Anderson localization inhibited by topology

Hermann Schulz-Baldes

Department Mathematik, Erlangen-Nürnberg

Italo’s 70th Birthday Conference in Parma, June 2015
Phase-Averaged Transport for Quasi-Periodic Hamiltonians

Jean Bellissard1,2, Italo Guarneri3,4,5, Hermann Schulz-Baldes6

1 Université Paul-Sabatier, 118 route de Narbonne, 31062 Toulouse, France
2 Institut Universitaire de France
3 Università dell’Insubria a Como, via Valleggio 11, 22100 Como, Italy
4 Istituto Nazionale per la Fisica della Materia, via Celoria 16, 20133 Milano, Italy
5 Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy
6 University of California at Irvine, CA 92697, USA

Received: 30 May 2001 / Accepted: 2 January 2002

Abstract: For a class of discrete quasi-periodic Schrödinger operators defined by covariant representations of the rotation algebra, a lower bound on phase-averaged transport in terms of the multifractal dimensions of the density of states is proven. This result is established under a Diophantine condition on the incommensuration parameter. The relevant class of operators is distinguished by invariance with respect to symmetry automorphisms of the rotation algebra. It includes the critical Harper (almost-Mathieu) operator. As a by-product, a new solution of the frame problem associated with Weyl–Heisenberg–Gabor lattices of coherent states is given.
Random Dirac operator with time-reversal symmetry

Hamiltonian on $L^2(\mathbb{R}) \otimes \mathbb{C}^{2N}$

$$H = I \partial_x + V$$

$$I = \begin{pmatrix} 0 & -1_N \\ 1_N & 0 \end{pmatrix}$$

with random $2N \times 2N$ matrix potential with TRS

$$V = V^* = I^* \overline{V} I = \sum_n V_n \delta_n$$

implies

$$I^* H I = H$$

Hypothesis: distribution of i.i.d. V_n’s absolutely continuous

Theorem (with Sadel, 2010) \mathbb{Z}_2 dichotomy (in $N \mod 2$):

- N odd \implies almost surely pure a.c. spectrum of multiplicity 2
- N even \implies no a.c. spectrum (Only pure point?)
Physical interpretation

• for odd N no Anderson localization, even though quasi-one-dimensional random model

• Exactly 1 double channels survives (left and right mover) others ”dissolve”

• Why should one care about a.c. spectrum?

 Guarneri bound in $d = 1$ implies ballistic transport

• Anderson localization for even number of channels N

• Is this of physical relevance for anything?

Effective model for edge states in spin quantum Hall systems
Why is the theorem true?

Solve Schrödinger at energy $E \in \mathbb{R}$ using transfer matrices

$$T^E(n, n-1) = e^{iV_n} e^{\partial_x - EI}$$

Lies in the group

$$SO^*(2N) = \{ T \in GL(2N, \mathbb{C}) \mid T^* I T = I, \ I^* \overline{T} I = T \}$$

For such T one has Kramers’ degeneracy:

$$T^* T v = \lambda v \quad \Rightarrow \quad T^* T \overline{v} = \lambda \overline{v}$$

Implies double degeneracy of Lyapunov spectrum $\gamma_n \geq \gamma_{n+1}$

Moreover, usual symmetry $\gamma_n = -\gamma_{2N-n}$

Together for N odd: $\gamma_N = \gamma_{N+1} = 0$ open channel
Now the work starts (for a mathematician):

- Show that all other Lyapunov exponents are non-vanishing
 Apply Goldsheid-Margulis theory for to the group $\text{SO}^*(2N)$
 For even N there are no vanishing Lyapunov exponents
- Adapt Kotani-Simon (magical) theory for ergodic Dirac operator
 mult. of a.c. spectrum $= \#$ of vanishing Lyapunov exponents
 Proves existence of a.c. spectrum
- Almost sure absence of singular spectrum
 Adapt Jaksic-Last theory (purity of a.c. spectrum in Anderson)
Is all this tightly linked to the group $\mathbb{SO}^*(2N)$?

Transfer matrices in $\mathbb{SO}^*(2N)$ for H in CAZ All (odd TRS)

- 2 vanishing γ’s in groups $\mathbb{O}(N, \mathbb{C})$ with N odd (H Class DIII)
- $|N - M|$ vanishing in $\mathbb{U}(N, M)$, $\mathbb{O}(N, M)$, $\mathbb{SP}(N, M)$

 Corresponds to Hamiltonians of CAZ classes A, D and C

Effective model for edge states in QHE on $L^2(\mathbb{R}) \otimes \mathbb{C}^{N+M}$

$$H = J i \partial_x + V \quad J = \begin{pmatrix} 1_N & 0 \\ 0 & -1_M \end{pmatrix}$$

Random matrix potential $V = V^* = \sum_n V_n \delta_n$ with coupling hyp.

Then transfer matrices in $\mathbb{U}(N, M)$

Theorem (with Ludwig, Stolz 2013)

Almost surely pure a.c. spectrum of multiplicity $|N - M|$
Anderson localization inhibited by topology

Quantum spin Hall system (odd TRS, Class AII)

Disordered Kane-Mele model on hexagon lattice and with \(s = \frac{1}{2} \)

\[
H = \Delta_{\text{hexagon}} + H_{\text{SO}} + H_{\text{Ra}} + \lambda_{\text{dis}} V
\]

Pseudo-gap at Dirac point opens non-trivially due to

\[
H_{\text{SO}} = i \lambda_{\text{SO}} \sum_{i=1,2,3} (S_{i}^{nn} - (S_{i}^{nn})^*) s^z
\]

No \(s^z \)-conservation due to Rashba term \(H_{\text{Ra}} \), but odd TRS

\[
H = I^* \bar{H} I \quad I = e^{i\pi s^y}
\]

Non-trivial topology:

Kane-Mele (2005): \(\mathbb{Z}_2 \) invariant for periodic system from Pfaffians
Haldane et al. (2005): spin Chern numbers for \(s^z \) invariant systems
Prodan (2009): spin Chern number from \(P_s = \chi(|P s^z P - \frac{1}{2}| < \frac{1}{2}) \)
with Avila, Villegas (2012): \(\mathbb{Z}_2 \) invariant for edge states

Here: \(\mathbb{Z}_2 \) invariant for disordered system as index of Fredholm
\mathbb{Z}_2 index for odd TRS and $d = 2$

QHE: $P = \chi(H \leq \mu)$ Fermi projection and $F = \frac{X_1 + iX_2}{|X_1 + iX_2|} = F^t$

Then: $T = PFP$ Fredholm operator, namely $\dim(\ker(T^*)) < \infty$

And: Hall conductance $= \text{Ind}(T) = \dim(\ker(T)) - \dim(\ker(T^*))$

Here: $I^*\overline{H}I = H = I^*H^tI$ with $H^t = (\overline{H})^* \implies I^*P^tI = P$

Definition T odd symmetric $\iff I^*T^tI = T$ with $I^2 = -1$

Theorem (Atiyah-Singer 1969, S-B 2013)

$F_2(\mathcal{H}) = \{\text{odd symmetric Fredholm operators}\}$ has 2 connected components labelled by compactly stable homotopy invariant $\text{Ind}_2(T) = \dim(\ker(T)) \mod 2 \in \mathbb{Z}_2$

Application: \mathbb{Z}_2 phase label for Kane-Mele model if dyn. localized
Proof via Kramers degeneracy:

First of all: $\text{Ind}(T) = 0$ because $\text{Ker}(T^*) = I \overline{\text{Ker}(T)}$

Idea: $\text{Ker}(T) = \text{Ker}(T^* T)$

and positive eigenvalues of $T^* T$ have even multiplicity

Let $T^* T v = \lambda v$ and $w = I \overline{T v}$ (N.B. $\lambda \neq 0$). Then

$$T^* T w = I (I^* T^* I) (I^* TI) \overline{T v}$$

$$= I \overline{T T^* T v} = \lambda I \overline{T v} = \lambda w.$$

Suppose now $\mu \in \mathbb{C}$ with $v = \mu w$. Then

$$v = \mu I \overline{T v} = \mu I \overline{\mu} I T v = -|\mu|^2 T^* T v = -|\mu|^2 \lambda v$$

Contradiction to $v \neq 0$.

Now span$\{v, w\}$ invariant subspace of $T^* T$, so orth. complement

Connectedness statement complicated to prove!
Spin filtered helical edge channels for QSH

Theorem (S-B 2013)
\[\text{Ind}_2(PFP) = 1 \implies \text{spin Chern numbers } SCh(P) \neq 0 \]

Remark Non-trivial topology \(SCh(P) \) persists TRS breaking!

Theorem (S-B 2012) \(\hat{H} \) Kane-Mele on half-space \(\mathbb{Z} \times \mathbb{N} \)
If \(SCh(P) \neq 0 \), dissipationless spin filtered edge currents are stable w.r.t. perturbations by magnetic field and disorder:

\[
\hat{T}(g(\hat{H}) \frac{1}{2} \{ i[\hat{H}, X_1], s^z \}) = SCh(P) + \text{controlled corrections}
\]

where \(g \geq 0 \) supported in bulk gap and \(\int g = 1 \)

Resumé: \(\text{Ind}_2(PFP) = 1 \implies \text{no Anderson loc. for edge states} \)

Rice group: Du, Knez, et al since 2011 in InAs/GaSb Bilayers

Four-terminal conductance plateaux stable w.r.t. magnetic field
No And. loc. for other edge states in $d = 2$?

Class A: QHE with quantized edge currents
Class C (BdG, odd PHS): spin quantum Hall effect (with De Nittis)
Class D and DIII (even PHS): thermal quantum Hall effect (???)

Resuming: exactly CAZ classes as in quasi-1d above

Structuring: Topological insulators
Disordered Fermion systems with (mobility) gap and basic sym. chiral sym. (CHS) and/or even/odd time reversal (TRS)
and/or even/odd particle-hole (PHS)

Ludwig et al. (2008): non-trivial \iff surface states don’t localize

Here: topological invariants and Fredholm indices
Then prove bulk-edge correspondence and delocalized edge states
Periodic table of topological insulators

Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008

<table>
<thead>
<tr>
<th>j(\setminus d)</th>
<th>TRS</th>
<th>PHS</th>
<th>CHS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>1</td>
<td>+1</td>
<td>+1</td>
<td>0</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>3</td>
<td>−1</td>
<td>+1</td>
<td>1</td>
<td>1</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>2\mathbb{Z}</td>
</tr>
<tr>
<td>4</td>
<td>−1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>2\mathbb{Z}</td>
</tr>
<tr>
<td>5</td>
<td>−1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>2\mathbb{Z}</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>−1</td>
<td>0</td>
<td>0</td>
<td>2\mathbb{Z}</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>2\mathbb{Z}</td>
</tr>
<tr>
<td>7</td>
<td>+1</td>
<td>−1</td>
<td>1</td>
<td>1</td>
<td>2\mathbb{Z}</td>
<td>2\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
</tbody>
</table>

Real K-theory (8-periodic) \[\text{Inv}(j, d) = KR_j(\mathbb{R}^d_\tau) \cong \pi_{j-1-d}(O) \]
Focus on chiral system in \(d = 3 \) (with Prodan)

Hamiltonian on \(\ell^2(\mathbb{Z}^3) \otimes \mathbb{C}^4 \) first without disorder:

\[
H = \sum_{j=1}^{3} \frac{1}{2i} (S_j - S_j^*) \otimes \gamma_j + \left(m + \sum_{j=1}^{3} \frac{1}{2} (S_j + S_j^*) \right) \otimes \gamma_4
\]

where \(\gamma_0, \ldots, \gamma_4 \) irrep of Clifford \(C_5 \) such that \(\gamma_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

Chiral sym: \(H = -\gamma_0 H \gamma_0 = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix} \) with invertible \(A \) in gap

Invariant (also with disorder!):

\[
\text{Ch}_d(A) = \frac{(-i\pi)^{\frac{d-1}{2}}}{i \ d!!} \sum_{\rho \in S_d} (-1)^\rho \mathcal{T} \left(\prod_{j=1}^{d} A^{-1} i[X_{\rho_j} A] \right) \in \mathbb{Z}
\]

where \(\mathcal{T}(A) = \mathbb{E}_\mathbb{P} \text{ Tr } \langle 0 | A_\omega | 0 \rangle \) trace per unit volume

Gap for \(m \neq -3, -1, 1, 3 \) with \(\text{Ch}_3(A) = 0, -1, 2, -1, 0 \)
Why is invariant an integer?

Periodic system: differential geometric invariant (Schnyder et al)

\[
\text{Ch}_d(A) = \left(\frac{1}{2}(d-1)\right)! \left(\frac{i}{2\pi}\right)^{\frac{d+1}{2}} \int_{\mathbb{T}^d} \text{Tr} \left([A^{-1} dA]^d\right)
\]

Disordered system: index theorem

\[
D = \sum_{j=1}^{d} X_j \otimes 1 \otimes \sigma_j \quad \text{Dirac operator on } \ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^N \otimes \mathbb{C}^{N'}
\]

Dirac phase \(F = \frac{D}{|D|} \) satisfies \(F^2 = 1 \) and \([F, A]\) compact

Theorem (with Prodan, 2014)

Let \(E = \frac{1}{2}(F + 1) \) be Hardy Projektion from \(D \) and \(A \) invertible. Almost surely:

\[
\text{Ind}(EA_\omega E) = \text{Ch}_d(A) \in \mathbb{Z}
\]
Restriction \hat{H} to half-space $\mathbb{Z}^2 \times \mathbb{N}$ has surface state bands

Adding magnetic field perpendicular to surface opens gaps

Decompose projection on central band

$$\hat{P} = \hat{P}_+ + \hat{P}_- \quad \gamma_0 \hat{P}_\pm = \pm \hat{P}_\pm$$

Theorem

Bulk-edge correspondence

$$\text{Ch}_3(A) = \text{Ch}_2(\hat{P}_+) - \text{Ch}_2(\hat{P}_-)$$

If $\text{Ch}_3(A)$ odd, surface QHE: $\text{Ch}_2(\hat{P}) = \text{Ch}_2(\hat{P}_+) + \text{Ch}_2(\hat{P}_-) \neq 0$

Hence somewhere divergence of localization length in surface states

Everything stable under weak breaking of chiral symmetry.

Again: non-trivial topology \implies no Anderson localization
Resumé

- Index theorems guarantee stability of invariants
- Odd d invariants persist under weak breaking of CHS
- Non-trivial topology may survive weak breaking of TRS, PHS
- Bulk-edge correspondence establishes link of topologies
- Surface states are not exposed to Anderson localization (rigorous proofs)
- Physical effects have to be studied case by case
\mathbb{Z}_2 invariant and spin-charge separation

Other physical effect linked to non-trivial \mathbb{Z}_2 invariant:

Theorem (with De Nittis, 2014)

$\text{Ind}_2(PFP) = 1 \implies H(\alpha = \frac{1}{2})$ has TRS + Kramers pair in gap