Vorlesung "Körpertheorie" (Sommersemester 2024)

Übungsblatt 10 (19.6.2024-26.6.2024)

Mit \mathbf{P} werden Präsenzaufgaben, mit \mathbf{H} Hausaufgaben bezeichnet.

Präsenzaufgaben

Aufgabe P46: (Staatsexamensaufgabe)

- (a) Zeigen Sie, dass jeder irreduzible Faktor von $f := X^4 25 \in \mathbb{Q}[X]$ separabel über \mathbb{Q} ist.
- (b) Bestimmen Sie ein primitives Element eines Zerfällungskörpers L von f über $\mathbb Q$ und die Dimension von L über $\mathbb Q$.
- (c) Berechnen Sie die Automorphismengruppe von L über \mathbb{Q} .
- (d) Bestimmen Sie alle Zwischenkörper $\mathbb{Q} \subseteq K \subseteq L$ und ihre Inklusionen.

Aufgabe P47: Gegeben seien die Zahlen $\alpha = \sqrt{10 + \sqrt{10}} \in \mathbb{R}$ und $\beta = \sqrt{10 - \sqrt{10}} \in \mathbb{R}$.

- (1) Bestimme das Minimalpolynom f von α (und β) und zerlege es in Linearfaktoren über $\mathbb{Q}(\alpha, \beta)$.
- (2) Betrachte $\alpha\beta$ und zeige damit, dass $\beta \in \mathbb{Q}(\alpha)$ gilt.
- (3) Warum ist $\mathbb{Q}(\alpha)$ galoissch über \mathbb{Q} ?
- (4) Zeige, dass ein $\sigma \in \operatorname{Gal}(\mathbb{Q}(\alpha)|\mathbb{Q})$ existiert mit $\sigma(\alpha) = \beta$.
- (5) Zeige: ord $(\sigma) = 4$ und $Gal(\mathbb{Q}(\alpha)|\mathbb{Q}) = \langle \sigma \rangle$.
- (6) Bestimme alle Zwischenkörper der Erweiterung $\mathbb{Q}(\alpha)|\mathbb{Q}$ und skizziere das zugehörige Diagramm der Unterkörper von $\mathbb{Q}(\alpha)$.

Aufgabe P48: (Staatsexamensaufgabe) Es seien $\alpha := \sqrt{\sqrt{12} + 3} \in \mathbb{R}$, $\beta := i\sqrt{\sqrt{12} - 3} \in \mathbb{C}$ und $L := \mathbb{Q}(\alpha, \beta) \subseteq \mathbb{C}$.

- (a) Bestimmen Sie das Minimalpolynom $f = m_{\alpha,\mathbb{Q}}$ von α über \mathbb{Q} und zeigen Sie, dass auch β eine Nullstelle von f ist.
- (b) Begründen Sie, warum L/\mathbb{Q} eine Galois-Erweiterung ist.
- (c) Zeigen Sie, dass $L = \mathbb{Q}(\alpha, i)$ gilt, und bestimmen Sie den Grad $[L : \mathbb{Q}]$.
- (d) Zeigen Sie, dass die Galois-Gruppe $\operatorname{Gal}(L/\mathbb{Q})$ einen Normalteiler der Ordnung 2 hat.

Aufgabe P49: (Inspiriert von einer Staatsexamensaufgabe) Ein irreduzibles Polynom $f \in \mathbb{Q}[x]$ besitze (mindestens) eine Nullstelle $\alpha \in \mathbb{R}$ und (mindestens) eine Nullstelle $\beta \in \mathbb{C} \setminus \mathbb{R}$. Sei K der Zerfällungskörper von f über \mathbb{Q} . Zeige, dass die Galoisgruppe $\operatorname{Gal}(K|\mathbb{Q})$ nicht abelsch ist.

Aufgabe P50: (Staatsexamensaufgabe) Sei K ein Körper der Charakteristik 0 und sei p eine Primzahl. Angenommen, p teilt den Grad jeder endlichen Körpererweiterung L/K mit $K \subseteq L$. Zeigen Sie, dass dann der Grad jeder endlichen Körpererweiterung von K eine Potenz von p ist. (Hinweis: Zeigen Sie, dass es eine endliche Galoiserweiterung E/K mit $K \subseteq L \subseteq E$ gibt, und verwenden Sie die Sylowsätze.)

Datei: kt_u10.tex. Version vom 17.6.2024

1

Hausaufgaben¹

Aufgabe H28: Die Zahlen $\alpha = \sqrt{5 + 2\sqrt{6}} \in \mathbb{R}$ und $\beta = \sqrt{5 - 2\sqrt{6}} \in \mathbb{R}$ haben beide das Minimalpolynom $f = x^4 - 10x^2 + 1 \in \mathbb{Q}[x]$, das sich über $\overline{\mathbb{Q}}$ wie folgt faktorisieren lässt:

$$f = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta).$$

Daher gibt es 4 Körperhomomorphismen $\sigma_i:\mathbb{Q}(\alpha)\to\overline{\mathbb{Q}}$, die durch

$$\sigma_1(\alpha) = \alpha, \quad \sigma_2(\alpha) = -\alpha, \quad \sigma_3(\alpha) = \beta, \quad \sigma_4(\alpha) = -\beta$$

bestimmt sind.

- (1) Betrachte $\alpha\beta$ und folgere, dass $\mathbb{Q}(\alpha)$ galoissch über \mathbb{Q} ist. Damit gilt auch $\mathrm{Gal}(\mathbb{Q}(\alpha)|\mathbb{Q}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}.$
- (2) Bestimme die Ordnungen von σ_i und den Isomorphietyp von $\operatorname{Gal}(\mathbb{Q}(\alpha)|\mathbb{Q})$.
- (3) Zeige:

$$\alpha^2 \in \mathbb{Q}(\alpha)^{\langle \sigma_2 \rangle}, \quad \alpha + \beta \in \mathbb{Q}(\alpha)^{\langle \sigma_3 \rangle}, \quad \alpha - \beta \in \mathbb{Q}(\alpha)^{\langle \sigma_4 \rangle},$$

berechne α^2 , $(\alpha + \beta)^2$ und $(\alpha - \beta)^2$, und beschreibe damit die angegebenen Zwischenkörper.

(4) Erstelle ein Diagramm der Unterkörper von $\mathbb{Q}(\alpha)$.

Aufgabe H29: Sei $K \subseteq \mathbb{C}$ ein Unterkörper von \mathbb{C} , sodass $K|\mathbb{Q}$ galoissch vom Grad 4 mit $\mathrm{Gal}(K|\mathbb{Q}) \simeq \mathbb{Z}_4$ ist. Zeige:

- (1) Es gibt genau einen Körper E mit $\mathbb{Q} \subseteq E \subseteq K$ und $[E : \mathbb{Q}] = 2$.
- (2) Ist $K \not\subseteq \mathbb{R}$, so gilt

$$E = K \cap \mathbb{R}$$
.

(3) Für alle $d \in \mathbb{N}$ gilt

$$\sqrt{-d} \not\in K$$
.

Aufgabe H30: (Staatsexamensaufgabe) Sei E/K eine endliche Galoiserweiterung und sei $\alpha \in E$, so dass $\sigma(\alpha) \neq \alpha$ für alle $1 \neq \sigma \in \operatorname{Gal}(E/K)$.

Zeigen Sie: α ist ein primitives Element von E/K.

 $^{^{1}}$ Abgabe der Hausaufgaben bis 26.6.2024, $^{10:00}$ Uhr in den Übungskästen oder in den Übungsgruppen