and
∗RDF : C → Dop,op are naturally isomorphic.

(c) Show that any monoidal natural transformation η : F → F ′ is a monoidal isomorphism.

Hint: Use (a) and (b) to define the inverse in (c). Investigate how η interacts with the natural
isomorphism in (b).

9.3 Exercises for Chapter 3

Exercise 16: Let (C,⊗, e, a, l, r) be a monoidal category. Show that if c : ⊗ → ⊗op is a
braiding, then c′ : ⊗ → ⊗op with c′U,V = c−1

V,U : U⊗V → V⊗U is also a braiding.

Exercise 17: Show that a braiding in a monoidal category C = (C,⊗, e, a, l, r) defines a
monoidal equivalence F : C → C⊗op, where C⊗op = (C,⊗op, e, a−1, r, l) is the monoidal category
with the opposite tensor product.

Exercise 18: Consider the family (GL(n,F))n∈N0 of groups GL(n,F) of invertible n × n-
matrices with entries in F and the family (ρm,n)m,n∈N0 of group homomorphisms

ρm,n : GL(m,F)×GL(n,F)→ GL(m+ n,F), (A,B) 7→
(
A 0
0 B

)
.

Show that the associated monoidal category from Example 1.1.8 is symmetric.

Exercise 19: Show that for any braided monoidal category C there is a strict braided
monoidal category D and a braided equivalence F : D → C.

Hint: Use Exercise 11 and equip the category D constructed there with a suitable braiding.
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Exercise 20: Let B be the braid category and C a strict monoidal category. Denote by YB(C)
the category of Yang-Baxter operators and morphisms of Yang-Baxter operators in C.

(a) Show that the category YB(C) is equivalent to the category Fun⊗(B, C) of strict monoidal
functors F : B → C and monoidal natural transformations between them.

(b) Show that if C is braided, then the category Funbr(B, C) of strict braided monoidal functors
F : B → C and monoidal natural transformations between them is equivalent to C.

Exercise 21: Let G be a group. Show that the category X(G) of crossed G-sets from Exam-
ple 3.1.4 with the tensor product and braiding given in Example 3.1.4 is a braided monoidal
category.

Exercise 22: Let G be a finite group, F a field and VectfdG the category of finite-dimensional
G-graded vector spaces for the trivial 3-cocycle ω : G×G×G→ F, (g, h, k) 7→ 1.

Denote by δg = ⊕h∈Gδgh the G-graded vector spaces with δgh = F for h = g and δgh = 0 else.

(a) Consider the linear maps cU,V : U⊗V → V⊗U with cU,V (u⊗v) = γ(g, h)v⊗u for u ∈ Ug,
v ∈ Vh and a map γ : G × G → F×. Determine the conditions on γ under which the
morphisms cU,V define a braiding on VectfdG .

(b) Show that under the conditions from (a) the category VectfdG is ribbon.

(c) Give a non-trivial example of a group G and a map γ : G × G → F× that satisfies the
conditions in (a).

(d) Suppose that f : F→ F is a morphism in VectfdG that is composed via ⊗ and ◦ of the left
and right coevaluation maps for δg and δ∗g and braidings c±1

U,V with U, V ∈ {δg, δ∗g}. Give a
simple formula for f in terms of γ(g, g) and the geometrical properties of its diagram.

Hint: Recall from Exercise 13 that VectfdG is pivotal with a trivial pivot, with V ∗ =
⊕

h∈G V
∗
h−1

and with evaluation maps evR(α⊗v) = evL(v⊗α) = δghα(v) for v ∈ Vg and α ∈ V ∗h−1 .

Exercise 23: Let G be a finite group, F a field and C the category with

• crossed G-sets (X,�, µ) as objects,

• F[G]-linear maps f : 〈X〉F → 〈Y 〉F with f(x) ∈ spanF{y ∈ Y | µY (y) = µX(x)} ⊂ 〈Y 〉F
for all x ∈ X as morphisms f : (X,�X , µX)→ (Y,�Y , µY ).

Denote by Cfin the full subcategory of C with finite crossed G-sets as objects. Show:

(a) The category C is a braided monoidal category with the monoidal structure and braiding
induced by the ones of crossed G-sets.

(b) There is a fully faithful braided monoidal functor F : C → Z(F[G]-Mod).

(c) The category Cfin is pivotal.

Exercise 24: Let G be a finite abelian group and F a field with char(F) = 0. We consider
the pivotal braided monoidal category Cfin from Exercise 23 with

• finite crossed G-sets (X,�X , µX) as objects,
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• F[G]-linear maps f : 〈X〉F → 〈Y 〉F with f(x) ∈ spanF{y ∈ Y | µY (y) = µX(x)} ⊂ 〈Y 〉F
for all x ∈ X as morphisms f : (X,�X , µX)→ (Y,�Y , µY ),

• monoidal structure and braiding induced by the ones of crossed G-sets:
(X,�X , µX)⊗(Y,�Y , µY ) = (X × Y,�X×Y , µX×Y ) with

g �X×Y (x, y) = (g �X x, g �Y y), µX×Y (x, y) = µX(x)µY (y)

cX,Y : 〈X × Y 〉F → 〈Y ×X〉F, (x, y) 7→ (y, µY (y)−1 �X x),

• right duals given by (X,�, µ)∗ = (X,�, ι ◦ µ), where ι : G→ G, g 7→ g−1, and

evRX : 〈X ×X〉F → F, (x, x′) 7→ δx(x
′) coevRX : F→ 〈X ×X〉F, λ 7→ λΣx∈X(x, x)

(a) Compute the twists for each finite crossed G-set X and show that Cfin is ribbon.
(b) Consider the crossed G-set X = (G,�, µ) with g�h = ghg−1 and µ(g) = g for all g, h ∈ G

and compute the linear maps F→ F given by the following diagrams:

X
XX

X
X

Hopf link trefoil knot figure eight knot

(c) Look up the knot groups of the Hopf link, the trefoil knot and the figure eight knot and
interpret the morphisms in (b).

Exercise 25: Let q ∈ C \ {0} be not a root of unity. Let V be the complex vector space with
ordered basis (v1, ..., vn) and (α1, ..., αn) the dual basis of V ∗. Equip V with the braided vector
space structure

σ : V⊗V → V⊗V, vi⊗vj 7→


q−nvj⊗vi i < j

q1−nvi⊗vi i = j

q−nvj⊗vi + q−n(q − q−1)vi⊗vj i > j.

(a) Show that V becomes a right- and left dualisable object in VectC with the following eval-
uation maps and suitable right and left coevaluations

evRV : V ∗⊗V → C, αj⊗vi 7→ δij evLV : V⊗V ∗ → C, vi⊗αj 7→ q1+n−2iδij.

(b) Compute the twist θV and the twist θ′V and show that the ribbon condition is satisfied.
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9.4 Exercises for Chapter 4

Exercise 26: Denote by D the set of link diagrams.
A Kauffman bracket is a map 〈 〉 : D → Z[A,B, d] defined by the following conditions:

(i) 〈D〉 = 〈D′〉 if D and D′ are related by an orientation preserving diffeomorphism,

(ii) 〈O〉 = 1 for the unknot O,

(iii) 〈D qO〉 = d〈D〉, where D qO denotes the disjoint union of D with the unknot O,

(iv) 〈L+〉 = A〈L∞〉+B〈L0〉, if L+, L−, L0 agree outside of a circle and are given inside by

L+ L0 L∞,

(a) Determine the relations R between A,B, d that need to be quotiented out to ensure that
the induced map 〈 〉′ : D → Z[A,B, d]/(R) is a ribbon invariant. In this, exclude relations
of the form d = const ∈ Z.

(b) Show that a suitable rescaling of 〈 〉′ yields a link invariant.

(c) A state of a link diagram D is a link diagram s obtained by replacing each crossing L+ in
D either with L0 or with L∞. Show that the Kauffman bracket of D is given by

〈D〉 =
∑
s∈SD

AsABsBd|s|−1,

where SD is the set of states of D, sA and sB are the number of crossings in D replaced
by L∞ and by L0 in s, respectively, and |s| is the number of connected components of s.

(d) The connected sum K#K ′ of two knots K,K ′ is the knot obtained by cutting K,K ′ and
joining the open ends of K to the ones of K ′ such that no additional crossings are created

K K ′ K K ′ K#K ′

Relate the Kauffman bracket 〈K#K ′〉 to the Kauffman brackets 〈K〉 and 〈K ′〉.

Exercise 27:

(a) Compute the HOMFLY polynomial for the Hopf link and the trefoil knot.

(b) Show that the HOMFLY polynomial of an oriented knot is invariant under orientation
reversal of the knot.

(c) Give an example of two oriented links that define the same link but do not have the same
HOMFLY polynomial.

161



(d) The Conway polynomial of a link is its HOMFLY polynomial evaluated in x = 1. Show
that the Conway polynomial of a knot is an even polynomial in y.

(e) Show that the Conway polynomial of a link with two connected components is an odd
polynomial in y and give a simple formula for its lowest non-trivial coefficient.

Remark: A polynomial p ∈ Z[y] is called even if it is of the form p = Σ∞k=0akx
2k and odd if it

is of the form p = Σ∞k=0akx
2k+1, where ak ∈ Z.

Hint: In (e) consider the linking number, which is given by as one half the sum of the signs of
the crossings of two different components.

Hopf link trefoil knot

Exercise 28: Let (A, κ) be a Frobenius algebra. Show that there is a unique algebra auto-
morphism ρ : A→ A, the Nakayama automorphism, such that κ(a⊗b) = κ(ρ(b)⊗a) for all
a, b ∈ A.

Exercise 29: Show that every Frobenius algebra (A, κ) has the structure of a (∆, ε)-Frobenius
algebra and vice versa.

Hint: Consider the dual map m∗ : A∗ → A∗⊗A∗ with m∗(α)(a⊗b) = α(a · b) for all α ∈ A∗,
a, b ∈ A and the linear isomorphism φκ : A→ A∗, a 7→ κ(−⊗a). Define

∆ = (φ−1
κ ⊗φ−1

κ ) ◦mop∗ ◦ φκ : A→ A⊗A ε : A→ F, a 7→ κ(a⊗1) = κ(1⊗a).

Exercise 30:

(a) Generalise the concepts of a Frobenius algebra and a (∆, ε)-Frobenius algebra to general
monoidal categories C and describe their defining properties by diagrams.

(b) Show with a diagrammatical proof that every (∆, ε)-Frobenius algebra has the structure of
a Frobenius algebra.

(c) Show with a diagrammatical proof that every Frobenius algebra has the structure of a
(∆, ε)-Frobenius algebra.

Hint: In (a) the non-degeneracy of the Frobenius form κ implies that there are diagrams

A A
,

A A
such that

A

A

=

A

=

A

A
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Exercise 31: Use the presentation of the cobordism category Cob1,0 to classify all 1d oriented

topological quantum field theories Z : Cob1,0 → VectfdF with Z∗ = ∗Z, up to monoidal natural
isomorphisms.

Exercise 32: Let G be a finite group, F a field of characteristic zero and λ ∈ F \ {0}. We
consider the commutative Frobenius algebra Map(G,F) of maps f : G→ F with the pointwise
addition, product and scalar multiplication and the Frobenius form

κ(f⊗h) = λ
∑
g∈G

f(g)h(g)

and the associated 2d topological quantum field theory Z : Cob2,1 → VectfdF .

(a) Determine the corresponding (∆, ε)-Frobenius structure on Map(G,F).

(b) Compute Z(S) for the case where S is an oriented surface of genus g ∈ N0.

(c) Compute Z(S) for the case where S is the disjoint union of n ∈ N tori.

Exercise 33: (Fukuma-Hosono-Kawai model)

Let Σ be a triangulated oriented surface, i. e. an oriented surface with a semisimplicial complex
structure, I a finite set and F a field. We associate to Σ a number Z(Σ) ∈ F defined as follows:

1. Assign to each edge in an oriented triangle t an element of I, and to the oriented triangle
t = (abc) formed by edges labelled with a, b, c ∈ I a number Cabc ∈ F, the triangle
constant, satisfying Cabc = Ccab = Cbca.

c b

a

Cabc

2. Each edge in the surface Σ occurs in two adjacent triangles t, t′ and carries two labels
a, a′ ∈ I. Assign to such an edge a number Baa′ ∈ F, the gluing constant, such that the
matrix B = (Baa′)a,a′∈I is symmetric and invertible.

c b

a

Cabc

d e

a′

Cdea′

Baa′

3. Assign to the triangulated surface Σ the number

Z(Σ) = R−V
∑

f :E→I×I

∏
e∈E

Bee′
∏

t=(efg)∈T

Cefg

where R ∈ F×, V is the number of vertices, E the set of edges and T the set of triangles,
the sum runs over all labelings f : E → I× I and the products are taken over all labelled
edges and labelled triangles.
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One can show that two triangulated surfaces are homeomorphic if and only if the simplicial
complex structures are related by a finite sequence of the two Pachner moves

P2,2 P1,3

Hence, if Z(Σ) is invariant under P2,2 and P1,3, then Z(Σ) depends only on the homeomorphism
class of the oriented surface Σ and is a topological invariant.

Show that Z(Σ) is a non-trivial topological invariant if and only if the constants Cabc and Baa′

define a symmetric Frobenius algebra A over F with m ◦∆ = R id. Proceed as follows:

(a) Derive sufficient and necessary conditions on the constants Cabc, B
ab, Bcd for invariance of

Z(Σ) under the two Pachner moves.

(b) Consider the free vector space A = 〈I〉F with basis I, define a linear map κ : A⊗A → F
and a multiplication map m : A⊗A→ A by

a · b = m(a⊗b) =
∑
c,d∈I

CabcB
cdd κ(c⊗d) = Bcd ∀a, b, c, d ∈ I,

where Baa′ are the coefficients of the inverse matrix B−1 = (Baa′)a,a′∈I . Show that the
conditions from (a) imply:

(i) the multiplication is associative,

(ii) κ is a symmetric Frobenius form on A,

(iii) if A has a unit element, it is given by 1 = R−1
∑

a,b,c,d∈I CabcB
abBcdd.

(c) Show that the Frobenius algebra from (b) satisfies the additional condition m ◦∆ = R id.

(d) Show that any symmetric Frobenius algebra with m ◦ ∆ = R id for some R ∈ F× gives
rise to a finite set I, triangle constants Cabc and gluing constants Bab such that Z(Σ) is a
topological invariant.

9.5 Exercises for Chapter 5

Exercise 34: Let (C,∆, ε) and (C ′,∆′, ε′) be coalgebras over F.

(a) The counit is unique: If ε′′ : C → F is a linear map that satisfies for all c ∈ C
rC ◦ (idC⊗ε′′) ◦∆(c) = lC ◦ (ε′′⊗idC) ◦∆(c) = c, then ε′′ = ε.

(b) For every coalgebra homomorphism φ : C → C ′, the kernel ker(φ) ⊂ C is a coideal in C
and the image im(φ′) ⊂ C ′ is a subcoalgebra of C ′.

(c) If π : C → C/I, c 7→ c + I the canonical surjection for a linear subspace I ⊂ C, then
δ : C/I → C⊗(C/I), c+ I 7→ (id⊗π) ◦∆(c) defines a C-left comodule structure on C/I if
and only if I is a left coideal.
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(d) If I ⊂ C is a left coideal, a right coideal or a subcoalgebra of C, then ε(I) = {0} if and
only if I = {0}.

Exercise 35: Show that the tensor product coalgebra C⊗C ′ for two coalgebras (C,∆, ε) and
(C ′,∆′, ε′) has the following universal property:

The projection maps π : C⊗C ′ → C, c⊗c′ 7→ ε′(c′) c and π′ : C⊗C ′ → C ′, c⊗c′ 7→ ε(c) c′ are
coalgebra homomorphisms. For every cocommutative coalgebra D and every pair of coalgebra
homomorphisms f : D → C, f ′ : D → C ′ there is a unique coalgebra homomorphism f̃ : D →
C⊗C ′ with π ◦ f̃ = f and π′ ◦ f̃ = f ′.

Exercise 36: Let V be a vector space over F. The rank of an element v ∈ V⊗V is

rk(v) = min{n ∈ N | v = Σn
i=1vi⊗v′i for some vi, v

′
i ∈ V }.

(a) Show that for v = Σn
i,j=1Mijvi⊗v′j with Mij ∈ F, linearly independent v1, ..., vn ∈ V and

linearly independent v′1, ..., v
′
n ∈ V one has rk(v) = rk(M), where M = (Mij).

(b) Suppose that V is infinite-dimensional with a countable basis B = {vi | i ∈ N}. Show
that V ∗⊗V ∗ ( (V⊗V )∗ by considering the element δ : V⊗V → F, vi⊗vj 7→ δij and its
restrictions δn = δ|Vn⊗Vn : Vn⊗Vn → F to the subspaces Vn = spanF{v1, ..., vn}.

Exercise 37: Let (A,m, η) be an algebra over F, m∗ : A∗ → (A⊗A)∗ and η∗ : A∗ → F the
dual maps of m : A⊗A→ A and η : F→ A and A◦ = {α ∈ A∗ |m∗(α) ∈ A∗⊗A∗}.

Prove that (A◦,m∗|A◦ , η∗|A◦) is a coalgebra over F:

(a) Prove first the following fact from linear algebra:

Let V be a vector space over F and α1, ..., αn ∈ V ∗ linearly independent. Then for all
λ1, ..., λn ∈ F, there is a vector v ∈ V with αi(v) = λi for i = 1, ..., n.

(b) Use (a) and the coassociativity of m∗ : A∗ → (A⊗A)∗ to prove that for every element
α ∈ A◦, one has m∗(α) ∈ A◦⊗A◦.

Exercise 38: Let H be a Hopf Algebra and a, b, c, d ∈ H. Simplify the expressions for the
following elements of H:

x = Σ(a),(b)

[
S(a(1))b(1)S(b(4))a(4)

]
⊗
[
a(3)S(b(2))S(S−2(a(2))S

−1(b(3)))
]

y = Σ(a),(b) ε(b(2))
[
S2(b(3))S(a(1)b(1))(1)a(2)

]
⊗
[
S(a(1)b(1))(2)

]
z = Σ(a),(b),(c),(d)

[
S−1(d(2))S(a(1)S(b(2))S(a(3))c(2)S

−1(d(1)))a(2)S(b(1))S(c(1))
]
⊗∆(S(a(4)))

Exercise 39: Consider the vector space F[x] of polynomials with coefficients in F with the
multiplication m : F[x]⊗F[x]→ F[x] and comultiplication ∆ : F[x]→ F[x]⊗F[x] given by

m(xn⊗xm) =

(
n+m
n

)
xm+n ∆(xm) =

m∑
n=0

xn⊗xm−n ∀n,m ∈ N0.

Show that these maps define a Hopf algebra structure on F[x].
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Exercise 40: Let B,B′ be finite-dimensional bialgebras over F. Show the following:

(a) The algebra HomF(B,B′) with the convolution product has a canonical bialgebra structure.
If B,B′ are Hopf algebras, it is a Hopf algebra structure.

(b) The bialgebra from (a) is isomorphic to the tensor product bialgebra structure on B∗⊗B′.

Exercise 41: Let V be a vector space over F and T (V ) the tensor algebra over V with the
Hopf algebra structure from Example 5.3.1. Show that the Hopf algebra structure of T (V )
induces a Hopf algebra structure on the symmetric algebra S(V ) = T (V )/(x⊗y − y⊗x).

Exercise 42: Prove the q-Chu-Vandermonde formula for the q-binomials:(
m+ n
p

)
q

=

p∑
k=0

q(m−k)(p−k)

(
m
k

)
q

(
n

p− k

)
q

∀0 ≤ p ≤ n,m.

Exercise 43: Let q be a primitive nth root of unity and Tq Taft’s Hopf algebra.

(a) Show that Tq is isomorphic as an algebra to a semidirect product F[Z/nZ] n F[x]/(xn),
i. e. the vector space F[Z/nZ]⊗F[x]/(xn) with the multiplication

(k̄⊗p) · (m̄⊗q) = (k +m)⊗(p · ρ(k̄)q)

for a group homomorphism ρ : Z/nZ → Aut(F[x]/(xn)) into the group of unital algebra
automorphisms of F[x]/(xn). Determine the group homomorphism ρ.

(b) Compute the dual bialgebra structure on T ∗q .

(c) Show that α, β ∈ T ∗q with α(yjxk) = qjδk,0 and β(yjxk) = δk,1 for j, k ∈ {0, 1, ..., n − 1}
satisfy the multiplicative relations of Tq.

(d) Show that the elements αjβk for j, k ∈ {0, 1, ..., n− 1} form a basis of the vector space T ∗q .

(e) Show that the Hopf algebra Tq is self-dual by constructing a Hopf algebra isomorphism
φ : Tq → T ∗q .

Exercise 44: Let F be a field and q ∈ F \ {0, 1,−1}.
The q-deformed universal enveloping algebra Uq(sl2) is the algebra over F with generators
E,F,K,K−1 and relations

K±1K∓1 = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
. (91)

Show that Uq(sl2) is a Hopf algebra with the comultiplication, counit and antipode

∆(K±1) = K±1⊗K±1, ∆(E) = 1⊗E + E⊗K, ∆(F ) = F⊗1 +K−1⊗F
ε(K±1) = 1, ε(E) = 0, ε(F ) = 0

S(K±1) = K∓1 S(E) = −EK−1 S(F ) = −KF. (92)

Exercise 45: Let F be a field, q ∈ F \ {0, 1,−1} and Uq(sl2) the q-deformed universal en-
veloping algebra from Example 5.3.9. Prove the following:
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(a) The quantum Casimir element

Cq = EF +
q−1K + qK−1

(q − q−1)2
= FE +

qK + q−1K−1

(q − q−1)2

is in the centre of Uq(sl2): Cq ·X = X · Cq for all X ∈ Uq(sl2).
(b) The antipode of Uq(sl2) is invertible.

(c) For all elements X ∈ Uq(sl2) one has S2(X) = KXK−1.

(d) There is a unique Hopf algebra isomorphism φ : Uq(sl2)→ Uq(sl2)cop with

φ(E) = F φ(F ) = E φ(K) = K−1.

It is called the Cartan automorphism of Uq(sl2).

Exercise 46: Suppose that q ∈ C× is not a root of unity and V a complex Uq(sl2)-module.

• A weight of V is an eigenvalue of the linear map φ : V → V , v 7→ K � v.
• A highest weight vector of weight λ is an eigenvector 0 6= v ∈ V λ = ker(φ − λidV )

with E � v = 0.
• V is called a highest weight module of weight λ, if it is generated as a Uq(sl2)-module

by a highest weight vector of weight λ.

Prove the following:

(a) E � V λ ⊂ V q2λ, F � V λ ⊂ V q−2λ and for any highest weight vector v ∈ V λ

E � (F k+1 � v) =
λ(k + 1)q−2 − λ−1(k + 1)q2

q − q−1
F k � v ∀k ∈ N0.

(b) If V is an n-dimensional highest weight module with highest weight vector v, the set
B = {v, F � v, ..., F n−1 � v} is a vector space basis of V , λ = ±qn−1 and φ : V → V is
diagonalisable with eigenvalues ±qn−1,±qn−3, ...,±q3−n,±q1−n.

(c) Every finite-dimensional Uq(sl2)-module has a highest weight vector and every simple finite-
dimensional Uq(sl2)-module is a highest weight module.

9.6 Exercises for Chapter 6

Exercise 47: Let F be a field of prime characteristic char(F) = p. A restricted Lie algebra
over F is a Lie algebra (g, [ , ]) over F together with a map φ : g→ g, x 7→ x[p] that satisfies

(λx)[p] = λpx[p], adx[p] = adpx = adx ◦ ... ◦ adx, (x+ y)[p] = x[p] + y[p] +

p−1∑
k=1

σk(x, y)

k

where adx : g→ g, y 7→ [x, y] is the adjoint action and σk(x, y) is given by

adp−1
λx+y(x) = Σp−1

k=1λ
k−1σk(x, y)

(a) Show that any algebra A over F is a restricted Lie algebra with the commutator as the Lie
bracket and the map φ : A→ A, a 7→ ap.
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(b) Let (g, [ , ], φ) be a restricted Lie algebra and U = U(g)/(xp−x[p]). Denote by π : U(g)→ U
the canonical surjection, by ιg : g→ U(g) the canonical inclusion and set τ = π◦ιg : g→ U .
Show that U is a Hopf algebra with the comultiplication, counit and antipode given by

∆(τ(x)) = 1⊗τ(x) + τ(x)⊗1 ε(τ(x)) = 0 S(τ(x)) = −τ(x) ∀x ∈ g.

(c) Show that U is a finite-dimensional cocommutative Hopf algebra, but that it is not isomor-
phic to the group algebra of a finite group.

Exercise 48: Let B be a bialgebra over F.

• An algebra object in B−Mod or a B-module algebra is an algebra A over F with a
B-module structure such that m : A⊗A→ A and η : F→ A are B-linear.

• A module object over an algebra object A in B−Mod is an A-module M whose action
map � : A⊗M →M is B-linear.

Show the following:

(a) An algebra A over F with a B-module structure � : B⊗A → A is an algebra object in
B−Mod if and only if for all b ∈ B and a, a′ ∈ A, one has

b� (a · a′) = Σ(b)(b(1) � a) · (b(2) � a′) b� 1A = ε(b) 1A.

(b) For any algebra object A in B−Mod, the submodule AB of invariants is a subalgebra of A.

(c) Any algebra object A in B−Mod defines an algebra structure on the vector space A⊗B by

(a⊗b) · (a′⊗b′) = Σ(b)a(b(1) � a′)⊗b(2)b
′.

It is called the smash product of A and B and denoted A#B.

(d) Module objects over an algebra object A in B−Mod are in bijection with modules over
the smash product A#B.

(e) Taft’s algebra Tq and the q-deformed universal enveloping algebra Uq(sl2) are isomorphic
as algebras to smash products Tq ∼= A#spanFGr(Tq) and Uq(sl2) ∼= A′#spanFGr(Uq(sl2))
for suitable subalgebras A ⊂ Tq and A′ ⊂ Uq(sl2).

Exercise 49: Determine the submodule of invariants for the following Hopf algebras H and
H-module structures � : H⊗M →M

(a) H = M = F[G] for a finite group G and h� g = hgh−1.

(b) H finite-dimensional, M = H∗ and h� α = Σ(α)α(2)(h)α(1).

(c) H finite-dimensinal, M = H∗ and h� α = Σ(α),(h)α(3)(h(1))α(1)(S(h(2)))α(2).

Exercise 50: Let q ∈ F be a primitive nth root of unity. Show that the space of left and right
integrals for Taft’s Hopf Algebra Tq are given by

IL(H) = spanF{Σn−1
j=0 y

jxn−1} IR(H) = spanF{Σn−1
j=0 q

−jyjxn−1}.
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Exercise 51: Let H be a finite-dimensional Hopf algebra. Show the following:

(a) If there is a left integral ` ∈ H with ε(`) 6= 0, then H is unimodular.

(b) The converse of this statement is false.

Exercise 52: An algebra (A,m, 1A) over F is called separable if there is an A⊗Aop-linear
map φ : A → A⊗Aop with m ◦ φ = idA, where the A⊗Aop-module structure on A is given by
(a⊗b) � c = acb for a, b, c ∈ A.

(a) Show that A is separable if and only if there is an element e ∈ A⊗Aop, the separability
idempotent, with e2 = e, m(e) = 1 and (a⊗1) · e = e · (1⊗a) for all a ∈ A.

(b) Let H be a finite-dimensional semisimple Hopf algebra. Show that H is separable by con-
structing a separability idempotent for H.

Hint: In (b) use the normalised Haar integral.

Exercise 53: Let F be a field with char(F) 6= 2. The algebra H8 is the algebra over F with
generators x, y, z and relations

xy = yx zx = yz, zy = xz, x2 = y2 = 1, z2 = 1
2
(1 + x+ y − xy).

Assume without proof that dimFH8 = 8 and that

∆(x) = x⊗x ∆(y) = y⊗y ∆(z) = 1
2
(z⊗z + yz⊗z + z⊗xz − yz⊗xz)

defines a Hopf algebra structure on H8.

(a) Determine a basis of H8 and the counit and antipode of the Hopf algebra structure.

(b) Determine the group Gr(H8) and the Lie algebra Pr(H8).

(c) Show that H8 is semisimple and determine the left and right integrals of H8 and H∗8 .

Remark: H8 is an important example, because it is the lowest-dimensional semisimple Hopf
algebra that is not a group algebra of a finite group

Exercise 54: Let G be a finite group and F[G] its group algebra over F. Verify that the
Drinfeld double D(F[G]) is given by

(δu⊗g) · (δv⊗h) = δu(gvg
−1)δu⊗gh 1 = 1⊗e = Σg∈G δg⊗e

∆(δu⊗g) = Σxy=u δy⊗g⊗δx⊗g ε(δu⊗g) = δu(e)

S(δu⊗g) = δg−1u−1g⊗g−1

and that R = Σg∈G1⊗g⊗δg⊗e is a universal R-matrix for D(F[G]).

Exercise 55: Let G be a finite group. The Drinfeld double D(F[G]) is the vector space
Map(G,F)⊗F[G] with the Hopf algebra structure

(δu⊗g) · (δv⊗h) = δu(gvg
−1)δu⊗gh 1 = 1⊗e = Σg∈G δg⊗e

∆(δu⊗g) = Σxy=u δy⊗g⊗δx⊗g ε(δu⊗g) = δu(e)

S(δu⊗g) = δg−1u−1g⊗g−1.
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(a) Show that modules over D(F[G]) are in bijection with modules (V,�) over F[G] with
a decomposition V = ⊕g∈GVg such that h � Vg ⊂ Vhgh−1 for all g, h ∈ G. Show that
D(F[G])-linear maps f : V → W are in bijection with F[G]-linear maps f : V → W that
satisfy f(Vg) ⊂ Wg for all g ∈ G.

(b) Determine the direct sum decomposition of the tensor product of two D(F[G])-modules
V,W and of the tensor unit in D(F[G])-Mod.

(c) Let τV,W : V⊗W → W⊗V , v⊗w 7→ w⊗v and R = Σg∈G1⊗g⊗δg⊗e ∈ D(F[G])⊗D(F[G]).
Show that the maps cV,W = τV,W ◦ (R�−) : V⊗W → W⊗V define a braiding on D(F[G])-
Mod by computing their action on the vector spaces in the decomposition.

9.7 Exercises for Chapter 8

Exercise 56: Prove Schur’s lemma for abelian categories:

1. If A,A′ are simple objects in an abelian category A, then every non-zero morphism
f : A→ A′ is an isomorphism.

2. IfA is a locally finite F-linear abelian category and F algebraically closed, then EndA(A) ∼=
F for every simple object A.

Exercise 57: Let B,B′ be finite-dimensional bialgebras over F and V B : B−Mod → VectF,
V B′ : B′−Mod → VectF the forgetful functors. Show that every functor H : B′−Mod →
B−Mod with V BH = V B′ is a pullback functor: H = φ∗ for a bialgebra homomorphism
φ : B → B′.
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A Modules over algebras

A.1 Algebras

In this subsection, we recall some basic concepts, definitions and constructions and discuss
important examples of algebras. In the following we will always take algebra to mean associative
unital algebra, and all algebra homomorphisms are assumed to be unital as well. For the tensor
product of vector spaces V and W over F, we use the notation V⊗W = V⊗FW .

Definition A.1:

1. An algebra A over a field F is a vector space A over F together with a multiplication
map · : A×A→ A such that (A,+, ·) is a unital ring and a · (λa′) = (λa) ·a′ = λ(a ·a′) for
all a, a′ ∈ A and λ ∈ F. An algebra A is called commutative if a·a′ = a′·a for all a, a′ ∈ A.

2. An algebra homomorphism from an algebra A to an algebra B over F is an F-linear
map φ : A→ B that is also a unital ring homomorphism, i. e. satisfies φ(1A) = 1B and

φ(a+ a′) = φ(a) + φ(a′), φ(λa) = λφ(a), φ(a · a′) = φ(a) · φ(a′) ∀a, a′ ∈ A, λ ∈ F.

As an algebra can be viewed as a unital ring with a compatible vector space structure, the
concepts of a unital subring, of a left right or two-sided ideal and of a quotient by an ideal have
direct analogues for algebras. In particular, a left, right or two-sided ideal in an algebra A is
simply a left, right or two-sided ideal in the ring A. That such an ideal is also a linear subspace
of A follows because λa = (λ1) · a = a · (λ1) ∈ I for all a ∈ I and λ ∈ F. Consequently, the
quotient A/I by a two sided ideal I ⊂ A is not only a ring, but also inherits a vector space
structure and hence the structure of an algebra.

Definition A.2: Let F be a field and A an algebra over F.

1. A subalgebra of A is a subset B ⊂ A that is an algebra with the restriction of the
addition, scalar multiplication and multiplication, i. e. a subset B ⊂ A with 1A ∈ B,
b+ b′ ∈ B, λb ∈ B, and b · b′ ∈ B for all b, b′ ∈ B and and λ ∈ F.

2. The quotient algebra of A by a two-sided ideal I ⊂ A is the quotient vector space A/I
with the multiplication map · : A/I × A/I → A/I, (a+ I, a′ + I) 7→ aa′ + I.

There is an equivalent definition of an algebra that is formulated purely in terms of vector spaces
and linear maps. For this, note that we can view the unit 1 ∈ A as a linear map η : F → A,
λ 7→ λ1. Similarly, we can interpret the multiplication as an F-linear map m : A⊗A → A
instead of a map · : A× A→ A that is compatible with scalar multiplication and satisfies the
distributive laws. This follows because the distributive laws and the compatibility condition on
scalar multiplication and algebra multiplication are equivalent to the statement that the map
· is F-bilinear. By the universal property of the tensor product, it therefore induces a unique
linear map m : A⊗A→ A with m(a⊗b) = a · b. The remaining conditions are the associativity
of the multiplication map m and the condition that 1 is a unit, which can be stated as follows.
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Definition A.3:

1. An algebra (A,m, η) over a field F is a vector space A over F together with linear maps
m : A⊗A→ A and η : F→ A, the multiplication and the unit, such that the following
two diagrams commute

A⊗(A⊗A)

id⊗m ''

∼= // (A⊗A)⊗Am⊗id // A⊗A
m

��
A⊗A m

// A

F⊗A

η⊗id $$

λ⊗a7→λa
∼=

// A A⊗Fa⊗λ 7→λa
∼=

oo

id⊗ηzz
A⊗A.

m

OO

associativity unitality

An algebra A is called commutative if mop := m ◦ τ = m, where τ : A⊗A → A⊗A,
a⊗b 7→ b⊗a is called the flip map.

2. An algebra homomorphism from an F-algebra A to an F-algebra B is a linear map
φ : A→ B such that the following two diagrams commute

A⊗A
φ⊗φ
��

mA // A

φ
��

B⊗B mB
// B

F ηA //

id
��

A

φ
��

F ηB
// B.

Remark A.4:

1. Definition A.3 can be generalised by replacing the field F with a commutative unital ring
k, F-vector spaces by k-modules, tensor products of vector spaces by tensor products
of k-modules and F-linear maps by k-linear maps. This defines an algebra over a
commutative unital ring.

2. Note that the multiplication from Definition A.3 is a structure - there may be many
associative multiplication maps on a vector space A. The existence of a unit map η that
satisfies the conditions in Definition A.3 is a property of m. As two-sided units in monoids
are unique, there is at most one unit for m.

Example A.5:

1. Every field F is an algebra over itself. If F ⊂ G is a field extension, then G is an algebra
over F.

2. For every field F, the (n × n)-matrices with entries in F form an algebra Mat(n × n,F)
with the matrix addition, scalar multiplication and matrix multiplication. The diagonal
matrices, the upper triangular matrices and the lower triangular matrices form subalge-
bras of Mat(n× n,F).

3. For any F-vector space V , the linear endomorphisms of V form an algebra EndF(V ) with
the pointwise addition and scalar multiplication and composition.

4. For any algebra A, the vector space A with the opposite multiplication mop : A⊗A→ A,
a⊗b 7→ b · a is an algebra. It is called the opposite algebra and denoted Aop.
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5. For two F-algebras A and B, the vector space A⊗B has a canonical algebra structure
with multiplication and unit

mA⊗B : (A⊗B)⊗(A⊗B)→ A⊗B (a⊗b)⊗(a′⊗b′) 7→ (aa′)⊗(bb′)

ηA⊗B : F→ A⊗B, λ 7→ λ(1⊗1).

This algebra is called the tensor product of the algebras A and B and denoted A⊗B.

6. The maps f : N0 → F form an associative algebra over F with

(f + g)(n) = f(n) + g(n) (λf)(n) = λ f(n) (f · g)(n) = Σn
k=0f(n− k)g(k).

This is called the algebra of formal power series with coefficients in F and denoted
F[[x]]. The name is due to the following. If we describe a power series Σn∈N0anx

n by
its coefficient function f : N0 → F, n 7→ an, then the formulas above give the familiar
addition, scalar multiplication and multiplication law for power series

Σn∈N0anx
n + Σn∈N0bnx

n = Σn∈N0(an + bn)xn

λΣn∈N0anx
n = Σn∈N0λanx

n

(Σn∈N0anx
n) · (Σn∈N0bnx

n) = Σn∈N0(Σn
k=0an−kbk)x

k.

7. The polynomials with coefficients in F form a subalgebra

F[x] = {f : N0 → F | f(n) = 0 for almost all n ∈ N0} ⊂ F[[x]].

8. For any set M and any F-algebra A algebra, the maps f : M → A form an algebra over
F with the pointwise addition, scalar multiplication and multiplication.

An important example of an algebra that will be used extensively in the following is the tensor
algebra of a vector space V over F. As a vector space, it is the direct sum T (V ) = ⊕∞n=0V

⊗n,
where V ⊗0 := F and V ⊗n := V⊗...⊗V is the n-fold tensor product of V with itself for n ∈ N.
Its algebra structure is given by the concatenation, and the unit is the element 1 = 1F ∈ F.
The symmetric and the exterior algebra of V are two further examples of algebras associated
with a vector space V . They are obtained by taking quotients of T (V ) by two-sided ideals.

Example A.6: Let V be a vector space over F.

1. The tensor algebra of V is the vector space T (V ) = ⊕∞n=0V
⊗n with the multiplication

(v1⊗...⊗vm) · (w1⊗...⊗wn) = v1⊗...⊗vm⊗w1⊗...⊗wn

for all v1, ..., vm, w1, ..., wn ∈ V and n,m ∈ N0, where v1⊗...⊗vn := 1F for n = 0. It is an
algebra over F with unit 1F ∈ V 0. The injective F-linear map ιV : V → T (V ), v 7→ v is
called the inclusion map.

2. If B is a basis of V , then B⊗ = {b1⊗...⊗bn |n ∈ N0, bi ∈ B} is a basis of T (V ).

3. The tensor algebra is N-graded: it is given as the direct sum T (V ) = ⊕∞n=0V
⊗n of the

linear subspaces V ⊗n, and one has V ⊗m · V ⊗n ⊂ V ⊗(n+m) for all m,n ∈ N0.
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4. The tensor algebra has the following universal property:

For every F-linear map φ : V → A into an F-algebra A, there is a unique algebra homo-
morphism φ̃ : T (V )→ A such that the following diagram commutes

V
φ //� _

ιV
��

A

T (V ).
∃!φ̃

<<

5. The symmetric algebra of V is the quotient algebra of T (V )

S(V ) = T (V )/(v⊗w − w⊗v)

by the two-sided ideal (v⊗w−w⊗v) generated by the elements v⊗w−w⊗v for v, w ∈ V .

6. The exterior algebra of V or alternating algebra of V is the quotient algebra of T (V )

ΛV = T (V )/(v⊗w + w⊗v)

by the two-sided ideal (v⊗w+w⊗v) generated by the elements v⊗w+w⊗v for v, w ∈ V .

7. The tensor algebra of the vector space F is the algebra of polynomials in F: T (F) = F[x].

Tensor algebras play a similar role for algebras as free groups for groups and free modules for
modules. They allow one to describe an algebra in terms of generators and relations.

The universal property of the tensor algebra implies that any algebra A over F is isomorphic to
a quotient of a tensor algebra by a suitable two-sided ideal. This follows, because the identity
map idA : A → A induces a surjective algebra homomorphism φ : T (A) → A. Its kernel is a
two-sided ideal in T (A) and T (A)/ker(φ) ∼= A as an algebra.

In practice, it is inconvenient to describe an algebra as a quotient of its own tensor algebra.
Rather, one considers a set B and the associated free vector space 〈B〉, such that the induced
algebra homomorphism φ : T (〈B〉) → A is surjective. One then chooses a subset U ⊂ T (〈B〉)
such that the two-sided ideal (U) ⊂ T (〈B〉) generated by U is (U) = ker(φ). One then has
A ∼= T (〈B〉)/(U) and calls (B,U) a presentation of A.

Definition A.7: Let A be an algebra over F. A presentation of A is a pair (B,U) of a set
B and a subset U ⊂ T (〈B〉) such that A is isomorphic to T (〈B〉)/(U). The elements of B are
called generators and the elements of U relations. One often lists the relations u ∈ U as
equations u = 0 for u ∈ U .

As the set B⊗ from Example A.6 is a basis of T (〈B〉) every element of A is a linear combination
of equivalence classes of tensor products of elements in B, where 1A is viewed as the empty
tensor product. This yields a generating set of A, but not a basis, unless U = ∅.

The sets B and U are in general not unique, and one usually presents an algebra A with as few
generators and relations as possible. In particular, one requires that no proper subset U ′ ( U
generates ker(φ). Even if these additional conditions are imposed, an algebra may have many
different presentations that are not related in an obvious way. In general, it is very difficult to
decide if two algebras presented in terms of generators and relations are isomorphic, and there
are no algorithms that solve this problem in general.
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In some textbooks, presentations of algebras are defined in terms of the free algebra generated
by a set B and relations in this free algebra. This is equivalent to our definition, since the tensor
algebra of a vector space V with basis B is canonically isomorphic to the free algebra generated
by the set B - both are characterised by the same universal property. For a detailed discussion,
see [Ka, Chapter I.2 and Chapter II.5].

Another important example in the following is the universal enveloping algebra of a Lie algebra,
which is obtained as a quotient of its tensor algebra. It has a universal property that relates
Lie algebra homomorphisms and modules over Lie algebras to algebra homomorphisms and
modules over algebras.

Definition A.8: Let F be a field.

1. A Lie algebra over F is an F-vector space g together with an alternating F-bilinear map
[ , ] : g× g→ g, (x, y) 7→ [x, y], the Lie bracket, that satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ g.

2. A Lie algebra homomorphism from g to h is an F-linear map φ : g→ h with

[ , ]h ◦ (φ⊗φ) = φ ◦ [ , ]g.

Every associative (not necessarily unital) algebra A has a canonical Lie algebra structure with
the commutator [ , ] : A⊗A→ A, a⊗b 7→ [a, b] = a · b− b · a as the Lie bracket, whose Jacobi
identity follows from the associativity of A. If we speak about the Lie algebra structure of an
associative algebra or Lie algebra homomorphisms into an associative algebra A, we assume
that A is equipped with this Lie bracket.

Example A.9: Let g be a Lie algebra.

1. The universal enveloping algebra of g is the quotient algebra U(g) = T (g)/I,
where I = (x⊗y − y⊗x − [x, y]) is the two-sided ideal generated by the elements
x⊗y − y⊗x− [x, y] for x, y ∈ g.

2. The universal enveloping algebra has the following universal property:

The inclusion maps ιg : g → U(g), x 7→ x + I are Lie algebra homomorphisms. For
any Lie algebra homomorphism φ : g → A into an algebra A, there is a unique algebra
homomorphism φ̃ : U(g)→ A such that the following diagram commutes

g
φ //

� _

ιg
��

A

U(g).
∃!φ̃

==

3. If B = (bi)i∈I is an ordered basis of g, then the Lie bracket of g is given by

[bi, bj] = Σk∈If
k

ij bk

with f k
ij = −f k

ji ∈ F, fkij = 0 for almost all k ∈ I. The universal enveloping algebra U(g)
is presented with generators bi, i ∈ I, and relations

bi⊗bj − bj⊗bi = [bi, bj] = Σk∈If
k

ij bk.
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The set B′ = {ιg(bi1) · · · ιg(bin) |n ∈ N0, i ∈ I, i1 ≤ i2 ≤ ... ≤ in} is a basis of U(g), the
Poincaré-Birkhoff-Witt basis of U(g).

4. The universal enveloping algebra is a filtered algebra:

It is the union U(g) = ∪∞n=0U
n(g) of subspaces Un(g) = ⊕nk=0V

⊗k/I, which satisfy
U0(g) ⊂ U1(g) ⊂ ... and Um(g) · Un(g) ⊂ Un+m(g) for all n,m ∈ N0.

The universal property of the universal enveloping algebra follows from the universal property
of the tensor algebra and the fact that for any Lie algebra morphism φ : g → A, the induced
algebra homomorphism φ′ : T (V )→ A satisfies φ′(x⊗y− y⊗x− [x, y]) = 0 for all x, y ∈ g. The
proof of the Poincaré-Birkhoff-Witt Theorem, which states that the Poincaré-Birkhoff-Witt
basis is a basis of U(g), and the proof that U(g) is filtered are more cumbersome and proceed
by induction. These proofs and more details on universal enveloping algebras can be found in
[Di] and [Se, Chapter II].

Other important examples of algebras are group algebras. The group algebra of a group G is
simply its group ring R[G], in the case where the ring R = F is a field. In this case, the group
ring becomes an algebra over F with the pointwise multiplication by F as scalar multiplication.

Example A.10: (The group algebra F[G])
Let G be a group and F a field. The free F-vector space generated by G

〈G〉F = {f : G→ F | f(g) = 0 for almost all g ∈ G}

with the pointwise addition and scalar multiplication and the convolution product:

(f1 + f2)(g) = f1(g) + f2(g) (λf)(g) = λf(g) (f1 · f2)(g) = Σh∈Gf1(gh−1) · f2(h)

is an associative unital F-algebra, called the group group algebra of G and denoted F[G]. The
maps δg : G→ F with δg(g) = 1 and δg(h) = 0 for g 6= h form a basis of F[G].

Remark A.11:

1. In terms of the maps δg : G → F the multiplication of F[G] takes the form δg · δh = δgh
for all g, h ∈ G. We therefore write g for δg and denote elements of F[G] by f = Σg∈Gλg g
with λg ∈ F for all g ∈ G. The algebra structure of F[G] is then given by

(Σg∈Gλg g) + (Σh∈Gµh h) = Σg∈G(λg + µg) g

λ (Σg∈Gλg g) = Σg∈G(λλg) g

(Σg∈Gλg g) · (Σh∈Gµh h) = Σg∈G (Σh∈Gλgh−1µh) g.

2. A group homomorphism ρ : G→ H induces an algebra homomorphism φρ : F[G]→ F[H],
Σg∈Gλg g 7→ Σg∈Gλg ρ(g), but not every algebra homomorphism φ : F[G] → F[H] arises
from a group homomorphism. Similarly, for every subgroup U ⊂ G, the linear subspace
spanF(U) ∼= F[U ] ⊂ F[G] is a subalgebra, but not all subalgebras of F[G] arise this way.
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A.2 Basic representation theory of algebras

In this section, we discuss basic properties and examples of modules over algebras. As an algebra
A over F is a unital ring with a compatible vector space structure over F, a module over an
algebra is simply defined as a module over the underlying ring. In particular, this ensures that
all known constructions for modules over rings such as submodules, quotients, direct sums,
products and tensor products are defines and all known results about modules over rings can
be applied to modules over algebras.

The only difference to modules over general rings is that modules over an algebra A are vector
spaces over F and all module homomorphisms between them are F-linear maps. We can thus
apply concepts from linear algebra to modules over an algebra A and module homomorphisms.

Definition A.12: Let F be a field and A an algebra over F.

1. A left module over A or a representation of A is an abelian group (V,+) together
with a map � : A× V → V , (a, v) 7→ a� v that satisfies for all a, b ∈ A, v, v′ ∈ V

a�(v+v′) = a�v+a�v′, (a+b)�v = a�v+b�v, (a·b)�v = a�(b�v), 1�v = v.

2. A homomorphism of representations, an A-linear map or a homomorphism of
A-left modules from (V,�V ) to (W,�W ) is a group homomorphism φ : (V,+)→ (W,+)
with φ(a�V v) = a�W φ(v) for all a ∈ A and v ∈ V .

Definition A.13: Let F be a field and A an algebra over F.

1. The dimension of an A-module (V,�) is the dimension dimF V of the vector space V .

2. For an A-linear map f : V → W between finite-dimensional A-modules V,W , the rank,
defect, determinant, trace of f are defined as the rank, defect, determinant, trace of the
F-linear map f .

Note that the left modules over A form a category A-Mod. The objects of A-Mod are left
modules over A, and the morphisms of A-Mod are homomorphisms of A-left modules. There are
analogous concepts of right modules over A and of (A,A)-bimodules. The former are equivalent
to left modules over the algebra Aop and the latter to left modules over the algebra A⊗Aop. In
the following we use the term module over A as a synonym of left module over A.

Remark A.14:

1. A representation of a F-algebra A can be defined equivalently as a pair (V, ρ) of an
F-vector space V and an algebra homomorphism ρ : A→ EndF(V ).

This holds because every A-module (V,�) has a canonical F-vector space structure
with the scalar multiplication λv := (λ1) � v, and the map ρ : A → EndF(V ) with
ρ(a)v := a � v is an algebra homomorphism. Conversely, each algebra homomorphism
ρ : A→ EndF(V ) determines an A-left module structure on V given by a� v := ρ(a)v.

2. A representation of a group G over F can be defined equivalently as

• a module V over the group algebra F[G],
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• a pair (V, ρ) of a vector space V and a group homomorphism ρ : G→ AutF(V ).

This follows because an F[G]-module structure on V defines an algebra homomorphism
ρ′ : F[G]→ EndF(V ) by 1. As every algebra homomorphism ρ′ : F[G]→ EndF(V ) induces
a group homomorphism ρ : G → EndF(V ), g 7→ ρ′(δg) and vice versa, this corresponds
to the choice group homomorphism ρ : G→ EndF(V ). As ρ(g−1) = ρ(g)−1 for all g ∈ G,
one has ρ(g) ∈ AutF(V ) for all g ∈ G.

3. Equivalently, a representation of an F-algebra A is a pair (V,�) of an F-vector space V
and an F-linear map � : A⊗V → V such that the following diagrams commute

(A⊗A)⊗V
∼= //

m⊗id ''

A⊗(A⊗V )
id⊗� // A⊗V

�

��
A⊗V

�
// V

V F⊗Vλ⊗v 7→λv
∼=

oo

η⊗idyy
A⊗V.

�

OO

A homomorphism of representations can then be defined as a F-linear map φ : V → W
such that the following diagram commutes

A⊗V �V //

id⊗φ
��

V

φ
��

A⊗W �W //W.

Example A.15:

1. Any group G can be represented on any F-vector space V by the trivial representation
ρ : G→ AutF(V ), g 7→ idV .

2. Any F-vector space V carries representations of AutF(V ) and EndF(V ).

3. A representation of the group Z/2Z on an F-vector space V corresponds to the choice of
an involution on V , i. e. an F-linear map I : V → V with I ◦ I = idV . If char(F) 6= 2, this
amounts to a decomposition V = V+ ⊕ V−, where V± = ker(I ∓ idV ).

4. A representations of the group Z on an F-vector space V corresponds to the choice
of an automorphism φ ∈ AutF(V ). This holds because a group homomorphism
ρ : Z → AutF(V ) is determined uniquely by the automorphism ρ(1) = φ, and every
automorphism φ ∈ AutF(V ) determines a representation of Z given by ρ(z) = φz.

5. For any F-vector space V there is a representation of Sn on V ⊗n, which is given by
ρ : Sn → AutF(V ⊗n) with ρ(σ)(v1⊗...⊗vn) = vσ(1)⊗....⊗vσ(n) for all v1, .., vn ∈ V .

6. A representation of the polynomial algebra F[x] on an F-vector space V amounts to the
choice of an endomorphism of V .

This follows because any algebra homomorphism φ : F[x] → EndF(V ) is determined
uniquely by ρ(x) ∈ EndF(V ) and any element φ ∈ EndF(V ) determines an algebra
homomorphism ρ : F[x]→ EndF(V ), Σn∈N0anx

n 7→ Σn∈N0anφ
n.

7. Let V,W be vector spaces over F. The representations of the tensor algebra T (V ) on W
correspond bijectively to F-linear maps φ : V → EndF(W ).

This follows because the restriction of a representation ρ : T (V ) → EndF(W ) to
ιV (V ) ⊂ T (V ) defines an F-linear map from V to EndF(W ). Conversely, every F-linear
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map φ : V → EndF(W ) induces an algebra homomorphism ρ : T (V ) → EndF(W ) with
ρ ◦ ι = φ by the universal property of the tensor algebra.

8. Let g be a Lie algebra and V a vector space over F. Representations of the universal
enveloping algebra U(g) on V correspond bijectively to representations of g on V , i. e. Lie
algebra homomorphisms φ : g→ EndF(V ).

This follows because any algebra homomorphism ρ : U(g)→ EndF(V ) satisfies

[ρ ◦ ιg(x), ρ ◦ ιg(y)] = ρ(ιg(x) · ιg(y)− ιg(y) · ιg(x)) = ρ ◦ ιg([x, y]) ∀x, y ∈ g.

Hence ρ ◦ ιg : g → EndF(V ) is a Lie algebra morphism. Conversely, for any Lie
algebra homomorphism φ : g → EndF(V ) there is a unique algebra homomorphism
ρ : U(g)→ EndF(V ) with ρ ◦ ιg = φ by the universal property of U(g).

9. Any algebra is a left module over itself with the module structure given by left multi-
plication � : A⊗A → A, a⊗b 7→ a · b and a left module over Aop with respect to right
multiplication � : Aop⊗A → A, a⊗b 7→ b · a. Combining the two yields an A⊗Aop-left
module structure on A with � : (A⊗Aop)⊗A→ A, (a⊗b)⊗c 7→ a · c · b.

10. If φ : A → B is an algebra homomorphism, then every B-module V becomes an
A-module with the module structure given by a � v := φ(a) � v for all v ∈ V . This is
called the pullback of the B-module structure on V by φ.

11. In particular, for any subalgebra U ⊂ A, the inclusion map ι : U → A, u 7→ u is an
injective algebra homomorphism and induces a U -left module structure on any A-left
module V . This is called the restriction of the A-module structure to U .

12. If (V,�V ) and (W,�W ) are modules over F-algebras A and B, then

� : (A⊗B)⊗(V⊗W )→ V⊗W, (a⊗b) � (v⊗w) = (a�V v)⊗(b�W w)

defines an A⊗B module structure on V⊗W .

Simple, semisimple and indecomposable modules over algebras are defined in the same way as
over general rings. However, the fact that they are vector spaces over a field allows one to draw
additional conclusions about their structure. We recall the standard definitions and results on
semisimple modules over rings for the case where the ring in question is an algebra. We also
summarise the main results on modules over rings for the case of algebras. For results that hold
for modules over general rings, we omit the proofs, but we prove the additional results that are
specific to algebras.

Definition A.16: Let A be an algebra over F.

1. A module M over A is called simple if M 6= {0} and M has no non-trivial submodules,
i. e. the only submodules of M are M and {0}.

2. A module over A is called semisimple, if it is the direct sum M = ⊕i∈IMi of simple
submodules Mi.

3. The algebra A is called simple or semisimple if it is simple or semisimple as a left
module over itself with the left multiplication.
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Note that the trivial module {0} is not simple by definition, but it is semisimple, since it is
given by the direct sum over an empty index set. The following proposition gives an alternative
criterion for the semisimplicity of a module that is very useful in practice.

Proposition A.17: Let A be an algebra over F and M a module over A. Then the following
are equivalent:

(i) M is semisimple.

(ii) Every submodule U ⊂M is a (not necessarily direct) sum of simple submodules.

(iii) Every submodule U ⊂ M has a complement, i. e. there is a submodule V ⊂ M with
M = U ⊕ V .

In particular, Proposition A.19 implies that semisimplicity is a property that is inherited by
submodules and quotients of modules. This follows by choosing appropriate complements and
by considering the images of the simple summands under the canonical surjection for a quotient.

Corollary A.18: Every submodule and every quotient of a semisimple module is semisimple.

As every module over an algebra A can be described as a quotient of a free module over A,
that is, as a quotient of a direct sum ⊕i∈IA for some index set I, Corollary A.18 relates the
semisimplicity of A to the semisimplicity of A-modules.

Proposition A.19: Let A be an algebra over F. Then the following are equivalent:

(i) A is semisimple,

(ii) every module over A is semisimple.

Schur’s lemma for modules over a ring R states that for a simple module M every R-linear
map f : M → N is injective or zero, every R-linear map f : N → M is surjective or zero and,
consequently, every R-linear map f : M → M is an isomorphism or zero. This states that the
ring EndR(M) is a skew field. If one considers for R an algebra over an algebraically closed field
F and for M a finite-dimensional simple module, one has a stronger result.

Lemma A.20: (Schur’s lemma) Let A be an algebra over an algebraically closed field F.
Then for every finite-dimensional simple A-module M one has EndA(M) ∼= F.

Proof:
As F is algebraically closed and M finite-dimensional, every A-linear map f : M → M has at
least one eigenvalue λ ∈ F with an associated eigenvector. This yields a non-trivial submodule
0 6= ker(f −λidM) ⊂M . As M is simple, it follows that f = λidM and hence EndA(M) ∼= F. 2

By definition, non-semisimple modules over an algebra A cannot be expressed as direct sums
of simple modules. However, in many cases they can be characterised in terms of submodules
such that the quotients with respect to these submodules are simple. This leads to the notion
of modules of finite length and Jordan-Hölder series.

Definition A.21: LetA be an algebra over F.

An A-module N is called a module of finite length if there is a finite chain of submodules
0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M such that all quotient modules Mi/Mi−1 are simple.
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Such a chain is called a Jordan-Hölder series and the modules Mi/Mi−1 are called subquo-
tients. The length l(M) is the minimal length of a Jordan-Hölder series for M .

Example A.22:

1. Every finite direct sum of simple modules is a module of finite length: if M = ⊕ni=1Ui
with simple modules U1, ..., Un, then 0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M with
Mk := ⊕ki=1Ui is a Jordan-Hölder series for M with subquotients Mi/Mi−1

∼= Ui.

2. Let V be a finite-dimensional complex vector. Then C[x]-module structures � on V are
in bijection with linear endomorphisms φ : V → V , v 7→ x � v. If B = (v1, ..., vn) is a
Jordan basis of V , then 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = V with Mi = spanC{v1, ..., vi} is a
Jordan-Hölder series for (V, φ).

To make sure that the length of a module of finite length and the subquotients in a Jordan-
Hölder series are useful quantities that characterise the module, one needs to establish that
they are independent of the choice of the Jordan-Hölder series.

Theorem A.23: (Jordan-Hölder theorem)
Let A be an algebra over F and M an A-module of finite length. Then:

1. Every submodule U ⊂ M and quotient module M/U is an A-module of finite length
with l(M/U) + l(U) = l(M).

2. All Jordan-Hölder series of M have the same length and isomorphic subquotients, up to
the ordering.

As modules over an algebra A over F are vector spaces over F and simple modules have di-
mension at least one, the dimension of the modules in a Jordan Hölder series must increase by
at least one in each step. it follows that each A-module of finite length is finite-dimensional.
Conversely, by iteratively choosing proper submodules of maximal dimension, one can show
that each finite-dimensional A-module has finite length.

Lemma A.24: Let A be an algebra over F. Then every finite-dimensional A-module M is a
module of finite length l(M) ≤ dimFM .

Proof:
If M = 0, it is a module of length 0. If M is a simple A-module, then it has a Jordan-Hölder
series of length 1. Otherwise, choose a proper submodule M1 ( M of maximal dimension.
Then M/M1 is simple, since proper submodules of M/M1 correspond bijectively to submodules
M1 ( P (M and consequently with dimension dimFM1 < dimF P < dimFM .

Iterating this procedure yields a sequence of submodules M = M0 ) M1 ) M2 ) M3 ) . . .
such that Mi/Mi+1 is simple for all i ≥ 0. As dimFM > dimFM1 > dimFM2 > . . ., this
terminates after at most dimFM steps with a Jordan-Hölder series for M . 2

By applying the Jordan-Hölder theorem to an algebra A that is a module of finite length as
a left module over itself, one can show that every simple module occurs as a subquotient in a
composition series of A. This follows, because every element 0 6= m ∈ M defines an A-linear
map �m : A→M , a 7→ a�m that is surjective, because M is simple. By extending a Jordan-
Hölder series for ker(�m) ⊂ A to a Jordan-Hölder series of A, one obtains a Jordan-Hölder
series of A with subquotient A/ker(�m) ∼= M .
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Corollary A.25: Let A be an algebra over F that has finite length as a left module over
itself. Then every simple A-module is isomorphic to a quotient of A and is a subquotient of
every Jordan-Hölder series of A.

In particular, we can apply Corollary A.25 to a finite-dimensional algebra A over F, which is a
module of finite length as a left module over itself by Lemma A.24. As every simple A-module
occurs as a subquotient in each Jordan-Hölder series of A and is of dimension at least one, this
imposes a restriction on the number of isomorphism classes of simple A-modules.

Corollary A.26: Let A be a finite-dimensional algebra over F. Then every simple A-module
is a quotient of A and occurs in each Jordan-Hölder series of A, and there are at most dimF
isomorphism classes of simple A-modules.

To conclude our discussion of modules over algebras, we recall the Artin-Wedderburn theorem,
which characterises them as matrix algebras. While the Wedderburn theorem for rings just
states that every semisimple ring is isomorphic to a product of matrix algebras over skew
fields, these skew fields inherit an algebra structure and hence become division algebras for a
semisimple algebra. If the underlying field is algebraically closed, then Schur’s Lemma implies
that these division algebras are isomorphic to F.

Theorem A.27: (Artin-Wedderburn theorem)
Let A be a semisimple algebra over F. Then there are division algebras D1, ..., Dr over F
n1, ..., nr ∈ N, unique up to their order, such that

A ∼= Mat(n1, D1)× . . .×Mat(nr, Dr).

If F is algebraically closed, then D1 = ... = Dr = F.
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B Categories

B.1 Categories, functors and natural transformations

In this section we summarise the relevant background on categories, functors and natural trans-
formations. Categories and functors arise whenever one relates different mathematical structures
such as sets, topological spaces, modules over a ring, groups or algebras. Whenever one relates
different mathematical structures, one needs to take into account not only the structures, but
also the structure preserving maps between them. The reason for this is that one usually does
not and cannot distinguish mathematical structures that are related by isomorphisms, such as
homeomorphic topological spaces, or isomorphic vector spaces, groups or modules. To respect
this principle, any relation between different mathematical structures must thus send structure
preserving isomorphisms to structure preserving isomorphisms. For this reason, one organises
mathematical objects and the structure preserving maps between them into a common frame-
work, namely a category.

Definition B.1: A category C consists of:

• a class Ob C of objects,

• for each pair of objects X, Y ∈ Ob C a set2 HomC(X, Y ) of morphisms,

• for each triple of objects X, Y, Z a composition map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z),

such that the following axioms are satisfied:

(C1) The sets HomC(X, Y ) of morphisms are pairwise disjoint,

(C2) The composition is associative: f ◦(g◦h) = (f ◦g)◦h for all morphisms h ∈ HomC(W,X),
g ∈ HomC(X, Y ), f ∈ HomC(Y, Z),

(C3) For every object X there is a morphism 1X ∈ HomC(X,X), the identity morphism
on X, with 1X ◦ f = f and g ◦ 1X = g for all f ∈ HomC(W,X), g ∈ HomC(X, Y ).

Instead of f ∈ HomC(X, Y ), we also write f : X → Y . The object X is called the source of f ,
and the object Y the target of f . A morphism f : X → X is called an endomorphism.

A morphism f : X → Y is called an isomorphism, if there is a morphism g : Y → X with
g ◦ f = 1X and f ◦ g = 1Y . In this case, we call the objects X and Y isomorphic.

Example B.2:

1. The category Set: the objects of Set are sets, and the morphisms are maps f : X → Y .
The composition is the composition of maps and the identity morphisms are the identity
maps. Isomorphisms are bijective maps.

Note that the definition of a category requires that the morphisms between any two
objects in a category form a set, but not that the objects form a set. Requiring that the

2This condition is sometimes relaxed in the literature on category theory. Categories whose morphisms form
sets are called locally small in these references.

183



objects of a category form a set would force one to consider sets of sets when defining
the category Set, which leads to a contradiction. A category whose objects form a set is
called a small category.

2. The category Top of topological spaces. Objects are topological spaces, morphisms
f : X → Y are continuous maps, isomorphisms are homeomorphisms.

3. The category Top∗ of pointed topological spaces: Objects are pairs (X, x) of a
topological space X and a point x ∈ X, morphisms f : (X, x) → (Y, y) are continuous
maps f : X → Y with f(x) = y.

4. The category Top(2) of pairs of topological spaces: Objects are pairs (X,A) of
a topological space X and a subspace A ⊂ X, morphisms f : (X,A) → (Y,B) are
continuous maps f : X → Y with f(A) ⊂ B. Isomorphisms are homeomorphisms
f : X → Y with f(A) = B.

5. Many examples of categories we will use in the following are categories of algebraic struc-
tures. This includes the following:

• the category VectF of vector spaces over a field F:
objects: vector spaces over F, morphisms: F-linear maps,

• the category VectfinF of finite dimensional vector spaces over a field F:
objects: vector spaces over F, morphisms: F-linear maps,

• the category Grp of groups:
objects: groups, morphisms: group homomorphisms,

• the category Ab of abelian groups:
objects: abelian groups, morphisms: group homomorphisms,

• the category Ring of rings:
objects: rings, morphisms: ring homomorphisms,

• the category URing of unital rings:
objects: unital rings, morphisms: unital ring homomorphisms,

• the category Field of fields:
objects: fields, morphisms: field monomorphisms,

• the category AlgF of algebras over a field F:
objects: algebras over F, morphisms: algebra homomorphisms,

• the categories R-Mod and Mod-R of left and right modules over a ring R:
objects: R-left or right modules, morphisms: R-left or right module homomorphisms.

• the category R-Mod-S of (R, S)-bimodules:
objects: (R, S)-bimodules, morphisms: (R, S)-bimodule homomorphisms.

In all of the categories in Example B.2 the morphisms are maps. A category for which this is
the case is called a concrete category. A category that is not concrete is the following.

Example B.3: The category Rel has sets as objects. Morphisms from A to B are relations
from A to B, that is subsets R ⊂ A×B. The composite of a relation R ⊂ A×B and S ⊂ B×C
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is the relation S ◦ R = {(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S} ⊂ A × C and the
identity morphism on a set A is the relation ∆(A) = {(a, a) | a ∈ A}.

Other important examples and basic constructions for categories are the following.

Example B.4:

1. A small category C in which all morphisms are isomorphisms is called a groupoid.

2. A category with a single object X is a monoid, and a groupoid C with a single object
X is a group. Group elements are identified with endomorphisms f : X → X and
the composition of morphisms is the group multiplication. More generally, for any
object X in a groupoid C, the set EndC(X) = HomC(X,X) with the composition
◦ : EndC(X)× EndC(X)→ EndC(X) is a group.

3. For every category C, one has an opposite category Cop, which has the same objects as
C, whose morphisms are given by HomCop(X, Y ) = HomC(Y,X) and in which the order
of the composition is reversed.

4. The cartesian product of categories C,D is the category C ×D with pairs (C,D) of ob-
jects in C and D as objects, with HomC×D((C,D), (C ′, D′)) = HomC(C,C

′)×HomD(D,D′)
and the composition of morphisms (h, k) ◦ (f, g) = (h ◦ f, k ◦ g).

5. A subcategory of a category C is a category D, such that Ob(D) ⊂ Ob(C) is a
subclass, HomD(D,D′) ⊂ HomC(D,D

′) for all objects D,D′ in D and the composi-
tion of morphisms of D coincides with their composition in C. A subcategory D of
C is called a full subcategory if HomD(D,D′) = HomC(D,D

′) for all objects D,D′ in D.

6. Quotient categories: Let C be a category with an equivalence relation ∼X,Y on each
morphism set HomC(X, Y ) that is compatible with the composition of morphisms:
f ∼X,Y g and h ∼Y,Z k implies h ◦ f ∼X,Z k ◦ g.

Then one obtains a category C ′, the quotient category of C, with the same objects as
C and equivalence classes of morphisms in C as morphisms.

The composition of morphisms in C ′ is given by [h] ◦ [f ] = [h ◦ f ], and the identity mor-
phisms by [1X ]. Isomorphisms in C ′ are equivalence classes of morphisms f ∈ HomC(X, Y )
for which there exists a morphism g ∈ HomC(Y,X) with f ◦g ∼Y,Y 1Y and g ◦f ∼X,X 1X .

The construction in the last example plays an important role in classification problems, in
particular in the context of topological spaces. Classifying the objects of a category C usually
means classifying them up to isomorphism, i. e. giving a list of objects in C such that every
object in C is isomorphic to exactly one object in this list.

While this is possible in some contexts - for the category VectfinF of finite dimensional vector
spaces over F, the list contains the vector spaces Fn with n ∈ N0 - it is often too difficult to
solve this problem in full generality. In this case, it is sometimes simpler to consider instead a
quotient category C ′ and to attempt a partial classification. If two objects are isomorphic in C,
they are by definition isomorphic in C ′ since for any objects X, Y in C and any isomorphism
f : X → Y with inverse g : Y → X, one has [g]◦ [f ] = [g◦f ] = [1X ] and [f ]◦ [g] = [f ◦g] = [1Y ].
However, the converse does not hold in general - C ′ yields a weaker classification result than C.
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To relate different categories, one must not only relate their objects but also their morphisms,
in a way that is compatible with source and target objects, the composition of morphisms and
the identity morphisms. This leads to the concept of a functor.

Definition B.5: Let C,D be categories. A functor F : C → D consists of:

• an assignment of an object F (C) in D to every object C in C,
• for each pair of objects C,C ′ in C, a map

HomC(C,C
′)→ HomD(F (C), F (C ′)), f 7→ F (f),

that is compatible with the composition of morphisms and with the identity morphisms

F (g ◦ f) = F (g) ◦ F (f) ∀f ∈ HomC(C,C
′), g ∈ HomC(C

′, C ′′)

F (1C) = 1F (C) ∀C ∈ Ob C.

A functor F : C → C is called an endofunctor. A functor F : Cop → D is sometimes called a
contravariant functor from C to D. The composite of two functors F : B → C, G : C → D
is the functor GF : B → D given by the assignment B 7→ GF (B) for all objects B in B and
the maps HomB(B,B′)→ HomD(GF (B), GF (B′)), f 7→ G(F (f)).

Example B.6:

1. For any category C, identity functor idC : C → C, that assigns each object and morphism
in C to itself is an endofunctor of C.

2. The functor VectF → Ab that assigns to each vector space the underlying abelian group
and to each linear map the associated group homomorphism, and the functors VectF →
Set, Ring → Set, Grp → Set, Top→ Set etc that assign to each vector space, ring,
group, topological space the underlying set and to each morphism the underlying map
are functors. A functor of this type is called forgetful functor.

3. The functor ∗ : VectF → VectopF , which assigns to a vector space V its dual V ∗ and to a
linear map f : V → W its adjoint f ∗ : W ∗ → V ∗, α 7→ α ◦ f .

4. For a group G, consider the category BG with a single object, with elements of G
as morphisms, and with the multiplication of G as the composition. Then functors
F : BG → Set correspond to G-sets X = F (•) with the group action � : G ×X → X,
g � x = F (g)(x). Functors F : BG → VectF correspond to representations of G over F,
with the representation space V = F (•) and ρ = F (g) : G→ AutFV .

5. Restriction functor: Let φ : R → S a ring homomorphism. The restriction functor
Res : S-Mod → R-Mod sends an S-module (M,�) to the R-module (M,�φ) with the
pullback module structure r�φm = φ(r)�m and every S-linear map f : M →M ′ to itself.

6. Tensor products: Let R be a ring, M an R-right module and N an R-left module.

• The functor M⊗R− : R-Mod → Ab assigns to an R-left module N the abelian
group M⊗RN and to an R-linear map f : N → N ′ the group homomorphism
idM⊗f : M⊗RN →M⊗RN ′.
• The functor −⊗RN : Rop-Mod → Ab assigns to an R-right module M the abelian
group M⊗RN and to an R-linear map f : M → M ′ the group homomorphism
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f⊗idN : M⊗RN →M⊗RN ′.
• The functor ⊗R : Rop-Mod × R-Mod → Ab assigns to a pair (M,N) of an R-right
module M and an R-left module N the abelian group M⊗RN and to a pair of R-linear
maps f : M →M ′ and g : N → N ′ the group homomorphism f⊗g : M⊗RN →M ′⊗RN ′.

That these are indeed functors follows from Proposition ??, 2. Note also that for
commutative rings R, any R-left module is an (R,R)-bimodule and these functors can be
defined to take values in R-Mod instead of Ab.

7. The Hom-functors: Let C be a category and C an object in C.
• The functor Hom(C,−) : C → Set assigns to an object C ′ the set HomC(C,C

′) and
to a morphism f : C ′ → C ′′ the map Hom(C, f) : HomC(C,C

′)→ HomC(C,C
′′), g 7→ f◦g.

• The functor Hom(−, C) : Cop → Set assigns to an object C ′ the set HomC(C
′, C) and

to a morphism f : C ′ → C ′′ the map Hom(f, C) : HomC(C
′′, C)→ HomC(C

′, C), g 7→ g◦f .

8. The path component functor π0 : Top → Set assigns to a topological space X the
set π0(X) of its path components P (x) and to a continuous map f : X → Y the map
π0(f) : π0(X)→ π0(Y ), P (x) 7→ P (f(x)).

9. The fundamental group defines a functor π1 : Top∗ → Grp that assigns to a
pointed topological space (x,X) its fundamental group π1(x,X) and to a mor-
phism f : (x,X) → (y, Y ) of pointed topological spaces the group homomorphism
π1(f) : π1(x,X)→ π1(y, Y ), [γ] 7→ [f ◦ γ].

10. Abelisation: The abelisation functor F : Grp → Ab assigns to a group G the abelian
group F (G) = G/[G,G], where [G,G] is the normal subgroup generated by the set of all
elements ghg−1h−1 for g, h ∈ G, and to a group homomorphism f : G → H the induced
group homomorphism F (f) : G/[G,G]→ H/[H,H], g + [G,G] 7→ f(g) + [H,H].

When dealing with categories, it is not sufficient to consider functors between different cat-
egories. There is another structure that relates different functors. As a functor F : C → D
involves maps between the sets HomC(C,C

′) and HomD(F (C), F (C ′)), a structure that re-
lates two functors F,G : C → D must in particular relate the sets HomD(F (C), F (C ′))
and HomD(G(C), G(C ′)). The simplest way to do this is to assign to each object C in C a
morphism ηC : F (C) → G(C) in D. One then requires compatibility with the morphisms
F (f) : F (C)→ G(C ′) and G(f) : G(C)→ G(C ′) for all morphisms f : C → C ′ in C.

Definition B.7: A natural transformation η : F → G between functors F,G : C → D is
an assignment of a morphism ηC : F (C) → G(C) in D to every object C in C such that the
following diagram commutes for all morphisms f : C → C ′ in C

F (C)

F (f)
��

ηC // G(C)

G(f)
��

F (C ′)
ηC′ // G(C ′).

A natural isomorphism is a natural transformation η : F → G, for which all morphisms
ηX : F (X)→ G(X) are isomorphisms. Two functors that are related by a natural isomorphism
are called naturally isomorphic.
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Example B.8:

1. For any functor F : C → D the identity natural transformation idF : F → F with
component morphisms (idF )X = 1F (X) : F (X)→ F (X) is a natural isomorphism.

2. Consider the functors id : VectF → VectF and ∗∗ : VectF → VectF. Then there is a canon-
ical natural transformation can : id → ∗∗, whose component morphisms ηV : V → V ∗∗

assign to a vector v ∈ V the unique vector v∗∗ ∈ V ∗∗ with v∗∗(α) = α(v) for all α ∈ V ∗.

3. Consider the category CRing of commutative unital rings and unital ring homomorphisms
and the category Grp of groups and group homomorphisms.

Let F : CRing→ Grp the functor that assigns to a commutative unital ring k the group
GLn(k) of invertible n×n-matrices with entries in k and to a unital ring homomorphism
f : k → l the group homomorphism

GLn(f) : GLn(k)→ GLn(l), M = (mij)i,j=1,...,n 7→ f(M) = (f(mij))i,j=1,..,n.

Let G : CRing → Grp be the functor that assigns to a commutative unital ring k the
group G(k) = k× of units in k and to a unital ring homomorphism f : k → l the induced
group homomorphism G(f) = f |k× : k× → l×.

The determinant defines a natural transformation det : F → G with component mor-
phisms detk : GLn(k) → k×, since the following diagram commutes for every unital ring
homomorphism f : k → l

GLn(k)

GLn(f)

��

detk // k×

f |k×
��

GLn(l)
detl // l×.

4. For a group G, denote by BG the groupoid with a single object •, with group elements
g ∈ G as morphisms and the group multiplication as composition.

Then by Example B.6, 4. functors F : BG→ Set are G-sets, and natural transformations
between them are G-equivariant maps. Every natural transformation η : F → F ′ is given
by a single component morphism η• : F (•)→ F ′(•). The naturality condition states that
η•(g � x) = g �′ η•(x) for all g ∈ G, x ∈ X.

Similarly, by Example B.6, 4. functors F : BG→ VectF are representations of G over F,
and natural transformations between them are homomorphisms of representations.

Remark B.9:

1. For any small category C and category D, the functors C → D and natural transforma-
tions between them form a category Fun(C,D), the functor category. The composite
of two natural transformations η : F → G and κ : G → H is the natural transformation
κ ◦ η : F → H with component morphisms (κ ◦ η)X = κX ◦ ηX : F (X)→ H(X) and the
identity morphisms are the identity natural transformations 1F = idF : F → F .

2. Natural transformations can be composed with functors.

If F, F ′ : C → D are functors and η : F → F ′ a natural transformation, then for any
functor G : B → C one obtains a natural transformation ηG : FG→ F ′G with component
morphisms (ηG)B = ηG(B) : FG(B)→ F ′G(B). Similarly, any functor E : D → E defines
a natural transformation Eη : EF → EF ′ with (Eη)C = E(ηC) : EF (C)→ EF ′(C).
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The notions of natural transformations and natural isomorphisms are particularly important
as they allow one to generalise the notion of an inverse map and of a bijection to functors.
While it is possible to define an inverse of a functor F : C → D as a functor G : D → C with
GF = idC and FG = idD, it turns out that this is too strict. There are very few non-trivial
examples of functors with an inverse. A more useful generalisation is obtained by weakening
this requirement. Instead of requiring FG = idD and GF = idC, one requires only that these
functors are naturally isomorphic to the identity functors. This leads to the concept of an
equivalence of categories.

Definition B.10: A functor F : C → D is called an equivalence of categories if there is a
functor G : D → C and natural isomorphisms κ : GF → idC and η : FG → idD. In this case,
the categories C and D are called equivalent.

Sometimes it is easier to use a more direct characterisation of an equivalences of categories in
terms of its behaviour on objects and morphisms. The proof of the following lemma makes use
of the axiom of choice and an be found for instance in [Ka], Chapter XI, Prop XI.1.5.

Lemma B.11: A functor F : C → D is an equivalence of categories if and only if it is:

1. essentially surjective:
for every object D in D there is an object C of C such that D is isomorphic to F (C).

2. fully faithful:
all maps HomC(C,C

′)→ HomD(F (C), F (C ′)), f 7→ F (f) are bijections.

Example B.12:

1. The category VectfinF of finite-dimensional vector spaces over F is equivalent to the
category C, whose objects are non-negative integers n ∈ N0, whose morphisms f : n→ m
are m × n-matrices with entries in F and with the matrix multiplication as composition
of morphisms.

2. The category Setfin of finite sets is equivalent to the category Ordfin, whose objects
are finite ordinal numbers n = {0, 1, ..., n − 1} for all n ∈ N0 and whose morphisms
f : m→ n are maps f : {0, 1, ...,m− 1} → {0, 1, ..., n− 1} with the composition of maps
as the composition of morphisms.

Many concepts and constructions from topological or algebraic settings can be generalised
straightforwardly to categories. This is true whenever it is possible to characterise them in
terms of universal properties involving only the morphisms in the category. In particular, there
is a concept of categorical product and coproduct that generalise cartesian products and disjoint
unions of sets and products and sums of topological spaces.

Definition B.13: Let C be a category and (Ci)i∈I a family of objects in C.
1. A product of the family (Ci)i∈I is an object Πi∈ICi in C together with a family of

morphisms πi : Πj∈ICj → Ci, such that for all families of morphisms fi : W → Ci there
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is a unique morphism f : W → Πi∈ICi such that the diagram

W

fi ##

∃!f // Πj∈ICj

πi
��
Ci

(93)

commutes for all i ∈ I. This is called the universal property of the product.

2. A coproduct of the family (Ci)i∈I is an object qi∈ICi in C with a family (ιi)i∈I of
morphisms ιi : Ci → qj∈ICj, such that for every family (fi)i∈I of morphisms fi : Ci → Y
there is a unique morphism f : qi∈ICi → Y such that the diagram

Y qj∈ICj
∃!foo

Ci

ιi

OO

fi

cc (94)

commutes for all i ∈ I. This is called the universal property of the coproduct.

Remark B.14: Products or coproducts do not necessarily exist for a given family of objects
(Ci)i∈I in a category C, but if they exist, they are unique up to unique isomorphism:

If (Πi∈ICi, (πi)i∈I) and (Π′i∈ICi, (π
′
i)i∈I) are two products for a family of objects (Ci)i∈I in C,

then there is a unique morphism π′ : Π′i∈ICi → Πi∈ICi with πi ◦ π′ = π′i for all i ∈ I, and this
morphism is an isomorphism.

This follows directly from the universal property of the products: By the universal property
of the product Πi∈ICi applied to the family of morphisms π′i : Π′i∈ICi → Ci, there is a unique
morphism π′ : Π′i∈ICi → Πi∈ICi such that πi ◦ π′ = π′i for all i ∈ I . Similarly, the universal
property of Π′i∈ICi implies that for the family of morphisms πi : Πi∈ICi → Ci there is a unique
morphism π : Πi∈ICi → Π′i∈ICi with π′i ◦ π = πi for all i ∈ I. It follows that π′ ◦ π : Πi∈ICi →
Πi∈ICi is a morphism with πi ◦ π ◦ π′ = π′i ◦ π = πi for all i ∈ I. Since the identity morphism
on Πi∈ICi is another morphism with this property, the uniqueness implies π′ ◦ π = 1Πi∈ICi . By
the same argument one obtains π ◦ π′ = 1Π′i∈ICi

and hence π′ is an isomorphism with inverse π.

Π′i∈ICi
π′ //

π′i %%

1Π′
i∈ICi

''
Πi∈ICi

πi

��

π // Π′i∈ICi

π′iyy
Ci.

Πi∈ICi
π //

πi
%%

1Πi∈ICi

''
Π′i∈ICi

π′i
��

π′ // Πi∈ICi

πi
yy

Ci.

Example B.15:

1. The cartesian product of sets is a product in Set, and the disjoint union of sets is
a coproduct in Set. The product of topological spaces is a product in Top and the
topological sum is a coproduct in Top. In Set and Top, products and coproducts exist
for all families of objects.
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2. The direct sum of vector spaces is a coproduct and the direct product of vector spaces
a product in VectF. More generally, direct sums and products of R-left (right) modules
over a unital ring R are coproducts and products in R-Mod (Mod-R). Again, products
and coproducts exist for all families of objects in R-Mod (Mod-R).

3. The wedge sum is a coproduct in the category Top∗ of pointed topological spaces. It
exists for all families of pointed topological spaces.

4. The direct product of groups is a product in Grp and the free product of groups is a
coproduct in Grp. They exist for all families of groups.

In particular, we can consider categorical products and coproducts over empty index sets I.
By definition, a categorical product for an empty family of objects is an object T = Π∅ such
that for every object C in C there is a unique morphism tC : C → T . (This is the morphism
associated to the empty family of morphisms from C to the objects in the empty family by
the universal property of the product). Similarly, a coproduct over an empty index set I is an
object I := q∅ in C such that for every object C in C, there is a unique morphism iC : I → C.
Such objects are called, respectively, terminal and initial objects in C.

Initial and terminal objects do not exist in every category C, but if they exist they are unique
up to unique isomorphism by the universal property of the products and coproducts.

An object that is both, terminal and initial, is called a zero object. If it exists, it is unique
up to unique isomorphism, and it gives rise to a distinguished morphism, the zero morphism
0 = iC′ ◦ tC : C → C ′ between objects C,C ′ in C.

Definition B.16: Let C be a category. An object X in a category C is called:

1. A final or terminal object in C is an object T in C such that for every object C in C
there is a unique morphism tC : C → T .

2. A cofinal or initial object in C is an object I in C such that for every object C in C
there is a unique morphism iC : I → C,

3. A null object or zero object in C is an object 0 in C that is both final and initial: for
every object C in C there are a unique morphisms tC : C → 0 and iC : 0→ C.

4. If C has a zero object, then the morphism 0 = iC′ ◦ tC : C → 0→ C ′ is called the trivial
morphism or zero morphism from C to C ′.

Example B.17:

1. The empty set is an initial object in Set and the empty topological space an initial object
in Top. Any set with one element is a final object in Set and any one point space an
initial object in Top. The categories Set and Top do not have null objects.

2. The null vector space {0} is a null object in the category VectF. More generally, for any
ring R, the trivial R-module {0} is a null object in R-Mod (Mod-R).

3. The trivial group G = {e} is a null object in Grp and in Ab.

4. The ring Z is an initial object in the category URing, since for every unital ring R, there
is exactly one ring homomorphism f : Z→ R, namely the one determined by f(0) = 0R
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and f(1) = 1R. The zero ring R = {0} with 0 = 1 is a final object in URing, but not an
initial one. The category URing has no zero object.

5. The category Field does not have initial or final objects. As any ring homomorphism
f : F → K between fields is injective, an initial object F in Field would be a subfield of
all other fields, and every field would be a subfield of a final object F. This would imply
char(F) = char(K) for all other fields K, a contradiction.

Besides forming an equivalence of categories, there is another important way in which two
functors F : C → D and G : D → C can be related, namely being adjoints of each other.
Adjoint functors encode universal properties of algebraic constructions such as products and
coproducts, freely generated modules or abelisation of groups. The constructions are encoded
in the functors and their universal properties in bijections between certain Hom-sets in the
categories C and D.

Definition B.18: A functor F : C → D is called left adjoint to a functor G : D → C and
G right adjoint to F , in formulas F a G, if the functors Hom(F (−),−) : Cop ×D → Set and
Hom(−, G(−)) : Cop ×D → Set are naturally isomorphic.

In other words, there is a family of bijections φC,D : HomC(C,G(D)) → HomD(F (C), D),
indexed by objects C in C and D in D, such that the diagram

HomC(C,G(D))

φC,D
��

Hom(f,G(g))

h7→G(g)◦h◦f
// HomC(C

′, G(C ′))

φC′,D′

��
HomD(F (C), D)

Hom(F (f),g)

h7→g◦h◦F (f)
// HomD(F (C ′), D′).

(95)

commutes for all morphisms f : C ′ → C in C and g : D → D′ in D.

Example B.19:

1. Forgetful functors and freely generated modules:
For a ring R, the forgetful functor G : R-Mod → Set is right adjoint to the functor
F : Set → R-Mod that assigns to a set A the free R-module F (A) = 〈A〉R generated by
A and to a map f : A→ B the R-linear map F (f) : 〈A〉R → 〈B〉R with F (f)◦ιA = ιB ◦f .

For every map f : A → M into an R-module M , there is a unique R-linear map 〈f〉R :
〈A〉R →M with 〈f〉R ◦ ιA = f for the inclusion ιA : A→ 〈A〉R. This defines bijections

φA,M : HomSet(A,G(M))→ HomR−Mod(F (A),M), f 7→ 〈f〉R.

For all maps f : A′ → A, h : A→M and R-linear maps g : M →M ′ we have

g ◦ 〈h〉R ◦ F (f) ◦ ιA′ = g ◦ 〈h〉R ◦ ιA ◦ f = g ◦ h ◦ f = 〈g ◦ h ◦ f〉R ◦ ιA′ .

This implies 〈g ◦ h ◦ f〉R = g ◦ 〈h〉R ◦ F (f).

2. Discrete and indiscrete topology: The forgetful functor F : Top→ Set is left adjoint
to the indiscrete topology functor I : Set → Top that assigns to a set X the topological
space (X,Oind) with the indiscrete topology and to a map f : X → Y the continuous
map f : (X,Oind)→ (Y,Oind).
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It is right adjoint to the discrete topology functor D : Set→ Top that assigns to a set X
the topological space (X,Odisc) with the discrete topology and to a map f : X → Y the
continuous map f : (X,Odisc)→ (Y,Odisc). The bijections between the Hom-Sets are

Φ(W,O),X : HomTop((W,O), (X,Oind))→ HomSet(W,X), f 7→ f

ΦX,(W,O) : HomSet(X,W )→ HomTop((X,Odisc), (W,O)), f 7→ f.

The statement that these are bijections expresses the fact that any map f : W → X from
a topological space (W,O) into a set X becomes continuous when X is equipped with the
indiscrete topology and any map f : X → W becomes continuous when X is equipped
with the discrete topology. The naturality condition in (95) follows directly.

3. Forgetful functors without left or right adjoints:
The forgetful functor V : Field→ Set has no right or left adjoint. If it had a left adjoint
F : Set→ Field or a right adjoint G : Set→ Field there would be bijections

Φ∅,K : HomSet(∅,K)→ HomField(F (∅),F). ΦF,{x} : HomField(F, G({x}))→ HomSet(F, {x})

for any field F. This would imply that F (∅) is an initial object in Field and hence a
subfield of any other field F and that G({p}) is a terminal object in Field and hence
contains any field F as a subfield. It follows that charF = charF (∅) = charG({x}) for all
fields F, a contradiction.

4. Inclusion functor and abelisation: The inclusion functor G : Ab → Grp is right
adjoint to the abelisation functor F : Grp→ Ab from Example B.6, 10. (Exercise ??).

5. Products, coproducts and diagonal functors:
• Let C be a category and I a set such that products and coproducts in C exist for all
families of objects indexed by I.

• Let CI be the category with families (Ci)i∈I and (fi)i∈I : (Ci)i∈i → (C ′i)i∈I of objects
and morphisms in C as objects and morphisms, with componentwise composition.

• Let ∆ : C → CI be the diagonal functor that assigns to an object C and a morphism
f : C → C ′ in C the constant families (C)i∈I and (f)i∈I .

• Let ΠI : CI → C be the product functor that assigns to a family (Ci)i∈I the product
Πi∈ICi and to a family (fi)i∈I : (Ci)i∈I → (C ′i)i∈I the morphism Πi∈Ifi : Πi∈ICi → Πi∈IC

′
i

with π′i ◦ (Πi∈Ifi) = fi ◦ πi induced by the universal property of the product.

• Let qI : CI → C be the coproduct functor that assigns to a family (Ci)i∈I the coproduct
qi∈ICi and to a family (fi)i∈I : (Ci)i∈I → (C ′i)i∈I the morphism qi∈Ifi : Πi∈ICi → Πi∈IC

′
i

with (qi∈Ifi) ◦ ιi = ι′i ◦ fi induced by the universal property of the coproduct.

Then ΠI : CI → C is right adjoint to ∆ and qI : CI → C is left adjoint to ∆. The bijections
between the Hom-sets are given by

ΦC,(Ci)i∈I : HomC(C,Πi∈ICi)→ HomCI ((C)i∈I ,Πi∈ICi), f 7→ (πi ◦ f)i∈I

Φ−1
(Ci)i∈I ,C

: HomC(qi∈ICi, C)→ HomCI ((Ci)i∈I , (C)i∈I), f 7→ (f ◦ ιi)i∈I .

The universal property of the (co)product implies that they are bijections, and a short
computation shows that they satisfy the naturality condition in (95).

6. Tensor products and Hom-functors:
• For any R-right module M , the functor M⊗R− : R-Mod → Ab is left adjoint to the
functor Hom(M,−) : Ab→ R-Mod.
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• For any R-left module N the functor − ⊗R N : Rop-Mod → Ab is left adjoint to the
functor Hom(N,−) : Ab→ Rop-Mod.

We prove the claim for R-right modules M . For an abelian group A and R-left module L
we equip HomAb(M,A) with the R-module structure (r � φ)(m) = φ(m� r) and define

φL,A : HomR-Mod(L,HomAb(M,A)) → HomAb(M ⊗R L,A)

ψ : L→ HomAb(M,A), l 7→ ψl 7→ χ : M⊗RL→ A, m⊗l 7→ ψl(m).

The map χ : M⊗RL → A, m⊗l 7→ ψl(m) is well defined, since the R-linearity of the
map ψ : L → HomAb(M,A) implies that χ′ : M × L → A, (m, l) → ψl(m) is R-bilinear:
χ′(m, r � l) = ψr�l(m) = (r � ψl)(m) = ψl(m � r) = χ′(m � r, l) for all r ∈ R, l ∈ L
and m ∈ M . By the universal property of the tensor product, it induces a unique group
homomorphism χ : M ⊗R L→ A with χ(m⊗l) = χ′(m, l). The inverse of φL,A is given by

φ−1
L,A : HomAb(M ⊗R L,A) → HomR-Mod(L,HomAb(M,A))

χ : M⊗RL→ A, 7→ ψ : L→ HomAb(M,A), l 7→ ψl with ψl(m) = χ(m⊗ l).

As we have ψr�l(m) = χ(m⊗ (r� l)) = χ((m� r)⊗ l) = ψl(m� r), the map ψl is indeed
R-linear, and a short computation shows that the diagram (95) commutes for all R-linear
maps f : L′ → L and all group homomorphisms g : A→ A′.

7. Restriction, induction and coinduction:
Let φ : R → S be a ring homomorphism and Res : S-Mod → R-Mod the restriction
functor from Example B.6, 5. that sends an S-module (M,�S) to the R-module (M,�R)
with r �R m = φ(r) �S m and every S-linear map f : M →M ′ to itself. Then:

• The induction functor Ind = S⊗R− : R-Mod→ S-Mod is left adjoint to Res. It sends

- an R-module M to the S-module Ind(M) = S ⊗RM with s� (s′⊗m) = (ss′)⊗m,
- an R-linear map f : M →M ′ to the S-linear map Ind(f) = idS ⊗ f .

• The coinduction functor Coind = HomR(S,−) : R-Mod → S-Mod is right adjoint
to Res. It sends

- an R-module M to the S-module HomR(S,M) with (s� f)(s′) = f(s′ · s),
- an R-linear map f : M →M ′ to HomR(S, f) : g 7→ f ◦ g.

To see that Ind is left adjoint to Res, note that by Lemma ?? the (S,R)-bimodule structure
on S given by s � s′ = s · s′ and s � r = s · φ(r) defines an S-left-module structure on
the abelian group S⊗RM given by s � (s′⊗m) = (s · s′)⊗m. For all R-modules M and
S-modules N the group homomorphisms

φM,N : HomR(M,Res(N))→ HomS(Ind(M), N), φM,N(f)(s⊗m) = s� f(m)

ψM,N : HomS(Ind(M), N)→ HomR(M,Res(N)), ψM,N(g)(m) = g(1⊗m).

are mutually inverse and hence bijections. To prove that the diagram (95) commutes, we
compute for all R-linear maps f : M ′ →M , h : M → N and S-linear maps g : N → N ′

g ◦ φM,N(h) ◦ (idS⊗f)(s⊗m′) = g ◦ φM,N(h)(s⊗f(m′)) = g(s� h ◦ f(m′))

= s� (g ◦ h ◦ f(m′)) = φM ′,N ′(g ◦ h ◦ f)(s⊗m′).

To show that Coind is right adjoint to Res we consider the ring S with the R-left module
structure r � s := φ(r) · s and the abelian group HomR(S,M) with the S-left module
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structure (s� f)(s′) = f(s′ · s) and note that the maps

φM,N : HomR(Res(N),M)→ HomS(N,HomR(S,M)), φM,N(f)(s) = f(s� n)

ψM,N : HomS(N,HomR(S,M))→ HomR(Res(N),M), ψM,N(g)(n) = g(n)(1).

are mutually inverse and hence bijections. A short computation shows that φM,N makes
the diagram (95) commute.

8. Induction, coinduction and forgetful functor:
For every ring S, the induction functor Ind = S⊗Z− : Ab → S-Mod is left adjoint and
the coinduction functor Coind = HomZ(S,−) : Ab → S-Mod is right adjoint to the
forgetful functor Res : S-Mod→ Ab.

This is Example B.19, 7. for R = Z, where Res : S-Mod→ Ab is the forgetful functor.

These examples show that adjoint functors arise in many contexts in algebra and topology and
are often related to certain canonical constructions such as forgetful functors, freely generated
modules or tensoring over a ring. Example B.19, 3. shows that a functor need not have left and
right adjoints. However, it seems plausible that if they exist, left or right adjoint functors should
be unique, at least up to natural isomorphisms. To address this question, it is advantageous
to work with an alternative characterisation of left and right adjoints in terms of natural
transformations.

Proposition B.20: A functor F : C → D is left adjoint to G : D → C if and only if there are
natural transformations ε : FG→ idD and η : idC → GF such that

(Gε) ◦ (ηG) = idG, (εF ) ◦ (Fη) = idF . (96)

Proof:
1. Let F : C → D be left adjoint to G : D → C. Then there are bijections

φG(D),D : HomC(G(D), G(D))→ HomD(FG(D), D)

φ−1
C,F (C) : HomD(F (C), F (C))→ HomC(C,GF (C)).

We define the natural transformations ε : FG → idD and η : idC → GF by specifying their
component morphisms:

εD := φG(D),D(1G(D)) : FG(D)→ D ηC := φ−1
C,F (C)(1F (C)) : C → GF (C).

The commuting diagram (95) in Definition B.18 implies for all morphisms f : D → D′ in D:

εD′ ◦ FG(f) = φG(D′),D′(1G(D′)) ◦ FG(f)
(95)
= φG(D),D(1G(D′) ◦G(f)) = φG(D),D(G(f))

= φG(D),D(G(f) ◦ 1G(D))
(95)
= f ◦ φG(D),D(1G(D)) = f ◦ εD.

This shows that the morphisms εD : FG(D)→ D define a natural transformation ε : FG→ idD.
Diagram (95) then implies for all objects C in C

εF (C) ◦ F (ηC) = φGF (C),F (C)(1GF (C)) ◦ F (φ−1
C,F (C)(1F (C)))

(95)
= φC,F (C)(1GF (C) ◦ φ−1

C,F (C)(1F (C))) = φC,F (C) ◦ φ−1
C,F (C)(1F (C)) = 1F (C).

The proofs for η : idC → GF and of the identity G(εD) ◦ ηG(D) = 1G(D) are analogous.
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2. Let ε : FG → idD and η : idC → GF be natural transformations that satisfy (96). Consider
for all objects C in C und D in D the maps

φC,D = Hom(1F (C), εD) ◦ F : HomC(C,G(D))→ HomD(F (C), D), f 7→ εD ◦ F (f)

ψC,D = Hom(ηC , 1G(D))) ◦G : HomD(F (C), D)→ HomC(C,G(D)), g 7→ G(g) ◦ ηC .

Then we have for all morphisms f : C → G(D) in C and g : F (C)→ D in D

ψC,D ◦ φC,D(f) = G(εD) ◦GF (f) ◦ ηC
nat
= G(εD) ◦ ηG(D) ◦ f

(96)
= f

φC,D ◦ ψC,D(g) = εD ◦ FG(g) ◦ F (ηC)
nat
= g ◦ εF (C) ◦ F (ηC)

(96)
= g.

This shows that ψC,D = φ−1
C,D and φC,D : HomC(C,G(D))→ HomD(F (C), D) is a bijection. To

verify that the diagram (95) in Definition B.18 commutes, consider morphisms f : C ′ → C,
h : C → G(D) in C and g : D → D′ in D and compute

φC′,D′(G(g) ◦ h ◦ f) = εD′ ◦ FG(g) ◦ F (h) ◦ F (f)
nat
= g ◦ εD ◦ F (h) ◦ F (f) = g ◦ φC,D(h) ◦ F (f).

2

Theorem B.21: Left and right adjoint functors are unique up to natural isomorphisms.

Proof:
Let F, F ′ : C → D be left adjoint to G : D → C. Then by Proposition B.20 there are natural
transformations ε : FG→ idD, η : idC → GF and ε′ : F ′G→ idD, η′ : idC → GF ′ satisfying (96).
Consider the natural transformations κ = (εF ′) ◦ (Fη′) : F → F ′, κ′ = (ε′F ) ◦ (F ′η) : F ′ → F
with component morphisms κC = εF ′(C) ◦ F (η′C) and κ′C = ε′F (C) ◦ F ′(ηC). Then κC und κ′C are
inverse to each other since

κC ◦ κ′C
def κ
= εF ′(C) ◦ F (η′C) ◦ κ′C

natκ′
= εF ′(C) ◦ κ′GF ′(C) ◦ F ′(η′C)

defκ′
= εF ′(C) ◦ ε′FGF ′(C) ◦ F ′(ηGF ′(C)) ◦ F ′(η′C)

nat ε′
= ε′F ′(C) ◦ F ′G(εF ′(C)) ◦ F ′(ηGF ′(C)) ◦ F ′(η′C)

= ε′F ′(C) ◦ F ′(G(εF ′(C)) ◦ ηGF ′(C)) ◦ F ′(η′C)
(96)
= ε′F ′(C) ◦ F ′(η′C)

(96)
= 1F ′(C),

and an analogous computation yields κ′C ◦κC = 1F (C). This shows that κ and κ′ are natural iso-
morphisms and that F is naturally isomorphic to F ′. The proof for right adjoints is analogous. 2

B.2 Abelian categories

In this section, we summarise the required background on abelian categories and exact functors
for Section 8. Roughly speaking, an abelian category is a category A in which

• products and coproducts exist for all finite families of objects,

• the morphism sets HomA(A,B) have the structure of abelian groups, and the composition
of morphisms is biadditive,

• there is a notion of a kernel and the dual notion of a cokernel for morphisms in A that
behave like kernels of module homomorphisms and quotients by their images.
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and an exact functor is a functor that respects the abelian group structures on the Hom-sets
and preserves kernels and cokernels.

The first two requirements on an abelian category lead to the concept of an additive category.
Functors between additive categories that respect these conditions are called additive functors.

Definition B.22: A category C is called additive if

(Add1) For all objects C,C ′ of C the set of morphisms HomC(C,C
′) has the structure of an

abelian group, and the composition of morphisms is Z-bilinear: g◦(f+f ′) = g◦f+g◦f ′
and (g + g′) ◦ f = g ◦ f + g′ ◦ f for all morphisms f, f ′ : X → Y and g, g′ : Y → Z.

(Add2) Products and coproducts exist for all finite families of objects in C.

A functor F : C → D between additive categories C, D is called additive if for all objects C,C ′

in C the map F : HomC(C,C
′)→ HomD(F (C), F (C ′)) is a group homomorphism.

Remark B.23:

1. In particular, Definition B.22 requires the existence of an empty product and an empty
coproduct, a terminal object T = Π∅ and an initial object I = q∅ (see Definition B.16).
In an additive category C, these objects are isomorphic and hence zero objects: I ∼= T ∼= 0.

This follows because one has HomC(I, I) = {1I} = {0} by definition of an initial object,
where 0 denotes the neutral element of the abelian group HomC(I, I). If C is additive, this
implies f = 1I ◦ f = 0 ◦ f = 0 : C → I for any morphism f : C → I, since the composi-
tion of morphisms is Z-bilinear. It follows that HomC(C, I) = {0} and hence I is terminal.

2. It follows that for any two objects C,C ′ in an additive category C, the neutral element
of the abelian group HomC(C,C

′) is given by 0 = iC′ ◦ tC : C → 0→ C ′.

3. Finite products and coproducts in additive categories are canonically isomorphic:
Πi∈ICi ∼= qi∈ICi for all finite index sets i ∈ I and objects Ci in C.

The isomorphism is induced by the family (fij)i,j∈I of morphisms fij = δij1Ci : Ci → Cj
with fij = 0 for i 6= j and fii = 1Ci . By the universal property of the product and the
coproduct, there is a unique morphism f : qk∈ICk → Πk∈ICk with πj ◦ f ◦ ιi = δij1Ci .
The inverse of this morphism is given by f−1 = Σi∈I ιi ◦ πi : Πk∈ICk → qk∈ICk, since

πk ◦ f ◦ f−1 = Σi∈I πk ◦ f ◦ ιi ◦ πi = Σi∈I δik1Ci ◦ πi = πk

f−1 ◦ f ◦ ιk = Σi∈I ιi ◦ πi ◦ f ◦ ιk = Σi∈I ιi ◦ δik1Ci = ιk ∀k ∈ I,

and the universal property of the (co)product implies f ◦ f−1 = 1Πi∈ICi , f
−1 ◦ f = 1qi∈ICi .

4. The abelian group structure on the morphism sets HomC(C,C
′) in an additive category

C is determined uniquely by its products and coproducts.

For a finite index set I and an object C in C we denote by φC : qi∈IC → Πi∈IC the unique
morphism with πi◦φC◦ιj = δij 1C from 3. with inverse φ−1

C = Σi∈I ιi◦πi : Πi∈IC → qi∈IC.
We also consider the unique morphism ∆C : C → Πi∈IC with πi◦∆C = 1C for all i ∈ I and
the unique morphism ∇C : qi∈IC → C with ∇C ◦ ιi = 1C for all i ∈ I. For a finite family
(fi)i∈I of morphisms fi : C → D, we consider the unique morphism f : qi∈IC → Πi∈ID
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with πj ◦ f ◦ ιi = δijfi from 3. Then we have

∇D ◦ φ−1
D ◦ f ◦ φ

−1
C ◦∆C = Σi,j∈I∇D ◦ ιi ◦ πi ◦ f ◦ ιj ◦ πj ◦∆C

= Σi,j∈I1D ◦ (πi ◦ f ◦ ιj) ◦ 1C = Σi,j∈Iδij 1D ◦ fi ◦ 1C = Σi∈Ifi.

Hence, we expressed the sum of the morphisms fi in terms of quantities that are defined
in terms of the product and coproduct in an additive category. (This includes the
morphism f , since the zero object that enters its definition is the empty coproduct). As
products and coproducts are unique up to unique isomorphisms, a given category C has
at most one additive structure. Additivity is a property, not a choice of structure.

5. An object X in an additive category C is a product or coproduct of a finite family
of objects (Ci)i∈I if and only if there are families (ij)j∈I and (pj)j∈I of morphisms
ij : Cj → X and pj : X → Cj with pj ◦ ik = δjk1Cj and 1X = Σi∈Iιj ◦ pj (Exercise ??).

6. A functor F : C → D between additive categories C,D is additive if and only if it preserves
finite products or finite coproducts (Exercise ??):

F (Πi∈ICi) ∼= Πi∈IF (Ci), F (qi∈ICi) ∼= qi∈IF (Ci) for all finite families of objects (Ci)i∈I .

Example B.24:

1. For any ring R the category R-Mod of R-modules und R-linear maps is additive.

Products and coproducts are products and direct sums of modules and exist for all
families of modules. The set HomR(M,N) of R-linear maps f : M → N is an abelian
group with the pointwise addition, and this is compatible with their composition.

2. For any ring homomorphism φ : R→ S, the functor Fφ : S-Mod→ R-Mod that sends an
S-module (M,�) to the R-module (M,�R) with r�Rm = φ(r)�m and an S-linear map
f : (M,�)→ (M ′,�′) to the associated R-linear map f : (M,�R)→ (M ′,�′R) is additive.

3. Every full subcategory of an additive category C in which finite products and coproducts
exist, is an additive category as well.

4. For every small category C and additive category A, the category Fun(C,A) of functors
F : C → A and natural transformations between them is an additive category.

• The product of a family of functors (Fi)i∈I is the functor Πi∈IFi : C → A that assigns
to an object C the product Πi∈IFi(C) and to a morphism α : C → C ′ the unique
morphism Πi∈IFi(α) : Πi∈IFi(C)→ Πi∈IFi(C

′) with πiC′ ◦Πi∈IFi(α) = Fi(α) ◦πiC , where
πiC : Πi∈IFi(C)→ Fi(C) are the projection morphisms for the product in A.

• The projection morphisms for Πi∈IFi are the natural transformations πi : Πi∈IFi → Fi
with component morphisms πiC : Πi∈IFi(C)→ Fj(C).

• Coproducts of functors are defined analogously, and the sum of two natural transfor-
mations η, κ : F → G is the natural transformation η + κ : F → G with component
morphisms (η + κ)C = ηC + κC : F (C)→ G(C).

We now develop a notion of kernels and images for morphisms in a category C. In contrast to the
standard definition of a kernel and image of an R-module morphism f : M → N , as subsets of
the modules M and N , a sensible categorical notion of a kernel and image must be formulated
purely in terms of morphisms and universal properties. These morphisms and their universal
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properties must thus generalise the inclusion maps ι : ker(f)→ M and ι′ : im(f)→ N . There
are also two canonical surjection associated with each R-linear map f : M → N , the canonical
surjection π : N → N/im(f) and the canonical surjection π′ : M → M/ker(f). The former is
generalised by the dual notion of a cokernel in a category C and the latter by the notion of a
coimage. These categorical concepts due not require additivity, but they require a zero object
0 in C and the associated zero morphisms 0 = iC′ ◦ tC : C → 0→ C ′.

Definition B.25: Let C be a category with a zero object and f : X → Y a morphism in C.

1. A kernel of f is a morphism ι : ker(f)→ X with the following universal property:
f ◦ ι = 0 : ker(f) → Y , and for every morphism g : W → X with f ◦ g = 0 : W → Y
there is a unique morphism g′ : W → ker(f) with ι ◦ g′ = g.

ker(f)

0

$$ι // X
f // Y

W
∃!g′

cc
g

OO

0

??
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2. A cokernel of f is a morphism π : Y → coker(f) with the following universal property:
π ◦ f = 0 : X → coker(f), and for every morphism g : Y → W with g ◦ f = 0 : X → W
there is a unique morphism g′ : coker(f)→ W with g′ ◦ π = g.

X

0

&&

0   

f // Y

g

��

π // coker(f)

∃!g′zz
W

3. A kernel of a cokernel of f is called an image of f and denoted ι′ : im(f)→ Y . A cokernel
of a kernel of f is called a coimage of f and denoted π′ : X → coim(f).

Remark B.26: As (co)kernels and (co)images are defined by a universal property, they are
unique up to unique isomorphism: If ι : ker(f) → X, η : ker(f)′ → X are two kernels for
f : X → Y , then there is a unique morphism φ : ker(f) → ker(f)′ with η ◦ φ = ι, and this
morphism is an isomorphism. Analogous statements hold for cokernels, images and coimages.

Example B.27: Let R be a ring and f : M → N an R-linear map.

• The inclusion map ι : ker(f)→M is a kernel of f in R-Mod.

• The canonical surjection π : N → N/im(f) is a cokernel of f in R-Mod.

• The canonical inclusion ι′ : im(f)→ N is an image of f in R-Mod.

• The canonical surjection π′ : M →M/ker(f) is a coimage of f in R-Mod.

That ι : ker(f) → M is a kernel of f follows, because f ◦ ι = 0 and for any R-linear map
φ : L→M with f ◦ φ = 0, one has im(φ) ⊂ ker(f). The corestriction φ′ : L→ ker(f), l 7→ φ(l)
is an R-linear map with ι ◦ φ′ = φ. As ι is injective, it is the only one.

That π : N → N/im(f) is a cokernel of f follows, because π ◦ f = 0 and for any R-linear
map ψ : N → P with ψ ◦ f = 0 one has im(f) ⊂ ker(ψ). By the characteristic property of the
quotient, there is a unique R-linear map ψ′ : N/im(f)→ P , [n] 7→ ψ(n) with ψ′ ◦ π = ψ.

That the inclusion map ι′ : im(f)→ N is a kernel of π : N → N/im(f) follows, because π◦ι′ = 0,
and for any R-linear map χ : L → N with π ◦ χ = 0, one has im(χ) ⊂ ker(π) = im(f). The
corestriction χ′ : L → im(f), l 7→ χ(l) satisfies χ′ ◦ ι′ = χ and is the only R-linear map with
this property, since ι′ is injective.

That the canonical surjection π′ : M → M/ker(f) is a cokernel of ι : ker(f) → M follows
because π′ ◦ ι = 0 and because any R-linear map ξ : M → P with ξ ◦ ι = 0 satisfies im(ι) =
ker(f) ⊂ ker(ξ). By the characteristic property of the quotient, there is a unique R-linear map
ξ′ : M/ker(f)→ P with ξ′ ◦ π′ = ξ.

In addition to kernels and cokernels, we also require an appropriate concept of injectivity and
surjectivity and must relate it to kernels and cokernels. Just as for kernels and cokernels, the
appropriate notion of injectivity and surjectivity in a category needs to be formulated purely
in terms of morphisms and universal properties. It is obtained from the observation that a map
ι : X → Y is injective (a map π : X → Y is surjective) if and only if ι ◦ f = ι ◦ g (f ◦π = g ◦π)
implies f = g for all maps f, g : W → X (for all maps f, g : Y → Z). This notion of injectivity
and surjectivity in Set generalises to any category.
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Definition B.28: Let C be a category.

1. A morphism ι : X → Y in C is called a monomorphism, if ι ◦ f = ι ◦ g for morphisms
f, g : W → X implies f = g.

2. A morphism π : X → Y in C is called an epimorphism, if f ◦ π = g ◦ π for morphisms
f, g : Y → Z implies f = g.

In diagrams, monomorphisms ι :X → Y are denoted X �
� ι // Y and epimorphisms π :X → Y

are denoted X π // // Y .

Remark B.29: Clearly, every isomorphism is a monomorphism and an epimorphism. How-
ever, a morphism that is a monomorphism and an epimorphism need not be an isomorphism.
A counterexample is the inclusion morphism ι : Z→ Q in the category of unital rings.

We now relate epimorphisms and monomorphisms to (co)kernels and (co)images. Example B.27
shows that in the category R-Mod the kernel ι : ker(f) → M of an R-linear map f : M → N
is injective and its cokernel π : N → N/im(f) is surjective. Moreover, the module morphism
0 → M is a kernel of f if and only if f is injective and the module morphism N → 0 is a
cokernel of f if and only if f is surjective. Analogues of this hold in all additive categories.

Lemma B.30: Let C be an additive category.

1. All kernels of morphisms in C are monomorphisms. A morphism f : X → Y is a
monomorphism if and only if the morphism iX : 0→ X is a kernel of f .

2. All cokernels of morphisms in C are epimorphisms. A morphism f : X → Y is an
epimorphism if and only if the morphism tY : Y → 0 is a cokernel of f .

Proof:
We prove the first statement. The proof of the second one is analogous. Let ι : ker(f)→ X be
a kernel of f : X → Y and g1, g2 : W → ker(f) morphisms with ι ◦ g1 = ι ◦ g2. Then we have
f ◦ (ι ◦ gi) = (f ◦ ι) ◦ gi = 0 ◦ gi = 0 : W → Y , and by the universal property of the kernel,
there is a unique morphism g′ : W → ker(f) with ι ◦ g′ = ι ◦ g1 = ι ◦ g2. The uniqueness implies
g′ = g1 = g2, and hence ι : W → ker(f) is a monomorphism.

Let now f : X → Y be a monomorphism. We have f ◦ iX = iY = 0 : 0→ Y . If g : W → X is a
morphism with f ◦ g = 0 : W → X then f ◦ iX ◦ tW = 0 : W → X as well, and because f is a
monomorphism, it follows that g = iX ◦ tW . Hence, iX : 0→ X is a kernel of f .

Conversely, if iX : 0→ X is a kernel of f and g1, g2 : W → X are morphisms with f ◦g1 = f ◦g2,
then f ◦ (g1 − g2) = 0 and by the universal property of the kernel, there is a unique morphism
g′ : W → 0 with iX ◦ g′ = g1 − g2 = 0. Since g′ = tW : W → 0 is the only morphism from W to
0, we have g1−g2 = iX ◦tW = 0 : W → X and g1 = g2. This shows that f is a monomorphism 2

This lemma shows that in any additive category, kernels are monomorphisms and cokernels
epimorphisms, as expected from the corresponding statement for R-Mod. However, in R-Mod,
the converse also holds. Every injective R-linear map f : M → N is a kernel, namely of its
cokernel π : N → N/im(f). This follows because π ◦ f = 0, and for every R-linear map
g : L→ N with π ◦ g = 0 one has im(g) ⊂ ker(π) = im(f). Hence, by injectivity of f there is a
unique R-linear map g′ : L→M with f ◦ g′ = g.
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Similarly, every surjective R-linear map f : M → N is a cokernel of its kernel ι : ker(f)→M .
One has f ◦ ι = 0 and ker(f) = im(ι) ⊂ ker(g) for every R-linear map g : M → L with g ◦ ι = 0.
As f is surjective, there is a unique R-linear map g′ : N → L, f(m) 7→ g(m) with g′ ◦ f = g.

In contrast to the claims in Lemma B.30, these statements do not hold automatically in an
additive category. They require in particular that every monomorphism has a cokernel and
every epimorphism has a kernel, which is not guaranteed in an additive category. If we impose
these conditions and the existence of kernels and cokernels for all morphisms, we obtain the
notion of an abelian category, which we will use later as the framework for (co)homology.

We also consider functors between abelian categories that are compatible with the required
structures. Clearly, such functors need to be additive and map kernels to kernels and cokernels
to cokernels. We will see in the following that there are many additive functors that satisfy only
one of the last two conditions and that these functors play an important role in (co)homology.
For this reason, they also receive a name.

Definition B.31:

1. An additive category is called abelian if it satisfies the following additional conditions:

(Ab1) Every morphism has a kernel and a cokernel.

(Ab2) Every monomorphism is a kernel of its cokernel or, equivalently, an image of itself.

(Ab3) Every epimorphism is a cokernel of its kernel or, equivalently, a coimage of itself.

2. A functor F : A → B between abelian categories A, B is called

• left exact if it is additive and preserves kernels:

if ι : ker(f) → X is a kernel of f : X → Y , then F (ι) : F (ker(f)) → F (X) is a
kernel of F (f) : F (X)→ F (Y ).

• right exact if it is additive and preserves cokernels:

if π : Y → coker(f) is a cokernel of f : X → Y , then F (π) : F (Y )→ F (coker(f)) is
a cokernel of F (f) : F (X)→ F (Y ).

• exact if it is left exact and right exact.

Example B.32:

1. For any ring R, the category R-Mod is abelian.

By Example B.24, 1. it is additive, and by Example B.27, every R-linear map f : M → N
has a kernel ι : ker(f) → M and a cokernel π : N → N/im(f). As shown above, every
monomorphism in R-Mod is a kernel of its cokernel and every epimorphism a cokernel of
its kernel.

2. The category of finitely generated free abelian groups and group homomorphisms
between them is additive, but not abelian.

3. The full subcategory of VectF with even-dimensional F-vector spaces of objects is
additive, but not abelian.

4. For any abelian category A, the category Aop is abelian. Kernels and cokernels in Aop
correspond to cokernels and kernels in A, respectively.
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5. For any small category C and any abelian category A the category Fun(C,A) of functors
F : C → A and natural transformations between them is abelian.

Remark B.33:

1. One can show that in an abelian category A a morphism that is both a monomorphism
and an epimorphism is an isomorphism.

2. Like additivity, being abelian is a property of a category and not a choice of structure. If
all objects in an additive category have kernels and cokernels that satisfy the conditions
in Definition B.31, they are unique up to unique isomorphism and determined by the
additive structure.

3. Mitchell’s embedding theorem states that any small abelian category A is equivalent
to a full subcategory of the abelian category R-Mod for some ring R, with an exact
equivalence of categories. For a proof, see [Mi, p 151].

Although Mitchell’s embedding theorem allows one to interpret any small abelian category as a
subcategory of the abelian category R-Mod for a suitable ring R, it is still advantageous to work
with general abelian categories. Firstly, there are also non-small abelian categories. Secondly,
the construction of the associated ring R and the subcategory of R-Mod for an abelian category
A in Mitchell’s embedding theorem is implicit. It is often simpler to use the general formalism
for abelian categories.

In an abelian category kernels and cokernels exist for all morphisms and generalise the inclusion
maps ι : ker(f) → X and the canonical surjections π : Y → Y/im(f) for R-linear maps
f : X → Y . Similarly, images and coimages exist for all morphisms and generalise the inclusion
ι′ : im(f)→ Y and the canonical surjection π′ : X → X/ker(f).

A well-known result in R-Mod states that for any R-linear map f : X → Y one has im(f) ∼=
X/ker(f) and that f factorises as f = ι′ ◦ f ′, where f ′ : X → im(f) is the corestriction of f
and ι′ : im(f) → Y the inclusion. These statements have counterparts in abelian categories.
The first statement translates into the statement that im(f) ∼= coim(f), the second into the
canonical factorisation in an abelian category.

Lemma B.34: Let A be an abelian category. Every morphism f : X → Y in A factorises as
f = ι′f ◦ π′f where ι′f : im(f)→ Y is an image of f and π′f : X → im(f) a coimage of f . This is
called the canonical factorisation of f .

Proof:
1. For any morphism f : X → Y in A, we have πf ◦f = 0 for the cokernel πf : Y → coker(f). By
the universal property of the image ι′f : im(f)→ Y , there is a unique morphism π′f : X → im(f)
with ι′f ◦π′f = f . We show that π′f : X → im(f) is an epimorphism. The first claim then follows
because every epimorphism is its own coimage, or, equivalently, a cokernel of its kernel. As the
morphisms π′f and f = ι′f◦π′f have the same kernel and hence the same coimage π′f : X → im(f).

To show that π′f : X → im(f) is an epimorphism, let φ : im(f) → U be a morphism with
φ ◦ π′f = 0. By the universal property of the kernel ιφ : ker(φ) → im(f), there is a unique
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morphism f ′ with ιφ ◦ f ′ = π′f :

ker(φ) �
� ιφ // im(f)� _

ι′f
��

φ // U

X
π′f

::

f
//

∃!f ′
OO

Y.

The morphism ι′f ◦ ιφ : ker(φ)→ Y is a monomorphism as a composite of two monomorphisms.
Hence, it is a kernel of its cokernel π′ : Y → coker(ι′f ◦ ιφ). This implies

π′ ◦ f = π′ ◦ (ι′f ◦ ιφ ◦ f ′) = (π′ ◦ ι′f ◦ ιφ) ◦ f ′ = 0 ◦ f ′ = 0,

and by the universal property of the cokernel πf : Y → coker(f) there is a unique morphism
π′′ : coker(f)→ coker(ι′f ◦ ιφ) with π′′ ◦ πf = π′

ker(φ) �
� ιφ // im(f)� _

ι′f
��

φ // U

X

π′f

99

f
//

f ′

OO

Y

πf
����

π′ // // coker(ι′f ◦ ιφ)

coker(f).

∃!π′′

77

This implies π′ ◦ ι′f = (π′′ ◦πf ) ◦ ι′f = π′′ ◦ (πf ◦ ι′f ) = π′′ ◦ 0 = 0, since ι′f : im(f)→ Y is a kernel
of πf : Y → coker(f). As ι′f ◦ ιφ is a kernel of π′ and π′ ◦ ι′f = 0, the universal property of the
kernel ι′f ◦ ιφ implies that there is a unique morphism ι′′ : im(f)→ ker(φ) with ι′f ◦ ιφ ◦ ι′′ = ι′f .
Because ι′f is a monomorphism, it follows that ιφ ◦ ι′′ = 1im(f). As ιφ is a kernel of φ, this
implies φ = φ ◦ 1imf

= φ ◦ (ιφ ◦ ι′′) = (φ ◦ ιφ) ◦ ι′′ = 0 ◦ ι′′ = 0, and π′f : X → im(f) is an
epimorphism. 2

After clarifying the properties of abelian categories, we now focus on functors that are com-
patible with abelian categories - exact functors - and on functors that are partially compatible
with it - left or right exact functors. It turns out that there are few exact functors, and most
of them arise from certain standard constructions. Important examples are the following.

Example B.35:

1. For any abelian category A, the cartesian product A × A is abelian and the functors
Π : A×A → A und q : A×A → A are exact.

2. For any abelian category A, small category C and object C in C, the evaluation functor
evC : Fun(C,A) → A that sends a functor F : C → A to the object F (C) and a natural
transformation η : F → G to the component morphism ηC : F (C)→ G(C) is exact.

One reason why so many functors of interest are left or right exact is that one typically considers
functors related to certain constructions, such as tensoring, abelisation or Hom-functors, and
such functors tend to have adjoints. The existence of a left (right) adjoint to a given functor is
sufficient to ensure its left (right) exactness.
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Lemma B.36: Let A and B be abelian categories and F : A → B and G : B → A additive
functors. If F is left adjoint to G, then F is right exact and G left exact.

Proof:
If F is left adjoint to G, by Proposition B.20 there are natural transformations ε : FG → idB
and η : idA → GF with (εF ) ◦ (Fη) = idF and (Gε) ◦ (ηG) = idG. We show that F is right
exact by proving that it sends cokernels to cokernels. The proof that G is left exact is analogous
(Exercise).

Let π : A′ → coker(f) be a cokernel of f : A → A′. Then π ◦ f = 0, and for every morphism
g : A′ → A′′ with g ◦ f = 0 there is a unique morphism g′ : coker(f)→ A′′ with g′ ◦ π = g.

To show that F (π) : F (A′) → F (coker(f)) is a cokernel of F (f) : F (A) → F (A′), note first
that the additivity of F implies F (π) ◦ F (f) = F (π ◦ f) = F (0) = 0.

If h : F (A′) → B is a morphism with h ◦ F (f) = 0, then G(h) ◦ ηA′ : A′ → G(B) can be
pre-composed with f , and by additivity of G and naturality of η we have

G(h) ◦ ηA′ ◦ f = G(h) ◦GF (f) ◦ ηA = G(h ◦ F (f)) ◦ ηA = G(0) ◦ ηA = 0.

By the universal property of the cokernel π there is a unique morphism k : coker(f) → G(B)
with G(h) ◦ ηA′ = k ◦ π. The morphism h′ = εB ◦ F (k) : F (coker(f))→ B satisfies

h′ ◦ F (π) = εB ◦ F (k) ◦ F (π) = εB ◦ F (k ◦ π) = εB ◦ FG(h) ◦ F (ηA′) = h ◦ εF (A′) ◦ F (ηA′) = h.

If h′′ : F (coker(f)) → B is another morphism with h′′ ◦ F (π) = h = h′ ◦ F (π), then we have
(h′′ − h′) ◦ F (π) = 0. This implies 0 = G(h′′ − h′) ◦GF (π) ◦ ηA′ = G(h′′ − h′) ◦ ηcoker(f) ◦ π and
hence G(h′′− h′) ◦ ηcoker(f) = 0, because π is an epimorphism. Using the naturality of ε and the
condition (εF ) ◦ (Fη) = idF , we obtain

h′′ − h′ = (h′′ − h) ◦ εF (coker(f)) ◦ F (ηcoker(f)) = εB ◦ FG(h′′ − h′) ◦ F (ηcoker(f)) = εB ◦ F (0) = 0.

This shows that h′′ = h′ and that h′ is the unique morphism with h′ ◦ F (π) = h. Hence,
F (π) : F (A′)→ F (coker(f)) has the universal property of the cokernel and F is right exact. 2

Two of the most important right exact functors are the functors M⊗R− : R-Mod → Ab and
−⊗RN : Rop-Mod → Ab for an R-right module M and an R-left module N . They are left
adjoint to Hom(M,−) : Ab→ R-Mod and Hom(N,−) : Ab→ Rop-Mod by Example B.19, 6.

Corollary B.37: Let R be a ring, M an R-right module and N an R-left module. Then

1. The functors M⊗R− : R-Mod→ Ab and −⊗RN : Rop-Mod→ Ab are right exact.

2. The functors Hom(M,−) : Ab→ R-Mod and Hom(N,−) : Ab→ Rop-Mod are left exact.

While there is no direct analogue of the tensor product over a ring for general abelian categories,
the functors Hom(A,−) : A → Ab and Hom(−, A) : Aop → Ab are defined for any abelian
category A.

• The functor Hom(A,−) sends an object A′ to the abelian group HomA(A,A′) and a
morphism f : A′ → A′′ to the group homomorphism

Hom(A, f) : HomA(A,A′)→ HomA(A,A′′), g 7→ f ◦ g.
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• The functor Hom(−, A) sends an object A′ in A to the abelian group HomA(A′, A) and
a morphism f : A′ → A′′ to the group homomorphism

Hom(f, A) : HomA(A,A′′)→ HomA(A,A′), g 7→ g ◦ f.

This raises the question if left exactness holds for these generalisations as well. Indeed, it is
possible to prove this without Lemma B.36.

Lemma B.38: Let A be an abelian category and f : X → Y a morphism in A.

1. For any object A in A the functor Hom(A,−) : A → Ab is left exact:

A morphism ι : W → X is a kernel of f : X → Y in A if and only if for all objects A in
A the morphism ι∗ = Hom(A, ι) in Ab is a kernel of f∗ = Hom(A, f).

2. For any object A in A the functor Hom(−, A) : Aop → Ab is left exact:

A morphism π : Y → Z is a cokernel of f : X → Y in A if and only if for all objects A
in A the morphism π∗ = Hom(π,A) in Ab is a kernel of f ∗ = Hom(f, A).

Proof:
We prove the first claim. The proof of the second claim is analogous if one takes into account
that kernels and cokernels in A are cokernels and kernels in Aop, respectively.

As we work in Ab = Z-Mod, Example B.27 implies that the group homomorphism ι∗ is a kernel
of the group homomorphism f∗ if and only if (i) ι∗ is injective and (ii) im(ι∗) = ker(f∗).

Condition (i) is satisfied if and only if ι ◦ g = ι ◦ g′ implies g = g′ for all g, g′ ∈ HomA(A,W ),
and this is equivalent to the statement that ι is a monomorphism. Condition (ii) is satisfied
if and only if (iia) f ◦ ι ◦ h = 0 for all morphisms h : A → W and (iib) for every morphism
g : A → X with f ◦ g = 0 there is a morphism g′ : A → X with ι ◦ g′ = g. Condition (iia)
is satisfied if f ◦ ι = 0, and by setting h = 1A we see that (iia) implies f ◦ ι = 0. As ι is a
monomorphism, condition (iib) then states that ι is a kernel of f . 2

Remark B.39:

1. In general the functor A⊗R− : R-Mod→ Ab is not left exact.

A counterexample is R = Z, A = Z/nZ. Then ι : Z → Z, z 7→ nz is injective
with im(ι) = ker(π) for π : Z → Z/nZ, z 7→ z̄ and hence a kernel of π. But
id⊗ι : Z/nZ⊗ZZ → Z/nZ⊗ZZ is given by (id⊗ι)(k̄⊗z) = k̄⊗(nz) = nk⊗z = 0̄⊗z = 0
for all k̄ ∈ Z/nZ and z ∈ Z. Hence, id⊗ι = 0 is not injective and not a kernel of id⊗π.

2. The functors Hom(A,−) : A → Ab, Hom(−, A) : Aop → Ab are in general not right exact.

A counterexample is A = Ab and A = Z/nZ. Then by 1. the group homomorphism
ι : Z→ Z, z 7→ nz is a kernel of π : Z→ Z/nZ, z 7→ z̄ and π a cokernel of ι.

However, Hom(Z/nZ, π) : HomAb(Z/nZ,Z) → HomAb(Z/nZ,Z/nZ), g 7→ π ◦ g is not
surjective and hence not a cokernel of Hom(Z/nZ, ι).
Similarly, Hom(ι,Z/nZ) : HomAb(Z,Z/nZ)→ HomAb(Z,Z/nZ), g 7→ g ◦ ι is trivial since
g ◦ ι(z) = g(nz) = ng(z) = 0 for all z ∈ Z and group homomorphisms g : Z → Z/nZ.
Hence, Hom(ι,Z/nZ) = 0 is not surjective and not a cokernel of Hom(π,Z/nZ).
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R-right modules M for which the associated functor A⊗R− : R-Mod → Ab is not only right
exact but exact and objects in an abelian category A for which the functor Hom(A,−) or
Hom(−, A) are exact play a special role in representation theory and homology theories. For
this reason, they receive a name.

Definition B.40:
A right module A over a ring R is called flat if the functor A⊗R− : R-Mod→ Ab is exact.

Definition B.41: An object A in an abelian category A is called

• projective if the functor Hom(A,−) : A → Ab is exact,

• injective if the functor Hom(−, A) : Aop → Ab is exact.

One can show that for A = Rop-Mod any projective Rop-module is flat. Hence, projectivity
and injectivity are not only more general concepts, but also stronger conditions when both are
defined. There is an alternative characterisations of projectivity and injectivity that is easier
to handle and generalises to non-abelian categories.

Lemma B.42: Let A be an abelian category.

1. An object A in A is projective if and only if for every epimorphism π : X → Y and every
morphism f : A→ Y there is a morphism f ′ : A→ X with π ◦ f ′ = f

A
∃f ′

~~
f
��

X π // // Y // 0

2. An object A in A is injective if and only if for every monomorphism ι : Y → X and every
morphism f : Y → A there is a morphism f ′ : X → A with f ′ ◦ ι = f

A

X

∃f ′
>>

Y? _
ιoo

f

OO

0oo

Proof:
We prove the first statement. The proof of the second one is analogous.

⇒ Let A be projective. Then Hom(A,−) is exact and maps kernels to kernels and cokernels
to cokernels. As every epimorphism π : X → Y in A is a cokernel of its kernel, the morphism
Hom(A, π) : HomA(A,X) → HomA(A, Y ) is a cokernel as well and hence an epimorphism in
Ab by Lemma B.30. This means that for every morphism f : A → Y , there is a morphism
f ′ : A→ X with Hom(A, π)(f ′) = π ◦ f ′ = f .

⇐ Suppose that for every morphism f : A → Y and epimorphism π : X → Y there is a
morphism f ′ : A → X with π ◦ f ′ = f . Then Hom(A, π) : HomA(A,X) → HomA(A, Y ) is an
epimorphism for every epimorphism π : X → Y .

Let f : A → X be a morphism with cokernel π : X → Y . By Lemma B.34 f has a canonical
factorisation f = ι′◦π′ with a monomorphism ι′ and an epimorphism π′. By Exercise ?? the mor-
phism π : X → Y is also a cokernel of ι′. As ι′ is a monomorphism, it is a kernel of its cokernel
π : X → Y . By left-exactness of Hom(A,−), it follows that Hom(A, ι′) is a kernel of Hom(A, π).
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As every epimorphism is a cokernel of its kernel, it follows that Hom(A, π) is a cokernel of
Hom(A, ι′). As Hom(A, f) = Hom(A, ι′ ◦ π′) = Hom(A, ι′) ◦ Hom(A, π′) and Hom(A, π′) is an
epimorphism, Hom(A, π) is also a cokernel of Hom(A, f) and hence Hom(A,−) is right exact. 2

Example B.43:

1. By Remark B.39 the objects Z/nZ in Ab are neither projective nor injective.

2. For every ring R, any free R-module is projective.

If A is a free R-module with basis B, π : X → Y R-linear and surjective and f : A→ Y
R-linear, then we can choose for every element b ∈ B an element f ′(b) ∈ π−1(f(b)) and
obtain an R-linear map f ′ : A→ X, b 7→ f ′(b) with π ◦ f ′ = f .

3. The object Z in Ab is projective, but not injective.

The projectivity of Z follows from 2. However, Z is not injective, because for the
monomorphism ι : Z → Z, z 7→ nz with n > 1 and the group homomorphism
f = idZ : Z→ Z there is no morphism f ′ : Z→ Z with f ′ ◦ ι = f = idZ.

Lemma B.42 not only gives simple criteria for projectivity and injectivity but also allows one to
extend the notions of projectivity and injectivity from abelian categories to general categories.
As the concepts in Lemma B.42 are defined in any category, we can take the conditions in
Lemma B.42 as the definition of projectivity and injectivity there.
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Index

A-linear map, 177
q-Chu-Vandermonde formula, 166
q-Pascal identity, 91
q-binomial, 91
q-binomial formula, 91
q-deformed universal enveloping algebra, 96

at root of unity, 99
q-determinant, 95
q-factorial, 91
q-natural, 91
3-cocycle, 9

abelian
category, 202

Abelisation, 187
additive

category, 197
functor, 197

adjoint functor, 192
Alexander polynomial, 61
algebra, 171, 172

commutative, 172
filtered, 176
generated by set, 175
generator, 174
graded, 173
over commutative ring, 172
presentation, 174
relation, 174

algebra object, 168
alternating algebra, 174
ambient isotopic, 55, 57
ambient isotopy, 55

framed links, 57
antipode, 84
Artin-Wedderburn theorem, 182
associator, 5

bialgebra, 81
blackboard framed, 57
braid category, 11
braid group, 10
braided monoidal category, 35
braided monoidal functor, 40
braided natural isomorphism, 40
braided natural transformation, 40
braided vector space, 41

braiding, 35

canonical factorisation
morphism in abelian category, 203

Cartan automorphism, 167
Cartan matrix, 99
cartesian product of categories, 185
Cartier-Kostant-Milnor-Moore Theorem, 104
category, 183
category of ribbon tangles, 63
category of tangles, 62
centre

category, 43
character, 101
characteristic property

quotient of coalgebra, 80
Chevalley basis, 99
coalgebra, 78

cocommutative, 78
coalgebra map, 78
cobordism, 70
cobordism category, 69
cofinal object, 191
coherence

monoidal categories, 21
coherence data, 14
coideal, 79
coimage, 200
coinduction functor, 194
coinvariant, 105
cokernel, 200
colinear map, 80
commutative, 171
commutator, 175
complement

of submodule, 180
composition

functors, 186
morphisms, 183
natural transformations, 188

comultiplication, 78
concrete category, 184
contravariant functor, 186
convolution product, 84, 176
Conway polynomial, 162
coproduct in category, 190
core
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of ribbon, 57
counit, 78
crossed G-set, 37
crossed module, 155
crossed relations, 124

derivation, 101
dimension

module over algebra, 177
dodecagon diagram, 36, 41
Drinfeld double, 123
Drinfeld element, 121
Drinfeld-Jimbo deformations, 99

endofunctor, 186
endomorphism in category, 183
epimorphism in category, 201
equivalence

knots, 55
link diagrams, 56
links, 55
of categories, 189
of cobordisms, 70
of framed links, 57
oriented links, 55
ribbon diagrams, 58
topological quantum field theories, 70

essentially surjective functor, 189
evaluation

of q-binomials, 92
of q-factorials, 92

exact
functor, 202

exterior algebra, 174

face
of embedded graph, 132

fiber functor, 147
final object, 191
finite

F-linear abelian category, 143
finite dual

of algebra, 79
of bialgebra, 82

finite length
module, 180
object in abelian category, 143

flat module, 207
flip map, 78, 172
forgetful functor, 186

formal power series, 173
framed link, 57
framed link invariant, 58
Frobenius algebra, 74
Frobenius form, 74
Frobenius map, 109
Fukuma-Hosono-Kawai model, 163
full subcategory, 185
fully faithful functor, 189
functor, 186
functor category, 188
fundamental group, 187
fundamental theorem of Hopf modules, 108
fusion category, 146

Gauß polynomial, 91
graded vector spaces, 9, 155
group algebra, 176
grouplike element, 100
groupoid, 185

Haar integral, 106
hexagon axioms, 35
highest weight module, 167
highest weight vector, 167
Hom-functors, 187
HOMFLY polynomial, 59
homomorphism

of algebras, 171, 172
of bialgebras, 81
of coalgebras, 78
of Lie algebras, 175
of modules, 177
of algebra representations, 177
of comodules, 80
of Hopf modules, 107
of quasitriangular bialgebras, 117

Hopf algebra, 84
Hopf subalgebra, 88

identity morphism, 183
image, 200
inclusion map

tensor algebra, 173
universal enveloping algebra, 175

indecomposable
object in abelian category, 142

induction functor, 194
injective

object, 207
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invariant, 105
invariant of framed links, 58
invariant of framed oriented links, 58
involutive, 84
isomorphic, objects in category, 183
isomorphism

category, 183

Jacobi identity, 175
Jones polynomial, 61
Jones-Conway polynomial, 61
Jordan-Hölder series, 143, 181
Jordan-Hölder theorem, 143, 181

Kauffman bracket, 161
Kauffman polynomial, 60
kernel, 199
Kitaev model, 133

edge operators, 133
extended Hilbert space, 133
face operator, 133
ground state, 134
marked face, 133
marked vertex, 133
protected state, 134
site, 133
vertex operator, 133

knot, 55
oriented, 55

Larson-Radford Theorem, 115
left adjoint functor, 192
left coideal, 79
left comodule, 80
left dimension

object, 32
left dualisable, 24
left exact functor, 202
left integral, 106
left module, 177
left rigid, 24
left trace

morphism, 32
length, 143

module, 181
Lie algebra, 175
Lie bracket, 175
linear

category, 142
functor, 142

linear equivalence, 142
link, 55

oriented, 55
link diagram, 56
link invariant, 58
locally finite

F-linear abelian category, 143

Maschke’s Theorem
for finite groups, 112
for Hopf algebras, 111

matrix algebra, 95
matrix elements, 79
Mitchell’s embedding theorem, 203
modular element, 112
module

of finite length, 180
module algebra, 168
module object, 168
monoid, 185
monoidal category, 5

opposite, 8
monoidal equivalence, 13
monoidal functor, 13

strict, 13
monoidal isomorphism, 14
monoidal natural transformation, 13
monoidally equivalent, 13
monomorphism in category, 201
morphism

category, 183
morphism of (∆, ε)-Frobenius algebras, 74
morphism of crossed G-sets, 37
morphism of Frobenius algebras, 74
morphism of Yang-Baxter operators, 41
multiplicity, 143

Nakayama automorphism, 162
natural isomorphism, 187
natural transformation, 187
naturally isomorphic, 187
non-degenerate

Frobenius form, 74
normalised, 106
null object, 191

object in category, 183
opposite algebra, 172
opposite braiding, 35
opposite category, 185
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opposite coalgebra, 79
ordinal numbers, 9, 189
oriented

link, 55
oriented knot, 55
oriented link diagram, 56
oriented link invariant, 58
oriented ribbon invariant, 58
overcrossing, 56

pairs of topological spaces, 184
pentagon axiom, 6
permutation category, 11
pivot, 128
pivotal category, 30
pivotal Hopf algebra, 128
pivotal structure, 30
Poincaré-Birkhoff-Witt basis, 176
pointed topological spaces, 184
primitive element, 100
product in category, 189
projective

object, 207
projective cover, 143
pullback, 179

quantum Casimir, 167
quantum double, 123
quantum plane, 94
quantum Yang-Baxter equation, 120
quasitriangular

bialgebra, 117
Hopf algebra, 117

quotient
of algebra, 171

quotient category, 185
quotient object, 142
QYBE, 120

rational modules, 81
Reidemeister moves, 56

for framed links, 58
for ribbons, 58

relation, 184
representable

functor, 144
representation

of algebra, 177
rescaled Kauffman polynomial, 61
restriction

of modules to subalgebra, 179
restriction functor, 186, 194
ribbon, 57
ribbon category, 52
ribbon element, 130
ribbon Hopf algebra, 130
ribbon invariant, 58
ribbon tangle, 63
right adjoint functor, 192
right coideal, 79
right dimension

object, 32
right dual, 24
right dualisable, 24
right exact functor, 202
right Hopf module, 107
right integral, 106
right rigid, 24
right trace

morphism, 32
rigid, 24
ring category, 146

Schur’s lemma, 170, 180
semisimple

module, 179
abelian category, 142
algebra, 179
object in abelian category, 142

separability idempotent, 169
shuffle permutations, 89
simple

algebra, 179
module, 179
object in abelian category, 142

simplex category, 9
skein related, 59
small category, 184
smash product, 168
snake identities, 28
source of morphism, 183
spherical

category, 32
strict

monoidal category, 6
tensor category, 6

strictification
monoidal categories, 18

subalgebra, 171
subbialgebra, 82
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subcategory, 185
subcoalgebra, 79
subobject, 142
subquotients, 181
Sweedler notation, 78
Sweedler’s example, 94
symmetric

braiding, 35
Frobenius algebra, 74
monoidal category, 35

symmetric algebra, 174
symmetric monoidal functor, 40

Taft’s example, 93
tangle, 62
tangle category, 62
target of morphism, 183
tensor algebra, 173
tensor category, 146
tensor functor

strict, 13
tensor product

of bialgebras, 82
crossed G-sets, 37
monoidal category, 5
of algebras, 173
of coalgebras, 79
of Hopf algebras, 88

tensor unit, 5
terminal object, 191
topological invariant, 135
topological quantum field theory, 70
triangle axiom, 6
triangular

bialgebra, 117
Hopf algebra, 117

trivial
Hopf module, 107
morphism, 191

twist, 51
twisting

of Frobenius algebra, 75

undercrossing, 56
unimodular, 106
unique up to unique isomorphism, 190
unit constraints, 5
universal R-matrix, 117
universal enveloping algebra, 175
universal property

cokernel, 200
coproduct, 190
kernel, 199
product, 190
tensor algebra, 174
universal enveloping algebra, 175

universality of the braid category, 40
universality of the ribbon category, 66
unknot, 56, 59, 60

weight, 167
writhe, 59

Yang-Baxter equation, 36
Yang-Baxter operator, 41

zero morphism, 191
zero object, 191
zigzag identities, 28
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