Surface parallel transport based on a crossed module, and beyond

Roger Picken (Instituto Superior Técnico, Lisbon)

Erlangen, October 31, 2011
This is largely based on work done with João Faria Martins (Universidade Nova, Lisbon).

For related work on higher holonomy or parallel transport see especially: John Baez + Urs Schreiber, Urs Schreiber + Konrad Waldorf.

I will be trying to bring out the nice features of a cubical approach to the algebra and geometry involved.
Crossed modules of groups

For higher parallel transport we need two related groups: G for paths and E for surfaces.

Definition

A crossed module (of groups) is given by

- $\partial : E \rightarrow G$ (homomorphism of groups)
- $\dagger : G \times E \rightarrow E$ (left action of G on E by automorphisms *)

such that

1. $\partial (X \dagger e) = X \partial (e)$ for each $X \in G, e \in E$,
2. $\partial (e) \dagger f = e f e^{-1}$ for each $e, f \in E$.

* i.e. $g \dagger (e_1 e_2) = (g \dagger e_1)(g \dagger e_2)$ and $g \dagger 1 = 1$.
Crossed modules of groups

For higher parallel transport we need two related groups: G for paths and E for surfaces.

Definition
A crossed module (of groups) is given by

\[\partial : E \to G \quad \text{(homomorphism of groups)} \]

\[\triangleright : G \times E \to E \quad \text{(left action of } G \text{ on } E \text{ by automorphisms*)} \]

such that

1. \[\partial(X \triangleright e) = X \partial(e)X^{-1} \text{ for each } X \in G, e \in E, \]
2. \[\partial(e) \triangleright f = efe^{-1} \text{ for each } e, f \in E. \]
Crossed modules of groups

For higher parallel transport we need two related groups: \(G \) for paths and \(E \) for surfaces.

Definition
A crossed module (of groups) is given by

\[
\partial : E \to G \quad \text{(homomorphism of groups)}
\]

\[
\triangleright : G \times E \to E \quad \text{(left action of } G \text{ on } E \text{ by automorphisms*)}
\]

such that

1. \(\partial(X \triangleright e) = X\partial(e)X^{-1} \) for each \(X \in G, e \in E \),
2. \(\partial(e) \triangleright f = efe^{-1} \) for each \(e, f \in E \).

* i.e. \(g \triangleright (e_1 e_2) = (g \triangleright e_1)(g \triangleright e_2) \) and \(g \triangleright 1 = 1 \)
Examples of crossed modules

Crossed module recap: \(\partial : E \to G \) and \(\triangleright : G \times E \to E \) such that \(\partial(X \triangleright e) = X \partial(e)X^{-1} \) and \(\partial(e) \triangleright f = efe^{-1} \)
Examples of crossed modules

Crossed module recap: \(\partial: E \to G\) and \(\triangleright: G \times E \to E\) such that \(\partial(X \triangleright e) = X\partial(e)X^{-1}\) and \(\partial(e) \triangleright f = efe^{-1}\)

1. (obvious example) \(E = G\), \(\partial = \text{id}\), \(X \triangleright Y = XYX^{-1}\)
Examples of crossed modules

Crossed module recap: $\partial : E \rightarrow G$ and $\triangleright : G \times E \rightarrow E$ such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = efe^{-1}$

1. (obvious example) $E = G$, $\partial = \text{id}$, $X \triangleright Y = XYYX^{-1}$

2. (just G) $1 \xrightarrow{\partial} G$, \triangleright trivial
Examples of crossed modules

Crossed module recap: $\partial : E \to G$ and $\rhd : G \times E \to E$
such that $\partial(X \rhd e) = X\partial(e)X^{-1}$ and $\partial(e) \rhd f = efe^{-1}$

1. (obvious example) $E = G$, $\partial = \text{id}$, $X \rhd Y = XYYX^{-1}$
2. (just G) $1 \xrightarrow{\partial} G$, \rhd trivial
3. (just abelian E) $E \xrightarrow{\partial} 1$, $1 \rhd e = e$
Examples of crossed modules

Crossed module recap: $\partial: E \to G$ and $\triangleright: G \times E \to E$ such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = efe^{-1}$

1. (obvious example) $E = G$, $\partial = \text{id}$, $X \triangleright Y = XYYX^{-1}$
2. (just G) $1 \xrightarrow{\partial} G$, \triangleright trivial
3. (just abelian E) $E \xrightarrow{\partial} 1$, $1 \triangleright e = e$

Note that $\ker \partial$ is contained in the centre of E, hence is abelian (for $e \in \ker \partial$: $efe^{-1} = \partial(e) \triangleright f = 1 \triangleright f = f$).
Examples of crossed modules

Crossed module recap: $\partial: E \to G$ and $\triangleright: G \times E \to E$ such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = efe^{-1}$

1. (obvious example) $E = G$, $\partial = \text{id}$, $X \triangleright Y = XYYX^{-1}$

2. (just G) $1 \xrightarrow{\partial} G$, \triangleright trivial

3. (just abelian E) $E \xrightarrow{\partial} 1$, $1 \triangleright e = e$

 Note that $\ker \partial$ is contained in the centre of E, hence is abelian (for $e \in \ker \partial$: $efe^{-1} = \partial(e) \triangleright f = 1 \triangleright f = f$).

4. (”independent” G and abelian E) $\partial(E) = 1$, $g \triangleright e = e$.
Examples of crossed modules

Crossed module recap: $\partial: E \rightarrow G$ and $\triangleright: G \times E \rightarrow E$
such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = ef e^{-1}$

1. (obvious example) $E = G$, $\partial = \text{id}$, $X \triangleright Y = XYX^{-1}$
2. (just G) $1 \xrightarrow{\partial} G$, \triangleright trivial
3. (just abelian E) $E \xrightarrow{\partial} 1$, $1 \triangleright e = e$

Note that ker ∂ is contained in the centre of E, hence is
abelian (for $e \in \ker \partial$: $efe^{-1} = \partial(e) \triangleright f = 1 \triangleright f = f$).
4. ("independent" G and abelian E) $\partial(E) = 1$, $g \triangleright e = e$.
Examples of crossed modules

Crossed module recap: \(\partial: E \to G \) and \(\triangleright: G \times E \to E \)
such that \(\partial(X \triangleright e) = X\partial(e)X^{-1} \) and \(\partial(e) \triangleright f = efe^{-1} \)

1. (obvious example) \(E = G, \partial = \text{id}, X \triangleright Y = XYYX^{-1} \)
2. (just \(G \)) \(1 \to G, \triangleright \text{ trivial} \)
3. (just abelian \(E \)) \(E \to 1, 1 \triangleright e = e \)

 Note that \(\ker \partial \) is contained in the centre of \(E \), hence is
 abelian (for \(e \in \ker \partial: efe^{-1} = \partial(e) \triangleright f = 1 \triangleright f = f \)).
4. (”independent” \(G \) and abelian \(E \)) \(\partial(E) = 1, g \triangleright e = e \).

We will also look at some examples with \(E \neq G \) and ”interacting”.
Central extensions

A central extension of Lie groups is an exact sequence

\[1 \to A \to H \to K \to 1 \]

with \(A \cong \text{image}(A) \) central in \(H \).
Central extensions

A central extension of Lie groups is an exact sequence

\[
1 \rightarrow A \rightarrow H \rightarrow K \rightarrow 1
\]

with \(A \cong \text{image}(A) \) central in \(H \).

E.g. \(A = \mathbb{Z}_2, \ H = SU(2), \ K = SO(3) \)
Crossed modules from central extensions

Crossed module recap: \(\partial : E \to G \) and \(\triangleright : G \times E \to E \)
such that \(\partial (X \triangleright e) = X \partial (e) X^{-1} \) and \(\partial (e) \triangleright f = e f e^{-1} \)
Crossed modules from central extensions

Crossed module recap: \(\partial : E \to G \) and \(\triangleright : G \times E \to E \) such that \(\partial(X \triangleright e) = X\partial(e)X^{-1} \) and \(\partial(e) \triangleright f =efe^{-1} \)

Given a central extension:

\[
1 \to A \to H \to K \to 1
\]

1. \(E = A \xrightarrow{\partial} H = G, \quad \triangleright \) trivial
Crossed modules from central extensions

Crossed module recap: $\partial : E \to G$ and $\rhd : G \times E \to E$
such that $\partial(X \rhd e) = X\partial(e)X^{-1}$ and $\partial(e)\rhd f = efe^{-1}$

Given a central extension:

$$1 \to A \to H \to K \to 1$$

1. $E = A \xrightarrow{\partial} H = G$, \rhd trivial

 $\begin{array}{c}
 A \xrightarrow{\partial} H \\
 \downarrow \\
 1 \to K
 \end{array}$

 We can also think of this as follows:

 i.e. $A \xrightarrow{\partial} H$ mapping down via a morphism of crossed
 modules to the "just K" example $1 \to K$
Crossed modules from central extensions

Crossed module recap: $\partial: E \rightarrow G$ and $\triangleright: G \times E \rightarrow E$
such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = efe^{-1}$

Given a central extension:

$$1 \rightarrow A \rightarrow H \rightarrow K \rightarrow 1$$

1. $E = A \xrightarrow{\partial} H = G$, \triangleright trivial

We can also think of this as follows:

$$\begin{array}{c}
A \xrightarrow{\partial} H \\
\downarrow \\
1 \rightarrow K
\end{array}$$

i.e. $A \xrightarrow{\partial} H$ mapping down via a morphism of crossed modules to the ”just K” example $1 \rightarrow K$

2. $E = H \xrightarrow{\partial} K = G$, with lifted action $k \triangleright h = h'hh'^{-1}$ where $\partial(h') = k$ (well-defined as $A = \ker \partial$ is central in H).
Automorphism crossed modules

Crossed module recap: \(\partial : E \to G \) and \(\triangleright : G \times E \to E \) such that \(\partial(X \triangleright e) = X\partial(e)X^{-1} \) and \(\partial(e) \triangleright f = efe^{-1} \)
Automorphism crossed modules

Crossed module recap: \(\partial : E \to G \) and \(\triangleright : G \times E \to E \) such that \(\partial(X \triangleright e) = X\partial(e)X^{-1} \) and \(\partial(e) \triangleright f = efe^{-1} \)

Automorphism crossed module:

\[
E = K \xrightarrow{\partial} \text{Aut}(K) = G
\]

where \(K \) is a Lie group.
Automorphism crossed modules

Crossed module recap: $\partial : E \to G$ and $\triangleright : G \times E \to E$ such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = efe^{-1}$

Automorphism crossed module:

$$E = K \xrightarrow{\partial} \text{Aut}(K) = G$$

where K is a Lie group.

The image of ∂ is $\text{Inn}(K)$, i.e.

$$\partial(k)(k') = kk'k^{-1}$$

and \triangleright is given by the action of $\text{Aut}(K)$ on K.
Crossed module recap: $\partial : E \rightarrow G$ and $\triangleright : G \times E \rightarrow E$
such that $\partial(X \triangleright e) = X\partial(e)X^{-1}$ and $\partial(e) \triangleright f = efe^{-1}$.

There is a corresponding definition of a crossed module of Lie algebras or differential crossed module:

$\partial : e \rightarrow g$ and $\triangleright : g \times e \rightarrow e$
where ∂ is a Lie algebra morphism and g acts on e by derivations.
Differential crossed modules

Crossed module recap: \(\partial : E \to G \) and \(\rhd : G \times E \to E \) such that \(\partial(X \rhd e) = X\partial(e)X^{-1} \) and \(\partial(e) \rhd f = efe^{-1} \)

There is a corresponding definition of a crossed module of Lie algebras or differential crossed module:

\[\partial : \mathfrak{e} \to \mathfrak{g} \quad \text{and} \quad \rhd : \mathfrak{g} \times \mathfrak{e} \to \mathfrak{e} \]

where \(\partial \) is a Lie algebra morphism and \(\mathfrak{g} \) acts on \(\mathfrak{e} \) by derivations.
Crossed modules and multiplication of squares

Consider squares of the form

where \(X, Y, Z, W \in G \) and \(e \in E \), such that \(\partial(e) = XYW^{-1}Z^{-1} \).
Crossed modules and multiplication of squares

Consider squares of the form

where \(X, Y, Z, W \in G \) and \(e \in E \), such that \(\partial(e) = XYW^{-1}Z^{-1} \).

Define horizontal and vertical multiplication of squares:
Interchange law

These multiplications satisfy the interchange law:

\[
\begin{array}{cc}
A & B \\
C & D
\end{array}
= \begin{array}{cc}
A & B \\
C & D
\end{array}
\]

so that we can evaluate consistently the product of a 2D array of squares.
Interchange law

These multiplications satisfy the interchange law:

\[
\begin{array}{ccc}
A & B & = \\
C & D & \\
\end{array}
\]

so that we can evaluate consistently the product of a 2D array of squares.

The squares will constitute the algebraic image of parallel transports along geometric 2-paths or squares in a manifold.
Interchange law

These multiplications satisfy the interchange law:

\[
\begin{array}{cc}
A & B \\
C & D \\
\end{array} = \begin{array}{c}
A \\
B \\
\end{array}
\begin{array}{c}
C \\
D \\
\end{array}
\]

so that we can evaluate consistently the product of a 2D array of squares.

The squares will constitute the algebraic image of parallel transports along geometric 2-paths or squares in a manifold.

This construction is called the double groupoid of the crossed module, with a single object, morphisms in \(G \) and squares in \(E \).
The box equation for squares

We can form commuting box diagrams of squares, expressed as the box equation:
The box equation for squares

We can form commuting box diagrams of squares, expressed as the box equation:

Here we also see examples of the action of the dihedral group on squares, e.g. the top-bottom flip.
Commuting boxes

These commuting boxes can be multiplied in 3 directions by cancelling the shared face and multiplying four pairs of faces:
Commuting boxes

These commuting boxes can be multiplied in 3 directions by cancelling the shared face and multiplying four pairs of faces:

The 3 multiplications are fully interchangeable. For more details see [Brown-Higgins-Sivera].
Take a principal G-bundle over a manifold M, with connection $\omega \in \Lambda^1 P \otimes g$, curvature $\Omega = D\omega \in \Lambda^2 P \otimes g$, together with a 2-form $m \in \Lambda^2 P \otimes \epsilon$. The 3-form curvature M given by $M = dm + \omega \wedge \Delta m$ takes values in the Lie sub-algebra $\ker(\partial)$ of ϵ, i.e. $\partial(M) = 0$, due to the Bianchi identity.
Geometry for parallel transport along 2-paths - I

Take a principal G-bundle over a manifold M, with connection $\omega \in \Lambda^1 P \otimes g$, curvature $\Omega = D\omega \in \Lambda^2 P \otimes g$, together with a 2-form $m \in \Lambda^2 P \otimes \mathfrak{e}$.

m satisfies an equivariance condition for the right G action R_g:

$$R^*_g(m) = g^{-1} \triangleright m$$

(matching the equivariance of ω and Ω, e.g. $R^*_g(\omega) = g^{-1}\omega g$)
Take a principal G-bundle over a manifold M, with connection $\omega \in \Lambda^1 P \otimes g$, curvature $\Omega = D\omega \in \Lambda^2 P \otimes g$, together with a 2-form $m \in \Lambda^2 P \otimes \epsilon$.

m satisfies an equivariance condition for the right G action R_g:

$$R_g^*(m) = g^{-1} \triangleright m$$

(matching the equivariance of ω and Ω, e.g. $R_g^*(\omega) = g^{-1} \omega g$) and the "fake curvature equals 0" condition:

$$\partial(m) = \Omega.$$
Geometry for parallel transport along 2-paths - I

Take a principal G-bundle over a manifold M, with connection $\omega \in \Lambda^1 P \otimes g$, curvature $\Omega = D\omega \in \Lambda^2 P \otimes g$, together with a 2-form $m \in \Lambda^2 P \otimes \epsilon$.

m satisfies an equivariance condition for the right G action R_g:

$$R^*_g(m) = g^{-1} \triangleright m$$

(matching the equivariance of ω and Ω, e.g. $R^*_g(\omega) = g^{-1} \omega g$) and the ”fake curvature equals 0” condition:

$$\partial(m) = \Omega.$$

The 3-form curvature \mathcal{M} given by

$$\mathcal{M} = dm + \omega \wedge^\triangleright m$$

takes values in the Lie sub-algebra $\text{ker}(\partial)$ of ϵ, i.e. $\partial(\mathcal{M}) = 0$, due to the Bianchi identity.
The connection ω lifts paths γ in M horizontally to paths $\tilde{\gamma}$ in P.
The connection ω lifts paths γ in M horizontally to paths $\tilde{\gamma}$ in P.

A 2-path $\Gamma : [0, 1]^2 \to M$ defines two families of paths: γ_s and γ^t, by $\gamma_s(t) = \gamma^t(s) = \Gamma(t, s)$.

The thick curves are horizontal lifts.

The element $Y_{\Gamma}(t, s) \in G$ acts on p on the right.
The connection ω lifts paths γ in M horizontally to paths $\tilde{\gamma}$ in P.

A 2-path $\Gamma : [0, 1]^2 \to M$ defines two families of paths: γ_s and γ^t, by $\gamma_s(t) = \gamma^t(s) = \Gamma(t, s)$.

The thick curves are horizontal lifts.

The element $Y_\Gamma(t, s) \in G$ acts on p on the right.

Set $X_{\partial \Gamma} := Y_\Gamma(1, 1)$.
By the Ambrose-Singer theorem (curvature = infinitesimal holonomy), $Y_{\Gamma}(t, s) \in G$ in the figure above satisfies:

\[
\begin{align*}
\frac{\partial}{\partial s} Y_{\Gamma}(t, s) &= Y_{\Gamma}(t, s) \int_{0}^{t} \Omega_{\tilde{\gamma}_{s}(t')} (\tilde{\frac{\partial}{\partial t'}} \Gamma(t', s), \tilde{\frac{\partial}{\partial s}} \Gamma(t', s)) dt' \\
Y_{\Gamma}(t, 0) &= 1_{G}
\end{align*}
\]
Ambrose-Singer and e_Γ

By the Ambrose-Singer theorem (curvature = infinitesimal holonomy), $Y_\Gamma(t, s) \in G$ in the figure above satisfies:

$$\begin{align*}
\frac{\partial}{\partial s} Y_\Gamma(t, s) &= Y_\Gamma(t, s) \int_0^t \Omega_{\tilde{\gamma}_s(t')} (\frac{\partial}{\partial t'} \Gamma(t', s), \frac{\partial}{\partial s} \Gamma(t', s)) dt' \\
Y_\Gamma(t, 0) &= 1_G
\end{align*}$$

Define an element of E in the same way $e_\Gamma := f_\Gamma(1, 1)$, where

$$\begin{align*}
\frac{\partial}{\partial s} f_\Gamma(t, s) &= f_\Gamma(t, s) \int_0^t m_{\tilde{\gamma}_s(t')} (\frac{\partial}{\partial t'} \Gamma(t', s), \frac{\partial}{\partial s} \Gamma(t', s)) dt' \\
f_\Gamma(t, 0) &= 1_E
\end{align*}$$
Ambrose-Singer and e_{Γ}

By the Ambrose-Singer theorem (curvature = infinitesimal holonomy), $Y_{\Gamma}(t, s) \in G$ in the figure above satisfies:

\[
\begin{cases}
\frac{\partial}{\partial s} Y_{\Gamma}(t, s) = Y_{\Gamma}(t, s) \int_0^t \Omega_{\tilde{\gamma}_s(t')} (\frac{\partial}{\partial t'} \Gamma(t', s), \frac{\partial}{\partial s} \Gamma(t', s)) dt' \\
Y_{\Gamma}(t, 0) = 1_G
\end{cases}
\]

Define an element of E in the same way $e_{\Gamma} := f_{\Gamma}(1, 1)$, where

\[
\begin{cases}
\frac{\partial}{\partial s} f_{\Gamma}(t, s) = f_{\Gamma}(t, s) \int_0^t m_{\tilde{\gamma}_s(t')} (\frac{\partial}{\partial t'} \Gamma(t', s), \frac{\partial}{\partial s} \Gamma(t', s)) dt' \\
f_{\Gamma}(t, 0) = 1_E
\end{cases}
\]

By the condition $\partial m = \Omega$, clearly $\partial e_{\Gamma} = X_{\partial \Gamma}$.
Local formulation for e_{Γ}

We can use a local section $U \to P$ to pull back ω and m to $A \in \Lambda^1(U) \otimes g$ and $B \in \Lambda^2(U) \otimes \epsilon$. Thus we get an assignment from paths in U to G (the path-ordered exponential of A)

$$\gamma \mapsto X_\gamma = X(1), \quad \text{where} \quad \begin{cases} X'(t) &= X(t)A(\gamma'(t)) \\ X(0) &= 1_G \end{cases}$$
Local formulation for e_Γ

We can use a local section $U \to P$ to pull back ω and m to $A \in \Lambda^1(U) \otimes g$ and $B \in \Lambda^2(U) \otimes e$. Thus we get an assignment from paths in U to G (the path-ordered exponential of A)

$$\gamma \mapsto X_\gamma = X(1), \quad \text{where} \quad \begin{cases} X'(t) &= X(t)A(\gamma'(t)) \\ X(0) &= 1_G \end{cases}$$

and an assignment from 2-paths in U to E:

$$\Gamma \mapsto e_\Gamma = e(1),$$

where

$$\begin{cases} e'(s) &= e(s) \int_0^1 X_{\gamma_s,t} \triangleright B(\frac{\partial}{\partial t}\Gamma(t,s), \frac{\partial}{\partial s}\Gamma(t,s))dt \\ e(0) &= 1_E \end{cases}$$

giving a square:
Local transition squares

Local transports can be patched together using:

G-valued transition functions ϕ_{ij} defined on $U_i \cap U_j := U_{ij}$,

E-valued transition functions ψ_{ijkl}

and \mathfrak{e}-valued transition 1-forms η_{ij},
Local transition squares

Local transports can be patched together using:

G-valued transition functions ϕ_{ij} defined on $U_i \cap U_j := U_{ij}$,
E-valued transition functions ψ_{ijkl}
and ε-valued transition 1-forms η_{ij},
giving rise to squares for $x \in U_{ijkl}$ and γ a path in U_{ij} from x to y:
Local transition squares

Local transports can be patched together using:

- G-valued transition functions ϕ_{ij} defined on $U_i \cap U_j := U_{ij}$,
- E-valued transition functions ψ_{ijkl}
- and ϵ-valued transition 1-forms η_{ij},

giving rise to squares for $x \in U_{ijkl}$ and γ a path in U_{ij} from x to y:

The element e_{ij}^{γ} is obtained from the 1-form η_{ij} using an ODE analogous to the one used to get X^i_γ from the local connection 1-form A^i.
Patching together local surface transports

Now we can patch together local surface transports:
Returning to some special cases

We recover a description of parallel transport in some special cases of crossed modules.
Returning to some special cases

We recover a description of parallel transport in some special cases of crossed modules.

1. (just G) \[1 \xrightarrow{\partial} G, \]
 principal G-bundles
Returning to some special cases

We recover a description of parallel transport in some special cases of crossed modules.

1. (just G) $1 \xrightarrow{\partial} G$, principal G-bundles

2. (just abelian E) $E \xrightarrow{\partial} 1$, abelian gerbes valued in E
Returning to some special cases

We recover a description of parallel transport in some special cases of crossed modules.

1. (just G) $1 \xrightarrow{\partial} G$, principal G-bundles

2. (just abelian E) $E \xrightarrow{\partial} 1$, abelian gerbes valued in E

3. From a central extension: $1 \rightarrow A \rightarrow H \rightarrow K \rightarrow 1$ with $E = A \xrightarrow{\partial} H = G$, twisted vector bundles (Mackaay), i.e. principal K-bundles twisted by $A
Returning to some special cases

We recover a description of parallel transport in some special cases of crossed modules.

1. (just G) $1 \xrightarrow{\partial} G$, principal G-bundles
2. (just abelian E) $E \xrightarrow{\partial} 1$, abelian gerbes valued in E
3. From a central extension: $1 \to A \to H \to K \to 1$ with $E = A \xrightarrow{\partial} H = G$, twisted vector bundles (Mackaay), i.e. principal K-bundles twisted by A

Recall the diagram:

\[
\begin{array}{ccc}
A & \xrightarrow{\partial} & H \\
\downarrow & & \downarrow \\
1 & \longrightarrow & K
\end{array}
\]
Non-abelian Stokes theorem

The main property of the surface transports e_{Γ} is a non-abelian Stokes theorem or higher Ambrose-Singer theorem for a 1-parameter family Γ_x of squares in M,

relating the surface transports on the faces of the box to the $\ker(\partial)$-valued 3-form curvature \mathcal{M}.
Non-abelian Stokes theorem

The main property of the surface transports e_{Γ} is a non-abelian Stokes theorem or higher Ambrose-Singer theorem for a 1-parameter family Γ_x of squares in M, relating the surface transports on the faces of the box to the $\ker(\partial)$-valued 3-form curvature \mathcal{M}.

In particular when $\mathcal{M} = 0$, we get a box equation for the transports on the faces.
Some properties of e_{Γ}

We can use the non-abelian Stokes theorem to show:

1. e_{Γ} is invariant under changes of subdivision and internal reassignments of open patches

2. e_{Γ} is invariant under thin homotopy, i.e. $\Gamma \sim_{H} \Gamma'$ are homotopic with the (smooth) homotopy H such that $\text{Rank } DH \leq 2$ for the Jacobian matrix DH (intuitively: H does not sweep out volume, hence $M = 0$).
Gauge transformations

There is also a notion of gauge transformation, closely related to the transition squares seen previously. E.g. for $\mathfrak{e}_\Gamma(A, B)$ given by 1- and 2- forms A and B in a single patch, we take $\phi \in \Lambda^0(U) \otimes \mathfrak{g}$ and $\eta \in \Lambda^1(U) \otimes \mathfrak{e}$ determining the gauge transformation by means of a box equation:

γ_0 goes from x to y. The other side faces of the box are similar. This is being studied more closely (with Jeff Morton).
Wilson surfaces

For Γ with image a closed surface e_Γ gives something analogous to a Wilson loop observable $\text{tr} X_\gamma$.

![Diagram of Wilson surfaces](attachment:image.png)
Wilson surfaces

For Γ with image a closed surface e_{Γ} gives something analogous to a Wilson loop observable $\text{tr} \, X_{\gamma}$.

For a Wilson sphere, e_{Γ} takes values in $\ker(\partial)$ and is invariant under gauge transformations and reparametrizations up to acting by an element of G.
Wilson surfaces

For Γ with image a closed surface e_Γ gives something analogous to a Wilson loop observable $\text{tr} \ X_\gamma$.

For a Wilson sphere, e_Γ takes values in $\ker(\partial)$ and is invariant under gauge transformations and reparametrizations up to acting by an element of G. For a Wilson torus, e_Γ takes values in ∂^{-1} of the commutator subgroup of G, and is invariant under gauge transformations and reparametrizations up to simultaneous 2D conjugations:
and beyond ...

1. invariants of knotted surfaces in 4D? Need a 4D Chern-Simons action matched to the categorical connections $A \in \Lambda^1 \otimes g$, $B \in \Lambda^2 \otimes \epsilon$

1006.0903 Faria Martins and Mikovic have a three-parameter deformation of the extended BFCG action
1. invariants of knotted surfaces in 4D? Need a 4D Chern-Simons action matched to the categorical connections $A \in \Lambda^1 \otimes g$, $B \in \Lambda^2 \otimes e$

1006.0903 Faria Martins and Mikovic have a three-parameter deformation of the extended BFCG action

2. categorified Knizhnik-Zamolodchikov (KZ) connection?

1106.0042 Cirio and Faria Martins

The KZ connection is the essential ingredient in the universal Vassiliev invariant due to Kontsevich
and beyond ...

1. invariants of knotted surfaces in 4D? Need a 4D Chern-Simons action matched to the categorical connections $A \in \Lambda^1 \otimes g$, $B \in \Lambda^2 \otimes e$

1006.0903 Faria Martins and Mikovic have a three-parameter deformation of the extended BFCG action

2. categorified Knizhnik-Zamolodchikov (KZ) connection ?

1106.0042 Cirio and Faria Martins

The KZ connection is the essential ingredient in the universal Vassiliev invariant due to Kontsevich

3. indications of surface transport in 3D quantum gravity with negative cosmological constant (\sim Chern-Simons theory with gauge group $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$)

1006.0921 Nelson and Picken
and beyond ...

1. invariants of knotted surfaces in 4D? Need a 4D Chern-Simons action matched to the categorical connections $A \in \Lambda^1 \otimes g$, $B \in \Lambda^2 \otimes e$

1006.0903 Faria Martins and Mikovic have a three-parameter deformation of the extended BFCG action

2. categorified Knizhnik-Zamolodchikov (KZ) connection ?

1106.0042 Cirio and Faria Martins
The KZ connection is the essential ingredient in the universal Vassiliev invariant due to Kontsevich

3. indications of surface transport in 3D quantum gravity with negative cosmological constant (\sim Chern-Simons theory with gauge group $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$)

1006.0921 Nelson and Picken

4. non-abelian transport along 3D volumes based on a 2-crossed module

0907.2566 Faria Martins and Picken