Invariants of disordered topological insulators

Hermann Schulz-Baldes, Erlangen
.
main collaborators: De Nittis, Prodan
.
Bochum, June 2014

Wien, August, September 2014

What is a topological insulator?

 d-dimensional disordered system of independent Fermions with a combination of basic symmetries

TRS, PHS, SLS = time reversal, particle hole, sublattice symmetry

- Fermi level in a Gap or Anderson localization regime
- Topology of bulk (e.g. of Bloch bundles): winding numbers, Chern numbers, \mathbb{Z}_2 -invariants, higher invariants
- Delocalized edge modes with non-trivial topology
- Bulk-edge correspondence
- Toy models: tight-binding

Aim: index theory for invariants also for disordered systems

Examples of topological insulators in d = 2:

- Integer quantum Hall systems (no symmetries at all)
- Quantum spin Hall systems (Kane-Mele 2005, odd TRS)
 dissipationless spin polarized edge currents, charge-spin separation
- Dirty superconductors (Bogoliubov-de Gennes BdG models):
 Thermal quantum Hall effect (even PHS)
 Spin quantum Hall effect (SU(2)-invariant, odd PHS)
 Majorana modes at Landau-Ginzburg vortices (even PHS)
- Examples in d = 1 and d = 3: chiral unitary systems

Menu for the talk

- Some standard background on Fredholm operators
- Review of quantum Hall systems (focus on topology)
- Classification of d = 2 topological insulators by index theory
- Needed: Fredholm operators with symmetries
- More physics of d = 2 systems: QSH and BdG
- Index theory for topological invariants in any dimension d
- General bulk-edge correspondence principle

Fredholm operators and Noether indices

Definition $T \in \mathcal{B}(\mathcal{H})$ bounded Fredholm operator on Hilbert space

$$\iff \mathcal{TH} \text{ closed, } \dim(\operatorname{Ker}(\mathcal{T})) < \infty \text{, } \dim(\operatorname{Ker}(\mathcal{T}^*)) < \infty$$

Then: $\operatorname{Ind}(T) = \dim(\operatorname{Ker}(T)) - \dim(\operatorname{Ran}(T))$ Noether index

Theorem $\operatorname{Ind}(T)$ compactly stable homotopy invariant

Noether Index Theorem $f \in C(\mathbb{S}^1)$ invertible, Π Hardy on $L^2(\mathbb{S}^1)$

$$\Longrightarrow \operatorname{Wind}(f) = \int f^{-1} df = -\operatorname{Ind}(\Pi f \Pi)$$

Atiyah-Singer index theorems in differential topology

Alain Connes non-commutative geometry and topology

Applications in physics Anomalies in QFT, Defects, etc.

Solid state physics robust labelling of different phases

Problem determine Fredholm operator in concrete situation

Review of quantum Hall system (no symmetries)

Toy model: disordered Harper Hamiltonian on Hilbert space $\ell^2(\mathbb{Z}^2)$

$$H \ = \ U_1 + U_1^* + U_2 + U_2^* + \lambda_{\rm dis} V$$

 $U_1=e^{i\varphi X_2}S_1$ and $U_2=S_2$ with magnetic flux φ and $S_{1,2}$ shifts random potential $V=\sum_{n\in\mathbb{Z}^2}V_n|n\rangle\langle n|$ with i.i.d. $V_n\in\mathbb{R}$ Fermi projection $P=\chi(H\leq\mu)$ with μ in And. localization regime

Theorem (Connes, Bellissard, Kunz, Avron, Seiler, Simon ...)

PFP Fredholm operator ,
$$F = \frac{X_1 + iX_2}{|X_1 + iX_2|}$$

Index equal to Chern number

$$\operatorname{Ind}(PFP) = \operatorname{Ch}(P) = 2\pi i \mathbb{E} \langle 0|P[[X_1, P], [X_2, P]]|0\rangle$$
$$= \int \frac{d^2k}{2\pi i} \operatorname{Tr}_q(P[\partial_1 P, \partial_2 P])$$

Physical consequences

Theorem

(Thouless et.al. 1982, Avron, Seiler, Simon 1983-1994, Kunz 1987, Bellissard, van Elst, S-B 1994, ...)

Kubo formula for zero temperature Hall conductivity $\sigma_H(\mu)$

$$\sigma_H(\mu) = \frac{e^2}{h} \operatorname{Ch}(P)$$

and $\mu \in \Delta \mapsto \sigma_H(\mu)$ constant if Anderson localization in $\Delta \subset \mathbb{R}$

Theorem

(Rammal, Bellissard 1985, Resta 2010, S-B, Teufel 2013)

 $M(\mu) = \partial_B p(T = 0, \mu)$ orbital magnetization at zero temperature

$$\partial_{\mu}M(\mu) = \operatorname{Ch}(P) \qquad \mu \in \Delta$$

Link to spectral flow (Laughlin argument 1981)

Folk involves adiabatics; for Landau see Avron, Pnuelli (1992)

Theorem (Macris 2002, Nittis, S-B 2014)

Hamiltonian $H(\alpha)$ with extra flux $\alpha \in [0,1]$ through 1 cell of \mathbb{Z}^2 $H(\alpha) - H$ compact, so only discrete spectrum close to μ in gap

 (α) – H compact, so only discrete spectrum close to μ in gap $\mathrm{Ch}(P) = \mathrm{Spectral\ Flow} \Big(lpha \in [0,1] \mapsto H(lpha) \ \mathrm{through} \ \mu \Big)$

Bulk-edge correspondence

Edge currents in periodic systems: Halperin 1982, Hatsugai 1993

Theorem (S-B, Kellendonk, Richter 2000, 2002)

$$\mu \in \Delta$$
 gap of H and \widehat{H} restriction to half-space $\ell^2(\mathbb{Z} \times \mathbb{N})$

With $g:\mathbb{R} \to [0,1]$ increasing from 0 to 1 in Δ

$$\widehat{\mathcal{T}}(g'(\widehat{H})\widehat{J}_1) = \operatorname{Ch}(P)$$

where $\widehat{J}_1=i[X_1,\widehat{H}]=
abla_1\widehat{H}$ current operator and

$$\widehat{\mathcal{T}}(\widehat{A}) = \sum_{x \geq 0} \mathbb{E} \langle 0, x_2 | \widehat{A} | 0, x_2 \rangle$$
 tracial state on edge ops

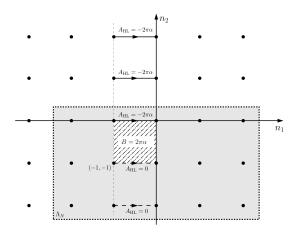
Moreover, link to winding number of $\hat{V} = \exp(2\pi i g(\hat{H}))$

$$Ch(P) = i \widehat{\mathcal{T}}(\widehat{V}^* \nabla_1 \widehat{V})$$

without gap condition: Elgart, Graf, Schenker 2005

Macris' argument for bulk-edge correspondence

$$\operatorname{Ch}(P) = \operatorname{Ind}(PFP) = -\int_0^1 d\alpha \operatorname{Tr}(g'(\widetilde{H}_{\alpha}^N) \partial_{\alpha} \widetilde{H}_{\alpha}^N)$$



Tight-binding toy models in dimension d = 2

Hilbert space $\ell^2(\mathbb{Z}^2)\otimes \mathbb{C}^L$

Fiber $\mathbb{C}^L=\mathbb{C}^{2s+1}\otimes\mathbb{C}^r$ with spin s and r internal degrees e.g. $\mathbb{C}^r=\mathbb{C}^2_{\mathrm{ph}}\otimes\mathbb{C}^2_{\mathrm{sl}}$ particle-hole space and sublattice space Typical Hamiltonian

$$H = \sum_{i=1}^{4} (W_i^* U_i + W_i U_i^*) + \lambda_{\text{dis}} V$$

 $U_1=e^{i\varphi X_2}S_1$ and $U_2=S_2$ with magnetic flux φ and $S_{1,2}$ shifts next nearest neighbor $U_3=U_1^*U_2$ and $U_4=U_1U_2$ W_i matrices $L\times L$ (e.g. for spin orbit coupling, pair creation) Matrix potential $V=V^*=\sum_{n\in\mathbb{Z}^2}V_n|n\rangle\langle n|$ random (i.i.d.) $P=\chi(H\leq\mu)$ Fermi projection, PFP still Fredholm operator

Implementing symmetries

 $\mathcal{K}_{\scriptscriptstyle{\mathrm{sl}}}$ unitary on fiber $\mathbb{C}^2_{\scriptscriptstyle{\mathrm{sl}}}$ with $\mathcal{K}^2_{\scriptscriptstyle{\mathrm{sl}}}=1$

SLS (Chiral):
$$K_{sl}^* H K_{sl} = -H$$

TRS: $I_s^* \overline{H} I_s = H$
PHS: $K_{nh}^* \overline{H} K_{nh} = -H$

 $I_{\rm s}$, $K_{\rm ph}$ real unitaries on fibers \mathbb{C}^{2s+1} , $\mathbb{C}^2_{\rm ph}$ which are even/odd:

$$I_{\rm s}^2 = \pm \mathbf{1} \qquad K_{\rm ph}^2 = \pm \mathbf{1}$$

Example: $I_s = e^{i\pi s^y}$ even/odd = integer/half-integer spin Note: TRS + PHS \implies SLS with $K_{\rm sl} = I_{\rm s}K_{\rm ph}$ or $K_{\rm sl} = i\ I_{\rm s}K_{\rm ph}$ 10 combinations of symmetries: none (1), one (5), three (4) 10 Cartan-Altland-Zirnbauer classes, 2 complex and 8 real

Classification of d = 2 topological insulators

Schnyder, Ryu, Furusaki, Ludwig 2008, reordering Kitaev 2008 Nittis, S-B 2014: classification with T = PFP (strong invariants)

CAZ	TRS	PHS	SLS	Phase/Ind	System	symmetry of T	
Α	0	0	0	\mathbb{Z}	QHE	none	
AIII	0	0	1	0		$K_{\rm sl}^* T K_{\rm sl} = T^c$	
D	0	+1	0	\mathbb{Z}	TQH	none	
DIII	-1	+1	1	\mathbb{Z}_2	SCS	two	
AII	-1	0	0	\mathbb{Z}_2	QSH	$I_{\rm s}^* T^t I_{\rm s} = T$	
CII	-1	-1	1	0		two	
C	0	-1	0	2 Z	SQH	Ker(T) quat.	
CI	+1	-1	1	0		two	
Al	+1	0	0	0		$I_{\rm s}^* T^t I_{\rm s} = T$	
BDI	+1	+1	1	0		two	

\mathbb{Z}_2 indices of odd symmetric Fredholm operators

 $I=I_{
m s}$ real unitary on Hilbert space ${\cal H}$ with real structure, $I^2=-{f 1}$

Definition T odd symmetric $\iff I^*T^tI = T$ with $T^t = (\overline{T})^*$

Theorem (S-B 2013) Ind of odd symm. Fredholm vanishes, but: $\mathbb{F}_2(\mathcal{H}) = \{ \text{odd symmetric Fredholm operators} \}$ has 2 connected components labeled by the compactly stable homotopy invariant:

$$\operatorname{Ind}_2(T) = \dim(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_2$$

Class AII (QSH): H odd TRS $\iff I^*\overline{H}I = H \iff I^*H^tI = H$

So: H odd symmetric $\Longrightarrow H^n$ odd sym. $\Longrightarrow f(H)$ odd sym.

Fermi projection P odd sym. and PFP odd sym. Fredholm

$$\operatorname{Ind}_2(PFP) \in \mathbb{Z}_2 \text{ well-defined}$$
 , $F = \frac{X_1 + iX_2}{|X_1 + iX_2|}$

Also for Fermi level in region of dynamically localized states!

Proofs for \mathbb{Z}_2 indices (S-B 2013)

Proposition Even degeneracies for odd symmetric matrices.

Proof: odd symmetry
$$I^*T^tI = T \implies (IT)^t = -IT$$

 $\implies \det(T - z\mathbf{1}) = \det(IT - zI) = \operatorname{Pf}(IT - zI)^2$

Similar to Kramers' degeneracy, but no invariance under $\psi\mapsto I\overline{\psi}$

Proposition K compact odd symmetric

$$\Longrightarrow \mathbf{1} + K$$
 even degeneracies and $\operatorname{Ind}_2(\mathbf{1} + K) = 0$

This is a weak form of compact stability, namely at $\mathcal{T}=\mathbf{1}$

Theorem (Siegel) T odd symmetric $\iff T = I^*A^tIA$

Proof of connectedness:

$$\operatorname{Ind}_2(T) = 0 \implies T$$
 invertible $(\operatorname{mod} \mathcal{K}) \implies A$ invertible $s \in [0,1] \mapsto A_s$ homotopy to $\mathbf{1}$ $\implies s \in [0,1] \mapsto T_s = I^*(A_s)^t I A_s$ path to $\mathbf{1}$ in odd symmetrics

Link to Atiyah-Singer classifying spaces (1969)

 $\mathbb{F}_k^\mathbb{R}=$ skew-adjoint Freds on $\mathcal{H}_\mathbb{R}$ with $\pm i\in\sigma_{\mathrm{ess}}$ commuting \mathcal{C}_{k-1}

Fact: $\mathbb{F}_1^\mathbb{R}$ and O have same homotopy type and $\pi_k(O)=\pi_0(\mathbb{F}_k^\mathbb{R})$

Example:
$$T \in \mathbb{F}_1^{\mathbb{R}} \implies \sigma(T) = \overline{\sigma(T)} \subset i \, \mathbb{R} \,, \ 0 \not\in \sigma_{\mathrm{ess}}(T)$$

 $\implies \operatorname{Ind}_1(T) = \operatorname{dim}(\operatorname{Ker}(T)) \operatorname{mod} 2$ invariant

Only few index theorems in $\mathbb{F}_1^\mathbb{R}$ (Kervaire invariant), none in $\mathbb{F}_2^\mathbb{R}$

Theorem Identifications with Freds on complex Hilbert space:

$$\begin{split} \mathbb{F}_0^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, \overline{T} = T\} \\ \mathbb{F}_0^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, \overline{T} = T\} \\ \mathbb{F}_2^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, I^*T^tI = T\} \\ \mathbb{F}_4^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, I^*\overline{T}I = T\} \\ \mathbb{F}_5^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, I^*\overline{T}I = T\} \\ \mathbb{F}_6^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, I^*\overline{T}I = T\} \\ \mathbb{F}_7^{\mathbb{R}} &\cong \{T \in \mathbb{F} \,|\, I^*\overline{T}I = T\} \\ \end{split}$$

Example QSH provides an index theorem in $\pi_0(\mathbb{F}_2^\mathbb{R}) = \mathbb{Z}_2$

Quantum spin Hall system (odd TRS, Class AII)

Disordered Kane-Mele model on hexagon lattice and with $s=rac{1}{2}$

$$H = \Delta_{
m hexagon} + H_{
m SO} + H_{
m Ra} + \lambda_{
m dis} V$$

Pseudo-gap at Dirac point opens non-trivially due to

$$H_{SO} = i \lambda_{SO} \sum_{i=1,2,3} (S_i^{nn} - (S_i^{nn})^*) s^z$$

No s^z -conservation due to Rashba term H_{Ra} , but odd TRS

Non-trivial topology:

Kane-Mele (2005): \mathbb{Z}_2 invariant for periodic system from Pfaffians Haldane et al. (2005): spin Chern numbers for s^z invariant systems Prodan (2009): spin Chern number from $P_s = \chi(|Ps^zP - \frac{1}{2}| < \frac{1}{2})$

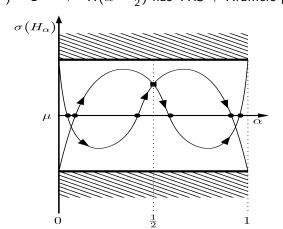
$$SCh(P) = Ch(P_s) \in \mathbb{Z}$$

Systems periodic in one direction: Graf, Porta 2013

\mathbb{Z}_2 invariant and spin-charge separation

Theorem $Ind_2(PFP)$ phase label for odd TRS

Theorem (Nittis, S-B, 2014) $\alpha \in [0,1] \mapsto H(\alpha)$ inserted flux $\operatorname{Ind}_2(PFP) = 1 \implies H(\alpha = \frac{1}{2})$ has TRS + Kramers pair in gap



Spin filtered helical edge channels for QSH

Theorem (S-B 2013) Small Rashba term

 $\operatorname{Ind}_2(PFP) = 1 \implies \text{spin Chern numbers } \operatorname{SCh}(P) \neq 0$

Remark Non-trivial topology SCh(P) persists TRS breaking!

Theorem (S-B 2012)

Spin filtered edge currents in $\Delta \subset \text{gap}$ stable w.r.t. perturbations by magnetic field and disorder: $g: \Delta \to [0,1]$ with $\int g = 1$

$$\widehat{\mathcal{T}}\big(g(\widehat{H})\,\tfrac{1}{2}\big\{\widehat{J}_1,s^z\big\}\big)\;=\;\mathrm{SCh}(P)\;+\;\mathcal{O}(\|g\|_{C^4}\|[H,s^z]\|)$$

Resumé: $\operatorname{Ind}_2(PFP)=1\Longrightarrow$ no Anderson loc. for edge states Rice group of Du (since 2011): QSH stable w.r.t. magnetic field Here spin Chern number is relevant and not \mathbb{Z}_2 invariant!

BdG Hamiltonian for dirty superconductor

Disordered one-electron Hamiltonian h on $\mathcal{H}=\ell^2(\mathbb{Z}^2)\otimes\mathbb{C}^{2s+1}$ $\mathfrak{c}=(\mathfrak{c}_{n,l})$ anhilation operators on fermionic Fock space $\mathcal{F}_-(\mathcal{H})$ Hamilt. on $\mathcal{F}_-(\mathcal{H})$ with mean field pair creation $\Delta^*=-\overline{\Delta}\in\mathcal{B}(\mathcal{H})$

$$\mathbf{H} - \mu \, \mathbf{N} = \mathbf{c}^* \left(h - \mu \, \mathbf{1} \right) \mathbf{c} + \frac{1}{2} \, \mathbf{c}^* \, \Delta \, \mathbf{c}^* - \frac{1}{2} \, \mathbf{c} \, \overline{\Delta} \, \mathbf{c}$$
$$= \frac{1}{2} \, \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^* \end{pmatrix}^* \begin{pmatrix} h - \mu & \Delta \\ -\overline{\Delta} & -\overline{h} + \mu \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{c}^* \end{pmatrix}$$

Hence BdG Hamiltonian on $\mathcal{H}_{\mathrm{ph}}=\mathcal{H}\otimes\mathbb{C}^2_{\mathrm{ph}}$

$$H_{\mu} = \begin{pmatrix} h - \mu & \Delta \\ -\overline{\Delta} & -\overline{h} + \mu \end{pmatrix}$$

Even PHS (Class D)

$$\mathcal{K}_{
m ph}^* \, \overline{\mathcal{H}_{\mu}} \, \mathcal{K}_{
m ph} \, = \, -\mathcal{H}_{\mu} \qquad , \qquad \mathcal{K}_{
m ph} = egin{pmatrix} 0 & \mathbf{1} \ \mathbf{1} & 0 \end{pmatrix}$$

Class D systems (even PHS)

Proposition $\sigma(H_{\mu}) = -\sigma(H_{\mu})$

Proposition Gibbs (KMS) state for observable $\mathbf{Q} = d\Gamma(Q)$

$$rac{1}{Z_{eta,\mu}} \operatorname{Tr}_{\mathcal{F}_{-}(\mathcal{H})} \left(\mathbf{Q} \, \mathrm{e}^{-eta(\mathbf{H}-\mu\,\mathbf{N})}
ight) \; = \; \operatorname{Tr}_{\mathcal{H}_{\mathrm{ph}}} (f_{eta}(\mathcal{H}_{\mu}) \, \mathcal{Q})$$

Thus: $P = \chi(H_{\mu} \leq 0)$ can have $Ch(P) = Ind(PFP) \neq 0$

Example p + ip wave superconductor with $\mathcal{H} = \ell^2(\mathbb{Z}^2)$

$$h = S_1 + S_1^* + S_2 + S_2^*$$
 $\Delta_{p+ip} = \delta (S_1 - S_1^* + i(S_2 - S_2^*))$

Quantized Wiedemann-Franz (Sumiyoshi-Fujimoto 2013)

$$\kappa_H = \frac{\pi}{8} \operatorname{Ch}(P) T + \mathcal{O}(T^2)$$

Theorem Ind(*PFP*) odd $\Longrightarrow 0 \in \sigma(H(\alpha = \frac{1}{2}))$ Majorana state

Spin quantum Hall effect in Class C (odd PHS)

Theorem (Altland-Zirnbauer 1997)

SU(2) spin rotation invariance $[\mathbf{H}, \mathbf{s}] = 0$

$$\Longrightarrow H = H_{\mathrm{red}} \otimes \mathbf{1}$$
 with odd PHS (Class C)

$$\mathcal{K}_{
m ph}^* \, \overline{\mathcal{H}_{
m red}} \, \mathcal{K}_{
m ph} \, = \, -\mathcal{H}_{
m red} \qquad , \qquad \mathcal{K}_{
m ph} = egin{pmatrix} 0 & -\mathbf{1} \ \mathbf{1} & 0 \end{pmatrix} \, .$$

Theorem (Nittis, S-B 2014) H odd PHS $\Longrightarrow \operatorname{Ind}(PFP) \in 2\mathbb{Z}$ **Example** d + id wave superconductor

$$\Delta_{d+id} = \delta \left(i(S_1 + S_1^* - S_2 - S_2^*) + (S_1 - S_1^*)(S_2 - S_2^*) \right) s^2$$

Then
$$Ch(P) = Ind(PFP) = 2$$
 for $\delta > 0$ and $\mu > 0$

Theorem (Nittis, S-B 2014) Spin Hall conductance (given by Kubo formula) and spin edge currents quantized

Periodic table (Schnyder et. al., Kitaev 2008)

Complex K-theory (2 periodic), Real K-theory (8-periodic)

CAZ	TRS	PHS	SLS	d=1	d=2	d=3	d=4
Α	0	0	0		\mathbb{Z}		\mathbb{Z}
AIII	0	0	1	\mathbb{Z}		\mathbb{Z}	
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}		
DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
All	-1	0	0		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
CII	-1	-1	1	2 Z		\mathbb{Z}_2	\mathbb{Z}_2
C	0	-1	0		2 Z		\mathbb{Z}_2
CI	+1	-1	1			$2\mathbb{Z}$	
Al	+1	0	0				2 Z
BDI	+1	+1	1	\mathbb{Z}			

Focus on complex cases: chirality and bulk-edge correspondence

Class A systems (dimension d even)

Given: covariant Hamiltonian $(H_{\omega})_{\omega \in \Omega}$ on $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L$ $P = (P_{\omega})_{\omega \in \Omega}$ Fermi projection with localization condition

$$\mathbf{E}_{\omega} \| \langle n | P_{\omega} | 0 \rangle \| \leq A_{\gamma} e^{-\gamma |n|}$$

Aim: Index theorem for strong invariant (generalizing QHE)

Construction: following Prodan, Leung, Bellissard (2013)

 $\sigma_1, \ldots, \sigma_d$ irrep of Clifford C_d on $\mathbb{C}^{2^{d/2}}$, Dirac phase:

$$D = \sum_{j=1}^d X_j \otimes \sigma_j \qquad F = \frac{D}{|D|} \qquad \text{on } \ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L \otimes \mathbb{C}^{2^{d/2}}$$

Grading $\gamma = -i^{-d/2}\sigma_1 \cdots \sigma_d$ so that $F\gamma = -\gamma F$

Index theorem for even dimension d

Extend P on $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L$ to $P \otimes \mathbf{1}$ on $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L \otimes \mathbb{C}^{2^{d/2}}$

Theorem (Prodan, Leung, Bellissard 2013) In grading of γ , upper right comp. $(P_{\omega}FP_{\omega})_{+,-}$ Fredholm with index a.s. equal

$$\operatorname{Ch}_{d}(P) = \frac{(2i\pi)^{\frac{d}{2}}}{\frac{d}{2}!} \sum_{\rho \in S_{d}} (-1)^{\rho} \operatorname{\mathbf{E}} \operatorname{Tr} \langle 0 | \left(P \prod_{j=1}^{d} [X_{\rho_{j}}, P] \right) | 0 \rangle$$

Remark Real space formula of k-space version for periodic system

$$\operatorname{Ch}_d(P) = \frac{1}{(-2i\pi)^{\frac{d}{2}} \frac{d}{2}!} \int_{\mathbb{T}^d} \operatorname{Tr}\left(\left[P(k)dP(k) \wedge dP(k)\right]^{\frac{d}{2}}\right)$$

Proof: higher dimensional version of Connes' triangle identity

Chiral unitary systems (dimension d odd)

$$K_{\rm sl}^*HK_{\rm sl}=-H$$
 with $K_{\rm sl}=egin{pmatrix} {f 1} & {f 0} \ {f 0} & -{f 1} \end{pmatrix}$, thus $H=egin{pmatrix} {f 0} & {f A} \ {f A}^* & {f 0} \end{pmatrix}$

 $K_{\rm sl}^*f(H)K_{\rm sl}=-f(H)$ for any odd function H, so f(H) off-diagonal In particular, flat band Hamiltonian $Q=2P-{\bf 1}={\rm sgn}(H)$ is odd

As
$$Q^2 = \mathbf{1}$$
 there is unitary U with $Q = \begin{pmatrix} 0 & U \\ U^* & 0 \end{pmatrix}$

Resumé: Fermi projection $P = \chi(H \le 0)$ encoded in unitary U

Dirac phase
$$F = \frac{D}{|D|}$$
 from $D = \sum_{j=1}^d X_j \otimes \sigma_j$, and $E = \frac{1}{2}(F + 1)$

Theorem (Prodan, S-B 2014)

EUE Fredholm operator with almost sure index equal to

$$\operatorname{Ch}_d(U) = \frac{(i\pi)^{\frac{d-1}{2}}}{d!!} \sum_{\rho \in S_d} (-1)^{\rho} \operatorname{\mathbf{E}} \operatorname{Tr} \langle 0 | \left(\prod_{j=1}^d U^{-1}[X_{\rho_j}, U] \right) | 0 \rangle$$

Chiral systems: comments and example

Remark k-space version (Schnyder, Ryu, Furusaki, Ludwig 2008)

$$\operatorname{Ch}_d(U) = \frac{\left(\frac{1}{2}(d-1)\right)!}{d!} \, \left(\frac{i}{2\pi}\right)^{\frac{d+1}{2}} \int_{\mathbb{T}^d} \operatorname{Tr}\left(\left[U^{-1}dU\right]^d\right)$$

New phase label generalizing higher winding numbers

Remark Phase stable under small breaking of chiral symmetry (as long as off-diagonal entry of Q invertible)

Example d = 1 (Mondragon-Shem, Song, Hughes, Prodan 2013):

$$H = \frac{1}{2}(\sigma_1 + i\sigma_2) S^* + \frac{1}{2}(\sigma_1 - i\sigma_2) S + m\sigma_2$$

 $\mathrm{Ch}_1(U) \neq 0$ for |m| < 1, only localized states for random coeffs Divergence of localization length at E=0 at transition point

General bulk-edge correspondence (Prodan S-B)

Hypothesis: gap in bulk system in dimension d (even or odd)

Exact sequence: edge — half space — bulk

$$0 \longrightarrow \mathcal{A}_{d-1} \otimes \mathcal{K} \longrightarrow \mathcal{T}(\mathcal{A}_d) \longrightarrow \mathcal{A}_d \longrightarrow 0$$

Crucial fact: Ch_{d-1} extends to edge operators in $\mathcal{A}_{d-1}\otimes\mathcal{K}$

$$K_0(\mathcal{A}_{d-1}) \longrightarrow K_0(\mathcal{T}(\mathcal{A}_{d-1})) \longrightarrow K_0(\mathcal{A}_d)$$
Ind $\uparrow \qquad \qquad \downarrow \exp$
 $K_1(\mathcal{A}_d) \longleftarrow K_1(\mathcal{T}(\mathcal{A}_{d-1})) \longleftarrow K_1(\mathcal{A}_{d-1})$

Class A system in even $d: \operatorname{Ch}_d(P) = \operatorname{Ch}_{d-1}(\exp(P))$

Chiral system in odd d: $Ch_d(U) = Ch_{d-1}(Ind(U))$

Example in d = 3 (Schnyder *et. al.*, Prodan S-B)

 $(\sigma_j)_{j=1,\dots,5}$ irrep of Clifford algebra C_5 on \mathbb{C}^4 , e.g. with Pauli mats Hamiltonian on $\ell^2(\mathbb{Z}^3)\otimes\mathbb{C}^4$

$$H = \sum_{j=1}^{3} \frac{1}{2i} (S_j - S_j^*) \otimes \sigma_j + \left(m + \sum_{j=1}^{3} \frac{1}{2} (S_j + S_j^*) \right) \otimes \sigma_4$$

Chiral symmetry $\sigma_5 H \sigma_5 = -H$

Closed gap at m = -3, -1, 1, 3, between $Ch_3(U) = 0, -1, 2, -1, 0$

d=2 surface state have Dirac points adding up to $Ch_3(U)$

Split in magnetic field (as for Dirac or on honeycomb)

 \widehat{P} spectral projection on central band of surface states has QHE

Theorem $\operatorname{Ind}([U]_1) = [\widehat{P}J]_0$ and $\operatorname{Ch}_2(\widehat{P}J) = \operatorname{Ch}_3(U)$

Resumé

- \mathbb{Z}_2 indices of Fredholm operators
- Invariants and indices in higher dimesion
- General bulk-edge correspondence
- Non-trivial topology persists if symmetries slightly broken