Optimal shape and location of sensors or actuators in PDE models

Emmanuel Trélat

1Sorbonne Université (Paris 6), Labo. J.-L. Lions

Works with Yannick Privat and Enrique Zuazua

FAU, Seminar, 2020 January 9
What is the best shape and placement of sensors?
- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and estimations.
Modeling Solving

The observed system may be described by:

- **wave equation** \(\partial_{tt}y = \triangle y \)
- or
- **Schrödinger equation** \(i\partial_t y = \triangle y \)

- general **parabolic equations** \(\partial_t y = Ay \) (e.g., heat or Stokes equations)

in some domain \(\Omega \), with either Dirichlet, Neumann, mixed, or Robin boundary conditions

For instance, when dealing with the heat equation:

What is the optimal shape and placement of a thermometer?
Waves propagating in a cavity:
\[\partial_{tt}y - \Delta y = 0 \]
\[y(t, \cdot)|_{\partial \Omega} = 0 \]

Observable
\[y(t, \cdot)|_{\omega} \]

Observability inequality
Let \(T > 0 \). The observability constant \(C_T(\omega) \) is the largest nonnegative constant such that
\[
\forall y \text{ solution } \quad C_T(\omega) \left\| (y(0, \cdot), \partial_t y(0, \cdot)) \right\|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_{\omega} |y(t, x)|^2 \, dx \, dt
\]

The system is said observable on \([0, T] \) if \(C_T(\omega) > 0 \) (otherwise, \(C_T(\omega) = 0 \)).
Waves propagating in a cavity:

\[\partial_{tt}y - \Delta y = 0 \]
\[y(t, \cdot)|_{\partial \Omega} = 0 \]

Observable
\[y(t, \cdot)|_{\omega} \]

Observability inequality

Let \(T > 0 \). The observability constant \(C_T(\omega) \) is the largest nonnegative constant such that

\[\forall y \text{ solution} \quad C_T(\omega) \left\| (y(0, \cdot), \partial_t y(0, \cdot)) \right\|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_{\omega} |y(t, x)|^2 \, dx \, dt \]

Bardos Lebeau Rauch (SICON 1992): Observability holds if the pair \((\omega, T)\) satisfies the Geometric Control Condition (GCC) in \(\Omega \):

Every ray of geometrical optics that propagates in \(\Omega \) and is reflected on its boundary \(\partial \Omega \) intersects \(\omega \) in time less than \(T \).

(recent extension to time-varying domains: Le Rousseau Lebeau Terpolilli Trélat, APDE 2017)
Waves propagating in a cavity:

\[\partial_{tt} y - \Delta y = 0 \]

\[y(t, \cdot)|_{\partial \Omega} = 0 \]

Observable

\[y(t, \cdot)|_{\omega} \]

Observability inequality

Let \(T > 0 \). The **observability constant** \(C_T(\omega) \) is the largest nonnegative constant such that

\[
\forall y \text{ solution} \quad C_T(\omega) \left\| (y(0, \cdot), \partial_t y(0, \cdot)) \right\|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_{\omega} |y(t, x)|^2 \, dx \, dt
\]

Q: What is the "best possible" subdomain \(\omega \) of fixed given measure? (say, \(|\omega| = L|\Omega| \) with \(0 < L < 1 \))

N.B.: we want to optimize not only the placement but also the shape of \(\omega \),

over **all possible measurable subsets**.

(they do not have a prescribed shape, they are not necessarily BV, etc)
The model

Observability inequality

\[\forall y \text{ solution} \quad C_T(\omega) \left\| (y(0, \cdot), \partial_t y(0, \cdot)) \right\|^2_{L^2 \times H^{-1}} \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt \]

Let \(L \in (0, 1) \) and \(T > 0 \) fixed.

It is a priori natural to model the problem as:

\[\sup_{\omega \subset \Omega} \quad \frac{\int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt}{\left\| (y(0, \cdot), \partial_t y(0, \cdot)) \right\|^2_{L^2 \times H^{-1}}} \]

with

\[C_T(\omega) = \inf \left\{ \frac{\int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt}{\left\| (y(0, \cdot), \partial_t y(0, \cdot)) \right\|^2_{L^2 \times H^{-1}}} \bigg| (y(0, \cdot), \partial_t y(0, \cdot)) \in L^2(\Omega) \times H^{-1}(\Omega) \setminus \{(0, 0)\} \right\} \]

BUT...
The model

Observability inequality

$$\forall y \text{ solution} \quad C_T(\omega) \left\| \left(y(0, \cdot), \partial_t y(0, \cdot) \right) \right\|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt$$

Let $L \in (0, 1)$ and $T > 0$ fixed.

It is a priori natural to model the problem as:

$$\sup_{\omega \subset \Omega \atop |\omega| = L |\Omega|} C_T(\omega)$$

BUT:

1. Theoretical difficulty due to crossed terms in the spectral expansion
 (cf Ingham inequalities: Jaffard Tucsnak Zuazua, JFAA 1997).

2. In practice: many experiments, many measures. This deterministic constant is pessimistic: it gives an account for the worst case.

$$\rightarrow$$ Optimize shape and location of sensors in average, over a large number of measurements.

$$\rightarrow$$ Define an averaged observability inequality.
Randomized observability constant

Averaging over random solutions:

Randomized observability inequality (wave equation)

$$C_{T,\text{rand}}(\omega) \left\| (y(0, \cdot), y_t(0, \cdot)) \right\|_{L^2 \times H^{-1}}^2 \leq \mathbb{E} \left(\int_0^T \int_{\omega} |y_\nu(t, x)|^2 \, dx \, dt \right)$$

where

$$y_\nu(t, x) = \sum_{j=1}^{+\infty} \left(\beta_1^\nu_j a_j e^{i\lambda_j t} + \beta_2^\nu_j b_j e^{-i\lambda_j t} \right) \phi_j(x)$$

with $\beta_1^\nu_j, \beta_2^\nu_j$ i.i.d. random variables (e.g., Bernoulli, Gaussian) of mean 0

(inspired from Burq Tzvetkov, Invent. Math. 2008)

with $(\phi_j)_{j \in \mathbb{N}^*}$ Hilbert basis of eigenfunctions.

Randomization

• generates a full measure set of initial data
• does not regularize
Randomized observability constant

Theorem (Privat Trélat Zuazua, ARMA 2015, JEMS 2016)

\[C_{T,\text{rand}}(\chi_\omega) = T \inf_{j \in \mathbb{N}^*} \gamma_j(T) \int_\omega |\phi_j(x)|^2 \, dx \]

with

\[\gamma_j(T) = \begin{cases}
1 & \text{for wave and Schrödinger equations} \\
\frac{e^{2 \Re(\lambda_j)T} - 1}{2 \Re(\lambda_j)} & \text{for parabolic equations}
\end{cases} \]

with \((\phi_j)_{j \in \mathbb{N}^*}\) a fixed Hilbert basis of eigenfunctions of the underlying operator.

Remark

There holds \(C_{T,\text{rand}}(\chi_\omega) \geq C_T(\chi_\omega) \).

There are examples where the inequality is strict:

- in 1D: \(\Omega = (0, \pi), \ T \neq k\pi \).
- in multi-D: \(\Omega \) stadium-shaped, \(\omega \) containing the wings.
Randomized observability constant

Theorem (Privat Trélat Zuazua, ARMA 2015, JEMS 2016)

\[C_{T,\text{rand}}(\chi_\omega) = T \inf_{j \in \mathbb{N}^*} \gamma_j(T) \int_\omega |\phi_j(x)|^2 \, dx \]

\[\forall \omega \text{ measurable} \]

with

\[\gamma_j(T) = \begin{cases} 1 & \text{for wave and Schrödinger equations} \\ e^{\frac{2\text{Re}(\lambda_j)T}{2\text{Re}(\lambda_j)}} - 1 & \text{for parabolic equations} \end{cases} \]

with \((\phi_j)_{j \in \mathbb{N}^*}\) a fixed Hilbert basis of eigenfunctions of the underlying operator.

Conclusion: we model the problem as

\[\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \gamma_j(T) \int_\omega |\phi_j(x)|^2 \, dx \]

\[\text{with} \quad |\omega| = L |\Omega| \]
A remark for fixed initial data

Note that, if we maximize $\omega \mapsto \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt$ for some fixed initial data then, using the bathtub principle (decreasing rearrangement):

There always exists (at least) one optimal set ω (s.t. $|\omega| = L|\Omega|$).

The regularity of ω depends on the initial data: it may be a Cantor set of positive measure, even for C^∞ data.

(Privat Trélat Zuazua, DCDS 2015)
We search the best subdomain ω over all measurable subsets of Ω: no restriction.

Let $A > 0$ fixed. If we restrict the search to

\[\{ \omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } P_\Omega(\omega) \leq A \} \]
(perimeter)

or

\[\{ \omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } \|\chi_\omega\|_{BV(\Omega)} \leq A \} \]
(total variation)

or

\[\{ \omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } \omega \text{ satisfies the } 1/A\text{-cone property} \} \]

or

ω ranges over some finite-dimensional (or ”compact”) prescribed set...

then there always exists (at least) one optimal set ω.

→ but then...
- The complexity of ω may increase with A.
- We want to know if there is a ”very best” set (over all possible measurable subsets).
Related problems and existing results

<table>
<thead>
<tr>
<th>1) What is the "best domain" for achieving HUM optimal control?</th>
</tr>
</thead>
<tbody>
<tr>
<td>[y_{tt} - \Delta y = \chi \omega u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2) What is the "best domain" domain for stabilization (with localized damping)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>[y_{tt} - \Delta y = -k\chi \omega y_t]</td>
</tr>
</tbody>
</table>

Existing works by
- Hébrard, Henrot: theoretical and numerical results in 1D for optimal stabilization.
- Münch, Pedregal, Periago: numerical investigations (fixed initial data).
- Cox, Freitas, Fahroo, Ito, ...: variational formulations and numerics.
- Frecker, Kubrusly, Malebranche, Kumar, Seinfeld, ...: numerical investigations over a finite number of possible initial data.
- Demetriou, Morris, Padula, Sigmund, Van de Wal, ...: actuator placement (predefined set of possible candidates), Riccati approaches.
- Armaou, Demetriou, Chen, Rowley, Morris, Yang, Kang, King, Xu, ...: H$_2$ optimization, frequency methods, LQ criteria, Gramian approaches.
- ...
To solve the problem, we distinguish between:

parabolic equations (e.g., heat, Stokes) \neq \text{wave or Schrödinger equations}

Remarks

- requires some knowledge on the \textbf{asymptotic} behavior of $|\phi_j|^2$
- $\mu_j = |\phi_j|^2 \, dx$ is a probability measure
 \Rightarrow strong difference between $\gamma_j(T) \sim e^{\lambda_j T}$ (parabolic) and $\gamma_j(T) = 1$ (hyperbolic)
Parabolic equations

\[\partial_t y = Ay \]

- We assume that \(\Omega \) is piecewise \(C^1 \).
- Slight spectral assumptions on \(A \).
- Satisfied for heat, Stokes, anomalous diffusions \(A = -(-\Delta)\alpha \) with \(\alpha > 1/2 \).

Theorem (Privat Trélat Zuazua, ARMA 2015)

There exists a unique optimal domain \(\omega^* \).

Moreover, \(\omega^* \) is open and semi-analytic; in particular, it has a finite number of connected components.

Quite difficult proof, requiring in particular: Hartung minimax theorem; uniform lower estimates of \(|\phi_j|^2 \) by Apraiz Escauriaza Wang Zhang (JEMS 2014):

\[
\int_{\omega} |\phi_j(x)|^2 \geq Ce^{-C\sqrt{\mu_j}} \quad \forall j \in \mathbb{N}^*
\]

\((\mu_j: \) eigenvalues of \(-\Delta \) with \(C > 0 \) uniform with respect to \(\omega \) s.t. \(|\omega| = L|\Omega| \).

G. Buttazzo: “Shape optimization wins”.

Algorithmic construction of the best observation set \(\omega^* \): to be followed (further).

\[C_T(\chi_{\omega^*}) < C_{T,\text{rand}}(\chi_{\omega^*}). \]
Wave and Schrödinger equations

Optimal value (Privat Trélat Zuazua, JEMS 2016)

Under appropriate spectral assumptions:

\[
\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_{\omega} |\phi_j(x)|^2 \, dx = L
\]

Proof:
1) Convexification (relaxation).
2) No-gap (not obvious because not lsc: kind of homogenization arguments).

G. Buttazzo: “Homogenization wins”.

Main spectral assumption:

QUE (Quantum Unique Ergodicity): the whole sequence \(|\phi_j|^2 \, dx \rightharpoonup \frac{dx}{|\Omega|} \) vaguely.

True in 1D (indeed, \(\phi_j(x) = \sin(jx) \) and \(\sin^2 jx \rightharpoonup \frac{1}{2} \)), but in multi-D?
Wave and Schrödinger equations

Optimal value (Privat Trélat Zuazua, JEMS 2016)
Under appropriate spectral assumptions:

\[
\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_{\omega} |\phi_j(x)|^2 \, dx = L
\]

Relationship to quantum chaos theory:
what are the possible (weak) limits of the probability measures \(\mu_j = |\phi_j|^2 \, dx \)?
(quantum limits, or semi-classical measures)

- See also Shnirelman theorem: ergodicity implies Quantum Ergodicity (QE; but possible gap to QUE!)
- If QUE fails, we may have scars
- QUE conjecture (negative curvature)
Wave and Schrödinger equations

Optimal value (Privat Trélat Zuazua, JEMS 2016)

Under appropriate spectral assumptions:

\[
\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_{\omega} |\phi_j(x)|^2 \, dx = L
\]

Remark: The above result holds true as well in the disk. Hence the spectral assumptions are not sharp.

(proof: requires the knowledge of all quantum limits in the disk, Privat Hillairet Trélat)

\[
\mu_{j_k} \rightarrow \delta_{r=1}
\]

(this is one QL: whispering galleries)
Wave and Schrödinger equations

Optimal value (Privat Trélat Zuazua, JEMS 2016)

Under appropriate spectral assumptions:

\[\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_{\omega} |\phi_j(x)|^2 \, dx = L \]

- **Supremum reached?** Open problem in general.
 - in 1D: reached \(\Leftrightarrow L = 1/2 \) (infinite number of optimal sets)
 - in 2D square: reached over Cartesian products \(\Leftrightarrow L \in \{1/4, 1/2, 3/4\} \)

 Conjecture: Not reached for generic domains \(\Omega \) and generic values of \(L \).

- Construction of a **maximizing sequence** (kind of homogenization)
Spectral approximation

Following Hébrard Henrot (SICON 2005), we consider the finite-dimensional spectral approximation:

\[(P_N) \quad \sup_{\omega \subset \Omega} \min_{1 \leq j \leq N} \gamma_j(T) \int_{\omega} |\phi_j(x)|^2 \, dx \]

Theorem

Given any \(N \in \mathbb{N}^* \), the problem \((P_N)\) has a unique solution \(\omega^N \).

Moreover, \(\omega^N \) is semi-analytic and thus has a finite number of connected components.
Wave and Schrödinger equations

The complexity of ω^N is increasing with N.

Spillover phenomenon: the best domain ω^N for the N first modes is the worst possible for the $N + 1$ first modes.

(Privat Trélat Zuazua, JFAA 2013)

- Problem 2 (Dirichlet case): Optimal domain for $N=2$ and $L=0.2$
- Problem 2 (Dirichlet case): Optimal domain for $N=5$ and $L=0.2$
- Problem 2 (Dirichlet case): Optimal domain for $N=10$ and $L=0.2$
- Problem 2 (Dirichlet case): Optimal domain for $N=20$ and $L=0.2$

\[\Omega = (0, \pi)^2 \quad L = 0.2 \quad 4, 25, 100, 400 \text{ eigenmodes} \]

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by $(-\Delta)^\alpha$ with $\alpha > 1/2$)

The sequence of optimal sets ω^N is stationary:

\[\exists N_0 \mid \forall N \geq N_0 \quad \omega^N = \omega^{N_0} = \omega^* \]

with ω^* the optimal set for all modes.

In particular, ω^* is semi-analytic and thus has a finite number of connected components.
Wave and Schrödinger equations

The complexity of ω^N is increasing with N.

Spillover phenomenon: the best domain ω^N for the N first modes is the worst possible for the $N+1$ first modes.

(Privat Trélat Zuazua, JFAA 2013)

\[\Omega = \text{unit disk} \quad L = 0.2 \quad 1, 25, 100, 400 \text{ eigenmodes} \]

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by $(-\Delta)^\alpha$ with $\alpha > 1/2$)

The sequence of optimal sets ω^N is stationary:

\[\exists N_0 \mid \forall N \geq N_0 \quad \omega^N = \omega^N_0 = \omega^* \]

with ω^* the optimal set for all modes.

In particular, ω^* is semi-analytic and thus has a finite number of connected components.
Wave and Schrödinger equations

The complexity of ω^N is increasing with N.

Spillover phenomenon: the best domain ω^N for the N first modes is the worst possible for the $N+1$ first modes.

(Privat Trélat Zuazua, JFAA 2013)

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption: (satisfied, e.g., by $(-\Delta)^\alpha$ with $\alpha > 1/2$)

The sequence of optimal sets ω^N is stationary:

$$\exists N_0 \mid \forall N \geq N_0 \quad \omega^N = \omega^{N_0} = \omega^*$$

with ω^* the optimal set for all modes.

In particular, ω^* is semi-analytic and thus has a finite number of connected components.

\Rightarrow no fractal set!

$\Omega = (0, \pi)^2$

1, 4, 9, 16, 25, 36 eigenmodes

$L = 0.2$, $T = 0.05$

\Rightarrow optimal thermometer in a square
Conclusion and perspectives

- Similar results for optimal control or stabilization domains.
- Optimal design for boundary observability: (role of Rellich function and identities)
 \[
 \sup_{|\omega|=L|\partial \Omega|} \inf_{j \in \mathbb{N}^*} \gamma_j(T) \int_{\omega} \frac{1}{\lambda_j} \left| \frac{\partial \phi_j}{\partial \nu} \right|^2 d\mathcal{H}^{n-1}
 \]
- Intimate relations between shape optimization and quantum chaos (quantum ergodicity properties).
- Strategies to avoid spillover?
- Discretization issues: do the numerical optimal designs converge to the continuous optimal design as the mesh size tends to 0?

Y. Privat, E. Trélat, E. Zuazua,

- Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. (2013)
- Complexity and regularity of maximal energy domains for the wave equation with fixed initial data, DCDS (2015)
- Optimal shape and location of sensors for parabolic equations with random initial data, ARMA (2015)
- Optimal observability of the multi-D wave and Schrödinger equations in quantum ergodic domains, JEMS (2016)
Conclusion and perspectives

What can be said for the classical (deterministic) observability constant?

A result for the wave observability constant (Humbert Privat Trélat, CPDE 2019):

\[
\lim_{T \to +\infty} \frac{C_T(\omega)}{T} = \frac{1}{2} \min \left(\inf_{j \in \mathbb{N}^*} \int_\omega |\phi_j(x)|^2 \, dx, \quad \lim_{T \to +\infty} \inf_{\gamma \text{ ray}} \frac{1}{T} \int_0^T \chi_\omega(\gamma(t)) \, dt \right)
\]

Two quantities:

- spectral
- geometric (rays)

\[\downarrow\]

randomized obs. constant

\[\downarrow\]

optimize it?
Remark: another way of arriving at the criterion (wave equation)

Averaging in time:
Time asymptotic observability inequality:

\[C_\infty(\chi_\omega) \| (y(0, \cdot), y_t(0, \cdot)) \|_{L^2 \times H^{-1}}^2 \leq \lim_{T \to +\infty} \frac{1}{T} \int_0^T \int_\omega |y(t, x)^2| \, dx \, dt, \]

with

\[C_\infty(\chi_\omega) = \inf \left\{ \lim_{T \to +\infty} \frac{1}{T} \frac{\int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt}{\| (y(0, \cdot), y_t(0, \cdot)) \|_{L^2 \times H^{-1}}^2} \mid (y(0, \cdot), y_t(0, \cdot)) \in L^2 \times H^{-1} \setminus \{(0, 0)\} \right\}. \]

Theorem

If the eigenvalues of \(\triangle g \) are simple then

\[C_\infty(\chi_\omega) = \frac{1}{2} \inf_{j \in \mathbb{N}^*} \int_\omega |\phi_j(x)|^2 \, dx = \frac{1}{2} J(\chi_\omega). \]

Remarks

- \(C_\infty(\chi_\omega) \leq \frac{1}{2} \inf_{j \in \mathbb{N}^*} \int_\omega |\phi_j(x)|^2 \, dx. \)
- \(\limsup_{T \to +\infty} \frac{C_T(\chi_\omega)}{T} \leq C_\infty(\chi_\omega). \) There are examples where the inequality is strict.
1. Existence of a maximizer

Ensured if \mathcal{U}_L is replaced with any of the following choices:

\[
\mathcal{V}_L = \{ \chi_\omega \in \mathcal{U}_L \mid P_\Omega(\omega) \leq A \} \quad \text{(perimeter)}
\]

\[
\mathcal{V}_L = \{ \chi_\omega \in \mathcal{U}_L \mid \| \chi_\omega \|_{BV(\Omega)} \leq A \} \quad \text{(total variation)}
\]

\[
\mathcal{V}_L = \{ \chi_\omega \in \mathcal{U}_L \mid \omega \text{ satisfies the } 1/A\text{-cone property} \}
\]

where $A > 0$ is fixed.
2. Weighted observability inequality

\[C_{T,\sigma}(\chi_\omega) \left(\| (y(0, \cdot), \partial_t y(0, \cdot)) \|_{L^2 \times H^{-1}}^2 + \sigma \| y(0, \cdot) \|_{H^{-1}}^2 \right) \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt \]

with a weight \(\sigma \geq 0 \).

Note that \(C_{T,\sigma}(\chi_\omega) \leq C_T(\chi_\omega) \).

By randomization:

\[C_{T,\sigma,\text{rand}}(\chi_\omega) = \frac{T}{2} \inf_{j \in \mathbb{N}^*} \sigma_j \int_\omega |\phi_j(x)|^2 \, dx \]

with \(\sigma_j = \frac{\lambda_j^2}{\sigma + \lambda_j^2} \).
Remedies (wave and Schrödinger equations)

Theorem

Assume that L^∞-QUE holds. If $\sigma_1 < L < 1$ then there exists $N \in \mathbb{N}^*$ such that

$$\sup_{\chi \omega \in \mathcal{U}_L} \inf_{j \in \mathbb{N}^*} \sigma_j \int_\omega |\phi_j|^2 = \max_{\chi \omega \in \mathcal{U}_L} \inf_{1 \leq j \leq n} \sigma_j \int_\omega |\phi_j|^2 \leq \sigma_1 < L,$$

for every $n \geq N$. In particular there is a unique solution χ_{ω^N}. Moreover if M is analytic then ω^N is semi-analytic and has a finite number of connected components.

- The condition $\sigma_1 < L < 1$ seems optimal (see numerical simulations).
- This result holds as well in any torus, or in the Euclidean n-dimensional square for Dirichlet or mixed Dirichlet-Neumann conditions.
\[L = 0.2 \]

\[L = 0.4 \]

\[L = 0.6 \]

\[L = 0.9 \]
Anomalous diffusion equations, Dirichlet: \[\partial_t y + (-\triangle)^\alpha y = 0 \quad (\alpha > 0 \text{ arbitrary}) \]

with a surprising result:

In the **square** \(\Omega = (0, \pi)^2 \), with the usual basis (products of sine): the optimal domain \(\omega^* \) has a **finite** number of connected components, \(\forall \alpha > 0 \).

In the **disk** \(\Omega = \{ x \in \mathbb{R}^2 \mid \|x\| < 1 \} \), with the usual basis (Bessel functions), the optimal domain \(\omega^* \) is radial, and

- \(\alpha > 1/2 \implies \omega^* = \text{finite number of concentric rings} \) (and \(d(\omega, \partial \Omega) > 0 \))
- \(\alpha < 1/2 \implies \omega^* = \text{infinite number of concentric rings accumulating at} \ \partial \Omega \)!

(or \(\alpha = 1/2 \) and \(T \) small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk.

(L. Hillairet, Y. Privat, E.Trélat)
\[\Omega = \text{unit disk} \quad 1, 4, 9, 16, 25, 36 \text{ eigenmodes} \]
\[L = 0.2, \ T = 0.05, \ \alpha = 1 \]
Ω = unit disk

1, 4, 25, 100, 144, 225 eigenmodes

$L = 0.2, \ T = 0.05, \ \alpha = 0.15$
Modeling Solving

Comparison

\[
\sup_{\chi \omega \in \mathcal{U}_L} \inf_{j \in \mathbb{N}^*} \gamma_j(T) \int_\omega |\phi_j|^2
\]

<table>
<thead>
<tr>
<th>Wave or Schrödinger</th>
<th>Square</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists \omega) for (L \in {\frac{1}{4}, \frac{1}{2}, \frac{3}{4}})</td>
<td>relaxed solution (a = L)</td>
<td>relaxed solution (a = L)</td>
</tr>
<tr>
<td>(\nexists) otherwise (conjecture)</td>
<td>(\nexists) otherwise (conjecture)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diffusion ((−\Delta)^\alpha)</th>
<th>Square</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists! \omega \quad \forall L \quad \forall \alpha > 0)</td>
<td>#c.c.((\omega)) < +(\infty)</td>
<td>(\exists! \omega) (radial) (\forall L \quad \forall \alpha > 0)</td>
</tr>
<tr>
<td>if (\alpha > \frac{1}{2}) then #c.c.((\omega)) < +(\infty)</td>
<td>if (\alpha < \frac{1}{2}) then #c.c.((\omega)) = +(\infty)</td>
<td></td>
</tr>
</tbody>
</table>